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1 Introduction

Blockchain technology is rapidly reshaping the global financial landscape. The World

Economic Forum predicts that 10% of global GDP will be stored on the blockchain

by 2027 (WEF, 2015). In the United States, a notable milestone occurred in Jan-

uary 2024 when the Securities and Exchange Commission approved the trading of

Bitcoin ETFs on public exchanges (SEC, 2024). Cryptocurrencies such as Bitcoin and

Ethereum have gained widespread adoption, enabling peer-to-peer transactions without

the need for traditional intermediaries like banks. On platforms like Ethereum, smart

contracts—self-executing agreements with conditions encoded in software—facilitate

various financial services, from loans and insurance to decentralized exchanges.

Beyond these applications, blockchain technology is also being explored for cross-

border payments, reducing the time and cost associated with traditional banking sys-

tems. Between March 2017 and February 2020, there were approximately 600,000

exchange currency transactions on Bitcoin alone (Ogawa et al., 2024). Central banks

are also investigating the use of blockchain for issuing Central Bank Digital Currencies

(CBDCs), which could transform how money is issued and managed.

Blockchain technology operates by executing transactions in a decentralized manner,

ensuring that transactions are ultimately executed (liveness) and that a decentralized

network of computers—referred to as miners in proof-of-work systems or validators in

proof-of-stake systems—can agree on the state of the blockchain after execution (safety).

Despite the growing importance of blockchain technology, there are still significant

limitations in their scalability, particularly in the efficient execution of transactions in

the presence of congestion. As blockchain applications expand beyond cryptocurrencies

into decentralized finance (DeFi), supply chain management, and digital identity, the

efficient allocation of blockchain resources has become increasingly critical.

While Transaction Fee Mechanisms (TFMs) that guarantee inclusion are well-studied

in the literature (Buterin, 2018; Roughgarden, 2020; Shi et al., 2022; Ndiaye, 2024; ?;

Kiayias et al., 2023), little is known about the design of Transaction Execution Mecha-
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nisms (TEMs). TEMs refer to the protocols and systems that determine the order and

manner in which transactions are processed and finalized on a blockchain network. In

any decentralized system like blockchain, transactions are submitted by multiple users,

often simultaneously. The mechanism by which these transactions are sequenced and

confirmed is crucial for maintaining the network’s integrity, security, and performance.

TEMs are at the heart of several emerging blockchain systems, including parallel ex-

ecution blockchains, Directed Acyclic Graph (DAG)–based blockchains, and blockchains

with multiple concurrent proposers. For instance, parallel execution blockchains—such

as Solana, Avalanche, or the planned upgrade to the Ethereum blockchain—divide the

blockchain’s state into multiple, non-overlapping partitions or local fee markets, each of

which can handle transactions independently. Optimal pricing of these local markets

can allow for a TEM where fees are determined by the demand within each partition

rather than the entire network. This approach can prevent high-demand areas from

congesting the blockchain as a whole.

In DAG-based blockchains—such as Aptos, Sui, and IOTA—transactions are in-

cluded in a graph of blocks without requiring them to be ordered in a single chain.

However, their TEM is crucial at the necessary step of "flattening the DAG," which

involves organizing the unordered transactions into a logical sequence for execution and

achieving consensus on the final state across the entire network (see Keidar et al., 2021).

Lastly, in blockchains with multiple concurrent proposers—such as in current proposals

for the Ethereum blockchain—a key challenge is to ensure that concurrent proposals

do not lead to conflicts or forks that compromise the network’s safety. A TEM is,

therefore, needed to aggregate proposals from multiple validators or proposers.

Traditional blockchain protocols often rely on simple fee-based models where users

attach fees to their transactions, and miners or validators prioritize transactions based

on these fees. While straightforward, such mechanisms can lead to inefficiencies, in-

cluding congestion, high transaction fees during peak demand, and suboptimal resource

allocation. Moreover, as blockchains evolve to support smart contracts and complex de-

centralized applications, the need for more sophisticated TEMs to handle heterogeneous
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transaction types and user preferences becomes apparent.

This paper embeds a general queuing model into the standard price theory frame-

work and examines optimal posted-price TEMs. I model a capacity-constrained blockchain

execution system as a N queue system that serves delay-sensitive customers. Each

queue represents a submarket or a specific resource, such as a smart contract, a high-

level resource that transactions try to access, or a shared object in object-centric

blockchains. Users submit transactions to these queues and decide upon arrival whether

to proceed based on the posted price and expected delay. A global capacity constraint

arises from the need for consensus mechanisms to consider all transactions across queues,

limiting the total throughput of the system.

