
Müller, Christine H.; Schorning, Kirsten

Article  —  Published Version

A-optimal designs for state estimation in networks

Statistical Papers

Provided in Cooperation with:
Springer Nature

Suggested Citation: Müller, Christine H.; Schorning, Kirsten (2023) : A-optimal designs for state
estimation in networks, Statistical Papers, ISSN 1613-9798, Springer, Berlin, Heidelberg, Vol. 64, Iss.
4, pp. 1159-1186,
https://doi.org/10.1007/s00362-023-01435-y

This Version is available at:
https://hdl.handle.net/10419/308575

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00362-023-01435-y%0A
https://hdl.handle.net/10419/308575
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Statistical Papers (2023) 64:1159–1186
https://doi.org/10.1007/s00362-023-01435-y

REGULAR ART ICLE

A-optimal designs for state estimation in networks

Christine H. Müller1 · Kirsten Schorning1

Received: 16 December 2022 / Revised: 7 March 2023 / Published online: 24 March 2023
© The Author(s) 2023

Abstract
We consider two models for estimating the expected states of nodes in networks
where the observations at nodes are given by random states and measurement errors.
In the first model, we assume independent successive observations at the nodes and
the design question is how often the nodes should be observed to obtain a precise
estimation of the expected states. In the second model, all nodes are observed simulta-
neously and the design question is to determine the nodes which need larger precision
of the measurements than other nodes. Both models lead to the same design problem.
We derive explicitly A-optimal designs for the most simple network with star configu-
ration. Moreover, we consider the network with wheel configuration and derive some
conditions which simplify the numerical calculation of the corresponding A-optimal
designs.

Keywords A-optimal designs · Random state models · Network analysis

1 Introduction

The design problem addressed in this paper is motivated by a cooperation with electri-
cal engineers who study electrical power distribution grids of medium and low-voltage
levels. In a specific distribution grid the question riseswheremeasurements of the elec-
trical power should be taken and how precise these measurements should be in order
to get a precise estimation of the state of the grid. Due to high costs, it is not possible to
use sensors for measuring the electrical power at each position of the grid and at some
positions so-called pseudo measurements have to be used instead, see e.g. Muscas
et al. (2014), Schlösser et al. (2014) or Schurtz (2020). These pseudo measurements
are typically obtained from historical data or weather data to estimate, for example, the
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1160 C. H. Müller, K. Schorning

needed heating energy of a household or the produced energy of a photovoltaic system.
It is obvious that these pseudo measurements are less precise than the measurements
of sensors. Moreover, they can vary in their precision. For example, a temperature
measurement close to a node of the grid is a more precise estimate of the electrical
power at this node than a temperature measurement further away. However, the more
precise a measurement is the more expensive it is. Hence having cost constrains, the
design problem is to determine the necessary measurement precision at the nodes,
which is connected to the problem of sensor allocation.

The problem of sensor allocation in distributed systems has often been addressed in
research during the past 50 years, see for example the surveys in Kubrusly and Male-
branche (1985), Uciński (2022), Duan et al. (2022) or the book of Uciński (2004). In
most of the considered cases, methods are developed to minimize a function of the
covariance matrix of an appropriate estimator of the system, see e.g. Uciński (2000)
and Singhal and Michailidis (2008). In particular, Patan and Patan (2005) use partial
differential equations and its simplification to a non-linear models in combination with
a steepest descent method to find optimal weights of given support points (i.e. the sen-
sor positions), whereas Uciński (2022) addresses the best selection of sensors in order
to obtain a proper estimation of subsets of unknown parameters of a spatiotemporal
system modelled by a partial differential equation. The experimental design problem
for state estimation in electrical power grids is especially treated for example by Li
et al. (2011), Xygkis et al. (2018), and Cao et al. (2022). However, they all solve the
problem of allocating F sensor or generator positions out of E > F possible posi-
tions by greedy algorithms since the number of positions is high. Azhdari and Ardakan
(2022) modify this problem by allocating E components into F groups where each
group belongs to a node of the network.

All of these approaches deal with large networks so that approximate solutions can
only be found numerically.Moreover, the aim in electrical grids is to estimate unknown
expected states at certain positions of the grid. In the present paper, we simplify this
state estimation problem so that exact optimal solutions can be found. For this purpose,
we consider two specific models: In a first scenario, called Model A, we assume
independent univariate observations given by random states and additivemeasurement
errors at given nodes of the grid where the variances of the random states are equal
and the same holds for the measurement errors. In this situation, the design problem is
given by the question of allocating the observations at the different nodes. However,
this approach does not treat the possibility of different precision of measurements at
nodes. Moreover, the assumption of independent univariate observations is unrealistic
in electrical grids. As soon as several sensors (including pseudo measurements) exist,
one would use the simultaneous observations at the sensors placed at the different
nodes. Hence, we consider a second scenario, called Model B, where independent
simultaneous observations are available at the given nodes of the network for the
different observation time points. Consequently, a single observation is a vector given
by the random states of the nodes with additive measurement errors consisting of
variances depending on the nodes. Here, the design question is at which nodes the
variance of themeasurement could be high andwhere not. This concerns the question at
which nodes less precise pseudo measurements are sufficient, and where more precise
measurements of sensors are necessary. In the following, we show that the design
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A-optimal designs for state... 1161

problem of Model B coincides with the design problem in Model A if nonrandom
states are assumed in Model A.

The paper is organized as follows. Section2 presents the two simple models and
how they are related to each other. Section3 shows how a general result concerning
A-optimal designs with minimum support can be used to derive A-optimal designs
in the two models analytically. This result is applied in Sect. 4 to the most simple
network, a so-called star network, which nevertheless is often considered in studies
for electrical power distribution grids, see e.g. Su and Wang (2020) and Azhdari and
Ardakan (2022). In particular, in Sects. 4.2 and 4.3 we study the situation where the
whole expected state vector is not identifiable. In Sect. 5, we consider an extension of
the star network, given by a wheel. In particular, we derive sufficient conditions for
the identifiability of the state vector, which can also be used to reduce the numerical
complexity for that type of network. Finally, someextensions of the presented approach
are discussed in Sect. 6.

2 Simplemodels for state estimation in networks

We consider a network with I +1 nodes 0, . . . , I , where node 0 denotes a central node
or outgoing node of the electrical power distribution grid. The expected observations
Y0,Y1, . . . ,YI at these nodes depend on the unkown expected states s0, s1, . . . , sI
of the different nodes in the network. The aim is the estimation of these states, con-
tained in the state vector s = (s0, s1, . . . , sI )� ∈ R

I+1 or an appropriate linear aspect
L s with L ∈ R

q×(I+1) using the observation vector Y = (Y0,Y1, . . . ,YI )
�. In

the situation under consideration, the expected observation Yi at a particular node i
is both influenced by the corresponding expected state si and by the expected states
s j of other nodes j �= i , that are connected to node i (i = 0, . . . , I ). More pre-
cisely, let xi j be the influence of the state s j at node j on the expected observation
Yi taken at a particular node i (i = 0, . . . , I ) and denote the matrix storing these
influences by X = (xi j )i, j=0,...,I ∈ R

(I+1). Then the expected observation vector
Y = (Y0,Y1, . . . ,YI )

� is given by

Y = X s .

