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Abstract 

Intensive care units (ICUs) operate with fixed capacities and face uncertainty such as demand 

variability, leading to demand-driven, early discharges to free up beds. These discharges can increase 

ICU readmission rates, negatively impacting patient outcomes and aggravating ICU bottleneck 

congestion. This study investigates how ICU discharge timing affects readmission risk, with the goal of 

developing policies that minimize ICU readmissions, managing demand variability and bed capacity. 

To define a binary treatment, we randomly assign hypothetical discharge days to patients, comparing 

these with actual discharge days to form intervention and control groups. We apply two causal machine 

learning techniques (generalized random forest, modified causal forest). Assuming unconfoundedness, 

we leverage observed patient data as sufficient covariates. For scenarios where unconfoundedness 

might fail, we discuss an IV approach with different instruments. 

We further develop decision policies based on individualized average treatment effects (IATEs) to 

minimize individual patients’ readmission risk. Our sample comprises 12,950 ICU stays (11,873 unique 

cases) from the Department of Surgical Intensive Medicine of the Cantonal Hospital of St. Gallen 

admitted between January 01, 2016, and December 31, 2023. We find that for 72% of our sample 

discharge at point in time 𝑡 as compared to 𝑡 + 1 increases patients’ readmission risk. Vice versa, 28% 

of cases profit from an earlier discharge in terms of readmission risk. The range of IATEs is quite large: 

For 91.4% of ICU stays, an earlier ICU discharge changes a patient’s readmission risk between -0.05 and 

0.05 percentage points (-55% and 55% relative change as compared to the average readmission rate of 

9.04%).  

To develop decision policies, we will exploit this treatment heterogeneity and rank patients according 

to their IATEs and compare IATEs of optimal and actual discharges across all decision points in our 

observation period. Finally, we outline how we will assess the potential reduction in readmissions and 

saved bed capacities under optimal policies in a simulation, offering actionable insights for ICU 

management.  

We aim to provide a novel approach and blueprint for similar operations research and management 

science applications in data-rich environments.
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1 Introduction 

The intensive care unit (ICU) of a hospital treats critically ill patients often suffering from life-

threatening diseases (Gopalan and Pershad, 2019; Milbrandt et al., 2008; Nates et al., 2016). An ICU is 

characterized by scarce, costly capacities such as high-end hospital beds and medical equipment, and 

specialized physicians and nurses. These capacities are fixed in the short- to mid-term. In addition, 

patient demand and the patients’ complexity mix are uncertain (Dobson et al., 2010; Thirumalai et al., 

2024). Patients arrive due to scheduled surgeries, e.g., for post-surgery observation, or as external or 

internal emergencies. Prediction of the volume of incoming patients is difficult, and rarely done in 

practice. Additionally, patients’ length of stay in the ICU is also uncertain as it depends, among other 

factors, on patients’ main diagnosis, co-morbidities, performed procedures, and the progression of 

patients’ health status. Lastly, process times of prior process steps, i.e., emergency care or surgery, are 

much smaller (hours) than patients’ length of stay in the ICU (days). Fixed capacities, uncertain and 

unscheduled incoming demand, uncertain process times, and faster throughput time of upstream 

processes make the ICU into a classic example of a process bottleneck (Bai et al., 2021; Chan et al., 2012). 

Unlike classic production settings, inventory cannot be built between process steps and areas, however: 

Arriving patients are in great need for care and thus need intensive care immediately. If the ICU’s 

capacity is fully utilized, one option is to discharge a patient with a relatively low need for intensive 

care (Berk and Moinzadeh, 1998; Dobson et al., 2010). Discharging a patient in such a setting is referred 

to as demand-driven or early discharge, that is, if there were no newly arriving patient, the patient to 

be discharged would stay longer in the ICU, profiting from additional intensive care (Bai et al., 2021, 

2018; Chan et al., 2012; Ouyang et al., 2020). 

Demand-driven discharges, in turn, are linked to higher ICU readmission rates (Kramer et al., 2013, 

2012; Niven et al., 2014). Indeed, the health status of patients discharged in demand-driven settings are 

more likely to worsen downstream, requiring a readmission to and additional stay in the ICU. Such 

readmissions not only gravely negatively impact patients’ health and outcomes (Mcneill and Khairat, 

2020; Rosa et al., 2020) and hospitals’ bottom line, but they also additionally clog the ICU process 
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bottleneck – and might trigger additional demand-driven discharges, potentially setting off a vicious 

cycle (KC and Terwiesch, 2011).  

We define an ICU discharge on a given day as the variable of interest (“treatment” in the econometric 

sense), causally linked to an outcome (i.e., ICU readmission). We formulate how a patient’s discharge 

on a given day compared to a discharge the following day causally effects a patient’s risk of readmission. 

Our goal is to discover a decision policy that minimizes ICU readmissions causally linked to (early) ICU 

discharge. To this end, we plan to show that in situations where there is more than one candidate that 

could be discharged to accommodate a newly arriving patient, readmission risk is minimized by 

discharging the patient for whom the effect of discharge on readmission risk is smallest. 

The gold standard for causal inference is a randomized experiment or a randomized controlled trial. 

Such a study design is very difficult or rather impossible to implement – both from an ethical as well as 

operational point of view – for our research endeavor. Thus, we present an approach that uses 

observational data and causal inference under the selection on observables assumption, also referred to 

as unconfoundedness or conditional independence assumption. Our research questions for developing 

an empirical approach and methodology are: 

I How can the causal effect of an ICU discharge on a given day on the ICU readmission risk of a 

patient be estimated with observational data? 

II How can a decision policy be learned that minimizes ICU readmissions? 

Research questions I and II structure our research objective in two concrete steps: First, estimating the 

causal effect and second, learning a decision policy based on the estimated causal relationship, 

exploiting effect heterogeneity. Note that both steps need to consider individual patient characteristics 

and individualized average treatment effects (IATEs) to enable decision makers to make a discharge 

decision in a setting of uncertainty. 

There is a rich operations management (OM) and medical literature on ICU management (Bai et al., 

2018; Gopalan and Pershad, 2019; Niven et al., 2014), some of which we will review in the next chapter. 

As for many operations research settings (Ho et al., 2017), OM models address the ICU process 
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bottleneck problem with normative mathematical models, aiming to develop decision policies from a 

theoretical framework. Commonly, studies then test and/ or calibrate their models with (small) samples 

from one or several hospitals (e.g., Bai et al., 2021; Chan et al., 2012), or perform a simulation study 

(Ouyang et al., 2020). 

In this paper, we outline that due to the causal relationship of ICU discharge and ICU readmission and 

individual patient characteristics creating variation and uncertainty, a different approach might be more 

effective, generalizable, and better scalable than traditional OM methods. While we also develop our 

model from a theoretical start point, its main strength comes from its empirical application and 

practicality. We aim to show that machine learning methods from the family of doubly robust learners 

can answer our research questions yielding data-driven decisions that optimize medical quality and 

free up scarce capacity. We believe that our approach is not only valid for ICU management and other 

hospital operations settings but that our study can serve as a blueprint for a more general application 

of causal machine learning methods in operations research. 

This section continues with a review of related work. Section 2 presents a formal problem statement. 

Section 3 discusses our approach for estimating causal effects and developing optimal decision policies. 

We also present first descriptive results, and first estimations of causal effects. Lastly, we outline a 

simulation study to assess the practical utility of our approach. Section 4 summarizes and gives an 

outlook. 

Related work 

We apply machine learning methods for causal inference and policy learning to a hospital operations 

problem, more specifically for resolving one reason for bottleneck congestion of a key hospital process 

area, the ICU. Thus, related work of our study are studies in the OM literature focusing on (1) machine 

learning applications, (2) causal inference and causal machine learning, (3) policy learning, and (4) 

hospital operations. 
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Machine Learning Applications 

Regarding machine learning applications, many studies focus on prediction in supervised learning 

settings. Chou et al. (2023) provided a review of studies published in leading OM journals applying a 

variety of prediction algorithms such as random forest, gradient boosting, logistic or probit regression, 

or support vector machine. The authors note that the aim of the majority of studies is to show that 

machine learning prediction techniques work better than other (statistical) methods commonly applied 

or are more precise than status quo decision making (i.e., managerial judgement). In the healthcare 

context, Ang et al. (2015) employ a Q-Lasso technique to anticipate waiting times of low-acuity patients 

in emergency departments of four different hospitals. They show that their method is superior for the 

prediction and management of waiting times compared to rolling average approaches, “state-of-the-

art” in practical emergency department management at the time of the study. Mukhopadhyay et al. 

(2021) compare the performance of six machine learning classifiers (e.g., neural networks, decision trees, 

and naïve-Bayes) with a linear programming model they built to detect diseases in four different 

datasets (two for breast cancer, one for diabetes, and one for diabetic retinopathy). Nenova and Shang 

(2022) develop an intelligent case‐based reasoning approach to predict disease progression for patients 

suffering from chronic kidney disease and compare results to different machine learning and statistical 

models. The authors find that their approach outperforms other models. Lastly, Ko et al. (2019) employ 

machine learning methods to generate insights from textual patient reviews and use these insights to 

investigate the relationship between waiting time and patient satisfaction. 

