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Abstract
Up to now, powerful outlier robust tests for linear models are based on M-estimators
and are quite complicated. On the other hand, the simple robust classical sign test
usually provides very bad power for certain alternatives. We present a generalization
of the sign test which is similarly easy to comprehend but much more powerful.
It is based on K -sign depth, shortly denoted by K -depth. These so-called K -depth
tests are motivated by simplicial regression depth, but are not restricted to regression
problems. They can be applied as soon as the truemodel leads to independent residuals
with median equal to zero. Moreover, general hypotheses on the unknown parameter
vector can be tested. While the 2-depth test, i.e. the K -depth test for K = 2, is
equivalent to the classical sign test, K -depth test with K ≥ 3 turn out to be much
more powerful in many applications. A drawback of the K -depth test is its fairly
high computational effort when implemented naively. However, we show how this
inherent computational complexity can be reduced. In order to see why K -depth tests
with K ≥ 3 are more powerful than the classical sign test, we discuss the asymptotic
behavior of its test statistic for residual vectors with only few sign changes, which
is in particular the case for some alternatives the classical sign test cannot reject. In
contrast, we also consider residual vectors with alternating signs, representing models
that fit the data very well. Finally, we demonstrate the good power of the K -depth tests
for some examples including high-dimensional multiple regression.
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1 Introduction

Outlier robust tests for linear models are mainly given by Wald-type tests, likeli-
hood ratio tests, and score-type tests based on M-estimators and related estimators as
originally proposed by Schrader and Hettmansperger (1980), Markatou et al. (1991),
Silvapulle (1992), Heritier and Ronchetti (1994). See also Hampel et al. (2011), Chap-
ter 7, Huber and Ronchetti (2009), Chapter 13, and Maronna et al. (2019), Chapter
5. M-estimators have the disadvantage that they depend on score functions which
must be specified. Moreover, they are not scale invariant so that the scale must be
estimated simultaneously as this is done by the MM-estimators proposed by Yohai
(1987). These MM-estimators are defined iteratively using the S-estimators for scale
introduced by Rousseeuw and Yohai (1984). The robust tests given by lmRob in
the R-packages robust and lmrob in robustbase are based on MM-estimators
with special score functions where some efficient calculation is given by approaches
of Koller and Stahel (2011, 2017). These tests are very powerful but complicated to
compute since optimal regression and scale estimates are determined by an adaptive
procedure.

We propose here powerful outlier robust tests which are much simpler since they
are based only on signs of residuals. They can be used as soon as residuals Rn(θ),
n = 1, . . . , N , of a parametric model given by a parameter θ ∈ Θ ⊂ R

p, p ∈ N, can
be defined and which satisfy

Pθ (Rn(θ) > 0) = 1

2
= Pθ (Rn(θ) < 0). (1)

Such residuals appear in linear or nonlinear regressionmodels with realized regressors
xn where observations are of the form Yn = g(xn, θ) + En and the error variable
En has a continuous distribution with median equal to zero. Then the residuals are
given by Rn(θ) = Yn − g(xn, θ). Generalized linear models are further examples
of residuals satisfying (1) if the link function can be expressed by the median of the
observations Yn , i.e. if med(Yn) = g(xn, θ) ; see, e.g., Leckey et al. (2020) for a
load-sharing model which also leads to residuals satisfying (1). More examples are
given by stochastic processes with i.i.d. increments En such as AR(p) processes given
by Yn = g(Yn−1, . . . ,Yn−p, θ) + En . Realizations of R1(θ), . . . , RN (θ) are denoted
by r1(θ), . . . , rN (θ).

The proposed tests are called K -depth tests and are based on the so-called K -
sign depth, shortly denoted by K -depth. The K -depth of a parameter θ in a set of
realized observations y1, . . . , yN is the relative amount of K -tuples {n1, . . . , nK } ⊂
{1, . . . , N } with alternating signs of the residuals rn1(θ), . . . , rnK (θ). A hypothesis
H0 : θ ∈ Θ0 is rejected if the K -depth of all θ ∈ Θ0 is too small. The only hyper-
parameter which must be chosen is K . A good choice is often a value close to the
dimension p of the parameter θ but other choices are possible.
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Simple powerful robust tests based on sign depth 859

For K = 2 and hypotheses of the form H0 : θ = θ0, the K -depth test is the
classical sign test which counts the number of positive (or negative) residuals r1(θ0)
and rejects the null hypothesis if the number of positive signs is too small or too large.
In particular, it does not reject the null hypothesis if half of the residuals are positive
and half of them are negative. However, this can also happen for alternatives with
parameters far away from θ0, see Fig. 1, p. 13. Therefore this simple sign-test is not
powerful for many alternatives. However, the proposed K -depth test with K ≥ 3 is
much more powerful as we show in this paper.

The K -depth has its origin in simplicial regression depth. Simplicial regression
depth is a modification of the regression depth introduced by Rousseeuw and Hubert
(1999) to generalize the depth notion to regression. Originally, the halfspace depth of
Tukey (1975) was used to obtain a generalization of the median for multivariate data.
Liu (1988, 1990) extended this to simplicial depth. Simplicial depth can be expressed
by counting the number of all p+1-tupels of the p-dimensional data set with positive
halfspace depth. Replacing halfspace depth by regression depth leads to simplicial
regression depth. For the calculation of simplicial regression depth, Rousseeuw and
Hubert (1999) and Müller (2005) noted that the regression depth of a p-dimensional
parameter vector within p + 1 observations is greater than zero if and only if the
residuals have alternating signs. Sufficient conditions for this equivalence and a proof
of this property are given by Kustosz et al. (2016). This led to the idea to define the
depth of a parameter θ directly via alternating signs of residuals in K -tuples.

It should be noted here that depth of a parameter in observations coming from a
parametric model is treated only by few authors as Mizera and Müller (2004); Müller
(2005); Denecke andMüller (2014); Paindaveine andVan Bever (2018);Wang (2019).
Most of depth notion concern depth of data points in multivariate data sets as those
of Zuo and Serfling (2000); Mosler (2002); Agostinelli and Romanazzi (2011); Lok
and Lee (2011); Paindaveine and Van Bever (2013); Dong and Lee (2014); Claeskens
et al. (2014); López-Pintado et al. (2014); Nagy and Ferraty (2019); Liu et al. (2020).

Any simplicial depth notion has the advantage that it is a U-statistics so that the
asymptotic distribution can be derived bymethods for U-statistics. For Liu’s simplicial
depth formultivariate data, this was used in Liu (1990); Dümbgen (1992); Arcones and
Gine (1993). However, simplicial regression depth is often a degenerated U-statistic so
that more effort is necessary to derive the asymptotic distribution, see Müller (2005);
Wellmann et al. (2009); Wellmann and Müller (2010). The advantage of K -depth is
that its distribution does not depend on the model and can be easily calculated for
small sample sizes because only all 2N combinations of signs must be considered.
Moreover, its asymptotic distribution was derived in Kustosz et al. (2016) for K = 3
and in Malcherczyk et al. (2021) for general K ≥ 3.