The matrixX ∈ R
(I+1)×(I+1) is called influence matrix of the network, as it describes

the influence of the states on the observations at the different nodes. Note that X is
strongly connected to the adjacency matrix of a network with weighted edges: if the
diagonal elements of X are removed, the resulting matrix describes the structure of
the network, where two nodes i �= j are connected with an edge weighted by xi j if
xi j �= 0.
Denoting the (i + 1)-th unit vector in R

I+1 by ui , the observation yi at node ci can
be rewritten by u�

i Xs.
Later in the paper, we restrict ourselves to the case, where the influence of the state

si on the observation at node i is given by a > 0, whereas the influence of the states s j
( j �= i) of the adjacent nodes on the expected observation at node i is equal to b > 0.
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1162 C. H. Müller, K. Schorning

Fig. 1 Left figure displays a star network consisting of I + 1 = 5 nodes, right figure displays a wheel
network consisting of I + 1 = 5 nodes

Then, the influence matrix X is of the form

X = aI(I+1)×(I+1) + bA (1)

where I(I+1) denotes the (I + 1)-dimensional identity matrix and
A ∈ {0, 1}(I+1)×(I+1) is the adjacencymatrix of the considered (unweighted) network.
Moreover, the expected observation Yi at node i can be written by

Yi = u�
i Xs = a + b

∑

j is connected with node i

s j . (2)

Example 1 1.Star-Network.Let node0 be the center of the network,which is connected
to the other nodes 1, . . . , I (see left panel of Fig. 1for I = 4). Let a be the influence
of the state si on the expected observation at the corresponding node i (i = 0, . . . , I ),
whereas b denotes the influence of the states s j ( j �= i) of the adjacent nodes on the
expected observation taken at node i . Using (1), the influence matrix X is given by

X =
(

a b1�
I

b1I aII×I

)
, (3)

where 1I = (1, . . . , 1)� ∈ R
I and II denotes the I -dimensional identity matrix.

Consequently, the expected observationY0 obtained at the central node 0 is given by

Y0 = u�
0 Xs = as0 +

I∑

i=1

bsi ,

whereas the expected observations at the non-central nodes are of the form

Yi = u�
i Xs = bs0 + asi , i = 1, . . . , I .

2.Wheel-Network. Let node 0 be again the center of the network, which is connected
to all other nodes of the network. Moreover, the remaining nodes are connected to two
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A-optimal designs for state... 1163

others nodes (see right panel of Fig. 1 for case I = 4). Similar to the situation of the
star network, let a be the influence of the state si on the expected observation at the
corresponding node i (i = 0, . . . , I ), whereas b denotes the influence of the states s j
( j �= i) of the adjacent nodes on the expected observation taken at node i . Using (1),
the influence matrix X is given by

X =
(
A B�
B X̃

)
, (4)

where the matrices A ∈ R
2×2 and B ∈ R

(I−1)×2 are of the form

A =
(
a b
b a

)
, B = b

(
1(I−1), u

I−1
1 + uI−1

I−1

)
, (5)

where uI−1
j denotes the j-th unit vector in R

I−1. The matrix X̃ ∈ R
(I−1)×(I−1) is a

triadiagonal matrix with main diagonal elements equal to a, whereas the lower and
upper diagonal elements are equal to b, that is

X̃i, j =

⎧
⎪⎨

⎪⎩

a, i = j

b, i = j − 1 or i = j + 1

0, else

. (6)

Based on the structure of the network and on the notation introduced beforehand, the
expected observation at the central node is again given by

Y0 = as0 +
I∑

i=1

bsi ,

whereas the expected observations at the non-central nodes are of the form

Yi = u�
i Xs = bs0 + bsi−1 + bsi+1 + asi , i = 2, . . . , I − 1,

Y1 = u�
1 Xs = bs0 + bs2 + bsI + as1 ,

YI = u�
I Xs = bs0 + bsI−1 + bs1 + asI .

In practice, observations of the form Y given in (1) are not available: On the one
hand the expected observationsYmight be corrupted by randommeasurement errors,
on the other hand the states at the different nodes might not be fixed to s, but also
random. Consequently, the vector s only describes the expected state of the network.
Nevertheless, the aim of the present paper is to estimate the unknown expected state
vector s or a linear aspect L s of it using random observations Y1, . . . , YN at the
different nodes of the network. For this purpose, we introduce two different models,
called Model A and Model B.
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1164 C. H. Müller, K. Schorning

2.1 Model A

In the first scenario, we assume that at each time point n ∈ {1, . . . , N }, one obser-
vation Yn at one particular node i(n) ∈ {0, . . . , I } is available, where Yn is a linear
combination of the random states vector Sn = (S0,n, . . . , SI ,n)� of the network at that
time point and an additive measurement error En . Furthermore, the distance between
two consecutive time points is assumed to be sufficiently large, so that we assume that
Y1, . . . ,YN are successive independent univariate observations at different nodes of
the network.

Under the assumption that the random state vector Sn at time point n is of the form

Sn = s + Zn,

where s is the expected state vector of the network and Z1, . . . , ZN are independent
random vectors withmean 0 and covariancematrix ρzσ

2I(I+1)×(I+1), ρz ≥ 0, σ 2 ≥ 0,
the n-th observation Yn at the node i(n) is given by

Yn = u�
i(n)XSn + En = u�

i(n)Xs + u�
i(n)XZn + En, (7)

where X is the influence matrix, ui is the (i + 1)-th unit vector, and the indepen-
dent measurement errors E1, . . . , EN have mean 0 and variance ρEσ 2. The random
elements E1, . . . , EN and S1, . . . , SN are also assumed to be independent. Choosing
either ρE = 0 or ρZ = 0, we obtain either a model without measurement errors or a
model with non-random states at the different nodes, respectively.

The variance of an observation Yn in model (7) is given by

var(Yn) = var(u�
i(n)XZn + En) = σ 2 σ 2

i(n)

where the variance σ 2
i(n) at node i(n) is of the form

σ 2
i(n) := u�

i(n)XX
�ui(n)ρZ + ρE , n = 1, . . . , N . (8)

Let D := diag(σ0, . . . , σI ), where diag(σ0, . . . , σI ) denotes the diagonal matrix
with diagonal elements σ0, . . . , σI . Using 1

σi(n)
u�
i(n)Xs = u�

i(n)D
−1

Xs, we define

transformed random variables Ỹn by

Ỹn := 1

σi(n)

Yn = u�
i(n)D

−1
Xs + Ẽn , n = 1, . . . , N , (9)

where Ẽ1, . . . , ẼN are independent with mean 0 and variance σ 2. Note that the
model given in (9) is a linear model with homescedastic errors, where the exper-
imental condition at time point n is given by node i(n), n = 1, . . . , N . Hence,
setting Ỹ = (Ỹ1, . . . , ỸN )�, Ẽ = (Ẽ1, . . . , ẼN )�, d = (i(1), . . . , i(N )), Ud =
(ui(1), . . . , ui(N ))

� and Xd = Ud D
−1

X, we obtain

Ỹ = Ud D
−1

X s + Ẽ = Xd s + Ẽ , (10)
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A-optimal designs for state... 1165

where the best linear unbiased estimator for an aspect L s in (10) is given by

L ŝ(Ỹ ) = L (X�
d Xd)

−X�
d Ỹ = L (X�

D
−1

U
�
d Ud D

−1
X)−X�

D
−1

U
�
d Ỹ .