Causal Inference and Causal Machine Learning 

In the last decade, an increasing number of studies employing methods for causal inference under the 

selection of observables assumption have been published in leading OM journals (Ho et al., 2017; Yılmaz 

et al., 2024). These studies evaluate effects of, for instance, introducing a new scheduling policy or 

production program, commonly using regression discontinuity designs or pre-post intervention study 

designs such as difference-in-differences or synthetic control methods. While we also aim to causally 

infer effects of a treatment (i.e., ICU discharge at a given point in time) on an outcome (i.e., patient’s 

readmission risk) under the selection on observables assumption, our setting differs to traditional policy 
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or program evaluation settings: We do not know the decision policy for selecting a patient for discharge 

yet but develop a decision policy minimizing overall readmission risk. To this end, we need to estimate 

conditional average treatment effects (CATEs), more specifically the effect of a discharge at point in time 

𝑡 for a patient group (group average treatment effect, GATE), and at the most detailed aggregation level 

of patient features (individualized average treatment effect (IATE)) (Lechner and Mareckova, 2024). In 

the last years, causal forests were refined to estimate heterogenous treatment effects (HTE), which can 

be used for GATE and IATE estimation (Athey et al., 2019; Athey and Imbens, 2016; Chernozhukov et 

al., 2018; Feuerriegel et al., 2024; Lechner and Mareckova, 2024; Wager and Athey, 2018; Wang et al., 

2021). Causal forests are suitable for our research setting which we outline in more detail in section 3. 

Causal machine learning methods for the estimation of heterogenous treatment effects have, to the best 

of our knowledge, only been applied to very few operation research issues. Cui and Davis (2022) employ 

causal forest (Athey et al., 2019; Wager and Athey, 2018) combined with a difference-in-differences 

framework to estimate HTEs of occupancy taxes for Airbnb bookings on Airbnb listings. Wang et al. 

(2021) expanded on advances in the machine learning literature, adding an instrumental variable forest 

(IVF) approach to address endogeneity issues in observational data. The authors apply this approach in 

another study (Wang et al., 2023) to investigate the heterogeneity of outcome differences between 

hospitals, to compare the quality ranking of hospitals according to patient-centric versus population-

average information, and to simulate implications for pay-for-performance reimbursement schemes. In 

their first study, Wang et al. (2021) show with experiments, that in settings of endogeneity, their IVF 

approach is superior to a causal forest approach without instrumental variable to correct for biases. 

They also show that IVF outperforms causal forests with instrumental variable as part of the generalized 

random forests (GRF) (Athey et al., 2019), especially when the instrumental variable is continuous. The 

authors conclude that IVF should be used when unconfoundedness cannot be argued and only 

continuous instrumental variables are available. Endogeneity issues and potential strategies to offset 

endogeneity such as instrumental variables are well-known and discussed in the OM literature (Lu et 
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al., 2018). While we confidently argue for unconfoundedness, as sensitivity analysis, we will also 

employ an instrumental variable approach (see section 3).  

Policy Learning 

Recently, methodologies and applications for policy learning have received increasing attention in the 

OM literature. Policy learning generally means employing machine learning methods to optimally 

assign treatment decisions, such as whom to offer a discount or whom to target with a certain drug, 

based on individuals’ characteristics (Zhan et al., 2024). Athey and Wager (2021) developed the policy 

tree approach, a double robust machine learning technique for policy learning, which has been applied, 

discussed, and refined by several authors. Zhan et al. (2024), for instance, study how to extend policy 

learning when employing adaptively collected data, focusing on the two key challenges of (1) 

dependent samples in ex post optimal policy learning with adaptive samples, and (2) low assignment 

rates of different types of treatment to different types of individuals when using adaptive assignment 

rules. Munro (2024) explores how, under personalization of treatment assignment, strategic behavior of 

individuals trying to increase their chances to obtain a (better) treatment, might prevent optimal 

assignment. The author conducts a sequential experiment with Bayesian optimization to showcase a 

solution for managing individuals’ strategic behavior.  

Regarding applications, in their working paper, Cordier et al. (2023) combine causal forest with policy 

tree to learn what patients to optimally select for rapid recovery, a specific post-surgery treatment path 

for joint replacement patients, under capacity constraints. The authors show that optimal assignment 

rules can increase overall patient welfare, measured by patients’ expected improvement of joint 

functionality, by 17.56% without increasing hospital capacity. Based on their insights, the authors derive 

implications for surgery scheduling and clinical decision support. Yang et al. (2023) impute long-term 

outcomes, namely long-term revenue from online subscribers of The Boston Globe, as input to learn an 

optimal policy for whom to target with discounts. The authors show that their imputation and policy 

learning strategy is comparable to a policy learned from ground-truth long-term outcomes and superior 

to status quo policy learning using short-term proxies for long-term outcomes.  
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Hospital Operations 

Healthcare has become one of the core fields in operations research (Browning, 2020; Green, 2012). One 

important part of this research field is hospital operations management (Keskinocak and Savva, 2019). 

Shi et al. (2021), for instance, design a Markov decision process to provide decision support for how 

many and what patients to discharge from a hospital on a given day, balancing readmission risk and 

inpatient congestion. They base these decisions on a personalized readmission prediction model, 

incorporating several statistical methods. Demir (2014) uses classification trees for predicting 

unplanned readmissions within 45 days after discharge for patients suffering from chronic obstructive 

pulmonary disease or asthma, and compares prediction results to other methods (e.g., logistic 

regression). Lastly, in their study, Berk and Moinzadeh (1998) find early discharges to be a viable option 

for increasing scarce capacities.  

Within hospital operations management, many studies investigate ICU management (Bai et al., 2018).  

Chan et al. (2012) design an elaborate state and action space and dynamic optimization model to 

minimize the number of additional ICU inpatient days attributable to ICU readmissions linked to 

demand-driven discharges. Grand-Clément et al. (2023) design a Markov decision process model that 

uses predictions of patient deterioration supplied by machine learning models, to decide what patients 

should pro-actively be resubmitted to the ICU to prevent further patient deterioration, a longer length 

of stay, and deaths. They develop robust decision policies for transferring patients to the ICU, while 

stressing the effect of parameter uncertainty on average ICU occupancy, patients’ length of stay, and 

mortality.  

To reduce ICU process bottleneck congestion, apart from early discharges, hospitals could reject 

external or internal emergencies, and/ or cancel or reschedule elective surgeries in the case of surgical 

ICUs. Chan et al. (2012) consider these options in an extension to their model, and Bai et al. (2021) model 

a (stationary) discrete time Markov decision process considering these options and early discharge of a 

low- or high-severity patient as possible actions. While patient rejection can potentially alleviate 

bottleneck development (Scheulen et al., 2001), studies indicate several drawbacks (Chalfin et al., 2007; 
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McConnell et al., 2005; Renaud et al., 2009; Schull et al., 2004). For instance, rejecting patients means lost 

revenue for a hospital, potentially negative impact on patient satisfaction when cancelling or 

rescheduling elective surgeries, and worse patient outcomes for rejected or diverted patients. 

Besides, Ouyang et al. (2020) develop a mathematical model to support bed allocation decisions in the 

ICU. They develop policies for minimizing the long-run average mortality rate, and propose heuristic 

decision methods with relaxed, more general assumptions. They show the effectiveness of their 

heuristic methods in a simulation study. Lastly, they extend their model to deliberately allow for 

queuing for ICU admission and for readmission from the general ward.  

Other work in the field of hospital operations management include an investigation of bottleneck and 

congestion spillover of one hospital unit to other units (Kim et al., 2023), the effect of advanced electronic 

medical records on patient safety (Hydari et al., 2018), optimal and predictive bed assignment 

(Bertsimas and Pauphilet, 2023), development of ICU admission policies by estimating the effect of 

denying admission on different patient outcomes (Kim et al., 2014), prediction of congestion risk in the 

ICU (Bravo et al., 2024), reduction of alarm fatigue (Piri et al., 2022), and understanding and better 

serving the needs of patients not critical enough to be treated in the ICU but too critical to be treated on 

a general ward (Chan et al., 2018).  

There are also several studies in the medical literature investigating ICU discharge and readmission 

decisions. There are, for instance, reviews regarding ICU decision making (Gopalan and Pershad, 2019), 

studies informing guideline development (Nates et al., 2016), qualitative studies exploring the 

experience of physicians and nurses involved in and/ or affected by these decisions (Ofoma et al., 2018), 

and machine learning models predicting ICU readmission (Hammer et al., 2020; Loreto et al., 2020), 

which has also been studied by data scientists (Barbieri et al., 2020). 

With our approach and methods, we do not only add to the operations research literature, but also to 

the literature on precision medicine, clinical decision support and optimal treatment selection 

(Feuerriegel et al., 2024; Prosperi et al., 2020). Finally, we refer to Prosperi et al. (2020) who correctly 

point out that machine learning models used for prediction do not deliver causal treatment suggestions, 
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which is the main reason we are employing causal machine learning methods for causal inference rather 

than binary classifiers.  