The derivation of the asymptotic distribution leads to an asymptotic equivalent
variant of the K -depth which can be calculated in linear time O(N ) while a naive
implementation has a complexity of O(NK ) if N is the sample size. Studying espe-
cially the behavior of K -depth in the situation of few sign changes in the data leads
to another implementation in this paper. This implementation is based on blocks of
equal signs and is exact, of complexity O(N ), and much faster than the implementa-
tion based on the asymptotic form. This allows the application in multiple regression
with high dimension where K should grow with the dimension. In multiple regres-
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860 K. Leckey et al.

sion, an order of the residuals are needed. For this, we use new results of Horn and
Müller (2020) - see also Horn (2021) - concerning optimal ordering of themultivariate
explanatory variables.

In Sect. 2, we introduce the K -depth and the K -depth tests, discuss a relationship
to runs test, and show how the computational complexity can be reduced by block
implementation. Basic properties of the K -depth are derived in Sect. 3. This concerns
a strong law of large numbers for the K -depth, the behavior at alternating signs of
residuals and the behavior when only few sign changes occur. In particular, it is shown
for all K ≥ 3 that the expected value of the K -depth and its maximal value have
the same limit as the number of observations tends to infinity. It is also shown that
residuals with few sign changes have a K -depth that is strictly less than this limit
which explains why the K -depth test has a high power at alternatives that tend to have
few sign changes. A comparison between the K -depth tests for different values of K
is given in Sect. 4. At first, for K = 2, the equivalence of the K -depth test and the
classical sign test is derived formally. Afterwards, the p-values of K -depth tests with
K = 3, 4, 5, 6 are compared in someworst case scenarios with few sign changes taken
from Sect. 3. Sect. 5 demonstrates the good power of the K -depth tests via simulations
for quadratic regression and for multiple regression with high dimensions. Finally, a
discussion of the results and an outlook are given in Sect. 6. More details of the proofs
and the block implementation as well as further simulation results are given in the
supplementary material.

Notation. Throughout the article, r1(θ), . . . , rN (θ) denote realizations of the resid-
uals R1(θ), . . . , RN (θ). If the choice of the parameter θ is clear, we also use the
abbreviations rn := rn(θ) and Rn := Rn(θ) for n = 1, . . . , N . The sign of a real
number x is denoted by ψ(x) = 1{x > 0} − 1{x < 0}, where 1{·} denotes the
indicator function. In some asymptotic calculations we make use of the O-Notation:
For real-valued sequences (an)n≥1 and (bn)n≥1, we write an = O(bn) if there is a
constant C > 0 and an integer n0 with |an| ≤ C |bn| for all n ≥ n0. Furthermore,
an = Θ(bn) denotes that both an = O(bn) and bn = O(an).

2 K -depth tests and reduction of their computational complexity

In this section, we introduce the K -depth of a vector and how to use the K -depth notion
as a test statistic. We also briefly discuss the issue of a fairly high computational
complexity when working with K -depth tests. This issue can be resolved by using
alternative representations of the original definition of the K -depth. The results are
based on the following general assumption on the statistical models with unknown
parameter θ ∈ Θ ⊂ R

p, p ∈ N:

the residuals R1(θ), . . . , RN (θ) of N observations in R are independent

and satisfy (1) if θ is the true parameter. (2)
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Simple powerful robust tests based on sign depth 861

2.1 K-depth and K-depth tests

The K-sign depth or shortly K-depth dK (r1, . . . , rN ) of r1, . . . , rN is the relative
number of K -element subsets with alternating signs, i.e. for K ≥ 2,

dK (r1, . . . , rN ) := 1
(N
K

)
∑

1≤n1<n2<...<nK≤N

( K∏

k=1

1
{
(−1)krnk > 0

}

+
K∏

k=1

1
{
(−1)krnk < 0

} )
.

(3)

Remark 1 Note that the definition of the K -sign depth depends on the chosen order
and therefore this choice is a crucial aspect. If xn ∈ R

q for q > 1 then various
multivariate orderings can be used. Not all of them provide powerful tests. Among
the most promising approaches are orderings according to a shortest Hamiltonian
path through the regressors x1, . . . , xN . Luckily, also less computationally intensive
approximations of such a path (such as the nearest neighbor approach) seem to perform
similarly well. A detailed discussion on these and other orderings can be found in
Horn and Müller (2020). See also Sect. 5 for an example. Moreover, note that under
some conditions given by Kustosz et al. (2016), K -depth is equivalent to simplicial
regression depth if K = p + 1 and θ ∈ R

p. Hence, an appropriate choice of K is a
natural number close to p + 1. However, in contrast to simplicial regression depth,
other choices than K = p + 1 are possible as well.

In order to obtain a non-degenerate limit distribution, theK-depth test is based on
the following test statistic:

TK (θ) := TK (R1(θ), . . . , RN (θ))

:= N

(

dK (R1(θ), . . . , RN (θ)) −
(
1

2

)K−1
)

.
(4)

A test based on (4) requires the α-quantiles of the distribution of the test statistic. If
N is small, the finite sample distribution for any K can be easily simulated since the
determination of the K -depth with an underlying C++ algorithm computing Formula
(3) is fairly fast for small N . For larger N , see Subsection 2.2.

With the quantiles at hand, the K -depth test, K ≥ 2, is defined as in Müller
(2005): A hypothesis of the form H0 : θ ∈ Θ0 shall be rejected if the K -depth
dK (r1(θ), . . . , rN (θ)) of θ or TK (θ) is too small for all θ ∈ Θ0. Hence, if qα is the
α-quantile of the distribution of TK (θ) under θ then the K -depth test for H0 : θ ∈ Θ0

is given by

reject H0 : θ ∈ Θ0 if sup
θ∈Θ0

TK (θ) < qα. (5)
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862 K. Leckey et al.

Remark 2 The K -depth test can also be used in a two-sided version:

reject H0 : θ ∈ Θ0 if sup
θ∈Θ0

TK (θ) < qα1 or inf
θ∈Θ0

TK (θ) > q1−α2

with α1 + α2 = α, for example α1 = α2 = α
2 . This test also rejects H0 if too

many sign changes occur in the residual vector, which is an indicator for negatively
correlated residuals , for example in time series. While the one-sided version is mostly
focused on detecting deviations from 0 in the median and can detect only strong
positive correlation in the residuals, the two-sided version is the preferable choice
when testing simultaneously whether the residuals are independent and have median
zero. However, since our applications are mainly focused around tests on the median
rather than on independence, this two-sided version will not be used subsequently.
Nevertheless, note that a simplified version of the K -depth leads to a test which can
be considered as a generalization of the runs test of Wald and Wolfowitz (1940) for
testing the hypothesis of independent residuals, see e.g. Gibbons and Chakraborti
(2003), pp. 78-86: This simplified K -depth uses only subsequent residuals and can be
defined as in Kustosz et al. (2016) for K ≥ 2:

dS
K (r1, . . . , rN ) := 1

N − K + 1

N−K+1∑

n=1

( K∏

k=1

1
{
(−1)krn+k−1 > 0

}

+
K∏

k=1

1
{
(−1)krn+k−1 < 0

} )
.