The corresponding covariance matrix of that estimator is

Cov(L ŝ(Ỹ )) = L (X�
d Xd)

−L� = 1

N
L (X�

D
−1

Dd D
−1

X)−L� ,

where Dd = 1
N U

�
d Ud = diag(δ0, δ1, . . . , δI ) with δi = 1

N �{n; i(n) = i} for i =
0, 1, . . . , I . Note that δi is equal to the relative amount observations taken at node i ,
i = 0, . . . , I . In order to use the established methods of optimal design theory for
approximate designs, we further relax the condition on the values of δ0, δ1, . . . , δI
and assume that

δ = (δ0, . . . , δI ) ∈ � := {δ = (δ0, δ1, . . . , δI )
� ∈ [0, 1]I+1;

I∑

i=0

δi = 1} , (11)

where the set � denotes the set of all approximate designs δ with support at the nodes
0, . . . , I . If an approximate design δ is given and N observations can be taken, a
rounding procedure is applied to obtain integers n0, . . . , nI from the not necessarily
integer valued quantities δi N (see Pukelsheim and Rieder (1992)). Then, the design
problem reduces to the determination of an approximate design δ = (δ0, . . . , δI ) ∈ �

such that the covariance matrix Cov(L ŝ(Ỹ )) becomes small in some sense. Since
the interest lies in estimating L s, we are interested in determining the widely used
A-optimal designs. More precisely, following Pukelsheim (2006), p. 137, a design
δ∗ ∈ � is called A-optimal, if it minimizes the trace of the covariance matrix, i.e.

δ∗ ∈ argmin{tr L (X�
D

−1
Dδ D

−1
X)−L�; δ ∈ �} , (12)

with Dδ = diag(δ0, . . . , δI ). In the case of non-random states at the different nodes
(i.e. ρz = 0), we set ρE = 1 without loss of generality and the design problem stated
in (12) reduces to

δ∗ ∈ argmin{tr L (X�
Dδ X)−L�; δ ∈ �}. (13)

2.2 Model B

For electrical power distribution grids, it is more realistic to assume that for each time
point n ∈ {1, . . . , N }, the observation Yn consists of simultaneous observations at all
nodes i = 0, 1, . . . , I of the network. Hence, Yn is a (I + 1)-dimensional random
vector. If the distance between two consecutive time points is sufficiently large, we
can still assume that Y1, . . . ,YN are independent random vectors. With the notation
of the previous section, the n-th observation is a (I + 1)-dimensional random vector
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1166 C. H. Müller, K. Schorning

Yn of the form

Yn = X Sn + En,

with

Sn = s + Zn ,

where the measurement errors E1, . . . , EN and random effects Z1, . . . , ZN are
independent random (I + 1)-dimensional random vectors with mean vector 0I+1.
Additionally, we assume that the components of the measurement error En are inde-
pendent, whereas the entries of the random effect Zn might be correlated indicating
a dependence between the states of different nodes. More precisely, the covariance
matrices of En and Zn are assumed to be of the form

Cov(Zn) = σ 2
DZ with DZ positive-definite, (14)

Cov(En) = σ 2
DE with DE := diag(σ 2

0E , σ 2
1E , . . . , σ 2

I E ), (15)

where the entries of DE indicate the different accuracies with which the states are
measured at the different nodes.
Then, the covariance matrix of of the observation Yn is given by

Cov(Yn) = Cov(X s + X Zn + En) = σ 2
S with S := XDZ X

� + DE .

Since Y1, . . . ,YN are independent, the covariance matrix of the vector of all available
observations Y = (Y�

1 , . . . ,Y�
N )� satisfies

Cov(Y ) = σ 2
S∗ with S∗ := IN×N ⊗ S,

where ⊗ denotes the Kronecker product and IN×N is the N × N identity matrix.
Transforming the vector of observations by

Ỹ := S
−1/2∗ Y

= IN×N ⊗ S
−1/2

⎛

⎜⎝
X s + X Z1 + E1

...

X s + X ZN + EN

⎞

⎟⎠ = (1N ⊗ S
−1/2

X) s + Ẽ

with

Ẽ :=
⎛

⎜⎝
S

−1/2(X Z1 + E1)
...

S
−1/2(X ZN + EN )

⎞

⎟⎠ , Cov(Ẽ) = σ 2IN×N ⊗ I(I+1)×(I+1),
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we obtain a linear model with homescedastic errors. Hence, the best linear unbiased
estimator for L s is given by

L ŝ(Ỹ ) = L
(
(1N ⊗ S

−1/2
X)�(1N ⊗ S

−1/2
X)

)−
(1N ⊗ S

−1/2
X)�Ỹ .

The corresponding covariance matrix is of the form

Cov(L ŝ(Ỹ )) = L
(
(1N ⊗ S

−1/2
X)�(1N ⊗ S

−1/2
X)

)−
L�

= L
(
1�
N1N ⊗ X

�
S

−1
X

)−
L� = 1

N
L

(
X

�(XDZ X
� + DE )−1

X

)−
L�.

If the influence matrix X of the network is non-singular, the covariance matrix further
reduces to

Cov(L ŝ(Ỹ )) = 1

N
L X

−1(XDZ X
� + DE ) (X�)−1 L�

= 1

N

(
L DZ L� + L X

−1
DE (X�)−1 L�)

= 1

N

(
L DZ L� + L (X�

D
−1
E X)−1 L�) .

The covarianceCov(L ŝ(Ỹ )) directly depends on thematrixDE in (15)whose diagonal
entries indicate the inaccuracy of the applied measurement procedures at the different
nodes. More precisely, if the applied measurement procedure is precise at node i , the
variance σ 2

i E will be small (i = 0, . . . , I ). In the following, we assume that the quan-
titive relation of all available measurement procedures to one reference measurement

procedure is known, i. e. the constants ci = σ 2∗
σ 2
i E
, i = 0, 1, . . . , I , are known, where

σ 2∗ is the variance of the reference measurement procedure. In the context of electrical
power distribution grids, that would mean that the practioner does not know the exact
precision of a particular measurement procedure, but has knowledge about its relative
precision compared to the best available procedure based on sensors.
We now address the design problem of allocating the different available measurement
procedures at the different nodes such that the resulting covariancematrixCov(L ŝ(Ỹ ))

becomes small in some sense and such that the estimation of the linear aspect L s is
precise.
For that purpose, we define the precision of the measurement procedure applied at
node i by δi := 1

σ 2
i E
, i = 0, . . . , I and set Dδ = diag(δ0, . . . , δI ). We further assume

that the sum of these precisions is bounded by probably unknown constant K < ∞,
i.e.

∑I
i=0 δi ≤ K < ∞. Note that this can be achieved under the condition that

the constants c0, . . . , cI are known. Due to the fact that Dδ = D
−1
E and that the

formulation of the covariance matrix Cov(En) is in terms of an overall variance σ 2 (c.
f. (15)), we can assume that

∑I
i=0 δi ≤ 1 without loss of generality. As the optimal

design will be allocated at the boundary of that condition we can restrict ourselves
to the side condition

∑I
i=0 δi = 1 so that the set of admissible designs is given by
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1168 C. H. Müller, K. Schorning

�̃ := {δ = (δ0, δ1, . . . , δI )
� ∈ (0, 1)I+1; ∑I

i=0 δi = 1} which is a subset of �

for Model A introduced in (11). The reformulation in terms of δ leads to the design
problem

δ∗ ∈ argmin{tr L (X�
Dδ X)−1L�; δ ∈ �̃}, (16)

which is similar to the design problem (13) in Model A with nonrandom states (ρZ =
0). Note that in contrast to the situation of (13) the regularity of the influence matrix
X and the restriction to �̃ are necessary to define the design problem stated in (16).
Note that a solution of the design problem stated in (16) might not exist due to the fact
that the set �̃ is not compact anymore (the boundaries are excluded).

3 A general result for A-optimal designs in Models A and B

The Models A and B lead to design problems of the form

δ∗ ∈ argmin{tr L (X�
Dδ X)−1L�; δ ∈ �̃}, (17)

where X is an (I + 1) × (I + 1)-matrix, Dd = diag(δ0, δ1, . . . , δI ), and �̃ := {d =
(δ0, δ1, . . . , δI )

� ∈ (0, 1)I+1; ∑I
i=0 δi = 1}. Since X is a square matrix, the problem

at hand is a design problem with minimum support. It is easy to see that the D-optimal
design for L s = s in this case is given by δ∗

0 = δ∗
1 = . . . = δ∗

I = 1
I+1 . However, the

A-optimal designs are of a different form. We now assume that X is a non-singular
matrix so that its inverse X−1 exists. Then the following proposition holds.