2 Formal Problem Statement 

Conventional Models 

Past OM studies have proposed Markov decision processes described by state and action space models 

to derive decision policies optimizing costs associated with demand-driven discharges and, by model 

extension (Chan et al., 2012) or as part of the main model (Bai et al., 2021), also rejection of arriving 

patients. They define the time period 𝑡 with 𝑡 =  {1, 2, … , 𝑇} to be small enough so only one patient can 

arrive in 𝑡. The arrival of a patient might require an action (e.g., demand-driven discharge), first and 

foremost in situations where the ICU bed capacity 𝐵 is exceeded. Such an action, among other things 

such as changes of other patients’ health status and “natural” discharges (service completion), changes 

the current state and defines the next state. The optimal policy, e.g., rejecting a patient, or early 

discharging one type rather than another type of patient, is then derived by minimizing the costs 

associated with the action associated with the policy (e.g., the additional ICU inpatient days “caused” 

by readmissions due to ICU discharge). While the authors show how such models can improve ICU 

management, we have three points of critique that impede transferability, scalability, and 

generalizability of existing models:  

1) Causality: Costs or rewards of actions, i.e., the outcomes, are not causally linked to the policy, i.e., 

the treatment, in the econometric sense. Identifying assumptions, such as unconfoundedness or 

exogeneity, are not discussed and argued. Thus, it is unclear whether a change in costs is 

attributed to a policy (e.g., discharge patient 𝑥1 rather than patient 𝑥2 at point 𝑡) or to confounders. 

2) Fixed and normative inputs: Costs or rewards are calculated with fixed inputs, e.g., the average 

length of stay of patients in the ICU, or normatively set money values. This reduces variation 

which empirically exists and could in fact be observed in the costs or rewards of actions. Such 

simplifications increase in sample performance but limit generalizability and scalability. 
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3) Bias and uncertainty of transition probabilities: Markov decision processes require identifying 

probabilities for transitioning from one state to another. In dynamic and complex settings, such 

probabilities have to be identified for many parameters (Bertsekas, 2012). A single biased 

transition probability will bias the whole model. Additionally, the uncertainty of a point estimate 

of transition probabilities is usually not considered in Markov decision process models (Zhang et 

al., 2019). In other words, Markov decision process models implicitly assume point estimates 

from empiric data or expert estimates to be true probabilities. Indeed, uncertain transition 

probabilities have received attention in the literature for decades (e.g., Satia and Lave, 1973), and 

there are several approaches to address this issue (Delgado et al., 2011; Mastin and Jaillet, 2012; 

Zhang et al., 2019). 

Practical ICU decision making: A novel problem statement 

We propose a novel approach for addressing the limitations presented above. Firstly, we define a model 

based on practical ICU decision making which needs to resolve the bed capacity constraint 𝐵𝑎 ≥ 0 over 

the course of each day. Secondly, to help decision makers solve this constraint, we design policies that 

are generalizable, learnable with causal machine learning methods and re-learnable with the same 

algorithms and similar data from other hospitals, and thus scalable. Note also that state and action space 

models were shown to improve ICU decision making on a tactical level, e.g., when deciding whether 

and how much ICU capacity should be reserved to avoid more costly rejection and/ or early discharge 

(Bai et al., 2021). With our model, we will provide decision support for operational decision making in 

the ICU, i.e., for decisions that must be made routinely and daily. 

We use the flow of a patient through a hospital as the starting point of our problem statement (cf. Figure 

1, loosely based on Bai et al. (2021, 2018) and Litvak et al. (2008)). We are interested in reducing 

readmission flows (1), (2), and (3). Note, however, that at our partner hospital, we investigate a mixed 

ICU also accommodating intermediate care patients. Thus, we are specifically investigating readmission 

flows (1) and (3), i.e., the readmission of a patient to a higher level of care unit. 
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Kramer et al. (2013), for instance, report that the median readmission rate at the more than 100 ICUs 

they investigated was at 5.9% (interquartile range between 5.1% and 7.0%) and Hosein et al. (2014) 

found in a meta-analysis that readmission rates typically are between 4% and 6%. While a certain 

percentage of ICU readmissions appears to be nonpreventable (Al-Jaghbeer et al., 2016), preventable 

readmissions and especially those causally linked to discharges could be termed as rework and 

correction in Lean Management terms, adding to bottleneck congestion.  

Figure 1: Hospital patient flow 

 

Annotations: Patients can enter a hospital as scheduled, plannable cases (full arrows) through the outpatient clinic or as 

unscheduled/ emergency cases through the emergency department (dashed arrows). From the emergency department, patients 

are pushed onto the process area with free capacity and/ or where they need to receive care. Unscheduled transfers from other 

hospitals disrupt hospital system management further. Patients are pushed through the different process areas in a scheduled or 

oftentimes unscheduled manner. Demand planning and corresponding supply planning only regularly occur in the central 

operating room area, other process areas are commonly staffed corresponding to their full capacity (e.g., to serve all beds on a 

ward). We are particularly interested in how to minimize readmission flows (1) and (2), often causally linked to early, demand-

driven discharges of patients in the ICU. In such situations, patients with the smallest risk of being readmitted due to the early 

discharge should be discharged, and not necessarily those with the lowest predicted readmission risk (cf. Athey (2017), 

Feuerriegel et al. (2024), and Prosperi et al. (2020) for a discussion of this topic).  

The basis for our formal problem statement is the capacity constraint 𝐵𝑎 ≥ 0, denoting that the available 

ICU bed capacity 𝐵𝑎 must always be equal to or greater than zero operatable ICU beds throughout a 

given day. In a naïve state, 𝐵𝑎 is solely defined by the overall ICU bed capacity on a given day, and the 

sum of patients who will not be discharged and thus occupy the ICU ∑ 𝑥𝑖
𝐼
𝑖=1  with 𝑖 =  {1, 2, … , 𝐼} and 

𝑥 = 1 if 𝑥𝑖 resides in the ICU at least for one more day, 𝑥 = 0 otherwise:  

𝐵𝑎 = 𝐵 − ∑ 𝑥𝑖

𝐼

𝑖=1

 
(1) 

Consulting Figure 1, the first patient flow decision-makers in a surgical ICU, as at our partner hospital, 

must consider and incorporate into (1) is the sum of elective surgery patients with a planned post-
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surgery ICU stay ∑ 𝑎𝑒
𝐸
𝑒=1  on a given day, with 𝑒 =  {1, 2, … , 𝐸}, and 𝑎 = 1 if 𝑎𝑒 has a planned post-

surgery ICU stay, 𝑎 = 0 otherwise. In addition, planned discharges occur because a patient has reached 

ICU service completion (natural discharge), denoted by 𝑑𝑛 with 𝑛 =  {1, 2, … , 𝑁}, and 𝑑 = 1 if 𝑑𝑛 is 

naturally discharged during the day, 𝑑 = 0 otherwise. This expands the capacity constraint given in (1) 

into:  

𝐵𝑎 = 𝐵 − (∑ 𝑥𝑖

𝐼

𝑖=1

+ ∑ 𝑎𝑒

𝐸

𝑒=1

) + ∑ 𝑑𝑛

𝑁

𝑛=1

 
(2) 

If overall ICU capacity and natural discharges were sufficient to accommodate ∑ 𝑥𝑖
𝐼
𝑖=1  and new arrivals 

∑ 𝑎𝑒
𝐸
𝑒=1 , and if we stayed in this simplified decision framework, we could be satisfied with the definition 

of available ICU bed capacity as outlined in (2).  

However, even if there were no unscheduled, external emergency patient arrivals, there are three 

additional considerations to make (cf. Figure 1). Given the capacity constraint 𝐵𝑎 ≥ 0, there will be days 

where ∑ 𝑎𝑒
𝐸
𝑒=1  will require discharges in addition to ∑ 𝑑𝑛

𝑁
𝑛=1 , which we define as planned early, demand-

driven discharges denoted by 𝑑𝑝
𝑒𝑎𝑟𝑙𝑦 with 𝑝 =  {1, 2, … , 𝑃} and 𝑑 = 1 if 𝑑𝑝

𝑒𝑎𝑟𝑙𝑦 is planned to be early 

discharged, 𝑑 = 0 otherwise. Secondly, another lever to satisfy 𝐵𝑎 ≥ 0 is to reject patients, i.e. to cancel 

or postpone elective surgeries with a planned post-surgery ICU stay, denoted by 𝑎𝑐
𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒  with 𝑐 =

 {1, 2, … , 𝐶}, and 𝑎 = 1 if 𝑎𝑐
𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒  is cancelled, 𝑎 = 0 otherwise. Thirdly, the capacity constraint must also 

hold when considering readmissions from downstream units, denoted by 𝑎𝑟  with 𝑟 =  {1, 2, … , 𝑅}, and 

𝑎 = 1 if 𝑎𝑟  is readmitted, 𝑎 = 0 otherwise. These three considerations expand 𝐵𝑎 to:  

𝐵𝑎 = 𝐵 − (∑ 𝑥𝑖

𝐼

𝑖=1

+ ∑ 𝑎𝑒

𝐸

𝑒=1

− ∑ 𝑎𝑐
𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒

𝐶

𝑐=1

+ ∑ 𝑎𝑟

𝑅

𝑟=1

) + (∑ 𝑑𝑛

𝑁

𝑛=1

+ ∑ 𝑑𝑝
𝑒𝑎𝑟𝑙𝑦

𝑃

𝑝=1

) 
(3) 

In a setting without unscheduled arrivals, e.g., in an orthopedic hospital exclusively treating elective 

surgery patients, (3) would suffice to describe 𝐵𝑎 and the discharge decision processes to satisfy 𝐵𝑎 ≥ 0. 