(6)

If K = 2 then this simplified K -depth counts the number of sign changes and thus
the number of runs. Kustosz et al. (2016) used the simplified versions because they
are faster to compute and their asymptotic behavior is easy to derive. However, since
the simplified K -depth only considers N − K + 1 subsets instead of

(N
K

)
, tests based

on it are usually less powerful than tests based on the full K -depth, in particular if
the independence of the residuals is ensured, see Kustosz et al. (2016) and Falkenau
(2016).

2.2 Runtime and block-implementation

A major drawback of the K -depth test is its slow runtime when using an algorithm
based on the definition (3). This definition requires the consideration of all increas-
ing K -tuples in {1, . . . , N }, hence leading to an algorithm with runtime Θ(NK ).
Such an algorithm is clearly impractical in applications with fairly large sample sizes.
Fortunately, the derivation of a limit theorem of the test statistic TK (θ) leads to an
asymptotically equivalent form of (4) which can be computed in linear time for all
K ≥ 3. More precisely, under the true parameter θ

TK (R1(θ), . . . , RN (θ)) = ΨK (WN• ) + oP (1), K ≥ 3,
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Simple powerful robust tests based on sign depth 863

whereΨK is a functional given inMalcherczyk et al. (2021), oP (1) is a randomvariable
converging to zero in probability, and WN• = (WN

t )t∈[0,1] with

WN
t = 1√

N

�Nt�∑

n=1

ψ (Rn(θ)) with ψ (Rn) = 1{Rn > 0} − 1{Rn < 0}.

Such a limit theorem is given in Kustosz et al. (2016) for K = 3. A generalization
to all K ≥ 3 as well as the resulting efficient algorithm can be found in Malcherczyk
et al. (2021).

We will not go into detail on how this algorithm with runtime Θ(N ) works since it
requires amajor part of the computationnecessary to obtain the limit theoremand this is
beyond this paper. Instead, we discuss a different approach which , when implemented
carefully, even has a faster runtime than the algorithm fromMalcherczyk et al. (2021).
Moreover, the algorithm discussed below always yields the exact K -depth rather than
an asymptotic approximation.

This section first provides the general idea of the algorithm that immediately results
in an efficient procedure for residual vectors with only few sign changes. At the end
of the section, a more careful implementation of this approach is sketched that leads
to an efficient (linear time) algorithm to compute the exact K -depth. We refer to this
approach as block-implementation. Aside from speeding up the implementation based
on (3), this approachwill be useful to derive some of the properties presented in Sect. 3.

Block-implementation.Let r := (r1, . . . , rN ) be a vector of residuals and letψ (x)
denote the sign of a real number x , i.e. ψ (x) := 1{x > 0} − 1{x < 0}. The vector r
is decomposed into blocks by letting a new block start at index j if and only if r j−1
and r j have different signs. More formally, we define the number B(r) of blocks and
their starting positions s1(r), . . . , sB(r)(r) via s1(r) := 1 and

B(r) := 1 +
N∑

n=2

1 {ψ (rn−1) 	= ψ (rn)} ,

sb(r) := min {� > sb−1(r); ψ (r�) 	= ψ (r�−1)} , b = 2, . . . , B(r).

For convenience, we define sB(r)+1(r) := N + 1. The block sizes are defined as

qb(r) := sb+1(r) − sb(r), b = 1, . . . , B(r).

Example 1 The vector r = (1, 2, 6,−1, 3, 2,−5, 2) consists of B(r) = 5 blocks

( 1, 2, 6︸ ︷︷ ︸
block 1

, −1︸︷︷︸
block 2

, 3, 2︸︷︷︸
block 3

, −5︸︷︷︸
block 4

, 2︸︷︷︸
block 5

).

The block sizes are q1(r) = 3, q3(r) = 2 and q j (r) = 1 for j = 2, 4, 5.
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864 K. Leckey et al.

We say that the nth residual rn belongs to block j if and only if s j (r) ≤ n < s j+1(r).
The sign of block j is defined as the sign of the first (and thus any) element rs j (r)
belonging to that block. Blocks j1 < . . . < jk are called alternating if and only if the
signs of the blocks are alternating, i.e. the signs of block ji and ji+1 are different for
all i = 1, . . . , k − 1. Note that two blocks j1 and j2 have different signs if and only
if j1 is even and j2 is odd or vice versa. In particular, the blocks j1 < . . . < jk are
alternating if and only if ji+1 − ji is odd for all i = 1, . . . , k − 1.

Example 2 Consider the block decomposition for the vector r from Example 1. In this
decomposition, blocks 1, 3, 5 have positive signs and blocks 2, 4 have negative signs.
Hence if A denotes the set of alternating triples of blocks then

A = {(1, 2, 3), (1, 2, 5), (1, 4, 5), (2, 3, 4), (3, 4, 5)} .

Since a triple (ri , r j , rk), i < j < k, of entries from r is alternating if and only if
they belong to an alternating triple of blocks, we may count the number of triples in r
with alternating signs by counting the corresponding combinations of elements from
alternating blocks, i.e. in our example with r of length N = 8,

d3(r) = 1
(8
3

)
∑

(i, j,k)∈A
qi (r)q j (r)qk(r) = 6 + 3 + 3 + 2 + 2

(8
3

) = 4

14
.

More generally, we have the following alternative representation of (3):

Lemma 1 Let O := 2N0 + 1 denote the set of all odd positive integers and let

AK ,B :=
{
(i1, . . . , iK ) ∈ {1, . . . , B}K ; ik − ik−1 ∈ O for k = 2, . . . , K

}
,

dK ,N ,B(q1, . . . , qB) := 1
(N
K

)
∑

(i1,...,iK )∈AK ,B

K∏

k=1

qik , B ∈ N, q1, . . . , qB > 0.

Let q1(r), . . . , qB(r)(r) be the block sizes of a vector r = (r1, . . . , rN ). Then

dK (r1, . . . , rN ) = dK ,N ,B(r)(q1(r), . . . , qB(r)(r)). (7)

Remark 3 Note that the size of AK ,B is Θ(BK ). Also note that the effort to compute
the block sizes q1(r), . . . , qB(r)(r) of a vector r = (r1, . . . , rN ) is Θ(N ). Hence, a
naive algorithm based on the expression in Lemma 1 has computational complexity
Θ(N +BK ) if B = B(r) is the number of blocks in r . With some additional effort, the
computational costs can even be reduced toΘ(N + B) by properly storing all relevant
terms during the computation. For simplicity, we only discuss K = 3 here, more
details on general K can be found in the supplementary material and in Malcherczyk
(2022). Note that factoring out the length qi2 of the second block in the representation
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Simple powerful robust tests based on sign depth 865

from Lemma 1 yields

d3,N ,B(q1, . . . , qB) = 1
(N
3

)
B−1∑

i2=2

qi2

⎛

⎜⎜
⎝

i2−1∑

i1=1
i2−i1 odd

qi1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

B∑

i3=i2+1
i3−i2 odd

qi3

⎞

⎟⎟
⎠ . (8)

This representation can be computed in linear time complexity by deriving the values
of the inner sums in advance: To this end, let

F(i2) =
i2−1∑

i=1
i2−i odd

qi , B(i2) =
B∑

i=i2+1
i−i2 odd

qi , i2 = 2, . . . , B − 1.