Proposition 1 If X is non-singular, then the design δ∗ = (δ∗
0 , δ

∗
1 , . . . , δ

∗
I ) is a solution

of the design problem (17) if and only if

δ∗
i =

√
vi∑I

j=0
√

v j
with vi = u�

i (X−1)�L�L X−1ui for i = 0, 1, . . . , I ,(18)

where ui is the (i + 1)-th unit vector in RI+1.

Proof According to the General Equivalence Theorem for A-optimality, see
(Pukelsheim 2006), Theorem 7.19, with for p = −1, K� = L , a design δ∗ is
A-optimal if and only if the inequality

‖L (X�
Dδ∗ X)−xi‖2 ≤ tr L (X�

Dδ∗ X)− L� (19)

is satisfied for all nodes i = 0, 1, . . . , I , where the vector xi is given by

xi = X�ui , i = 0, 1, . . . , I ,

in the situation under consideration.
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Using that X is non-singular, we obtain

tr L (X�
Dδ∗ X)−1L�

= tr D−1
δ∗ (X−1)� L�L X−1 =

I∑

i=0

u�
i D

−1
δ∗ (X−1)� L�L X−1ui

=
I∑

i=0

∑I
j=0

√
v j√

vi
u�
i (X−1)� L�L X−1ui =

(
I∑

i=0

√
vi

)2

for the right-handside of (19), whereas the left-handside reduces to

‖L (X�
Dd∗ X)−1 xi‖2

= u�
i X X−1

D
−1
d∗ (X−1)� L�L X−1

D
−1
d∗ (X−1)� X� ui

=
∑I

j=0
√

v j√
vi

u�
i (X−1)� L�L X−1 ui

∑I
j=0

√
v j√

vi
=

(
I∑

i=0

√
vi

)2

for all i = 0, 1, . . . , I . Consequently, equality holds in (19) for all i = 0, . . . , I and
the equivalence theorem for A-optimality is satisfied. That provides the assertion. �


Note that vi defined in (18) are the diagonal elements of the
matrix X−1L�LX−1.

By setting

X =
{
D

−1
X in Model A,

X in Model B and Model A with nonrandom states,

Proposition 1 provides a solution of the different design problems stated in the situation
of Model A and Model B, respectively.

Theorem 1 Let the influence matrix X be non-singular. Then the A-optimal designs
for estimating L s in the Models A and B, i.e. of δ∗ = (δ∗

0 , δ
∗
1 , . . . , δ

∗
I ) solving (12),

(13), and (16), respectively, are given by

δ∗
i =

√
vi∑I

j=0
√

v j
with

vi =
{
u�
i (X−1)�L�L X

−1ui (u�
i XX

�ui ρZ + ρE ) in Model A,

u�
i (X−1)�L�L X

−1ui in Model B,

for i = 0, 1, . . . , I .

Proof The form of vi in the general Model A follows by

vi = u�
i D (X−1)�L�L X

−1
D ui = σi u

�
i (X−1)�L�L X

−1ui σi ,
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1170 C. H. Müller, K. Schorning

where D = diag(σ0, σ1, . . . , σI ) and

σ 2
i := u�

i XX
�ui ρZ + ρE .

The assertion for Model A with non-random states follows by ρZ = 0. Note again that
the A-optimal design for Model B can be obtained by the A-optimal design for Model
A by setting ρZ = 0, ρE = 1, which means that the states are nonrandom. Then the
assertion for Model B follows as well. �


Hence as soon as the inverse X
−1 of the influence matrix is determined, the A-

optimal design is available. For large complex networks, this inverse can only be
determined numerically. However, for some simple networks as stated in Example 1,
X

−1 can be calculated analytically. This is the case, for example, for the star network
introduced in Example 1, as shown in the next section.

4 A-optimal designs in a star network

Networks with a star configuartion, shortly star networks, are simple, but realistic
networks for electrical power distribution grids, as e.g. Su and Wang (2020) and
Azhdari and Ardakan (2022) pointed out. They consist of a central or outgoing node
0 which is connected to all other nodes i = 1, . . . , I of the network, wheras the other
nodes are terminal nodes that are only connected to the central node 0. Therefore, we
now concentrate on the situation introduced in the first part of Example 1 with the
influence matrix X of the star network given by

X =
(

a b 1�
I

b 1I a II×I

)
. (20)

Note again that a describes the influence of the state on the observation at the respec-
tive node, whereas b denotes the amount of influence of the states at the adjacent nodes
on that observation. We are now interested in the analytic determination of the corre-
sponding A-optimal designs if the influence matrix is given by (20). For that purpose,
Theorem 1 is only applicable, if the influence matrix X is non-singular. Therefore, we
state an equivalent condition for the non-singularity ofX given in (20) in the following
lemma.

Lemma 1 For the influence matrix in (20), it holds:

a) u�
i XX

�ui =
{
a2 + I b2 for i = 0,
a2 + b2 for i = 1, . . . , I .

b) X is non-singular if and only if b2 �= 1
I a

2.

Proof a). Let ũi be the i-th unit vector in R
I , 0I the I -dimensional vector consisting

only of zeros, and 1I the I dimensional vector consisting only of ones. Then it holds

u�
i X =

{
(1, 0�

I )X = (a, b1�
I ) for i = 0,

(0, ũi�)X = (b, a ũi�) for i ∈ {1, . . . , I }.
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The statement in a) directly follows.
b) Note that the determinant of X is given by

det(X) = det(aII×I ) det(a − b 1�
I a

−1II×I b 1I )

= I a I−1
(
1

I
a2 − b2

)
,

which is non-zero if and only if b2 �= a2
I . �


Against expectation the influence matrix X stays non-singular if the influence of
the non-central nodes on the central node is equal to the influence of the central node,
i. e. I b = a. Instead, the matrix X becomes singular, if I b2 = a2, whereas this
combination has no obvious effect on the structure of the star network. Nevertheless,
the non-singularity of the influence matrixX has an direct impact on the availability of
an appropriate estimator of the complete expected state vector s: s is only identifiable
and thus estimable if and only if the influence matrix X is non-singular. In the next
section, we derive the A-optimal design for the complete state vector s under the
assumption of identifiability.

4.1 A-Optimal designs for the complete state vector s under identifiability

Lemma 2 If b2 �= 1
I a

2 then

X
−1 =

(
a b 1�

I

b 1I a II×I

)−1

= 1

a2 − I b2

(
a −b 1�

I

−b 1I a2−I b2
a II×I + b2

a 1I×I

)
,

where 1I×I ∈ R
I×I is the I × I -matrix consisting of ones.

Proof It is well known that for symmetric matrices A and C , where C and E =
A − B�C−1B are non-singular, it holds

(
A B�

B C

)−1

=
(

E−1 −E−1 B� C−1

−C−1 B E−1 C−1 + C−1 B E−1 B� C−1

)
(21)

(see, e.g., Rencher (1998), p. 407).
Setting A = a, B = b 1I , C = a II×I , we obtain

E = a − b 1�
I
1

a
b 1I = 1

a
(a2 − I b2)

and thus

(
a b 1�

I

b 1I a II×I

)−1

=
( a

a2−I b2
− a

a2−I b2
b
a 1

�
I

− a
a2−I b2

b
a 1I

1
a II×I + 1

a2
a b2

a2−I b2
1I 1�

I

)
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= 1

a2 − I b2

(
a −b 1�

I

−b 1I a2−I b2
a II×I + b2

a 1I×I

)
.