Note that there still is uncertainty in service time, i.e., the number of ICU inpatient days for each 𝑥𝑖, and 

thus prediction of ∑ 𝑥𝑖
𝐼
𝑖=1  and ∑ 𝑑𝑛

𝑁
𝑛=1  are prone to uncertainty. Further note that at the start of a day 

(e.g., between 07:00 a.m. to 08:00 a.m. at our partner hospital), ICU decision-makers might initiate their 
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decision process at (2), and if they foresee that the capacity constraint will not be satisfied at any point 

in time throughout the day, they will try to satisfy the capacity constraint by balancing ∑ 𝑎𝑐
𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐶

𝑐=1 , 

and ∑ 𝑑𝑝
𝑒𝑎𝑟𝑙𝑦𝑃

𝑝=1 . While we appreciate that past studies must make this assumption for their models, 

cancellations and planned demand-driven discharges do not happen simultaneously to patient arrival. 

ICU decision-makers rather anticipate the number of planned ICU admissions according to the 

operating room schedule at the start of a day and compare these with the available ICU bed capacity 

after natural discharges (cf. (2)). 

Considering unscheduled or emergency/ urgent patients coming from upstream units, i.e., directly from 

the emergency department or, by a roundabout route, from the central operating room area, or as 

transfer-ins from other hospitals, the decision process to satisfy 𝐵𝑎 ≥ 0 becomes more complex. Note 

that in practice, experienced ICU decision-makers might anticipate unscheduled ICU admissions and 

thus reserve some ICU capacity by discharging more patients than absolutely needed to satisfy 𝐵𝑎 ≥ 0 

as defined in (3). Indeed, past studies such as Bai et al. (2021) quantitatively derive exactly how much 

capacity should be reserved balancing the costs of patient rejection, and demand-driven discharge. In 

fact, one could consider that the capacity constraint actually is 𝐵𝑎 ≥ ∑ 𝑎𝑢
𝑎𝑛𝑡𝑈

𝑢=1 , that available ICU 

capacities must be at least the total number of unscheduled arrivals/ admissions the experienced ICU 

decision-maker anticipates on a given day (𝑢 =  {1, 2, … , 𝑈}, and 𝑎 = 1 if 𝑎𝑢
𝑎𝑛𝑡 is anticipated as 

unscheduled arrival, 𝑎 = 0 otherwise). As it is uncertain how many unscheduled patients will arrive 

exactly, we additionally define 𝑎𝑣
𝑎𝑑𝑑  as the unforeseen unscheduled arrivals in addition to ∑ 𝑎𝑢

𝑎𝑛𝑡𝑈
𝑢=1 , 

with 𝑣 =  {1, 2, … , 𝑉} and 𝑎 = 1 if the arrival of 𝑎𝑣
𝑎𝑑𝑑  is unscheduled and is not anticipated, 𝑎 = 0 

otherwise. Note that decision makers might increase the sum of planned early discharges ∑ 𝑑𝑝
𝑒𝑎𝑟𝑙𝑦𝑃

𝑝=1  

and/ or the sum of cancellations of elective surgeries ∑ 𝑎𝑐
𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐶

𝑐=1  to offset ∑ 𝑎𝑢
𝑎𝑛𝑡𝑈

𝑢=1 , yet to manage any 



14 

 

𝑎𝑣
𝑎𝑑𝑑 , the only lever is to demand-driven discharge a patient in an unplanned manner, denoted by 𝑑𝑞

𝑒𝑎𝑟𝑙𝑦 

with 𝑞 =  {1, 2, … , 𝑄} and 𝑑 = 1 if 𝑑𝑞
𝑒𝑎𝑟𝑙𝑦  is early discharged in an unplanned way, 𝑑 = 0 otherwise. 1 

To satisfy 𝐵𝑎 ≥ 0, decision makers then consider that  

𝐵𝑎 = 𝐵 − (∑ 𝑥𝑖

𝐼

𝑖=1

+ ∑ 𝑎𝑒

𝐸

𝑒=1

− ∑ 𝑎𝑐
𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒

𝐶

𝑐=1

+ ∑ 𝑎𝑟

𝑅

𝑟=1

+ ∑ 𝑎𝑢
𝑎𝑛𝑡

𝑈

𝑢=1

) + (∑ 𝑑𝑛

𝑁

𝑛=1

+ ∑ 𝑑𝑝
𝑒𝑎𝑟𝑙𝑦

𝑃

𝑝=1

)

+ (∑ 𝑑𝑞
𝑒𝑎𝑟𝑙𝑦

𝑄

𝑞=1

− ∑ 𝑎𝑣
𝑎𝑑𝑑

𝑉

𝑣=1

) 

(4) 

Note that planned discharges, both natural and demand-driven, happen at a later point in time than the 

discharge decision. At our partner hospital, ∑ 𝑑𝑛
𝑁
𝑛=1  and ∑ 𝑑𝑝

𝑒𝑎𝑟𝑙𝑦𝑃
𝑝=1  are decided in the early morning of 

a (week-) day, while discharges occur in the late morning to early afternoon, in close alignment with the 

downstream care units admitting the patient(s). Should a patient have worsened between initial 

discharge decision and actual discharge, decision-makers might re-think and change their initial 

decision. 

Empirical evidence for formally defined decision constraint 

In our data, there is empirical evidence for the dynamics of the decision constraint as formulated in 

equation (4). Figure 2 shows the typical arrival pattern at our partner hospital, depicting the share of 

patients arriving per hour of the day.  

 

1 Additionally, one could argue that if 𝑎𝑣
𝑎𝑑𝑑 arrived early in the day before surgery has started for the last 𝑎𝑒, decision-makers 

might also have the option to cancel one additional 𝑎𝑐
𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒. For simplicity, we do not consider this option.  
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Figure 2: Arrival pattern 

 

Annotations: The analysis includes all ICU stays of patients with a positive or waived general consent admitted at our partner 

hospital between January 01, 2016 and December 31, 2023, no exclusion criteria applied (14,121 stays and 12,932 unique cases; cf. 

Figure 4 below).  

In sum, roughly 72% of all patients arrive between 10:00 a.m. and 09:00 p.m. Still, the volume of patient 

admissions (28% of all admissions) between 09:00 p.m. and 10:00 a.m. is not negligible. The share of 

discharges in the same time window is quite small (see Figure 3). This is evidence that ICU decision 

makers incorporate planned admissions after surgery ∑ 𝑎𝑒
𝐸
𝑒=1  into their decision making process and 

that they do anticipate unscheduled admissions ∑ 𝑎𝑢
𝑎𝑛𝑡𝑈

𝑢=1  and possibly also readmissions ∑ 𝑎𝑟
𝑅
𝑟=1 .  

Discharges typically occur between 09:00 a.m. and 04:00 p.m. (roughly 95% of all discharges for Panel 

A, 97% for Panel B), and most discharges happen in an even closer time window between 10:00 a.m. 

and 02:00 p.m. (roughly 86% for Panel A and 89% for Panel B). This is evidence for the planned discharge 

decisions ∑ 𝑑𝑛
𝑁
𝑛=1  and ∑ 𝑑𝑝

𝑒𝑎𝑟𝑙𝑦𝑃
𝑝=1  happening early in the morning with corresponding discharges a few 

hours later.  
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Figure 3: Discharge pattern 

 

 

Annotations: Panel A includes all ICU stays of patients with a positive or waived general consent admitted at our partner hospital 

between January 01, 2016 and December 31, 2023, no exclusion criteria applied (14,121 stays and 12,932 unique cases; cf. Figure 4 

below). In Panel B, we exclude patients who died during their ICU stay (589 stays, 518 unique cases), as the timing of these 

patients’ “discharge” does not occur according to the decision process formalized in equation (4).  
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We also see that discharges in “off-hours” between 02:00 p.m. and 10:00 a.m. (14% (11%) of all discharges 

for Panel A (B)) and especially between 04:00 p.m. and 09:00 a.m. are rather rare (5.4% (2.9%) of all 

discharges for Panel A (B)). Especially for Panel B, where we exclude patients who died during their 

ICU stay, we may assume that a considerable share of these off-hour discharges are unplanned demand-

driven discharges ∑ 𝑑𝑞
𝑒𝑎𝑟𝑙𝑦𝑄

𝑞=1  triggered by unforeseen unscheduled admissions ∑ 𝑎𝑣
𝑎𝑑𝑑𝑉

𝑣=1 . Figure 3 

clearly shows that these situations occur comparatively rarely. At the same time, a considerable share 

of admissions does occur in these off-hours, namely roughly 57% between 04:00 p.m. and 09:00 a.m. 

This is evidence that – at least in our empirical setting – demand-driven discharges rarely occur as 

defined in conventional operations research studies. 

Summary 

In summary, we have ascertained three different types of points in time where ICU discharge decisions 

occur or are changed:  

1) Planned discharges of any kind are made in the morning in the first hours of a physician’s shift, 

typically between 07:00 a.m. and 08:00 a.m. at our partner hospital 

2) A discharge decision is changed should a patient’s health status change considerably between the 

time of the discharge decision and the planned discharge time 

3) Unplanned discharge decisions are made at any point during the day (and night) if 𝑎𝑣
𝑎𝑑𝑑  occurs 

In equation (4), we formulate the decision problem for satisfying the capacity constraint 𝐵𝑎 ≥ 0 that 

decision makers face at each of these three types of points in time. Our model supplies decision-makers 

at each of these types of points in time with the effect of a discharge on a patient’s readmission risk. 

Note that while our model can inform any kind of demand-driven discharge, it also provides decision 

support for natural discharges. Should the result of our model reveal that the change in readmission 

risk is too large due to the discharge, the “natural” discharge could be postponed. 