Note that all values (F(i2),B(i2)), i2 = 2, . . . , B − 1, can be computed with a total
complexity of Θ(B) similarly to the cumulative sum of a vector of length B. With
these values stored, (8) can be computed in linear time since the product of the inner
sums equals F(i2) · B(i2) which now can be computed in constant time. For K ≥ 4,
a similar approach leads to a representation with

B1(i2) := B(i2), B j (i2) =
B− j+1∑

i=i2+1
i−i2 odd

qiB j−1(i), j ≥ 2, i2 = 2, . . . , B − j,

and dK ,N ,B(q1, . . . , qB) = 1
(NK)

∑B−K+2
i2=2 qi2F(i2)BK−2(i2). More details can be

found in the supplementary material.

Remark 4 As a simulation study in the dissertation of Malcherczyk (2022) reveals, the
efficient block implementation stated in Remark 3 is even faster than the asymptotic
variant from Malcherczyk et al. (2021), even when considering residuals from the
null hypothesis that have a large number of blocks. More details can be found in
(Malcherczyk (2022), Chapter 5.3.)

3 Basic properties of the K-depth

This section contains some of the basic properties of the K -depth. In particular, we
discuss the typical behavior in terms of a law of large numbers in Sect. 3.1. Sections 3.2
and 3.3 contain extremal caseswhere the test statistic is close to itsmaximal orminimal
value, respectively.
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3.1 Law of large numbers

Let R1 := R1(θ), . . . , RN := RN (θ) be independent random variables satisfying (1).
Then the expectation of the K -depth is given by

Eθ (dK (R1(θ), . . . , RN (θ)))

= 1
(N
K

)
∑

1≤n1<n2<...<nK≤N

((
1

2

)K

+
(
1

2

)K
)

=
(
1

2

)K−1

.
(9)

A convergence of the K -depth towards this expectation can be shown by rewriting the
summands in (3) using the identity in the next lemma. In order to avoid triple indices,
we write i( j) instead of i j .

Lemma 2 If En1, ..., EnK are random variables with P(Eni 	= 0) = 1 for i = 1, ..., K
and K ∈ N \ {1} then we have

K∏

k=1

1{Enk (−1)k > 0} +
K∏

k=1

1{Enk (−1)k < 0} −
(
1

2

)K−1

= 1

2K−1

⌊
K
2

⌋

∑

L=1

∑

1≤i(1)<...<i(2L)≤K

2L∏

j=1

(−1)i( j)ψ
(
Eni( j)

)
P-almost surely,

(10)

where ψ (x) := 1{x > 0} − 1{x < 0}.
Proof (Sketch) The proof is based on 1{x > 0} = (ψ (x) + 1) /2 and 1{x < 0} =
(−ψ (x) + 1) /2 for x 	= 0 and on

K∏

i=1

(ai + 1) =
K∑

�=1

∑

1≤i(1)<...<i(�)≤K

�∏

j=1

ai( j) + 1

for arbitrary a1, . . . , aK . This implies

K∏

k=1

1{Ek(−1)k > 0} = 1

2K

K∏

k=1

(
(−1)kψ (Ek) + 1

)

= 1

2K

⎛

⎝
K∑

�=1

∑

1≤i(1)<...<i(�)≤K

(−1)i(1)+···+i(�)
�∏

j=1

ψ
(
Ei( j)

)+ 1

⎞

⎠

and a similar expression for
∏K

k=1 1{Ek(−1)k < 0}.

�

Studying the variance of the expression (10) reveals that it converges to zero as N →
∞. Hence Lemma 2 leads to a law of large numbers for K -depth:
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Theorem 1 Let K ≥ 2. If R1(θ), . . . , RN (θ) are satisfying (1) then

dK (R1(θ), . . . , RN (θ)) −→
(
1

2

)K−1

Pθ -almost surely as N → ∞.

Proof (Sketch) Set Rn = Rn(θ). The assertion follows from

Eθ (dK (R1, . . . , RN )) =
(
1

2

)K−1

, varθ (dK (R1, . . . , RN )) = O(N−2)

by using Chebyshev’s inequality and the Borel-Cantelli Lemma. The bound on the
variance can be deduced from the representation given in Lemma 2 by taking into
account that ψ (R1) , . . . , ψ (RN ) are i.i.d. and uniformly distributed on {−1, 1} and
therefore

Eθ

⎛

⎝
2L∏

j=1

ψ
(
Rni( j)

) 2L∏

j=1

ψ
(
Rñi( j)

)
⎞

⎠ =
{
1, if ni( j) = ñi( j) for j = 1, . . . , 2L,

0, else.


�

3.2 K-depth for alternating signs

In this section we study the behavior of the K -depth of residuals with alternating
signs, i.e. of residuals r1, . . . , rN with ψ (rn) = −ψ (rn+1) for n = 1, . . . , N − 1.
Alternating signs indicate a good fit and the K -depth attains its maximum value in
this situation. Therefore it is of interest what exactly this maximum value is. This is
given by the following theorem. As usual, we use the convention

(n
k

) = 0 for n < k.

Theorem 2 Suppose r1, . . . , rN have alternating signs. Then, for 2 ≤ K ≤ N,

dK (r1, . . . , rN ) = 1
(N
K

)
((�(N + K )/2�

K

)
+
(�(N + K − 2)/2�

K

))
.

Proof (Sketch) Let r1, . . . , rN be residuals with alternating signs. Let |AK ,N | be the
size of the setAK ,N from Lemma 1. Then dK (r1, . . . , rN ) = |AK ,N |/(NK

)
. It therefore

only remains to count the number of 1 ≤ i1 < . . . < iK ≤ N for which i j+1 − i j
is odd for all j = 2, . . . , K . The supplementary material contains a combinatorial
deduction of this number that is based on rewriting i j+1 − i j = 2a j + 1, a j ∈ N. 
�

Note that Theorem 2 can also be used to determine the size of the index set AK ,B

in the block-implementation:
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Corollary 1 Let B, K ≥ 2 be integers and let AK ,B be as in Lemma 1. Then

∣∣AK ,B
∣∣ =

(�(B + K )/2�
K

)
+
(�(B + K − 2)/2�

K

)
,

where |AK ,B | denotes the size of AK ,B.

Theorem 2 implies that the K -depth of residuals with alternating signs converges to
the expected value (1/2)K−1 as N → ∞. In conjunction with Corollary 1, we may
extend this property to the following more general class of alternating vectors:

Definition 1 LetM ∈ N and let r = (r1, . . . , rN )be a vector of residuals. The residuals
r1, . . . , rN are alternating in blocks of size M if N is a multiple of M and if

q j (r) = M for all j = 1, . . . , B(r),

where the number B(r) of blocks and the size q j (r) of block j are defined in Sect. 2.2.
In particular, residuals have alternating signs if they are alternating in blocks of size
1.