I study the following research questions: how does revenue maximization affect

the allocation of capacity across queues, and under what conditions does it lead to the

exclusion of lower-paying queues? What are the welfare implications of different pricing

strategies, and how can we design prices that maximize social welfare while considering

the global capacity constraint? How do market characteristics such as demand elasticity

and market size affect the optimal relative pricing across queues?

To address these questions, I derive equilibrium conditions for users to join a queue

based on valuations, prices, and expected delays. I consider both uniform pricing,

where the same price applies across all queues, and relative pricing, where prices differ

between queues. My main findings can be summarized as follows:

• Revenue Maximization: When aiming to maximize revenue, the system tends

to allocate all capacity to the queue with the highest-paying users, especially

when the total capacity is limited. This fact, however, may lead to the exclusion

of transactions from other queues that could contribute positively to social welfare.

• Welfare Maximization: In contrast, a welfare-maximizing scheme generally

allocates capacity across all queues.

• Optimal Relative Pricing: The optimal pricing strategy across different queues

depends on several factors, including market size, demand elasticity, and the bal-
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ance between local and global congestion. Under high elasticity and dominant

local congestion, pricing individual queues proportional to demand relative to

market size approximates the welfare-maximizing solution.

1.1 Related Work

This paper contributes to the broader economics literature on the market design of

blockchain technology (Budish, 2024; Leshno and Strack, 2020; Halaburda et al., 2022).1

Buterin (2018), and Ndiaye (2023, 2024) study the question of pricing block space —

that is, determining optimal fee mechanisms for including transactions in blockchain

blocks under capacity constraints. Shi et al. (2022), Roughgarden (2021), Roughgarden

(2020), Chung and Shi (2023), and Bahrani et al. (2023) provide foundational analysis

of transaction fee mechanisms, focusing on blockchains with linear transaction ordering.

Ferreira et al. (2021) and Pai and Resnick (2023) study the dynamics of TFMs. This

work opens the analysis of transaction execution by modeling complexities introduced

by parallel execution in multi-queue blockchain systems. In doing so, I build on the

literature on the pricing of queues (Naor, 1969; Mendelson, 1985; Afeche and Mendelson,

2004) and emphasize the balance between global and local congestion. Beyond the

theoretical contributions, my results have practical implications for blockchain system

design and can help improve the efficiency and scalability of new and existing blockchain

technologies. My framework applies to other settings where multi-queue systems are

present, and there is potential for congestion, such as supply chain management, cloud

computing, and online service platforms.

The remainder of the paper is organized as follows. Section 2 highlights the limits

of traditional blockchain fee models with a two-queue example. Section 3 presents

the model setup, including users, local equilibrium conditions, and global inclusion

constraints. In Section 4.1, I analyze the revenue maximization problem and derive the

conditions under which capacity allocation favors the highest-paying queue. Sections

1Early work on the economics of blockchains include Easley et al. (2019), Huberman et al. (2021), Saleh
(2020), and Cong et al. (2021). Catalini and Gans (2020) provides a primer on the economics of blockchains.
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4.2 and 4.3 focus on welfare maximization, characterizing the socially optimal pricing

strategies and their implications. Finally, Section 5 concludes the paper and suggests

avenues for future research.

2 The Problem of Execution in Standard TFMs:

An Example

This section illustrates the challenges of executing transactions in standard Transaction

Fee Mechanisms (TFMs) through a simple example. Consider a blockchain system with

two separate queues, Queue A and Queue B, each holding three transactions awaiting

inclusion and execution in the blockchain. The expected values of the transactions in

Queues A and B are E[va] = 10 and E[vb] = 6, respectively.

Figure 1 depicts the state of the two queues. In each period, two new transactions

arrive in each queue. However, due to the necessity for global consensus, the blockchain

can collect and process up to five transactions at a time.

Queue A: E[va] = 10 15

a1

10

a2

5

a3

Queue B: E[vb] = 6 8

b1

6

b2

4

b3

Figure 1: Example Transaction Queues

In Queue A, three transactions are denoted as a1, a2, and a3, with individual values

of 15, 10, and 5, respectively. Similarly, Queue B contains transactions b1, b2, and b3,

with values of 8, 6, and 4. The higher expected value in Queue A indicates that, on
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average, transactions in this queue are more valuable to the network or its users than

those in Queue B.