3 Causal Effects and Optimal Policy Learning 

We start with a short description of our dataset and descriptive analyses. Then, we outline a three-step 

approach to enable optimal ICU discharge decision making: (1) We present how to estimate the ATE, 
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CATEs, and IATEs of an ICU discharge at a point in time 𝑡 on the ICU readmission risk in an 

observational study setting with double robust learners, (2) we outline how we plan to develop decision 

policies based on patients’ IATEs, and (3) we present how we plan to apply these policies to our empiric 

data to gauge how many ICU bed capacities could have been saved with optimal decisions. In the first 

section, we also discuss identifying assumptions for causal inference in the context of our study. 

Overview of Dataset and Descriptive Analyses 

Dataset 

Our dataset contains clinical and basic data of all ICU stays without a documented negative general 

consent admitted to the Department of Surgical Intensive Care Medicine between January 01, 2016, and 

December 31, 2023. Figure 4 shows the inclusion and exclusion criteria and corresponding samples for 

the different analyses we conducted. 

Figure 4: Inclusion and exclusion criteria and corresponding samples 

 

Annotations: Reasons for excluding cases that are not candidates for readmission are discharge to another ICU, to home, to a 

rehabilitation clinic or nursing home, or to a different hospital (cf. Kramer et al. (2013)). 

Our data is recorded at ICU stay level. Each ICU stay has a unique identifier. One case, given by a 

unique case number, has at least one ICU stay. Theoretically, one patient could be admitted to a hospital 
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several times in a year. In such cases, a new unique case number is defined for each hospital admission. 

A case number for which two or more ICU stays are recorded thus indicates that a patient was 

readmitted to the ICU within the same hospital stay.  

Sample A was used for analyses regarding arrival and discharge patterns (e.g., Figure 2 above). Sample 

B includes only those cases and stays that are useable for causal inference. To this end, we excluded 

patients who died in the ICU as these are recorded as discharges yet are not connected to a deliberate 

discharge decision, excluded cases that could not be readmitted to the ICU as they were discharged to 

a different ICU, to home, to a rehabilitation clinic or nursing home, or to a different hospital, and we 

excluded cases for whom the discharge reason was missing. 

Overall, we can extract and engineer more than 4,600 features from our dataset (see Table 1). Most of 

these features are related to medication and drugs (more than 4,000 features). We include one feature 

per substance, dosage and volume unit and values represent the given volume (either 0 or a continuous 

number) within the last 24 hours before discharge (intervention group) or “simulated” discharge 

(control group, see Figure 6 below). Other major feature categories are laboratory diagnostic values 

(more than 200 features), vital signs (20 features), clinical (risk) scores (close to 40 features) and basic 

data (age, gender, weight, height, BMI). 

Table 1: Overview of used features 

Feature 

category 

Number of 

features 

Numeric type Considered 

measurements 

Description and examples 

Medication 4,119 Continuous Last 24 hours Hundreds of different substances with at 

least one, oftentimes several dosages and 

volume units, e.g., Noradrenalin 

peripheral in microgram, Noradrenalin in 

microgram 

Laboratory 

tests 

208 Continuous Last 

measurement 

208 different laboratory values, e.g., 

Kalium, Creatinine, Cholesterol, HbA1c 

Clinical 

scores 

40 Continuous Last 2 

measurements 

10 different scores, e.g., SAPS II, SAPS 3, 

NEMS, GCS, etc. 

Diagnoses 114 Dummy Time invariant 57 indication areas for first and follow-up 

diagnosis, e.g., "diseases of the liver and 

biliary tract" 

Infusions 35 Continuous Last 24 hours 22 different infusions, partially with more 

than one dosage, e.g., Glucose 5%, 10%, 

20%, 40%, 50%; all in ml 
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Feature 

category 

Number of 

features 

Numeric type Considered 

measurements 

Description and examples 

Ventilation 

mode 

30 Dummy Last 24 hours 30 different types of (non-) invasive 

ventilation 

Therapies 23 Dummy Time invariant 23 intervention/ surgery groups, e.g., 

orthopedic interventions 

Infections 23 Dummy Time invariant For instance, Hepatitis A, B, and/ or C or 

HIV/ AIDS 

Vital signs 20 Continuous Last 4 hours Mean, SD, and thresholds for blood 

pressure, body temperature, heart 

frequency, oxygen saturation 

Blood gas 

analysis 

20 Continuous Last 24 hours Mean and SD of ten different values 

Basic data 5 Continuous 

(4), dummy (1) 

Time invariant Gender, age, BMI, height, weight 

Blood 

products 

3 Continuous Last 24 hours Fresh frozen plasma, platelet concentrate, 

erythrocyte concentrate; all in ml 

Total 4,640    

Annotations: BMI = Body-Mass-Index; GCS = Glasgow Comma Scale; HbA1c = Hemoglobin A1c value; NEMS = Nine equivalents 

of nursing manpower use score; mg = milligram; ml = millimeters; SAPS = Simplified Acute Physiology Score; SD = Standard 

Deviation 

Descriptive analyses 

Table 2 shows descriptive results for patients’ basic data. 

Table 2: Descriptive results for patients’ basic data 

Feature Number of 

ICU stays 

Number of 

unique cases 

Mean (SD) Median (25th and 

75th percentile) 

Minimum, 

Maximum 

Age 12,950 11,873 63.5 (15.8) 66 (55; 75) 18; 100 

BMI 9,602 - 26.4 (5.6) 25.5 (22.7; 29.2) 11.7; 80.2 

Height 9,602 8,976 169.9 (9.2) 170 (163; 176) 130; 207 

Weight 9,602 - 76.3 (18.3) 75 (64; 86) 27; 275 

 Number of unique cases Share 

Male patients 11,873 61.1 % 

Annotations: BMI = Body-Mass-Index; SD = Standard Deviation. Height is in centimeters, and weight in kilograms. For BMI, 

height, and weight, data was missing or 0 for 3,333 ICU stays and for 15 additional ICU stays, values were below or above 

meaningful thresholds (130 and 210 centimeters for height, 25 and 400 kilogram for weight) and thus omitted from analysis. In 

the causal forests, we applied special coding for these ICU stays (BMI, height, and weight all equal to 0). For BMI, and weight, all 

ICU stays were considered when calculating descriptive statistics as weight could change between the first and subsequent stays. 

All numbers with decimals are rounded to the shown number of decimals, shown integers are not rounded. 

Patients in our sample are on average 64 years old, yet the age variation is considerable as shown by the 

standard deviation and other descriptive metrics. On average, patients in our sample are slightly 

overweight, roughly 170 centimeters high and weigh 76 kilograms. Most patients are male. 
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Figure 5 shows the distribution of number of arrivals and discharges per day. 

Figure 5: Distribution of number of arrivals (Panel A) and discharges (Panel B) per day 

 

Annotations: 

No admissions occur only for roughly 2% of all days during the observation period. The same is true 

for discharges. On typical days, ICU staff evidently is considerably busy with admission and discharge 

processes as two to ten admissions (discharges) must be managed for 88.9% (90.8%) of all days. Eleven 

or more admissions (discharges) are completed for 1.8% (1.5%) of all days.  

Average Treatment Effect Estimation 

Potential outcomes framework 

To estimate causal effects, we rely on the potential outcomes framework (Rubin, 1974). In an i.i.d. 

sample, there is a set of patients 𝑖 = 1, 2, … , 𝑛, each described by a feature vector 𝑋𝑖  𝜖 ℝ, a treatment 

assignment 𝑊𝑖 which, in a binary setting, equals 1 if 𝑖 was treated and 0 otherwise, and an outcome 

𝑌𝑖  𝜖 ℝ. The causal effect of a treatment for patient 𝑖 is given by 𝑌𝑖(1) − 𝑌𝑖(0). Accordingly, the average 

treatment effect (ATE) can be expressed as:  

𝜏 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] (5) 

However, for each 𝑖 only one state 𝑌𝑖 = 𝑌𝑖(𝑊𝑖) can be observed. To make progress in observational 

studies, unconfoundedness (also referred to as selection on observables or conditional independence 

assumption (CIA) (Lechner, 2001)) is assumed and must be fulfilled (Rosenbaum and Rubin, 1983):  

[{𝑌𝑖(0), 𝑌𝑖(1)}  ⊥  𝑊𝑖] | 𝑋𝑖 (6) 
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With unconfoundedness, it is assumed that treatment 𝑊𝑖 is quasi random, given that we control for 𝑋𝑖. 

In other words, the potential outcome 𝑌𝑖 is independent of the assignment of the treatment 𝑊𝑖, 

conditional on 𝑋𝑖.  

With unconfoundedness, the ATE can be expressed as:  

𝜏 = 𝐸[𝜇1
(𝑋𝑖) − 𝜇0

(𝑋𝑖)] (7) 

where  

𝜇𝑤(𝑥) = 𝐸[𝑌𝑖  | 𝑋𝑖 = 𝑥, 𝑊𝑖 = 𝑤] (8) 

To estimate �̂�, we can learn �̂�1(𝑥) and �̂�0(𝑥) from our data and calculate: 

�̂� =
1

𝑛
∑ (�̂�1

(𝑋𝑖) − �̂�0
(𝑋𝑖))

𝑛

𝑖=1

 
(9) 

To estimate �̂�, one could employ a common parametric model such as Ordinary Least Squares (OLS) 

regression. OLS regression is accurate and consistent as well as unbiased if the underlying linear model 

is well specified and if its assumptions hold. If the conditional response functions 𝜇𝑤(𝑥) are of a non-

linear form or if the model’s functional form suffers from misspecification, however, parameter 

estimates will inhibit bias (Wooldridge, 2010).  