With Corollary 1, it is not hard to compute the K -depth of such residuals:

Lemma 3 Let M, N ∈ Nwith B := N/M ∈ N. Furthermore, let 〈x〉J = ∏J−1
j=0 (x− j)

for x ∈ N and x ≥ J . If r1, . . . , rN are alternating in blocks of size M and if B ≥ K,
then

(a) dK (r1, . . . , rN ) = 〈 B+K−2
2 〉K−1

BK−1 · NK

〈N 〉K if K + B is even,

(b) dK (r1, . . . , rN ) = 2〈 B+K−1
2 〉K
BK

· NK

〈N 〉K if K + B is odd.

Proof (Sketch)Acombination ofLemma1 andCorollary 1 yield an explicit expression
for the K -sign depth of a vector with blocks of equal size. The assertion follows at
once for odd B + K and after rearranging this expression for even B + K . 
�

An asymptotic analysis of the K -depth based on Lemma 3 reveals that the K -depth
test statistic of residuals that alternate in blocks of size M converges to its maximal
value:

Theorem 3 Let M be a fixed integer. If the residuals r1, . . . , rN are alternating in
blocks of size M, then

lim
N→∞ N

(

dK (r1, . . . , rN ) −
(
1

2

)K−1
)

= K (K − 1)

2K
.

Proof (Sketch) The assertion follows from the explicit formula given in Lemma 3 by
approximating the falling factorials up to their second order term using

〈x + a〉J =
J−1∏

j=0

(x + a − j) = x J + J

(
a − J − 1

2

)
x J−1 + O(x J−2),

123



Simple powerful robust tests based on sign depth 869

for x = B/2, a = (K − 2)/2, J = K − 1 and x = B/2, a = (K − 1)/2, J = K and
x = N , a = 0, J = K , respectively. 
�
Remark 5

(a) Theorem 3 yields that the maximal value of the test statistic (i.e. the value for
residuals with alternating signs) is asymptotically K (K − 1)/2K . Since the min-
imal K -depth is zero, the minimal value of the test statistic is −N/2K−1 which
diverges as N → ∞. Hence the (asymptotic) distribution of the test statistic TK (θ)

is bounded from above but unbounded from below. In particular, its distribution
is not symmetric.

(b) Since the test statistic converges to itsmaximal value if the residuals are alternating
in blocks of size M ≥ 1, the (one-sided) K -depth test will not reject the model
when such residuals are observed and N is sufficiently large. This can often be
desirable in practicewhere alternating residuals indicate a goodfit and a systematic
alternation (in blocks of fixed size) can be caused by some vibration behavior
which is difficult to filter out.

(c) If the independence of the residuals is questionable and of additional interest then
alternating residuals are indicating dependence. In such situations, the two-sided
K -depth test as proposed in Remark 2 can be used. Since alternating residuals
yield the maximal possible value, the two-sided test will always reject the model
when such residuals are observed and N is sufficiently large.

3.3 Behavior in situations of few sign changes

Residual vectors with only few sign changes usually indicate a bad choice for the
modeling parameter, see, e.g., Fig. 1 for so-called nonfits in a quadratic regression
model. A nonfit is defined as in Rousseeuw and Hubert (1999):

Definition 2 A parameter θ is called a nonfit if there exists another parameter θ̃ such
that |rn(θ̃)| < |rn(θ)| for all n = 1, . . . , N .

The 2-depth test can struggle rejecting such bad choices since this test, as we will
formally show in Sect. 4.1, is equivalent to the classical sign test. In particular, it does
not reject the model if nearly half of the residuals are positive, regardless of howmany
sign changes the residuals have. K -depth tests with K ≥ 3 are much more powerful in
this regard since they immediately reject models that lead to few sign changes. More
precisely, the following lemma is easy to show for residuals vectors r = (r1, . . . , rN )

where the number B(r) of blocks (see Sect. 2.2) is small:

Lemma 4 Let K ≥ 3. Then dK (r1, . . . , rN ) = 0 if and only if B(r) ≤ K − 1.

Note that a K -depth of zero is the smallest possible value of the K -depth. Hence
this will always lead to a rejection of the null hypothesis by the K -depth test if the
sample size is high enough that a rejection at level α is possible. Usually a nonfit of
a p-dimensional parameter is expressed by at most p − 1 sign changes. Hence a K -
depth test with K = p + 1 will protect against bad power at nonfits, see also Kustosz
et al. (2016). However, choices K < p + 1 can also lead to a good power of the
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Fig. 1 12 observations generated by Yn = g(xn , θ0)+ En with g(x, θ0) = 30− 6 x + 0.5 x2 (dashed line,
θ0 = (30, −6, 0.5)�) and En ∼ N (0, 1.52). The solid lines correspond to parameters that yield alternatives
with either one or two sign changes: θ(1) = (120, −24, 1)� yielding g(x, θ(1)) = 120 − 24x + x2 on the
left hand side and θ(2) = (3, 6,−0.5)� yielding g(x, θ(2)) = 3 + 6 x − 0.5 x2 on the right hand side

K -depth test at alternatives for which the expected depth of (1/2)K−1 is not reached.
More precisely, since all α-quantiles of the asymptotic distribution of the K -depth test
statistic TK (θ) are fixed values greater than −∞, we have the following property for
growing sample size N : The strict inequality

lim
N→∞ sup

θ∈Θ0
dK (r1(θ), . . . , rN (θ)) <

(
1

2

)K−1

(11)

implies limN→∞ supθ∈Θ0 TK (θ) = −∞ so that H0 : θ ∈ Θ0 is rejected if N is
sufficiently large.

Condition (11) is in particular satisfied if the relative number of either the positive or
negative residuals is tending to 1. This is often the case when the region of explanatory
variables is growing to infinity as N converges to infinity. This was used in Kustosz
et al. (2016) to show the consistency of a test based on simplicial depth for explosive
AR(1) regression.

Assuming a bounded, fixed support for the explanatory variables, the relative num-
ber of positive/negative residuals usually does not tend to one for alternatives, e.g. in
polynomial regression. However, one at least expects only few sign changes then; see
Fig. 1 for examples with only one or two sign changes. We therefore end the section
with a discussion on the K -depth of residual vectors where the number of blocks/sign
changes is bounded.

For the remainder of the section, we will use the alternative representation of the
K -depth based on the block-implementation (see Sect. 2.2). Recall that the K -depth
of residuals r1, . . . , rN with B blocks and block sizes q1, . . . , qB is given by

dK ,N ,B(q1, . . . , qB) = 1
(N
K

)
∑

(i1,...,iK )∈AK ,B

K∏

k=1

qik .