2.1 The Problem with Global Ordering and a Uniform

Price

Under a standard TFM, the selection of transactions for inclusion is typically based on

the fees attached to them. With a uniform price for inclusion and a global ordering

for all transactions, the global capacity constraint can lead to an imbalance in how

transactions from different queues are executed. Specifically, more transactions from

Queue A are processed than those from Queue B, even though transactions from both

queues could be executed in parallel without interference. This results in Queue B

becoming underserved, causing its backlog to grow over time. Figure 2 illustrates this

scenario.

Global Ordering for Execution:

a1

15

a∗4

12

a2

10

b1

8

a∗5

7

Queue A: 5

a3

. . .

Queue B: 7

b5

6

b2

5

b4

4

b3

. . .

Figure 2: Global Ordering under Uniform Price. Newly arrived and executed transactions
are highlighted in red and starred.

The top portion of the figure represents the global execution order, where transac-

tions from both Queue A and Queue B are interleaved based on their arrival times and

values. Transactions a1, a2, and b1 are included in the execution queue. Additionally,
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new higher-value transactions a∗4 and a∗5 (highlighted in red and starred) arrive in Queue

A with values of 12 and 7, respectively. Due to their higher values, these transactions

are immediately prioritized in global ordering.

The middle section shows Queue A’s state. Transaction a3 remains in the queue

with a value of 5. While some transactions from Queue A are being executed, new

higher-value transactions continue to arrive, maintaining its dominance in the execution

queue.

The bottom section illustrates Queue B’s state. Transactions b2 to b5 accumulate

in the queue with values ranging from 4 to 7. Despite the continuous arrival of trans-

actions, Queue B’s transactions are not prioritized in the global execution order due to

their lower values than those in Queue A.

Because of the global capacity constraint—only five transactions can be executed

at a time—the mechanism tends to favor transactions with higher values to maximize

immediate throughput or revenue. Transactions from Queue B could be processed in

parallel with those from Queue A without any conflicts or interference. However, global

ordering does not account for this possibility, resulting in suboptimal use of the system’s

parallel processing capabilities.

2.2 A Potential Solution: Market Value-Weighted Order-

ing

To address the issues above, we study a potential solution we will call Market Value-

Weighted Ordering. Suppose that the expected values of transactions in Queues A and

B, denoted by E[va] and E[vb] respectively, are known or can be reliably estimated.

This information could be derived from historical data, statistical analysis, or real-time

monitoring of transaction patterns.

The key idea is to adjust or normalize the bids of transactions in each queue ac-

cording to the expected value of that queue. Specifically, we treat each transaction as

if its bid is scaled by the inverse of the expected value of its queue. For transactions in
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Queue A and Queue B, we adjust their bids as follows:

a′i =
ai

E[va]
, b′i =

bi
E[vb]

.

By scaling the bids in this manner, we standardize them across queues, allowing for a

comparison of transactions based on their relative value within their respective queues.

Figure 3 illustrates these adjusted bids.

Queue A’: E[va′ ] = 1 1.5

a′1

1

a′2

0.5

a′3

Queue B’: E[vb′ ] = 1 4
3

b′1

1

b′2

2
3

b′3

Figure 3: Market Value-Weighted Ordering. Each transaction is treated as if its bid is
ai/E[va] or bi/E[vb]

Under this Market Value-Weighted Ordering, the system evaluates transactions

based on their adjusted bids, resulting in a more balanced execution of transactions

from both queues. Figure 4 illustrates how transactions are selected for execution un-

der this mechanism.

Transactions a′1, b′∗1 , a′4, b′∗5 , and a′2 are selected for execution. Transactions from

Queue B’ that are executed are highlighted in blue. The lower-value transactions remain

in their respective queues, awaiting future execution based on their adjusted bids and

arrival times.

This example demonstrates the potential social value of relative pricing and suggests

that value-weighted relative pricing of different queues can be approximately welfare-

maximizing. In the remainder of this article, I will generalize this idea in a model of a

blockchain with parallel execution and a global capacity constraint due to consensus.
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Market Value-Weighted Ordering for Execution:

a′1

1.5

b∗
′

1

4
3

a′4

1.2

b∗
′

5

7
6

a′2

1

Queue A’: 0.7

a′5

0.5

a′3

. . .

Queue B’: 1

b′2
5
6

b′4
2
3

b′3

. . .

Figure 4: Execution under Market Value-Weighted Ordering. Executed transactions from
queue B’ are highlighted in blue and starred.