�

Hence Theorem 1 and Lemma 1, a) provide the following theorem:

Theorem 2 If b2 �= 1
I a

2, then the A-optimal design δ∗ = (δ∗
0 , δ

∗
1 , . . . , δ

∗
I ) for esti-

mating the expected state vector s in the star network is given by δ∗
0 =

√
w

I
√

v+√
w
and

δ∗
i =

√
v

I
√

v+√
w
for i = 1, . . . , I , where

w =
{

(a2 + I b2) ((a2 + I b2) ρZ + ρE ) in Model A,

a2 + I b2 in Model B,

v =

⎧
⎪⎨

⎪⎩

(
b2 + (a2−(I−1)b2)2

a2
+ (I − 1) b

4

a2

)
((a2 + b2) ρZ + ρE ) in Model A,

(
b2 + (a2−(I−1)b2)2

a2
+ (I − 1) b

4

a2

)
in Model B.

Proof Setting L = I(I+1)×(I+1) we obtain by Theorem 1 that

δ∗
i =

√
vi∑I

j=0
√

v j
with

vi =
{
u�
i (X−1)� X

−1ui (u�
i XX

�ui ρZ + ρE ) in Model A,

u�
i (X−1)� X

−1ui in Model B,

for i = 0, 1, . . . , I .

Lemma 1 a) provides the additional terms u�
i XX

�ui ρZ + ρE in Model A. The
common terms in both models are u�

i (X−1)� X
−1ui , where the inverse X−1 is given

by Lemma 2. At first note that the factor 1
a2−I b2

of X−1 cancels out in δ∗
i so that we

only have to consider

V := (a2 − I b2)X−1 =
(

a −b 1�
I

−b 1I a2−I b2
a II×I + b2

a 1I×I

)
.

Here, we get

V
�u0 = V

�
(

1
0I

)
=

(
a

−b 1I

)
so that u�

0 VV
�u0 = a2 + I b2

and

V
�ui = V

�
(

0
ũi

)
=

( −b
a2−I b2

a ũi + b2
a 1I

)
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so that

u�
i VV

�ui =
(
b2 +

(
a2 − I b2

a

)2

+ 2

(
a2 − I b2

a

)
b2

a
+ I

(
b2

a

)2
)

=
(
b2 +

(
a2 − (I − 1) b2

a

)2

+ (I − 1)

(
b2

a

)2
)

for i = 1, . . . , I . Hence these are the common terms for w and v in Model A and
Model B, respectively. �

Remark 1 Note that δ∗

1 = . . . ,= δ∗
I , i.e. the terminal nodes are treated equally, wheras

the central node 0 obtains a different value δ∗
0 in general.

A special case of the star network is b = 0, where the states of the adjacent nodes
do not influence the observation at a particular node. Then we get v = w in both
models so that δ∗

0 = δ∗
1 = . . . = δ∗

I = 1
I+1 . Hence, the A-optimal design is equal to

the A-optimal design obtained in the classical model, where I + 1 independent levels
of one factor are considered.

If the star network only consists of two nodes, i. e. I = 1, it also follows v = w in
both models so that δ∗

0 = δ∗
1 = 1

2 for any b with b2 �= a2. Hence the design does not
depend on the adjacent effect b. This is not the case for I > 1which will be considered
in detail in the following example.

Note that the A-optimal design according to the formula stated in Theorem 2 can
also calculated in the case b2 = 1

I a
2, i.e. in case of a singular matrix X, since the

factor 1
a2−I b2

in X
−1 cancels out and does not appear in the formula as well as in the

proof. Nevertheless, the whole state vector s is not identifiable for b2 = 1
I a

2 which is
shown in the next section.

Example 2 We investigate the behaviour of the A-optimal design in dependence on
different values of a and b in the situation of Model A, where either nonrandom states
are given, i.e. ρZ = 0, or no measurement errors occur, i.e. ρE = 0. The A-optimal
designs only depend on the relationship between a and b and we can set a = 1
without loss of generality. Hence, Fig. 2shows the optimal values for δ∗

0 depending
on the quantity b for a star network with I = 4, 9, 25 nodes and a = 1 for Model
A with nonrandom states given by ρZ = 0 (left-hand side) and for Model A with no
measurements errors given by ρE = 0 (right-hand side). Note that the designs for
Model B coincide with those of Model A with nonrandom states, if X is non-singular.
In particular, Fig. 2 shows that the special case b2 = 1

I , where the state vector s is
not identifiable leads to a smooth continuation of the case b2 �= 1

I . Furthermore, if
the influence b of the central node 0 goes to infinity, then the optimal weight δ0 at the
central node 0 goes to zero. This means that only a small proportion of observations
should be done at the central node if it has a big influence on its adjacent nodes and
vice versa. Surprisingly, the optimal weight δ∗

0 increases for b2 < 1/I and decreases
for b2 > 1/I , i. e., when the value of b is reached where the state vector s is not
identifiable. Moreover, Model A with random states and no measurements errors
provides larger weights δ∗

0 at the central node than the Model A with nonrandom
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Fig. 2 Optimal values for δ0 depending on the quantity b, the influence of the central node 0, for a = 1.
Left: in Model B and Model A with nonrandom states. Right: in Model A without measurement errors. The
vertical lines indicate the case b2 = 1

I where the state vector s is not identifiable

states and measurement errors. Probably, this is caused by the increased uncertainty
given by the random states.

4.2 Nonidentifiability in a star network

Asmentioned in Remark 1, the state vector s is not identifiable, as soon as the influence
matrix X becomes singular. In the case of the star network, this is equivalent to the
case where b2 = 1

I a
2, where the influence matrix

X :=
(

a b 1�
I

b 1I a II×I

)
=

(
a 1√

I
a 1�

I

1√
I
a 1I a II×I

)

is not of full rank, for example, it holds

(
a 1√

I
a 1�

I

1√
I
a 1I a II×I

)(
1

− 1√
I
1I

)
=

(
a − a

I I
1√
I
a 1I − a 1√

I
1I

)
=

(
0

0

)
.

Moreover, the often used aspect

L̃ s =
⎛

⎜⎝
s1 − s0

...

sI − s0

⎞

⎟⎠ ∈ R
I
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with L̃ := (−1I , II×I ), where the central node 0 is considered as control level, is not
identifiable, since

L̃

(
1

− 1√
I
1I

)
= −1I − 1√

I
1I �= 0I .

However, the aspect

L s =

⎛

⎜⎜⎝

s1 + 1√
I
s0

...

sI + 1√
I
s0

⎞

⎟⎟⎠ ∈ R
I (22)

with L :=
(

1√
I
1I , II×I

)
is identifiable since

1

a

(√
I 1I , −1I×I + II×I

)
X =

(√
I 1I , −1I×I + II×I

) (
1 1√

I
1�
I

1√
I
1I II×I

)

=
(√

I 1I − 1I×I
1√
I
1I + II×I

1√
I
1I ,

√
I 1I

1√
I
1�
I + (−1I×I + II×I )

)

=
(√

I 1I − I√
I
1I + 1√

I
1I , 1I×I − 1I×I + II×I

)
= L.

4.3 A-optimal designs for the always identifiable aspect L s

The aim is to determine the A-optimal designs for estimating the aspect L s given by
(22) in case of identifiability and nonidentifiability of s so that, according to (12), the
design problem in the general Model A is given by

δ∗ ∈ argmin{tr L I (δ)−L�; δ ∈ �} (23)

with

I (δ) := X
�
D

−1
Dδ D

−1
X.