Although q1, . . . , qB are integers in practice, it will be more convenient in the sub-
sequent analysis to let q1, . . . , qB be positive real numbers. In order to see that the
K -depth test always rejects the null hypothesis if B is sufficiently small, we need
to consider the input q1, . . . , qB with maximal K -depth. While it is arguably quite
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intuitive to assume that this maximum is attained at q j = N/B for all j = 1, . . . , N ,
a formal proof to determine the maximum is challenging. We therefore state the fol-
lowing conjecture which we only checked for some particular choices of K and B
and could only prove for K = 3 completely. The proof is based on an optimization
via Lagrange multipliers which, in particular, requires to show the uniqueness of its
critical point. However, transforming the system of equations to deduce the uniqueness
becomes very complicated for larger K , see the supplementary material for the proof
and the main problem for the case K ≥ 4:

Conjecture 1 Let K ≥ 3, B ≥ K and N ≥ B. Consider the set

MK ,N ,B := argmax

{

dK ,N ,B(q1, . . . , qB); (q1, . . . , qB)∈(0, N )B,

B∑

b=1

qb = N

}

.

Then the following holds: (a) If K + B is even then

MK ,N ,B =
{(

N

B
, . . . ,

N

B

)}
.

(b) If K + B is odd then

MK ,N ,B =
{(

βN

B − 1
,

N

B − 1
, . . . ,

N

B − 1
,
(1 − β)N

B − 1

)
; β ∈ (0, 1)

}
.

The necessity of a case distinction between K + B even/odd might be a bit surprising
at first. But in fact it is not hard to check that the function dK ,N ,B has the following
property:

Lemma 5 Let K ≥ 2 and B ≥ K. If K + B is odd then

dK ,N ,B(q1, . . . , qB) = dK ,N ,B−1(q1 + qB, q2, . . . , qB−1).

Proof (Sketch) Assume that K + B is odd. The key observation to prove the lemma
is that, for any (i2, . . . , iK−1) ∈ {2, . . . , B − 1}K−1, the vector (1, i2, . . . , iK−1) is in
AK ,B if andonly (i2, . . . , iK−1, B) ∈ AK ,B .Hence, summands indK ,N ,B(q1, . . . , qB)

where i1 = 1 can be merged with those where iK = B, resulting in a rearranged sum
equal to dK ,N ,B(q1 + qB, q2, . . . , qB−1) as claimed. 
�

Hence we may assume w.l.o.g. that K + B is even and use Lemma 5 to cover the
odd case. Before stating the general result, we consider the special cases B = K and
B = K + 1. In these cases, Conjecture 1 is easy to verify since, by definition,

dK ,N ,K (q1, . . . , qK ) = 1
(N
K

)
K∏

j=1

q j , (12)
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dK ,N ,K+1(q1, . . . , qK+1) = 1
(N
K

) (q1 + qK+1)

K∏

j=2

q j .

In particular, we have the following theorem for the maximal K -depth among all valid
block sizes q1, . . . , qB . The set of these valid block sizes is denoted by

QN ,B :=
⎧
⎨

⎩
(q1, . . . , qB) ∈ N

B;
B∑

j=1

q j = N

⎫
⎬

⎭
, N , B ∈ N. (13)

Theorem 4 Let K ≥ 2, B ∈ {K , K + 1} and let QN ,B be as above. Then

lim
N→∞ sup

{
dK ,N ,B(q1, . . . , qB); (q1, . . . , qB)∈QN ,B

}

= K !
K K

≤
(
1

2

)K−1

, (14)

where the inequality in (14) is strict for K ≥ 3.

Proof (Sketch) For B = K , one needs to compute the global maximum of the function
given in (12) with the side conditions q1, . . . , qK ∈ N and

∑N
k=1 qk = N . When

disregarding the integer condition, this can easily be done, e.g., by using Lagrange
multipliers. This reveals a unique global maximum at qk = N/K for all k = 1, . . . , B
which coincides with the integer maximumwhenever N/K ∈ N. The case B = K +1
follows from the case B = K and Lemma 5. 
�

For the general case B ≥ K + 2, we will only consider the input q1 = . . . = qB =
N/B since this is assumed to yield the maximal depth according to Conjecture 1 if
K + B is even. Lemma 3 yields the following result on the asymptotic K -depth.

Theorem 5 Let K ≥ 2 and B ≥ K be fixed. If K + B is even then

lim
N→∞ dK ,N ,B

(
N

B
, . . . ,

N

B

)
=
∏K−1

k=1

( B+K
2 − k

)

BK−1 ≤
(
1

2

)K−1

. (15)

The inequality in (15) is strict for K ≥ 3.

Proof (Sketch)The equality follows fromLemma3 since NK /〈N 〉K → 1 as N → ∞.
For the upper bound, let g(x) = ((B + K )/2 − x)((B − K )/2 + x) and rewrite

K−1∏

k=1

(
B+K

2
− k

)
= εK ,B

�(K−1)/2�∏

k=1

g(k), εK ,B =
{
1, if K is odd,

B/2, if K is even.

Then the bound follows since g has a unique global maximum at x = K/2. 
�
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Remark 6 If K + B is odd then Lemma 5 and Theorem 5 yield for all β ∈ (0, 1)

lim
N→∞ dK ,N ,B

(
βN

B − 1
,

N

B − 1
, . . . ,

N

B − 1
,
(1 − β)N

B − 1

)

= 1

2K−1

∏K−1
k=1 (B − 1 + K − 2k)

(B − 1)K−1 ≤
(
1

2

)K−1 (16)

with a strict inequality for K ≥ 3. Moreover, if we assume that Conjecture 1 is true,
then (15) and (16) imply for any fixed number B of blocks

lim
N→∞ sup

{
dK ,N ,B(q); q ∈ QN ,B

}

= 1

2K−1

∏K−1
k=1 (B − 1{K + B odd} + K − 2k)

(B − 1{K + B odd})K−1 ≤
(
1

2

)K−1

with QN ,B defined as in (13). Moreover, the inequality above is strict for K ≥ 3.
Hence, H0 : θ ∈ Θ0 is rejected at an alternative for sufficiently large sample sizes N
if the number of blocks in (r1(θ), . . . , rN (θ)) is uniformly bounded for all θ ∈ Θ0 as
N → ∞.

4 Comparison of K -depth tests for different K

Aproper choice for K is a crucial aspect to obtain a K -depth test with high power. This
section contains some basic observations for the cases K ≤ 6, in particular in terms
of power when only few sign changes are observed. A more profound comparison in
applications will be done in Sect. 5.

As we will see in Sect. 4.1, the 2-depth test is usually a bad choice since it is
equivalent to the classical sign test. This test struggles to reject the null hypothesis
at alternatives that lead to a nearly equal amount of positive and negative residuals.
K -depth tests with K ≥ 3 can correctly identify and reject such alternatives as long
as the number of sign changes in the residual vector is fairly low. A discussion on the
p-values of the K -depth tests, K = 3, . . . , 6, for several different sample sizes can be
found in Sect. 4.2.