3 Model

This section presents a formal model of a capacity-constrained blockchain execution

system. The system is modeled as an N -queue system that serves delay-sensitive cus-

tomers. These queues can be associated with each smart contract, each high-level re-

source that transactions try to access, or each shared object in the case of object-centric

blockchains.

Setup. I assume that execution times are independently and identically distributed

(i.i.d.) with unit mean.2 Each user submits a transaction that arrives in one of the

queues i ∈ {1, . . . , N}, following an exogenous Poisson process with rate (or market

size) Λi. Since the consensus mechanism considers transactions in all queues, there is a

global capacity constraint for inclusion, meaning that the total number of transactions

that can be included across all queues is limited. We consider mechanisms with posted

prices pi for each submarket or queue i for simplicity. Upon arrival and observing the

posted prices, users decide whether or not to submit their transaction at the posted

2For transactions with different execution times, we can interpret the derived prices below as gross prices
rather than per-unit prices. This simplification allows us to focus on the core dynamics without loss of
generality.
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price pi, taking into account potential delays and their valuations.

User Valuations. Users are considered atomistic relative to the market size, mean-

ing that each user’s actions have a negligible impact on the overall system. They differ

in their valuations v, representing their willingness to pay for immediate execution

without delay. For each submarket i, valuations are independently and identically dis-

tributed (i.i.d.) draws from a continuous distribution Φi (independent of arrival and

execution times) with probability density function ϕi. I assume that ϕi is strictly pos-

itive and continuous on the positive interval [v, v̄]. Let Φ̄i(v) = 1 − Φi(v) denote the

complementary cumulative distribution function, representing the probability that a

user’s valuation exceeds v. If all transactions with values greater than v join queue i,

the arrival (or demand) rate in market i will be λi = ΛiΦ̄i(v). Conversely, when the

arrival rate is λi, the marginal value v is equal to Φ̄−1
i (λi/Λi), where Φ̄−1

i is the inverse

of Φ̄i.

Following Afeche and Mendelson (2004), let Vi(λi) denote the expected aggregate

(gross) value in submarket i per unit of time without delay. Then, the downward-sloping

marginal value (or inverse gross demand) function V
′
i (λi) ≡ Φ̄−1

i (λi/Λi) defines a one-

to-one mapping between the demand rate λi and the marginal value V
′
i (λi). Each Vi is

increasing and is assumed to be strictly concave, V ′
i (λi) > 0, V

′′
i (λi) < 0 for λi < Λi.

Delay Costs. Users are sensitive to delays in transaction execution. I consider the

following utility function for a user with valuation v who pays a price p and experiences

a delay of t units of time:

u(v, t, p, i) = v ·Di(t)− Ci(t)− p (1)

In this expression, p is the price the user pays to submit the transaction. The term

Di(t) is a multiplicative delay discount function for queue i, capturing how the user’s

valuation decreases with delay. For example, Di(t) could be a discount factor like

e−dit, where di is the discount rate. The term Ci(t) is an additive delay cost function
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for queue i, representing additional costs incurred due to delay, such as opportunity

costs or penalties. These costs capture a variety of losses that can occur due to the

deterioration of execution performance with delay.3

Let λ ≡ (λ1, . . . , λN ) denote a vector of demand rates in each submarket. Each user

in queue i maximizes her expected utility, which she forecasts using the distribution

of the steady-state delay W̃ (λi). The delay depends on the set of paying users only

through the resulting demand rate λi and is not affected by the actions of an individual

atomistic user. In addition, we allowed the individual delay costs Di(t) and Ci(t) to

depend directly on i, which can reflect the selection of different types of users in queues.

Let Di(λi) ≡ E[Di(W̃ (λi))] and Ci(λi) ≡ E[Ci(W̃ (λi))] be the expected delay discount

and delay cost functions, respectively. Given λi, a user with value vi for submarket i

who pays pi has expected utility

u(vi|pi, λi) ≡ vi ·Di(λi)− Ci(λi)− pi. (2)

Local Equilibrium Demand. I now consider the equilibrium behavior of users

in each queue. Let i ∈ {1, . . . , N} and pi the price in submarket i. Suppose Vi is

continuously differentiable in R+ and that the net value to the highest value user of

being served immediately in each queue is positive, that is V
′
i (0)Di(0) − Ci(0) > 0.