At first, we consider the case of nonidentifiability, i.e. b2 = 1
I a

2, where only Model
A makes sense. For this case, we are now going to prove that the A-optimal design
δ∗ = (δ∗

0 , δ
∗
1 , . . . , δ

∗
I ), i.e. a solution of (23), is given by δ∗

0 = 0 and δ∗
1 = . . . = δ∗

I = 1
I

using the equivalence theorem of A-optimality. Hence, it is sufficient to consider
the information matrix for δ∗ and the corresponding generalized inverse (since the
information matrix is not invertible for δ∗). At first, note that Lemma 1 provides for
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b2 = 1
I a

2

u�
i XX

�ui =
{
a2 + I b2 = 2a2 for i = 0,
a2 + b2 = a2 + 1

I a
2 = a2 I+1

I for i = 1, . . . , I .
(24)

Lemma 3 Set α := 1
I

1
a2 I+1

I ρZ+ρE
, then the information matrix I (δ∗) in Model A is

given by

I (δ∗) = a2 α

(
1 1√

I
1�
I

1√
I
1I II×I

)
.

Moreover, a generalized inverse of I (δ∗) is given by

I (δ∗)− = 1

a2 α

(
0 0�

I

0I II×I .

)
. (25)

Proof Since δ∗
0 = 0, δ∗

1 = . . . = δ∗
I = 1

I , and D = diag(σ0, σ1, . . . , σI ) with
σ 2
i = a2 I+1

I ρZ + ρE for i = 1, . . . , I according to (24), we obtain

I (δ∗) = X
�
(

0 0�
I

0I α II×I

)
X

= a2
(

1 1√
I
1�
I

1√
I
1I II×I

) (
0 0�

I

0I α II×I

) (
1 1√

I
1�
I

1√
I
1I II×I

)

= a2
(

1 1√
I
1�
I

1√
I
1I II×I

) (
0 0

α√
I
1I α II×I

)

= a2
( 1√

I
1�
I

α√
I
1I 1√

I
1�
I α II×I

II×I
α√
I
1I II×I α II×I

)
= a2 α

(
1 1√

I
1�
I

1√
I
1I II×I .

)
.

We are now going to show that the matrix I (δ∗)− proposed in (25) is a generalized
inverse of I (δ∗) by checking whether I (δ∗) I (δ∗)− I (δ∗) = I (δ∗). Since a and α are
multiplicative constants, we do not need to consider them. Without them, we get

(
1 1√

I
1�
I

1√
I
1I II×I

) (
0 0�

I

0I II×I

) (
1 1√

I
1�
I

1√
I
1I II×I

)

=
(

1 1√
I
1�
I

1√
I
1I II×I

) (
0 0�

I
1√
I
1I II×I

)
=

( 1√
I
1�
I

1√
I
1I 1√

I
1�
I

(II×I )
1√
I
1I II×I

)
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=
(

1 1√
I
1�
I

1√
I
1I II×I

)
.

�

Note that the generalized inverse calculated in Lemma 3 is the Moore-Penrose

generalized inverse. We are now able to prove the A-optimality of the design δ∗ in
case of non-identifiability.

Theorem 3 Let the model be given by Model A with influence matrix defined by (20).

If b2 = 1
I a

2 and L =
(

1√
I
1I , II×I

)
, the design δ∗ = (δ∗

0 , δ
∗
1 , . . . , δ

∗
I ) is A-optimal

for estimating L s (i. e. a solution of (23)) if and only if δ∗
0 = 0 and δ∗

1 = δ∗
2 = . . . =

δ∗
I = 1

I .

Proof According to the General Equivalence Theorem for A-optimality, see
Pukelsheim (2006), Theorem 7.19, with for p = −1, K� = L , a design δ∗ is
A-optimal if and only if the inequality

‖L I (δ∗)−xi‖2 ≤ tr L I (δ∗)− L� (26)

is satisfied for all nodes i = 0, 1, . . . , I , where the vector xi is given by

xi = u�
i D

−1
X , i = 0, 1, . . . , I ,

in the situation under consideration.
We set α := 1

I
1

a2 I+1
I ρZ+ρE

, then Lemma 3 provides a reformulation of the right-hand

side of inequality (26), namely

tr L I (δ∗)−L� = tr

[(
1√
I
1I , II×I

)
1

a2 α

(
0 0�

I

0I II×I

) (
1√
I
1I

II×I

)]

= tr

[(
1√
I
1I , II×I

)
1

a2 α

(
0�
I

II×I

)]
= tr

[
1

a2 α
II×I

]
= I

a2 α
.

The design matrix containing x1, . . . , xn is of the form

⎛

⎜⎜⎜⎜⎜⎝

x�
0

x�
1
...

x�
I

⎞

⎟⎟⎟⎟⎟⎠
= X = D

−1
X =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
σ0

(a, b 1�
I )

1
σ1

(b, a ũ�
1 )

...

1
σI

(b, a ũ�
I )

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where σ 2
1 = . . . = σ 2

I = a2 I+1
I ρz + ρE = 1

I α
according to (24) and ũi is the i-th

unit vector in R
I .
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First, we consider the nodes {1, . . . , I } with vectors xi = 1
σi

(b, a ũ�
i )� with i =

1, . . . , I and check the inequality given by (26). In this situation, we get

‖L I (δ∗)−xi‖2

=
∥∥∥∥∥

(
1√
I
1I , II×I

)
1

a2 α

(
0 0�

I

0I II×I

)
1

σi

(
b

a ũi

)∥∥∥∥∥

2

=
∥∥∥∥∥

(
1√
I
1I , II×I

) √
I α

a2 α

(
0

a ũi

)∥∥∥∥∥

2

=
∥∥∥∥∥

√
I

a2
√

α
a ũi

∥∥∥∥∥

2

= I

a4 α
a2 = tr L I (d∗)− L�

for i = 1, . . . , I .
For the central node i = 0, we have x0 = 1

σ0
(a, b1�

I )�. Using similar arguments, we
obtain for the left hand side of inequality (26)

‖L I (δ∗)−xi‖2 = 1

a2 α2

1

σ 2
0

≤ I

a2 α

where the last inequality follows by the fact that

σ 2
0 = 2a2ρZ + ρE > a2

I + 1

I
ρZ + ρE = σ 2

i , i = 1, . . . , I .

Hence, the equivalence theorem for A-optimality provides the assertion. �

In the remaining part of this section, we derive the A-optimal designs for L s when

s is identifiable, i.e., when b2 �= 1
I a

2. This result is both applicable in Model A and
Model B, as the influence matrix X is non-singular.

Theorem 4 If b2 �= 1
I a

2, then the A-optimal design δ∗ = (δ∗
0 , δ

∗
1 , . . . , δ

∗
I ) for estimat-

ing L s with L =
(

1√
I
1I , II×I

)
is given by δ∗

0 =
√

w

I
√

v+√
w
and δ∗

i =
√

v

I
√

v+√
w
for

i = 1, . . . , I where

w = w̃ ((a2 + I b2) ρZ + ρE ) with w̃ = I

(
a√
I

− b

)2

,

v = ṽ ((a2 + b2) ρZ + ρE ) with

ṽ = I

(
b2

a
− b√

I

)2

+ 2

(
b2

a
− b√

I

)(
a2 − I b2

a

)
+

(
a2 − I b2

a

)2

.

Proof According to Theorem 1, we have

δ∗
i =

√
vi∑I

j=0
√

v j
with
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vi = u�
i (X−1)� L� L X

−1ui (u
�
i XX

�ui ρZ + ρE )

for i = 0, 1, . . . , I .