Non-parametric estimators and (augmented) inverse propensity weighting 

Causal forest is a non-parametric machine learning method (Athey et al., 2019; Athey and Imbens, 2016, 

2019, 2017; Chernozhukov et al., 2018; Wager and Athey, 2018). Specifically, a random forest (Breiman, 

2001) is used to predict �̂�𝑤(𝑥), and thus ultimately �̂�. Random forests converge slowly, however, and 

thus performance with finite samples might still inhibit some bias. Thus, propensity scores, i.e., the 

probability of receiving treatment based on 𝑋𝑖, are used to weigh 𝜇𝑤(𝑥) (inverse-propensity weighting, 

IPW).  

The propensity score 𝑒(𝑥) is defined as (Rosenbaum and Rubin, 1983): 

𝑒(𝑥) = 𝑝(𝑊𝑖 = 1|𝑋𝑖 = 𝑥) (10) 

Under unconfoundedness, the ATE from (5) can then be restated as:  

𝜏 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝐸 [
𝑊𝑖𝑌𝑖

𝑒(𝑋𝑖)
−

(1 − 𝑊𝑖)𝑌𝑖

1 − 𝑒(𝑋𝑖)
] 

(11) 
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While both outcomes 𝑌𝑖(1) and 𝑌𝑖(0) can never be observed for the same unit, the propensity score can 

and so can (11) be calculated for any i. The unbiased oracle IPW estimator for the ATE is then given by:  

�̂�𝐼𝑃𝑊
∗ =

1

𝑛
∑ (

𝑊𝑖𝑌𝑖

𝑒(𝑋𝑖)
−

(1 − 𝑊𝑖)𝑌𝑖

1 − 𝑒(𝑋𝑖)
)

𝑛

𝑖=1

 
(12) 

The different author groups listed above have shown (and/ or provided solutions) that the rate of 

convergence when using machine learning methods, e.g., random forest, to predict ê(𝑋𝑖), yielding �̂�𝐼𝑃𝑊, 

will not be 1/√𝑛 and thus such estimates will still inhibit some bias. A solution for this is double-

robustness. With double-robustness, the estimated ATE �̂� as formulated in (9) is corrected by the 

inverse-propensity weighted difference of the observed outcome 𝑌𝑖 and the estimated outcome �̂�𝑤(𝑥), 

also referred to as augmented inverse probability weighting (AIPW) (Chernozhukov et al., 2018; Robins 

et al., 1994): 

�̂�𝐴𝐼𝑃𝑊 =
1

𝑛
∑ (�̂�1(𝑋𝑖) − �̂�0(𝑋𝑖) +

𝑊𝑖

�̂�(𝑋𝑖)
(𝑌𝑖 − �̂�1(𝑋𝑖)) −

(1 − 𝑊
𝑖
)

1 − �̂�(𝑋𝑖)
(𝑌𝑖 − �̂�0(𝑋𝑖)))

𝑛

𝑖=1

 
(13) 

�̂�𝐴𝐼𝑃𝑊 =
1

𝑛
∑ Γ̂𝑖

𝑛

𝑖=1

 
(14) 

with Γ̂𝑖 denoting each patient’s individual double-robust score. 

In causal forest applications, such as GRF by Wager and Athey (2018) and Athey et al. (2019), �̂�𝑤(𝑥) and 

�̂�(𝑋𝑖) are estimated from data using random forest. For our research purpose, a key advantage of this 

method is that it has proven efficient in high-dimensional settings, rendering pre-selection of 

confounders unnecessary (Wager and Athey, 2018). This is especially important for our research 

endeavor as our dataset includes thousands of detailed features per ICU stay (cf. Table 1 above). 

Discarding parts of these data based on expert or domain knowledge would inhibit the risk that the 

“wrong” features are excluded from analysis, while a data-driven feature selection decreases 

computational efficiency and increases complexity. 

Heterogeneous treatment effects 

To analyze treatment effect heterogeneity, commonly, one could try to find strata that reduce variation 

in ATE estimation, i.e., that help to better predict a potential outcome for a sub-group (Imbens and 

Rubin, 2015). Stratification has limitations, however. In our context, the two most important limitations 
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are (1) that we could not possibly know which of the thousands of features in our dataset might be the 

best or even among the best strata, (2) that stratification’s data use is rather inefficient, especially if one 

needs to consider interaction terms, and – most importantly for our study – (3) that two discharge 

candidates might belong to the same stratified group, rendering a decision whom to discharge of the 

two, based on the discharge’s effect on readmission, impossible. 

With their causal forests, Wager and Athey (2018) and Lechner and Mareckova (2024) have provided 

causal machine learning methods not only for ATE estimation with observational data under the 

selection on observables assumptions, but also a flexible and efficient approach to estimate IATEs. 

IATEs are formally defined by:  

𝜏(𝑥) = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)| 𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧] (15) 

where 𝑋𝑖 describes the confounders, and 𝑍𝑖 comprises the features defining the patients or group of 

patients an average effect is estimated for. We will estimate the IATEs with the same strategy and 

approach as the ATE described above. 

Treatment definition 

Each patient admitted to the ICU must be discharged at some point. Thus, a patient’s treatment status 

at 𝑡 might be different than at 𝑡 + 1, 𝑡 + 2, etc. To stay in a binary treatment framework, we follow a 

four-step approach.  

Firstly, we define exclusion criteria which indicate that a patient cannot be discharged for medical 

reasons. These criteria are invasive ventilation and medication with a catecholamine as substance (e.g., 

noradrenalin) (Heidegger et al., 2005). For each patient in our dataset, we identify the point in time 

when the last invasive ventilation has stopped and the last dosage of catecholamines has been given. 

We add four hours to these identified points in time to approximate the typical time these patients could 

(theoretically) be discharged. If ventilation has stopped after the last dosage of catecholamines, the 

ventilation stop plus four hours is marked as the soonest possible discharge and vice versa if the last 

dosage of catecholamines was later than the ventilation stop.  
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Secondly, we count how many times a patient passed the regular time when senior physicians decide 

for a discharge, approximated by 07:00 a.m., after the possible discharge point in time, denoted by 𝑛. In 

our dataset, 𝑛 = 1 for 54% of discharges, 𝑛 = 2 for 20%, and approximately 10% of discharges occur 

after passing the regular discharge decision time more than five times (cf. Figure 6).  

Figure 6: Share of discharges per 𝒏 

 

Annotations: 𝑛 is defined as the number of times a patient passes the regular discharge decision time after becoming a potential 

candidate for discharge. The plot is based on Sample B (12,950 ICU stays and 11,873 unique cases), limited to all observations with 

𝑛 ≤ 20 (𝑛 > 20 is true for 106 ICU stays in our dataset).  

Thirdly, we define a random theoretic discharge point in time 𝑑 of patient 𝑖 with 𝑑𝑖 =

{𝑚𝑎𝑥(𝑛𝑖 − 1,0), 𝑛𝑖  } with equal probability for 𝑖 to be discharged at 𝑑𝑖 = 𝑚𝑎𝑥(𝑛𝑖 − 1,0) and 𝑑𝑖 = 𝑛𝑖. 

Lastly, we assign a positive treatment status 𝑊𝑖 = 1 to all 𝑖 for which 𝑑𝑖 = 𝑛𝑖 and a negative treatment 

status 𝑊𝑖 = 0 to all 𝑖 for which 𝑑𝑖 = 𝑚𝑎𝑥(𝑛𝑖 − 1,0). 
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For our current results, we only run the last two steps once per ICU stay. For our final results, we plan 

to run these two steps multiple times for separate (I)ATE estimations. Results from each run will be 

averaged in the end to receive the final results. 

Outcome definition 

There is an ongoing discussion in the medical literature regarding a meaningful measurement and use 

of ICU readmission rates (Hosein et al., 2014; Kramer et al., 2013; Woldhek et al., 2017). In our main 

model, we use readmission regardless of the time between discharge and readmission as outcome. We 

plan to perform one to two sensitivity analyses, using more narrowly defined readmission rates such as 

readmission within 48 hours and 96 hours (two to four days).  

In our dataset, we observe a raw readmission rate of roughly 9.0% while readmission rates with defined 

times between discharge and readmission are between 2.8% and 6.1% (see Figure 7). 

Figure 7: Readmission rates according to time between discharge and readmission 

 

Annotations: The plot is based on Sample B (12,950 ICU stays and 11,873 unique cases). 
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Identifying assumptions 

Identifying assumptions for causal inference are (Angrist et al., 1996; Imbens, 2000; Lechner, 2001): (1) 

Unconfoundedness, (2) Common Support (CS) or overlap, (3) Stable-Unit-Treatment-Value 

Assumption (SUTVA), and (4) exogeneity. 

With unconfoundedness, we assume that we observe all variables that might influence both the 

treatment selection (i.e., to be or not to be discharged at point 𝑡) and the potential outcome of a discharge. 

Discharge decisions are made by senior physicians (Nates et al., 2016). We observe all data and decision 

variables that are available to these physicians when they make discharge decisions. This includes most 

variables that were judged by most Swiss ICUs as relevant for ICU discharge decisions (Heidegger et 

al., 2005). Thus, we argue for unconfoundedness in our study setting. There are three lines of counter-

argumentation, however. 