This condition ensures a positive net benefit to participating in the market for at

least some users. Without loss of generality, I index the queues in decreasing order

(without ties) of their net value of being served immediately: V
′
1 (0)D1(0) − C1(0) >

V
′
2 (0)D2(0)− C2(0) > · · · > V

′
N (0)DN (0)− CN (0). Given a price pi, queue i is active

(i.e., has positive demand) if the highest-value user obtains positive expected utility

when served immediately: V
′
i (0) ·Di(0)−Ci(0) > pi. The marginal user has valuation

V
′
i (λi(pi)) and zero expected utility in equilibrium. That is, in any Nash equilibrium,

3Typical costs due to slow execution can be the failure to purchase a good, loss of an arbitrage opportunity,
sandwich-attacked transactions, and other MEV attacks.
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users join if, and only if demand in market i, λi(pi), satisfies

u(V
′
i (λi(pi))|pi, λi) = V

′
i (λi(pi)) ·Di(λi)− Ci(λi)− pi = 0 (3)

This equilibrium condition can be interpreted in at least two ways. If users can choose

which queue to join, entry and exit occur across queues in equilibrium until the expected

utility from joining any queue equals their outside option (which is normalized to zero).4

Second, if the protocol dictates which queue transactions are assigned to (e.g., based on

transaction type or resource accessed), entry and exit occur within each queue, and the

expected utility for the marginal user in each queue equals zero. Users decide whether

to participate based on the conditions in their assigned queue. Thus, the equilibrium

condition maps the demand rate λi to the price in queue i and vice-versa for active

queues. Henceforth, we will write such expression as pi(λi).

Global Inclusion Constraint. Because all transactions need to be considered

for consensus before the execution phase, there is a global capacity constraint on the

total number of transactions that can be included. Let κ denote the global capacity of

transactions that can be served per unit of time. The capacity constraint is then

N∑
i=1

λi ≤ κ. (4)

This constraint implies that the sum of the demand rates across all queues cannot

exceed the global capacity κ. It reflects limitations such as block size, bandwidth, and

the need for synchronization across the network.

In this analysis, I focus on instances where the global capacity constraint is binding,

meaning that the total demand equals the capacity.5 This situation is common in

blockchain systems during periods of high demand. The problem of variable global

4This would be for instance the case of multi-proposer consensus, or DAG-based blockchains where users
choose to what part of the graph they send their transactions

5See Weitzman (1974) and Akbarpour et al. (2024) for settings where endogenous quotas and capacity
restrictions are optimal.
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capacity would deliver similar results.

4 Results

In this section, I analyze the model’s implications for revenue maximization and welfare

maximization.

4.1 Revenue Maximization

We begin by examining how a protocol or miners–validators– aiming to maximize rev-

enue would set prices and allocate capacity across the different queues.

Revenue. Let S denote the set of served queues, i.e., the queues that are active and

receive a positive capacity allocation. The protocol’s revenue is the total fees collected

from all served queues, which can be expressed as
∑

i∈S λipi(λi), where λi is the demand

rate in queue i, and pi(λi) is the price charged in queue i as a function of the demand

rate. Using the equilibrium condition from equation (3), the revenue maximization

problem can be expressed in terms of demand rates. For simplicity of notation, we

assume here that all queues are served.6

Π = max
(p1,...,pN )

N∑
i=1

λiV
′
i (λi) ·Di(λi)− λi · Ci(λi) (6)

Our objective is to find the set of prices (p1, p2, . . . , pN ) and served queues S that

maximize revenue Π, subject to the local equilibrium condition (3) for all served queues

and the global capacity constraint (4). I consider uniform pricing where p1 = · · · =

pN = p ∈ R+ and optimal relative prices (p1, . . . , pN ) ∈ RN
+ . The following proposition

characterizes the revenue-maximizing allocation under both pricing strategies.

6The general expression is

Π = max
S,(pi;i∈S)

∑
i∈S

λiV
′

i (λi) ·Di(λi)− λi · Ci(λi). (5)
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Proposition 1. There exists a threshold capacity κ ∈ (0,+∞) such that for all total

capacities κ ≤ κ, the revenue-maximizing uniform price and the revenue-maximizing

relative prices allocate all capacity to the highest price queue, i.e., S = {1}.