Again, Lemma 1 provides the terms u�
i XX

�ui ρZ + ρE . Hence only
u�
i (X−1)� L� L X

−1ui hast to be calculated. Again, the factor 1
a2−I b2

ofX−1 cancels
out in δ∗

i so that we only have to consider

V := (a2 − I b2)X−1 =
(

a −b 1�
I

−b 1I a2−I b2
a II×I + b2

a 1I×I

)
.

Here, we get

L V
�u0 = L V

�
(

1
0I

)

=
(

1√
I
1I , II×I

) (
a

−b 1I

)
=

(
a√
I
1I − b 1I

)
=

(
a√
I

− b

)
1I

so that

w̃ = u�
0 V L� L V

�u0 = I

(
a√
I

− b

)2

and

L V
�ui = L V

�
(

0
ũi

)
=

(
1√
I
1I , II×I

) ( −b
a2−I b2

a ũi + b2
a 1I

)

=
(−b√

I
1I + a2 − I b2

a
ũi + b2

a
1I

)
=

(
b2

a
− b√

I

)
1I + a2 − I b2

a
ũi

so that

ṽ = u�
i V L� L V

�ui

= I

(
b2

a
− b√

I

)2

+ 2

(
b2

a
− b√

I

)(
a2 − I b2

a

)
+

(
a2 − I b2

a

)2

for i = 1, . . . , I . �

Remark 2 Contrary to the estimation of the complete vector s of states in Sect. 4.1, the
A-optimal designs for estimating L s in the case b2 �= 1

I a
2 cannot be extended to the

case b2 = 1
I a

2 since the values v and w are then equal to zero.
However, as in Sect. 4.1, we get in the case of no influence of adjacent nodes, i.e.

b = 0, the equalities w̃ = ṽ and w = v so that the A-optimal design is again given by
δ∗
0 = δ∗

1 = . . . = δ∗
I = 1

I+1 .
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Fig. 3 Optimal values for δ1 (= δ2 = . . . = δI ) for estimating L s depending on the quantity b, the
influence of the central node 0, for a = 1. Left: in Model B and in Model A with nonrandom states, i.e.
ρZ = 0. Right: in Model A with random states and no measurements errors, i.e. ρE = 0. The vertical lines
indicate the case b2 = 1

I where the state vector s is not identifiable. The thin horizontal lines indicate the
weights for b going to infinity

If I = 1 and b2 �= 1
I a

2 = a2, then

ṽ =
[(

b2 − ba

a

)2

+ 2

(
b2 − ba

a

)(
a2 − b2

a

)
+

(
a2 − b2

a

)2
]

= 1

a2

[
b2(b − a)2 + 2b(b − a)(a − b)(a + b) + (a − b)2(a + b)2

]

= (a − b)2

a2

[
b2 − 2b(a + b) + (a + b)2

]

= (a − b)2

a2

[
b2 − 2ba − 2b2 + a2 + 2ab + b2

]
= (a − b)2 = w̃

so that δ∗
1 = 1

2 for any a and bwith b
2 �= a2. This design coincides with the A-optimal

design for estimating the complete state vector s (see Remark 1). In case of more than
one terminal node, i.e. I > 1, the A-optimal design for estimating the linear aspect
L s depends on the relationship between a and b as shown in the following example.

Example 3 We consider a similar situation as in Example 2. Therefore, we can set
a = 1 without loss of generality, since the A-optimal designs are only influenced
by the ratio of the values a and b. Figure 3 shows the optimal values for δ1 for
estimating L s depending on the quantity b for I = 4, 9, 25 terminal nodes and a = 1.
It shows in particular that the special case b2 = 1

I , where the state vector s is not
identifiable and the A-optimal design is given by δ∗

0 = 0 and δ∗
1 = . . . δ∗

I = 1
I , is

not a smooth continuation of the case b2 �= 1
I . Furthermore, if the influence b of the

central node 0 goes to infinity, the A-optimal weights δ1 = . . . = δI at the terminal
nodes i = 1, . . . , I go to 1

I , i.e. converge to the A-optimal weight in the case of
no identifiability of s. This again means that only a small proportion of observations
should be done at the central node if it has a big influence on its adjacent nodes and
vice versa. As for estimating the complete state vector s, Model A with random states
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and no measurements errors provides larger weights δ∗
0 at the central node and thus

smaller weights at the terminal nodes than the Model A with nonrandom states and
measurement errors. Nevertheless, the differences are relatively small.

5 A-optimal designs in a wheel network

In this section, we consider the other network introduced in Example 1, namely the
wheel network with I + 1 nodes. In that case, the network consists of the central node
0, which is connected to all remaining nodes, whereas the remaining nodes are both
connected to the central node and two other nodes. More precisely, we consider the
influence matrix X of the form

X =
(
A B�
B X̃

)
, (27)

where the matrices A ∈ R
2×2 and B ∈ R

(I−1)×2 are of the form

A =
(
a b
b a

)
, B = b

(
1I−1, u

I−1
1 + uI−1

I−1

)
, (28)

and uI−1
j denotes the j-th unit vector inRI−1. Thematrix X̃ ∈ R

(I−1)×(I−1) contained
inX is a Toeplitz-triadiagonal matrix with main diagonal elements equal to a, whereas
the lower and upper diagonal elements are equal to b, that is,

X̃i, j =

⎧
⎪⎨

⎪⎩

a, i = j

b, i = j − 1 or i = j + 1

0, else

. (29)

We are now interested in determining the A-optimal design for estimating the complete
state vector s. In that case, the influence matrix X given by (27) must be non-singular,
otherwise the state vector will not be identifiable. The following Lemma 5 contains
conditions on the influencing values a > 0 and b > 0 of the network, which ensure
the non-singularity of X.

Theorem 5 Let X ∈ R
(I+1)×(I+1) be of the form (27) with corresponding matrices A

and B of the form given by (28). Then the following statements hold:

(a) The eigenvalues of the Toeplitz-tridiagonal matrix X̃ are given by

λi = a + 2b cos( iI π), i = 1, . . . , I − 1 . (30)

The eigenvector corresponding to λi is of the form

vi =
√
2

I

(
sin( iI π), . . . , sin( i(I−1)

I π)
)�

, i = 1, . . . , I − 1 . (31)
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(b) Thematrix X̃ is singular if and only if k ∈ {1, . . . , I−1} exists such that cos( kI π) =
− a

2b . Moreover, the rank of X̃ is at least I − 2.

(c) Let X̃ be non-singular. Then X is singular if and only if the values a, b solve the
equation

(a − b2c1)(a − b2c3) − (b − b2c2)
2 = 0 , (32)

where the values of c1, c2, c3 are given by

c1 = 2

I

I∑

i=1

1

λi

sin2( i2π) sin2( (I−1)i
2I π)

sin2( i
2I π)

,

c2 = 2

I

I∑

i=1

1

λi

sin( i2π) sin( (I−1)i
2I π)

sin( i
2I π)

(sin( (I−1)i
2I π) + sin( i

2I π)) ,

c3 = 2

I

I∑

i=1

1

λi
(sin( iI π) + sin( i(I−1)

I π))2 ,

and 1/λ1, . . . , 1/λI are the eigenvalues of the matrix X̃ given by (30).

Proof (a). The statement is a well-known result used in a lot of applications, for
instance, in order to solve specific types of differential equations. The result can be
found in Noschese et al. (2013) among others.
(b). The matrix X̃ becomes singular if and only if one of its eigenvalues is equal
to zero. The first statement of (b) follows by setting equation (30) equal to zero.
The second statement of (b) follows by the fact, that X̃ has I − 1 distinct eigenvalues.
Consequently, at most one eigenvalue can be equal to zero and the resulting dimension
of the eigenvectors corresponding to the non-zero eigenvalues is equal to I − 2.
(c). Under the assumption that X̃ is non-singular, the determinant of the influence
matrix X can be reformulated in terms of the schur complement of X̃, that is,

det(X) = det(X̃) det(A − B�
X̃

−1B) ,

(see Harville (1997), Theorem 13.3.8). Since X̃ is non-singular, it holds det(X̃) �= 0.
Consequently, X is singular if and only if det(A − B�

X̃
−1B) = 0.