The first argument is that situations may occur in which a discharge decision (i.e., our treatment 

assignment) and thus discharge are determinate. Unconfoundedness would be violated if such a 

treatment determination was dependent on patient characteristics (𝑋𝑖). (i) The decision must be positive 

every time when there is only one patient candidate for discharge at 𝑡. We may still assume 

unconfoundedness, as the number of potential discharge candidates is exogenous, i.e., we can view 

treatment assignment in these situations still as random. (ii) A discharge decision must be negative if 

there is a contraindication, e.g., a patient is intubated or a patient receives a certain drug or substance 

(e.g., catecholamines) (Heidegger et al., 2005). This does not violate unconfoundedness in our context, 

however, as we always observe the discharge at a point in time when it is not contraindicated (cf. 

treatment definition).  

The second argument is that in practice, physicians actually consider more variables than “only” the 

thousands of clinical parameters available to them (and to us): Physicians might additionally collect 

“soft” data, e.g., during daily patient visiting rounds by visual control of the patient and discussions 

with nurses (Nates et al., 2016; Ofoma et al., 2018). Data obtained this way might include degree of 

paleness, sweating, communicated pain, mental confusion and disorientation, or therapy compliance. 
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Soft data is not available to us (or readable by any machine). Unconfoundedness would be violated if 

these soft data were not correlated with the thousands of clinical parameters available to us. This is 

rather unlikely. 

The third argument is that a discharge, and possibly also a later readmission, are influenced by the 

available downstream skill mix and/ or capacity. Physicians might decide to discharge a certain patient 

on a given day if they know that there are experienced, well-qualified physicians and nurses available 

in downstream units who can manage the patient, even if this patient is sicker given clinical parameters 

than another patient who was not discharged another day when downstream skill mix and capacity 

were (allegedly) inadequate. In such situations, physicians might decide against a discharge as they 

expect a worsening of the patient’s health status downstream, rendering an ICU readmission more 

likely. 

To address such doubts that might still remain after controlling for several thousand patient 

characteristics, we could implement an instrumental variable (IV) approach. An IV approach is available 

for binary instruments in GRF (Athey et al., 2019) and was developed by Wang et al. (2021) for 

continuous IVs in causal forests. As IV, we have several options: (1) the daily number of admitted 

patients as a degree of ICU busyness both as continuous variable (only useable if we can incorporate a 

continuous IV in GRF) and as dummy (1=busy, 0=not busy; threshold to be determined, e.g., one third 

of overall ICU capacity), as this has shown to increase the number of ICU discharges (Nates et al., 2016), 

(2) the number of potential discharge candidates throughout ICU day shifts (e.g., 06:00 a.m. to 08:00 

p.m.), or (3) proxies for downstream unit capacity (and skill-mix), e.g., weekday vs. weekend, or days 

until weekend. Regarding (3), actual utilization data would be preferable, yet such data is not collected 

on a daily level in a digital manner or highly unreliable if collected manually. Note that all three IV 

options are exogenous of treatment assignment. 

For future studies, collecting data on daily downstream skill mix and capacity might be perceivable. 

This comes with considerable effort, however, as such data is not available in a structured manner for 

all IMCUs and NCUs of a hospital. While staff schedules could be available (often only available in 
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analog form or in e-mails, manually administered Microsoft Excel tables, or similar), these alone will 

not explain the skill mix perceived by the ICU decision maker. To accurately account for this perceived 

skill mix, we would have to label all physician and nurse staff members of all downstream units 

according to the experience and qualification of all ICU decision makers. This might result in different 

labels for individual downstream physicians and/ or nurses depending on what ICU decision maker is 

asked to label. Indeed, if experience and skill level are perceived differently by physicians, this might 

in turn supply an argument that unconfoundedness does hold, as downstream skill mix would then not 

systematically influence treatment assignment and outcome in the same (perceived) way. Lastly, 

another argument that unconfoundedness still holds is that it is unlikely that a physician will be able to 

judge the experience and skill level of all treating nurses and physicians active in downstream units, or 

even that an ICU physician always has full transparency of downstream unit staff schedules. Granted, 

if a discharge decision for a particularly complex patient were made, a physician could take the time to 

get transparency over staff schedules and also experience and skill level. A systematic influence still is 

unlikely, however. 

Another possibility could be to measure experience by the number of years a medical professional has 

been actively working, and qualification by academic degrees, further education certificates, and 

scientific publications. This approach would also pose a major challenge in terms of required effort, and 

at least some of these data will not be available in a structured form. Lastly, measuring experience and 

skill level in this way also has limitations. For instance, one might argue that experience is in fact built 

by being exposed to adverse events and difficult situations. This should correlate with the number of 

years a professional has been working but this must not necessarily be true. 

In summary, we believe we can viably argue that unconfoundedness holds (1) as we control for all 

confounders also available to senior physicians making discharge decisions, (2) patient characteristics 

do not systematically influence treatment assignment and outcome and if they do, serve as exclusion 

criteria (e.g., mechanical ventilation), and (3) while downstream capacity and skill-mix might influence 

ICU decision makers, it is not perceivable that they have transparency over both for all downstream 
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units for every discharge decision, or even the majority of decisions, thus impeding systematic 

influence. Still, we to acknowledge any concerns possibly left and the observational setting of our study, 

we will implement an IV approach as sensitivity analysis in our final manuscript. 

We may assume CS, if we can show that propensity scores “overlap”, i.e., that each patient could be 

observed with or without a discharge at point 𝑡: 

0 < 𝑝(𝑊𝑖 = 1|𝑋𝑖 = 𝑥) < 1  ∀ 𝑥 ∈ 𝑋 (16) 

In Figure 8, we plot the distribution of propensity scores for our sample (cf. Wager and Athey, 2018). 

Figure 8: Common support and overlap analysis of propensity scores 

 

Annotations: Propensities were estimated with GRF, and for Sample B (12,950 ICU stays and 11,873 unique cases). 

The plot shows that for our sample and treatment definition, there is a medium to strong selectivity into 

and out of treatment, respectively. Lechner and Mareckova (2024) show that their Modified Causal 

Forest (MCF), delivers more robust estimates than GRF in cases of (medium and) strong selectivity, 

especially when estimating IATEs. Thus, we estimate ATEs with both algorithms, one example of 

CATEs for exemplification with GRF, and IATEs with MCF. For our final results, we will estimate all 

results with both MCF and GRF.  
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The SUTVA requires that spillover effects between discharged patients are absent. More concretely, the 

discharge of one patient can only affect the outcome of the same patient and not the outcome of another 

patient. This is given as discharging one patient does not directly influence the readmission risk of 

another patient. One might argue that once the capacity constraint 𝐵𝑎 ≥ 0 holds, no additional patient(s) 

is discharged any more, even if this were medically possible, and thus the treatment state of the 

discharged patient(s) to satisfy 𝐵𝑎 ≥ 0 might influence the treatment state of some of the patients 

remaining in the ICU. Still, the treatment state of the discharged patient(s) will not directly influence 

the outcome of the patient(s) remaining in the ICU.  

Exogeneity stipulates that patient characteristics used as confounders (𝑋𝑖) are not influenced by the 

discharge at point in time 𝑡 (the treatment). This assumption holds as we observe 𝑋𝑖 before the discharge 

occurs. 

In summary, we should be able to fulfill all four identifying assumptions or at least be able to implement 

an empirical strategy and methods to handle potential violations, ensuring robust ATE, CATE, and 

IATE estimations. 

First results 

In Table 3, we present the ATE estimation, employing both MCF and GRF.  

Table 3: Estimated Average Treatment Effects 

Algorithm Estimate Standard 

Error 

Absolute change of readmission 

risk (in %-pts.) 

Relative change of readmission 

risk (in %) 

MCF 0.00767 0.0083903 0.77 8% 

GRF -0.00179 0.0047603 -0.18 -2% 

Annotations: Estimates were made with Sample B (12,950 ICU stays and 11,873 unique cases), >4,600 included features (cf. Table 

1). The relative change of readmission risk is calculated in comparison to the raw readmission rate of 9.04%. 

The ATE of discharging an ICU patient to a downstream unit at 𝑡 as compared to one decision cycle 

later increases the readmission risk by 8% according to MCF but decreases the readmission risk by -2% 

according to GRF. Evidently, both point estimates are insignificant, while the standard error for GRF is 

much larger as compared to the estimate than for MCF. Besides, the magnitude of the effect, regardless 

of significance and sign of the coefficient, is more than four times higher for MCF than for GRF. Still, 

simply put, according to both MCF and GRF, on average, there is no effect. It is important to note, 
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however, that we are not interested in the ATE as it does not enable discriminative discharge decisions 

between two or more individual ICU discharge candidates (cf. below). In fact, it is sensible that on 

average, discharging a dischargeable, comparatively stable patient one day (or rather decision cycle) 

later will not affect the readmission risk significantly.  

Table 4 shows the estimated CATEs for four groups, stratified by the number of times a patient passes 

the regular discharge decision time after becoming a potential candidate for discharge, denoted by 𝑛. 

The CATEs show that there is ample treatment heterogeneity. While there is no effect for the group 𝑛 =

2, the magnitude of the estimate is quite large for all other 𝑛 and standard errors are smaller for 𝑛 = 0 

and 𝑛 = 1, but effects are still insignificant. 

Table 4: Estimated Conditional Average Treatment Effects according to 𝒏 

𝒏  Estimate Standard 

Error 

Absolute change of readmission 

risk (in %-pts.) 