4.1 Equivalence of the 2-depth test and the classical sign test

The test statistic of the classical sign test is given by

Tsign(θ) := N+(θ) − N/2√
N/2

where N+(θ) :=
N∑

n=1

1{Rn(θ) > 0}

denotes the number of residuals with positive signs among the residual vector
(R1(θ), . . . , Rn(θ)). Assuming (1), this test statistic converges in distribution to the
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standard normal distribution. Hence the classical sign test (in its asymptotic version)
is defined via

reject H0 : θ ∈ Θ0 if for all θ ∈ Θ0 : Tsign(θ) < u α
2
or Tsign(θ) > u1− α

2
,

where uα denotes the α-quantile of the standard normal distribution. Equivalently, one
can define the classical sign test via

reject H0 : θ ∈ Θ0 if inf
θ∈Θ0

Tsign(θ)2 > χ2
1,1−α,

where χ2
1,α is the α-quantile of the χ2

1 distribution. Note that Tsign(θ)2 is minimized if
N+(θ) = N/2. Hence the test will not reject the null hypothesis if half of the residuals
are positive.

To see the relationship to the 2-depth test, note that a pair of residuals has alternating
signs if and only if one of them is positive and the other one is negative. Since we have
N+(θ) positive and N − N+(θ) negative residuals (assuming Rn(θ) 	= 0 Pθ -almost
surely for all n = 1, . . . , N ), the 2-depth satisfies Pθ -almost surely:

d2(R1(θ), . . . , RN (θ)) = 1
(N
2

) N+(θ) (N − N+(θ)).

The 2-depth can be transformed into Tsign(θ) by using the identity

x(N − x) = −(x − N/2)2 + N 2/4, x ∈ R,

for x = N+(θ). A straightforward calculation based on this identity reveals that the
test statistic (4) satisfies for K = 2,

T2(θ) = N

2(N − 1)
− N

2(N − 1)
Tsign(θ)2 Pθ -almost surely.

Hence the 2-depth test and the classical sign test are equivalent.

4.2 Comparison of K-depth tests for K ≥ 3

Aswe have seen in Sect. 3.3, K -depth tests with K ≥ 3 are capable of rejecting nonfits
that lead to a small number of sign changes, at least as long as the sample size N is
sufficiently large. We will now take a closer look at the performance for small samples
sizes up to N = 160.

Recall that, according to Conjecture 1, we assume that the maximal K -depth of a
residual vector r = (r1, . . . , rN ) with B blocks is given by

ηK ,N ,B :=
{
dK ,N ,B

( N
B , . . . , N

B

)
, if K + B is even,

dK ,N ,B

(
N

2(B−1) ,
N

B−1 , . . . ,
N

B−1 ,
N

2(B−1)

)
, if K + B is odd.

123



Simple powerful robust tests based on sign depth 875

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Two sign changes

N

p−
va

lu
e

3−depth
4−depth

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Three sign changes

N

p−
va

lu
e

3−depth
4−depth
5−depth

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Four sign changes

N

p−
va

lu
e

3−depth
4−depth
5−depth

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Five sign changes

N

p−
va

lu
e

3−depth
4−depth
5−depth
6−depth

Fig. 2 Simulated p-values of K -depth tests, K = 3, 4, 5, 6, for two to five sign changes (top left to bottom
right) at different sample sizes N

Hence, the test statistic (4) for a residual vector with B blocks can be at most

η̃K ,N ,B := N

(

ηK ,N ,B −
(
1

2

)K−1
)

.

Figure 2 contains the p-values when observing a value of η̃K ,N ,B for B = 3, 4, 5, 6
blocks or 2, 3, 4, 5 sign changes, respectively, i.e. the probabilities

Pθ

(
TK (R1(θ), . . . , RN (θ)) ≤ η̃K ,N ,B

)

are plotted for samples sizes N between 10 and 160 and K = 3, 4, 5, 6.
Recall that if a residual vector has B block, i.e. B − 1 sign changes, then K -depth

tests with K > B will automatically reject the null hypothesis as soon as the sample
size is large enough tomake a rejection possible for the test. Figure 2 thus only contains
K -depth tests with K ≤ 4 for situations with two sign changes to highlight that the
p-value of the 4-depth test indeed becomes 0 if N is sufficiently large. The same
applies to the 5-depth test when three sign changes occur. The other two plots (four
and five sign changes) do not contain the corresponding 6- and 7-depth tests since
their p-values behave similarly.
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All four subfigures of Fig. 2 indicate that the p-values of all considered K -depth
tests are decreasing to zero for growing sample size. They decrease more slowly for
K = 3, 4 than for K = 5, 6, but even the p-value of the 3-depth test reaches 0.1 for a
sample size greater than N = 150. It is remarkable that the p-values of the K -depth
tests with K = B − 1 and K = B are always very similar for all B − 1 = 3, 4, 5 sign
changes we considered. However, this does not hold for B − 1 = 2 since the 2-depth
test is the classical sign test which always has a p-value of 1 in the case of two blocks
of equal size.

5 Applications

The high power of 3-depth tests in the case of two unknown parameters was already
shown for explosive AR(1) models, namely in Kustosz et al. (2016) for linear AR(1)-
models given by Yn = θ0 + θ1 Yn−1 + En and in Kustosz et al. (2016) for nonlinear
AR(1)-models given by Yn = Yn−1 + θ1 Y

θ2
n−1 + En , see also Falkenau (2016). In

particular these results showed for normally distributed errors En that 3-depth tests
possess similarly high power compared to classical tests based on least squares.

Other results for the quadratic regression model, a nonlinear AR(1)-model and an
explosive AR(2)-model, each with three unknown parameters, can be found in the
supplementary material. These examples show that there is not much difference in the
power of the 3-depth test, the 4-depth test, and the classical F- and t-test, respectively,
if the sample size is large enough, which means close to 100. There are only relevant
differences if the sample size is small. See for example Fig. 3 for testing H0 : θ =
(1, 0, 1)� in a quadratic regression model given by Yn = θ0 + θ1 xn + θ2 x2n + En with
θ = (θ0, θ1, θ2)

�. This example concerns normally distributed errors, but the results
are very similar for Cauchy distributed errors. The only exception is the F-test which
loses much power if the errors have a Cauchy distribution. See the supplementary
material for the behavior of Cauchy distributed errors and for other alternatives.

Additionally, we demonstrate here the good power of K -depth tests with K =
21 and K = 38 for a high-dimensional multiple regression model given by Yn =∑D

d=1 θd xnd + En with D ∈ {10, 20, 40, 80} and N = 100. The regressors are
ordered by computing a shortest path through the multidimensional data. This is done
here by the Shortest Hamiltonian Path (SHP), see for example Applegate et al. (2006).
Horn and Müller (2020) show that this ordering is superior to other possibilities for
ordering. The SHP belongs to the NP-hard problems. In particular, any known exact
algorithm to compute it has exponential time complexity in the number of data points in
the worst case. However, empirically the runtimes are quite small for medium numbers
of observations, see Horn and Müller (2020) or Horn (2021).