Proof. The idea of the proof is to construct a small capacity (or equivalently, a large

enough level of congestion and price for queue 1) so that no customers will be willing

to join queues 2, . . . , N and net revenue from queue one is increasing with respect

to its allocated capacity. In these conditions, allocating all capacity to queue one

is revenue maximizing. Since V
′
1 (0)D1(0) − C1(0) > V

′
2 (0)D2(0) − C2(0) > · · · >

V
′
N (0)DN (0)−CN (0) without loss of generality, and V

′
i (λ)Di(λ)−Ci(λ) is continuously

decreasing in λ for all i, there exists κ1 ∈ (0,+∞) such that V ′
1 (κ1)D1(κ1)−C1(κ1) >

V
′
2 (0)D2(0) − C2(0) > · · · > V

′
N (0)DN (0) − CN (0). Denote gross revenue from queue

1 absent any delays as R1(λ1) = λ1V
′
1 (λ1), the marginal net revenue from this queue

is R
′
1(λ1)D1(λ1) − C1(λ1) + λ1V

′
1 (λ1)D

′

1(λ1) − λ1C
′

1(λ1). Evaluated at λ1 = 0 yields

R
′
1(0)D1(0)− C1(0) = V

′
1 (0)D1(0)− C1(0) > 0, therefore, by continuity, the marginal

net revenue from queue 1 is increasing in a neighborhood of 0. That is, ∃ 0 < κ ≤ κ1

such that V
′
1 (κ)D1(κ) − C1(κ) > V

′
2 (0)D2(0) − C2(0) > · · · > V

′
N (0)DN (0) − CN (0)

and the net revenue function κ 7→ κ[V
′
1 (κ)D1(κ)−C1(κ)] is increasing in [0, κ]. In both

the relative price and uniform price case, for capacity below κ it is revenue maximizing

to allocate all capacity to queue 1, since at those capacity and price, no customers will

be willing to join queues 2, . . . , N and the total capacity is used since net revenue from

queue 1 is increasing in this segment.

This proposition highlights a potential inefficiency in revenue maximization: when

capacity is limited, the system tends to favor the queue with the highest-paying users,

potentially excluding transactions from other queues that could contribute positively

to social welfare.

15



4.2 Welfare Maximization

Next, I consider the objective of maximizing social welfare, which takes into account the

total net benefit to all users across all queues, rather than focusing solely on revenue.

The protocol’s social welfare over all queues7

SW = max
λi∈[0,Λi)N

N∑
i=1

Vi(λi) ·Di(λi)− λi · Ci(λi) (8)

Subject to the local equilibrium condition (3) and the global inclusion constraint (4).

The protocol’s social welfare is the sum of the expected net values to all users across

all queues, accounting for delay costs. Under welfare maximization, setting optimal

relative prices (p1, . . . , pN ) ∈ RN
+ is equivalent to a planner choosing the demand rates

λi ∈ [0,Λi)
N , i ∈ S directly subject to local equilibrium conditions (3) in all served

queues and the global capacity constraint(4). The following proposition shows that the

relative price social optimum generically serves all queues.

Proposition 2. Suppose that the discount rate and linear delay cost functions are so

that the net utility function from queue i, that is Wi ≡ λi 7→ Vi(λi)·Di(λi)−λi ·Ci(λi) is

strictly concave, and ∃ν > 0 such that W ′
i (0) > ν for all i, and

∑N
i=1(W

′
i )

−1(ν) = κ then

in the relative price social optimum, capacity is allocated in all queues, S = {1, . . . , N}.

Proof. Since each Wi is strictly concave, their sum is strictly concave. Let λ∗ be an

optimal solution to the problem. By the Karush–Kuhn–Tucker conditions, ∃µ ≥ 0 such

that W ′
i (λ

∗
i ) = µ if λ∗

i > 0 and W ′
i (λ

∗
i ) ≤ µ if λ∗

i = 0 Suppose, for contradiction, that

∃j such that λ∗
j = 0. Then, W ′

j(0) ≤ µ. But we know that W ′
j(0) > ν, therefore, µ > ν.

There exists at least one index i so that λ∗
i > 0, otherwise total capacity would be zero.

For all i where λ∗
i > 0, we have W ′

i (λ
∗
i ) = µ > ν. Since Wi is strictly concave, W ′

i

is strictly decreasing. Therefore, λ∗
i < (W ′

i )
−1(ν) for all i where λ∗

i > 0. This implies

7The general problem is

SW = max
S,λi∈[0,Λi)N ,i∈S

∑
i∈S

Vi(λi) ·Di(λi)− λi · Ci(λi). (7)
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that
∑N

i=1 λ
∗
i <

∑N
i=1(W

′
i )

−1(ν) = κ. But this contradicts the optimality of λ∗ because

we can increase the objective function by increasing λ∗
j slightly while still satisfying the

constraint. Therefore, our assumption of the existence of j is a contradiction, and we

conclude that λ∗
i > 0 for all i. That is, all queues are allocated non-zero capacity.