We first concentrate on determining B�
X̃

−1B. Using part (a), the inverse X̃−1 can be
represented in terms of the eigenvalues and eigenvectors of X̃, that is,

X̃
−1 =

I−1∑

i=1

1

λi
viv

�
i , (33)

where λi and vi are given by (30) and (31), respectively.
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Due to the structure of the matrix B given in (28), we obtain

B�
X̃B = b2

(
c1 c2
c2 c3

)
∈ R

2×2,

where the value c1 contains the sum of all elements of the matrix X̃
−1, c2 is the sum

of the first and last row of X̃−1, and c3 is the sum of the upper right and upper left
and bottom right and bottom left elements of X̃−1. Using the formula we obtain the
expressions for c1, c2 and c3 given in part (c). �

Remark 3 If thematrices X̃ andX are non-singular, Theorem 1 can be used to calculate
the A-optimal design for estimating s. In particular, the inverse X−1, which is needed
for the determination of the A-optimal weights δ0, δ1, . . . , δI , can be calculated by
using formula (21) and the inverse of X̃ given by (33).

Note that the non-singularity of the Toeplitz-tridiagonal matrix X̃ is not a necessary
condition for the non-singularity of the influence matrixX. If the values a and b result
in a singular X̃, the influence matrix X can still be non-singular and Theorem 1 be
applicable. In case of X̃ being singular, the influence matrix X should be partioned in
the following way:

X =
(
Â B̂�
B̂ X̂

)
,

where the matrices Â ∈ R
3×3 and B̂ ∈ R

(I−2)×3 are of the form

Â =
⎛

⎝
a b b
b a b
b b a

⎞

⎠ , B̂ = b
(
1I−2, u

I−2
1 , uI−2

I−2

)
,

and the matrix X̂ is a Toeplitz-tridiagonal matrix of dimension I − 2. Note that Part
a) and b) of Lemma 5 also hold for the matrix X̂. In particular, it follows that X̂ is
non-singular, as the fixed values a, b > 0 cannot both result in a trivial eigenvalue of
X̃ and X̂. If X̂ is non-singular, X is non-singular if and only det( Â − B̂�

X̂
−1 B̂) �= 0.

Note that the inverse of X̂ can be determined by using part a) of Lemma 5.

We conclude this section by considering an example of a wheel network, which is
similar to Example 2.

Example 4 Let the network be given by the wheel-network with I = 4, 9, 25 (non-
central) nodes. We investigate the behaviour of the corresponding A-optimal designs
in dependence of the different values of a and b in the situation of Model A, where
either nonrandom states are given, i.e. ρZ = 0, or no measurement errors occur, i.e.
ρE = 0. In the situations under consideration, the A-optimal designs only depend
on the relation between the values a and b and we can set a = 1 without loss of
generality. Thus, for each number of non-central nodes I , we vary the value b in the
interval [0, 3]. In order to exclude the values of b, where the influence matrix X is
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Fig. 4 A-optimal values for δ1 (= δ2 = . . . = δI ) for estimating the state vector s in the wheel network
depending on the quantity b, the external influence of the other nodes, wheras the influence on itself is given
by a = 1. Left: in Model B and in Model A with nonrandom states, i.e. ρZ = 0. Right: in Model A with
random states and no measurements errors, i.e. ρE = 0. The vertical lines indicate the crucial cases where
the influence matrix X is singular (i.e. the state vector s is not identifiable)

singular, we use Lemma 5 and Remark 3. For each I and the corresponding remaining
values of b the A-optimal designs are calculated numerically using again Remark 3.
First, we observe that the numerically calculated A-optimal weights δ∗

1 , . . . , δ
∗
I of the

non-central nodes coincide in the wheel network, that is δ∗
1 = δ∗

2 = . . . = δ∗
I , for

I = 4, 9, 25. The weight of the central node is then given by δ∗
0 = 1 − I ∗ δ∗

1 . Note
that the A-optimal weights for the non-central nodes also coincide in the star network
(see Theorem 4) and it seems that the non-central nodes obtain equal weights as soon
as they have a similar adjacency structure.
Figure 4 shows the A-optimal values for δ∗

1 depending on the quantity b for the wheel
network with I = 4, 9, 25 nodes and a = 1 for Model A with nonrandom states given
by ρZ = 0 (a)) and for Model A with no measurements errors given by ρE = 0 (b)).
The vertical lines indicate the values of b for which the influence matrix is singular
and thus result in a non-identifiable state vector s (independent from the selected
design). For I = 4, we obtain a singular influence matrix X for b = 0.5 ∈ [0, 3]. For
I = 9, the matrix X is not invertible if b ∈ {0.464, 0.532, 1} ⊂ [0, 3]. If the wheel
has I = 25 non-central nodes, the influence matrix X is singular if b is contained in
the set {0.244, 0.504, 0.538, 0.618, 0.784, 1.174, 2.668} ⊂ [0, 3].
Similar to the star network, we observe that the weight δ∗

1 is not monotonically increas-
ing with b. Moroever, for b going to infinity, the A-optimal weight δ∗

1 goes again to
1
I in each of the considered cases. Consequently, the weight δ∗

0 tends to zero and a
small amount of observations at the central node is sufficient in the wheel network,
if the influence of the other nodes is great and vice versa. Comparing the A-optimal
weight for Model A with random states to the corresponding weight for Model A with
nonrandom states, the curves are similar for all cases of nodes I = 4, 9, 25 under
consideration. In particular, we observe that the weight δ∗

1 are slightly smaller, if ran-
dom states are considered instead of nonrandom states. Note again that the designs
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for Model B coincide with those of Model A with nonrandom states such that the left
hand side of Fig. 4 also describes the A-optimal weight for δ1 in Model B.

6 Discussion

We have derived a general characterization of A-optimal designs for networks where
all adjacent nodes have the same influence on the state of a node. For the most simple
network, a network with star configuration, we derived the A-optimal designs explic-
itly. Moreover, we showed that not always all expected states are identifiable and we
derived A-optimal designs for an aspect of the states which is always identifiable.

Moreover, we considered a more complex network with wheel configuration
and derived analytical conditions on the influences of the states which ensure the
identifiability of all states.

The star and the wheel configuration lead to similar results: Depending on the
influence of the states at adjacent nodes, the A-optimal design puts more or less
weight at the central node than at the non-central nodes while the non-central nodes
get always equal weights. The higher the influence of the adjacent nodes is the smaller
should be the weight at the central node. This means in particular that less precise
measurements can be used at the central node and the more precise measurements
should be used at the non-central nodes when the influence of adjacent nodes is high.

These results can also be used to simplify the numerical calculation of the A-
optimal design, which is necessary due to the numerical instability of the original
design problem. For instance the numerical calculation for a mixture of a star and
a wheel network can be simplified if the results about the A-optimal designs of the
individual networks are used. The remaining problem can then be solved by several
optimization algorithms as the multiplicative algorithm developed by Yu (2010) or
a Particle Swarm optimization algorithm (see Kennedy and Eberhart (1995) among
many others).

For the considered networks, we obtained equal A-optimal weights at nodes that
have a similar adjacency structure, in particular, they have the same number of adjacent
nodes. The proof of that observation will be addressed in further research. Moreover,
the presented approach is based on the assumption that the influence of adjacent nodes
is the same and known. It is an open problem how to derive optimal designs if this is
not the case.
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