Relative change of readmission 

risk (in %) 

0 -0.01504 0.006106 -1.50 -17% 

1 0.01168 0.007846 1.17 13% 

2 -0.00097 0.018317 -0.10 -1% 

3 0.03302 0.036234 3.30 37% 

Annotations: Estimates were made with GRF and with Sample B (12,950 ICU stays and 11,873 unique cases), >4,600 included 

features (cf. Table 1). The relative change of readmission risk is calculated in comparison to the raw readmission rate of 9.04%. 𝑛 

denotes the number of times a patient passes the regular discharge decision time after becoming a potential candidate for 

discharge. 

Note that neither the ATE, nor any kind of CATEs will be of use for decision support. For the ATE, this 

is obvious as all cases have the same ATE and it thus cannot suggest what patient should rather be 

discharged. CATEs encompass still too many patients, so that on a given day, two or more discharge 

candidates might fall into the same group with the same CATE. Then, the same issue as with using an 

ATE applies.  

Therefore, IATEs need to be estimated, forming the basis for developing decision policies that can truly 

support daily, operational ICU decision making. Given the results in Table 3 and our common support 

analysis in Figure 8, we chose MCF as causal machine learning method to estimate IATEs. Figure 9 

shows the density of estimated IATEs.  

Almost the entire sample (97.8%, 12,669 ICU stays) shows IATE estimates between -0.05 and 0.10. Note 

that this variation is actually quite large: In percentage points, readmission risk is influenced between  
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negative 5 and 10 points, amounting to a relative change of readmission risk between -55% and 111% 

when compared to the average readmission rate of 9.04%. Considering a narrower IATE range between 

-0.05 and 0.05 (91.4% of sample, 11,833 ICU stays), the relative change of readmission risk still amounts 

to -55% to 55%. This range shows the existing treatment heterogeneity and showcases that these results 

could prove effective when developing discharge policies based on IATEs.  

Figure 9: Density of Individualized Average Treatment Effects 

 

Annotations: IATEs were estimated with MCF, and for Sample B (12,950 ICU stays and 11,873 unique cases). 

Still, the figure also shows that the IATE estimate for large share of ICU stays is between 0.00 and 0.03 

(58.5%, 11,833 ICU stays). This means that for the majority of patients, a discharge one decision cycle 

later increases their readmission risk relatively mildly, between 0% and 33% compared to the 

readmission rate of 9.04%. Lastly, CATEs in Table 4 already indicate that there are certain patients that 

might not benefit from additional time on the ICU. Our results for the IATE estimation show that IATEs 

are indeed negative for roughly 28% of all patients.  
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Still, when interpreting IATEs, we must be cautious insofar that we do not show estimated standard 

errors of patients’ IATEs which would be needed to generalize statements about the effectiveness of 

additional intensive care for individual ICU patients. Accordingly, the above statements have a 

descriptive and not necessarily causal intention. 

For our research objective, i.e., supporting clinical decision making, standard errors are of a lesser 

importance, which we discuss in the next section. 

Development of Decision Policies and Simple Simulation Study 

We aim to design policies offering decision support for all ICU discharge types satisfying the capacity 

constraint 𝐵𝑎 ≥ 0, with 𝐵𝑎 as defined in equation (4):  

𝐵𝑎 = 𝐵 − (∑ 𝑥𝑖

𝐼

𝑖=1

+ ∑ 𝑎𝑒

𝐸

𝑒=1

− ∑ 𝑎𝑐
𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒

𝐶

𝑐=1

+ ∑ 𝑎𝑟

𝑅

𝑟=1

+ ∑ 𝑎𝑢
𝑎𝑛𝑡

𝑈

𝑢=1

) + (∑ 𝑑𝑛

𝑁

𝑛=1

+ ∑ 𝑑𝑝
𝑒𝑎𝑟𝑙𝑦

𝑃

𝑝=1

)

+ (∑ 𝑑𝑞
𝑒𝑎𝑟𝑙𝑦

𝑄

𝑞=1

− ∑ 𝑎𝑣
𝑎𝑑𝑑

𝑉

𝑣=1

) 

 

Specifically, policies should offer support when planning discharges ∑ 𝑑𝑛
𝑁
𝑛=1 + ∑ 𝑑𝑝

𝑒𝑎𝑟𝑙𝑦𝑃
𝑝=1 , and when 

having to decide in unplanned demand-driven situations described by ∑ 𝑑𝑞
𝑒𝑎𝑟𝑙𝑦𝑄

𝑞=1 − ∑ 𝑎𝑣
𝑎𝑑𝑑𝑉

𝑣=1 . Note 

that in practice, both 𝑑𝑛 and 𝑑𝑝
𝑒𝑎𝑟𝑙𝑦 are planned discharges and distinguishing clearly between what 

discharge is natural and what discharge is rather demand-driven due to unplanned but anticipated 

admissions 𝑎𝑢
𝑎𝑛𝑡, anticipated readmissions 𝑎𝑟 , or planned admissions due to elective surgeries 𝑎𝑒, might 

be difficult.  

To support decision making, in a first step, we will rank all patients according to their IATE estimate. 

In a second step, we determine that patients should be selected for discharge based on their spot in this 

ranking as compared to other patients who are discharge candidates at the same regular decision cycle. 

More concretely, if the ICU decision maker were to decide between two patients, the patient with the 

lower change of readmission risk due to the discharge at point in time 𝑡, i.e., the smaller IATE, would 

be selected. The same applies if multiple patients were selected for discharge. For instance, if there are 
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seven discharge candidates and to comply with the capacity constraint 𝐵𝑎 ≥ 0, five patients would need 

to be discharged, the five patients with the lowest IATEs would be selected for discharge. 

Statistical significance, e.g., at the 5%-level of estimated IATEs would indicate the robustness of the 

magnitude of individual effects, i.e., how certain we can be about individual patients’ point estimate. 

We argue that statistical significance is of lesser importance for selecting discharge candidates as even 

insignificant IATEs can optimize decisions, at least as long as confidence intervals do not overlap. For 

the simulation and final version of our manuscript, we will address this potential challenge in more 

detail. 

To show the practical utility of our decision policy approach in terms of avoided readmissions and 

saved ICU capacity, we will start a simulation at the first day of our observation period. We then apply 

our decision policy and change the discharge decision for all patients where the policy would discharge 

a different patient than the patient that was actually discharged. We continue to apply this decision 

policy across all days of our observation period. To receive the total number of avoidable readmissions, 

we sum the difference between the minimal (i.e., optimal) IATE, 𝐼𝐴𝑇𝐸𝑑,𝑝, and empirical (i.e., actual) 

IATE, 𝐼𝐴𝑇𝐸𝑑,𝑎, across all discharge decisions 𝐷. Note that this difference is zero where the optimal and 

actual discharge decisions are the same. 

𝑅 = ∑ 𝐼𝐴𝑇𝐸𝑑,𝑝

𝐷

𝑑=1

− 𝐼𝐴𝑇𝐸𝑑,𝑎 
(17) 

Additionally, we can compute the number of saved ICU bed capacities 𝐵 according to our decision 

policy with 

𝐵 =
𝑅 × 𝐿𝑂𝑆̅̅ ̅̅ ̅

365 × 𝑏𝑒𝑑 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑟𝑎𝑡𝑒
 

(18) 

where 𝐿𝑂𝑆̅̅ ̅̅ ̅ represents the average length of stay of readmitted cases. We will assume different bed 

occupancy rates typical for ICUs, e.g., 90% and 95%, to receive a range for our avoidable ICU bed 

capacity estimate.  
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Note that this is a simple simulation. A more sophisticated approach would be to account for changes 

in future ICU demand due to changes in readmissions. More concretely, optimizing ICU discharges in 

𝑡 would influence the number of ICU arrivals in 𝑡 + 1, as some patients are less likely to be readmitted, 

i.e., ∑ 𝑎𝑟
𝑅
𝑟=1  will be lower. A change in the number of ICU arrivals then will lead to different (expected) 

fulfilment of the capacity constraint 𝐵𝑎 ≥ 0, potentially requiring more or less changes discharges as 

empirically observed. We refrain from conducting such a simulation, however, since it would be prone 

to many of the limitations of Markov Decision Process Models, as described above.  

4 Summary and Outlook 

We outline how optimal decisions can be learned from observational data under the unconfoundedness 

assumption, leveraging more than 4,600 features to estimate IATEs of ICU discharge at point in time 𝑡 

on ICU readmission. Our model addresses a classic hospital operations problem: Decision-making 

under uncertainty, coupled with fixed capacities, leads to sub-par medical outcomes and bottleneck 

congestion. 

We reviewed the OM literature with regards to machine learning, causal inference, hospital operations, 

and policy learning, yielding that causal machine learning has rarely been employed in OM, especially 

in the context of hospital operations. In this working paper, we formulated the decision problem, given 

by the bed capacity constraint 𝐵𝑎 > 0, of the ICU discharge process. Utilizing two causal machine 

learning algorithms, we estimated ATEs (GRF and MCF), CATEs (only GRF) and IATEs (only MCF). 

We described how ranked IATEs can be used in a simple simulation to show the practical utility of our 

methodological approach. For the final manuscript of this study, we will implement this simulation and 

discuss our results in the context of the operations research and medical literature. Furthermore, we will 

explore different IV approaches as sensitivity analyses acknowledging the (unlikely) situations where 

unconfoundedness might not hold. In addition, we will refine our feature engineering, e.g., by exploring 

sub-dimensions of clinical scores. Lastly, as additional scenario, we will define the outcome as 

readmission within 48 or 96 hours as compared to “raw” readmissions.   
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