This proposition indicates that, under welfare maximization, it is optimal to serve

all queues, distributing capacity across them in a way that balances the marginal social

welfare contributions. This contrasts with the revenue-maximizing allocation, which

may exclude some queues to maximize revenue.

4.3 Welfare Maximizing Relative Pricing

Having established that welfare maximization leads to capacity allocation across all

queues, we now derive the welfare-maximizing relative prices that support this alloca-

tion under the conditions of Proposition 2. Let µ denote the Lagrange multiplier asso-

ciated with the global capacity constraint (4). Economically, µ represents the shadow

price of including an additional transaction in the system; it reflects the marginal social

cost of capacity constraints. The following propositions link the socially optimal prices

in each queue to this shadow price and demand characteristics.

Proposition 3. The socially optimal relative prices are given by

pi =− Vi(λi)D
′

i(λi) + λiC
′

i(λi) + µ (9)

This proposition emerges from the first order condition for λi and replacing pi from

(3). This expression shows that the socially optimal price in queue i includes three

components. First, the local delay externality −Vi(λi) · D
′
i(λi) captures the negative

impact of increased demand on the expected delay discount. As λi increases, the

expected delay increases (since the system becomes more congested), reducing the net

value for all users in queue i. Second, the local additive delay cost λi ·C
′
i(λi) represents

the additional additive delay costs incurred due to increased demand. Third, the global
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capacity externality µ reflects the marginal cost of consuming limited capacity that

other queues could have used.

At the socially optimal prices, the marginal user’s expected net value is equal to the

total externality they impose on the system. This equality ensures that users internalize

the total social cost of their participation, leading to an efficient allocation of resources.

To gain further insights, I specialize the model to a setting where the time between

arrivals is exponentially distributed, and the execution times for each user also follow

an exponential distribution. Each market has size Λi each with a different isoelastic

marginal value function V
′
i (λi) = (λi/Λi)

−1/εi where εi > 1 represents demand elasticity

for queue/resource i. In this setting, Vi(λi) =
(λi/Λi)

1−1/εi

1−1/εi
.

Assuming that the delay discount function is exponential, D(t) = e−dt and the

additive delay cost is linear C(t) = c × t where c, d > 0, we have (see Appendix A for

detailed derivations)

Ci(λi) =
c

1− λi

Di(λi) =
1− λi

1 + d− λi
(10)

Approximation under High Parallelization. Suppose that the demand rates

λi and λj are small relative to 1 and the discount rate d, reflecting a high degree of

parallelization (i.e., the system can process many transactions concurrently). Under

this assumption, we can approximate the socially optimal relative prices.

Corollary 4. Under the above assumptions, the ratio of the socially optimal prices in

queues i and j is approximately

pi
pj

≈
(λi/Λi)

1−1/εi

1−1/εi
· d
(1+d)2

+ cλi + µ

(λj/Λj)
1−1/εj

1−1/εj
· d
(1+d)2

+ cλj + µ
(11)

Proof. First, we compute the derivatives: V ′
i (λi) = Λiλ

−1/εi
i , D

′
(λi) = − d

(1+d−λi)2
, C

′
(λi) =

c
(1−λi)2

. Substitute into the equation for pi, pi =
(λi/Λi)

1−1/εi

1−1/εi
·
(

d
(1+d−λi)2

)
+λi · c

(1−λi)2
+

µ. Consider the ratio pi/pj . Assuming λi and λj are small compared to 1 and d we
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have (1 + d − λi)
2 ≈ (1 + d)2, (1 − λi)

2 ≈ 1, replacing in the expression for relative

prices yields pi
pj

≈
(λi/Λi)

1−1/εi

1−1/εi
· d
(1+d)2

+cλi+µ

(λj/Λj)
1−1/εj

1−1/εj
· d
(1+d)2

+cλj+µ

.

The approximate price ratio reveals how the optimal prices depend on queue-specific

characteristics such as market size Λi, demand elasticity εi, and demand rates λi. When

µ is small relative to the other terms (i.e., when local congestion effects dominate global

capacity constraints), these queue-specific factors primarily determine the price ratio.

As µ increases (i.e., when global congestion becomes more significant), its effect is to

push the price ratio closer to 1, reducing price differentiation across queues.