The tested hypothesis is H0 : θd = 0 ∀d = 1, . . . , D vs. H1 : ∃d = 1, . . . D : θd 	=
0. The 21-depth test and the 38-depth test are compared with the classical F-test and
the sign test as well as a robustWald test and a robust score test. For theWald test, esti-
mators of the parameters and covariance matrix of an MM-regression obtained by the
function lmRob() from the R-package robust (Wang et al. 2019) are used. For the
robust score test, a self implemented R-function is used based on a high-dimensional
version of the procedure fromKhan andYunus (2014). The scores are computed by the
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Simple powerful robust tests based on sign depth 877

Fig. 3 Simulated power of the sign test, the F-test, the 3-depth test, and the 4-depth test in the quadratic
regression model with normally distributed errors with sample sizes N = 12 (upper part) and N = 96
(lower part), where the component θ0 is fixed to 1 (20 gray levels were used, where black corresponds to
[0, 0.05] and white to (0.95, 1])
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Fig. 4 Extracts of the simulated power functions for the model Yn = ∑D
d=1 θd xnd + En . Here, the power

functions are only shown for θ1 ∈ [−1, 1] or [−2, 2], all other values of θ are zero. The K -depth tests are
conducted with an ordering according to the exact solution of the Shortest Hamiltonian Path problem. The
gray dashed line shows the level of the test α = 0.05

R-function psi.weight() using the setting ips = 4 from the package robust
and the scale factor is estimated by lmRob.S() from the package robustbase.
The performance of the tests is measured in three different situations: Firstly with nor-
mally distributed errors En , secondly with double exponentially distributed errors, and
thirdly with Cauchy distributed errors. Because of the high dimensionality, the com-
plete power functions cannot be shown, but only some aspects. Here, it is looked at the
aspectλ(θ) = θ1 ∈ [−1, 1], where all other components of θ are set to zero. The power
was simulated with 1000 repetitions for the K -depth test, F-test and sign test and with
500 repetitions for the robust Wald test and robust score test at 101 or 201 equidistant
points within [−1, 1] or [−2, 2], respectively. Because of the symmetry of the model
in θ , the power functions look the same for all aspects λ(θ) = θd , d = 1, . . . , D.
Similar results are obtained if other alternatives like θ1 = . . . = θD = γ , γ ∈ [−1, 1],
are considered, see the supplementary material.

Figure 4 shows the extracts of the simulated power functions for the considered
aspect. Firstly, this figure shows that the K -depth test performs better for higher K ,
e.g., K = 38 performs better than for K = 21 in Fig. 4 or K = 5 in the supplementary
material. In general, it holds that K should have at least the same magnitude as D to
reach good results of the K -depth test. It can be nicely seen in Fig. 4 that the power
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of the K -depth test for K = 21 is satisfying for D = 10 and D = 20, whereas
it is worse for D = 40 and D = 80 compared to the case K = 38. Secondly, the
robust Wald test performs well for D = 10 and D = 20, but for D = 40, the level
is not maintained, i.e., the power values are much larger than α = 0.05 at H0, and
for D = 80, the robust Wald test cannot be carried out at all. Indeed, it is not the
Wald test itself which causes the problems, but the underlying MM-estimation. In our
simulations, the R-function lmRob() always threw an error when trying to calculate
the estimator for D = 80 dimensions and N = 100 data points stating that internally
a matrix cannot be inverted because of numerical singularity. Similar problems appear
when using lmrob() from the R-package robustbase instead. In contrast to this,
the K -depth tests or the robust score test remain computable for such high dimensions
although the power of the K -depth test is not very good due to values of K much
smaller than D. The robust score test has a very small power if θ1 is closer to zero but
the power function increases more strongly for higher deviations.

Furthermore, Fig. 4 shows that of course the F-test performs best when having
normally distributed errors. But for Cauchy distributed errors, the K -depth test is
better than the F-test. The classical sign test performs poorly regardless of what the
dimension D is. Its power is always about 0.05. Furthermore, the cases D = 10 and
K = 21 or D = 20 and K = 38 show that the K -depth test can keep up with the
robust Wald test, the robust score test and the F-test (for normally distributed errors)
when K is sufficient large in comparison to D. Unfortunately, the parameter K of the
K -depth test cannot be chosen arbitrarily high for fixed N , since otherwise the test is
unable to reject at all due to the circumstance that the α-quantile can then coincide
with its minimal value. Some benchmarks how high the parameter K can be chosen
for given N are given in (Malcherczyk (2022), Chapter 6.3.2). For larger sample sizes,
the power of the K -depth tests increases significantly for all considered dimensions
D, but still do not reach the power of the robust Wald test which is computable then.
See the supplementary material for N = 500.

The results in this section were computed with the help of the R-package
GSignTest (Horn 2020). For computing the SHP, the package TSP (Hahsler and
Hornik 2019) and the “Concorde”-solver (Applegate et al. 2004) were used. Graph-
ics were made with the help of the packages rgl (Adler and Murdoch 2020) and
ggplot2 (Wickham 2016).

Supplementary material. A file with full proofs, more details on the block imple-
mentation and further simulation results can be found under the following link: https://
doi.org/10.1007s00362-022-01337-5.

6 Discussion and outlook

K -sign depth can be used to define simple robust tests which we refer to as K -depth
tests. While the parameter choice K = 2 essentially leads to the classical sign test
and thus has several limitations in rejecting alternatives, K -depth tests for K ≥ 3
are fairly powerful. They are not as powerful as the complicated robust Wald tests
based on MM-estimators but can outperform classical approaches such as the F-test,
in particular in the presence of outliers. The K -depth tests are not very well-suited
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for small sample sizes and models where the number of sign changes in the residual
vector is likely to exceed K − 1 at alternatives. However, the K -depth tests perform
very well in our examples once the sample size is sufficiently large.

The K -depth test can also be used when having no inherent order in the data,
like for example for multiple regression. For this, ordering the regressors according
to a Shortest Hamiltonian Path leads to very good power of the test for rather low
dimensions. In higher dimensions, the parameter K should be of the same magnitude
as the number of dimensions. When this is not possible, the power of the K -depth test
decreases. However, in contrast to the robust Wald test based on MM-estimators, it
still works without any errors caused by numerical issues.

To reduce the runtime of Θ(NK ) of the definition of the K -depth, a faster block
implementation is presented which leads to an algorithm with linear runtime. A linear
runtime of an asymptotically equivalent form can also be obtained by the derivation of
the asymptotic distribution of the K -depth for K ≥ 3, see Malcherczyk et al. (2021).

Although the simulation study in this article only deals with one-point hypotheses,
the K -sign depth can also be used to test general hypotheses of the form H0 : θ ∈ Θ0.
In this case, the maximal value of the test statistic in Θ0 must be computed. However,
more research is necessary to find an efficient algorithm for this maximum.

Moreover, this paper is mainly focused on the one-sided version of K -depth test
to detect shifts in the medians of the residuals. A two-sided version of the K -depth
test can also detect dependence structures within the residuals and may be useful for
stationary AR-models and other stationary processes. Once again, further research is
necessary to compare the two-sided K -depth test with other approaches when testing
simultaneously whether residuals are independent and have medians equal to zero.

A possible extension of the presented approach to multivariate observations might
be possible. In particular, multivariate sign changes based on the multivariate spatial
sign of Möttönen and Oja (1995) could be used as in Paindaveine (2009) for counting
the K -tuples with K −1 sign changes. This would lead to a multivariate K -sign depth.
However, it is not clear how to transfer the concept of blocks as used in this paper.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-022-01337-5.
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