Corollary 5. Suppose, in addition to the assumptions of Corollary 4, that local con-

gestion dominates global congestion (µ is negligible relative to pi and pj), and demand

is perfectly elastic (εi, εj → ∞). Then, the price ratio is simplified to

pi
pj

≈ λi

λj
· Λj

Λi
(12)

This limit expression offers several insights. First, in the case of perfectly elastic

demand, the optimal prices are proportional to the ratio of demand rates normalized

by market sizes (λi/Λi). This suggests that setting prices based on the relative demand

intensity in each queue approximates the welfare-maximizing solution. Second, as the

market size Λi for a congested queue decreases, the optimal price for that queue diverges

from a uniform price, reflecting the higher marginal value of capacity in smaller markets.

5 Conclusion

In this paper, I investigated posted-price Transaction Execution Mechanisms (TEMs)

within a capacity-constrained blockchain system characterized by multiple queues or

local fee markets. My model captures the essential features of parallel execution in

blockchain networks, where transactions may access different resources or contracts and

can be processed concurrently. A key aspect of our analysis was the global inclusion
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constraint imposed by the consensus mechanism. This constraint necessitates that all

transactions, regardless of their queue, be considered collectively for inclusion.

The analysis reveals several key insights. When the objective is to maximize revenue,

especially under limited capacity, the system tends to allocate all capacity to the queue

with users willing to pay the highest fees. In contrast, when the objective is to maximize

social welfare, the optimal allocation generally involves serving all queues. I found

that the optimal relative pricing across different queues depends on several factors,

including market size, demand elasticity, and the balance between local and global

congestion. In settings where demand elasticity is high and local congestion effects

dominate, pricing individual queues proportional to demand relative to market size is

approximately welfare-maximizing.

The findings suggest that implementing local fee markets within such blockchains

can improve system efficiency. By defining local values for each state, contract, or

object, and employing an adaptive base fee mechanism for inclusion, transactions can

be assigned to queues with different relative prices. As blockchain technologies evolve

towards more complex architectures, such as parallel execution, Directed Acyclic Graph

(DAG)-based systems, and multiple concurrent proposers, this paper provides valuable

insights for protocol designers.

While this study provides a foundational model for efficient transaction execu-

tion mechanisms, I have abstracted from several aspects of transaction execution on

blockchains.

One important extension is the study of optimal local priority auctions. In such a

setting, customers could participate in a two-stage bidding process for entering queues

in a system with multiple service points. Initially, users might bid for priority in a

global queue, reflecting the capacity constraints of the consensus mechanism. Subse-

quently, they could bid for specific services in parallel queues, corresponding to different

resources or contracts. Studying how to design such auctions to optimize for social wel-

fare or revenue maximization would be a promising area for further research.

Another area for future research is the development of dynamic pricing mechanisms
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that adapt to changing network conditions, user behaviors, and congestion levels in

real time. While a comprehensive examination of these complex issues lies beyond the

scope of this paper, they offer promising opportunities for future research and further

refinement of my analysis.
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A Appendix

A.1 Expression of delay costs

Proof. We begin by considering the definitions of Ci(λi) and Di(λi):

Ci(λi) = E[C(Ti)] =

∫ ∞

0
C(t)fTi(t)dt (13)

Di(λi) = E[D(Ti)] =

∫ ∞

0
D(t)fTi(t)dt (14)

where fTi(t) is the probability density function of the exponential distribution with

rate parameter λi:

fTi(t) = λie
−λit (15)

For Ci(λi), we substitute C(t) = ct and solve:

Ci(λi) =

∫ ∞

0
ctλie

−λitdt (16)

= cλi

∫ ∞

0
te−λitdt (17)

= cλi

[
− t

λi
e−λit

∣∣∣∣∞
0

−
∫ ∞

0
− 1

λi
e−λitdt

]
(18)

= cλi

[
0 +

1

λ2
i

]
(19)

=
c

λi
=

c

1− λi
(20)

For Di(λi), we substitute D(t) = e−dt and solve:
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Di(λi) =

∫ ∞

0
e−dtλie

−λitdt (21)

= λi

∫ ∞

0
e−(d+λi)tdt (22)

= λi

[
− 1

d+ λi
e−(d+λi)t

∣∣∣∣∞
0

]
(23)

= λi

[
0 +

1

d+ λi

]
(24)

=
λi

d+ λi
=

1− λi

1 + d− λi
(25)

Thus, when the delay discount function is exponential D(t) = e−dt and the additive

delay cost is linear C(t) = c× t where c, d > 0, the following equations hold:

Ci(λi) =
c

1− λi

Di(λi) =
1− λi

1 + d− λi
(26)
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