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Abstract 
 
This paper studies monetary policy in a New Keynesian model with persistent supply shocks, that 
is, sustained increases in production costs due to factors such as wars or geopolitical 
fragmentation. First, we demonstrate that Taylor rules fail to stabilize long-term inflation due to 
endogenous shifts in the natural interest rate. Second, we analyze optimal policy responses under 
discretion and commitment. Under discretion, a systematic inflationary bias emerges when the 
shock impacts the economy. Under commitment, the optimal policy adopts a lean-against-the-
wind approach without compensating for past inflation, implying that “bygones are bygones”. We 
further extend the model to incorporate the zero lower bound (ZLB) and show that the optimal 
policy supports preemptive easing. 
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“Behold, there come seven years of

great plenty throughout all the land

of Egypt: And there shall arise after

them seven years of famine; and all

the plenty shall be forgotten in the

land of Egypt; and the famine shall

consume the land”.

Genesis 41:29-30

1 Introduction

The design of optimal monetary policy remains a central focus in macroeconomics, particularly in

the wake of the recent inflationary period (e.g., post-2021). This episode has prompted academic

researchers and central banks to re-evaluate the appropriate responses of monetary policy, especially

when inflation is driven by supply-side factors.1 A critical question emerging from this debate is

how monetary policy should be formulated in the face of persistent supply shocks.2 By persistent

supply shocks we refer to sustained increases in production costs, due to factors such as wars or

geopolitical fragmentation, which can persist over years or even decades.3 The presence of these

shocks challenges the validity of traditional monetary policy prescriptions, typically derived under

the assumption of small temporary shocks.

This paper investigates monetary policy responses to persistent disruptions by developing a

New Keynesian model that incorporates a novel, persistent cost-push shock, thereby extending

the standard framework (Clarida et al., 1999, Woodford, 2003). In this model, a representative

household consumes a continuum of differentiated goods and supplies labor in a centralized,

1See Bandera et al. (2023) or Mankiw (2024).
2See, for instance, Powell (2023), Schnabel (2024) or Maechler (2024).
3Federle et al. (2024) find that the macroeconomic effect of war on nearby countries’ output remains substantial

8 years after the outbreak. Fernandez-Villaverde et al. (2024a) find that while geopolitical fragmentation decreased
in the “globalization era”after the collapse of the Soviet Union, fragmentation increased substantially after the
2007-2008 financial crisis and remains at high values.
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frictionless market. Each good is produced by a single firm using labor as the sole input. The

economy experiences aggregate productivity shocks, cost-push shocks, and government spending

shocks, all modeled as standard zero-mean autoregressive processes. The model incorporates

nominal price rigidities à la Calvo (Calvo, 1983), where firms adjust prices only with a certain

probability; otherwise, prices remain unchanged. The central bank conducts monetary policy

through adjustments in short-term nominal interest rates, while a labor subsidy offsets the markup

distortion inherent in monopolistic competition.

The novelty of our model lies in the introduction of a persistent cost-push shock in addition to

the standard autoregressive “temporary”shocks. The economy randomly switches between two

regimes: “normal times”, when the persistent shock does not affect the economy, and a “bad times”,

when the shock increases production costs for all firms.4 This addition complicates the model

solution, as it requires solving the model globally with regime-switching dynamics.5 We address

this issue by proposing a novel algorithm based on deep learning. The algorithm extends the

“deep equilibrium nets”methodology of Azinovic et al. (2022) to accommodate a Markov-switching

environment. This methodological advancement enables us to approximate nonlinear functions and

efficiently solve the complex model, enabling the analysis of optimal monetary policy responses

under different regimes.

Our contributions are threefold: First, we demonstrate that traditional Taylor rules fail to

stabilize inflation in both regimes due to shifts in the natural interest rate driven by precautionary

savings behavior. Specifically, the Taylor rule sets the long-term real interest rate equal to the

average natural rate across regimes, which proves too restrictive during normal times and too lax

during bad times. Consequently, inflation systematically deviates from the target, underscoring

the limitations of existing policy rules that assume a constant natural rate.

The natural rate exhibits these shifts due to the presence of the persistent cost-push shock.

During normal times, the economy is undistorted, and consumption aligns with that of efficient

4This can be interpreted as a proxy for various types of shocks that increase costs. For example, Afrouzi et al.
(2023) consider a labor wedge similar to the one used here as a proxy for changes in the labor market composition
towards more regulated labor sources or a deceleration in globalization.

5The presence of seven state variables in optimal policy under commitment further exacerbates the computational
challenge due to the “curse of dimensionality”(Bellman, 1957).
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allocation; thus, the output gap is zero. In contrast, during bad times the average markup

becomes suboptimal, leading to a reduction in output and consumption which results in a negative

output gap. Consequently, the economy features two distinct stochastic steady states (SSSs), each

associated with a different regime.6 The variation in consumption between the two regimes explains

the dynamics of the natural interest rate.7 In normal times, households anticipate a potential

transition to a regime where their average consumption would decline, leading to a precautionary

increase in the demand for savings. Given the fixed supply of savings instruments, this results in a

decline in the natural rate. Conversely, when the economy transitions to the bad times regime,

consumption falls, and the demand for savings decreases as households anticipate higher future

consumption once the regime ends, causing the natural rate to rise.

Second, we analyze optimal monetary policy under both discretion and commitment. Under

discretion, the central bank cannot commit to future actions but understands how it can affect

future decisions by changing price dispersion. We find that the optimal monetary policy under

discretion displays an inflationary bias (Kydland and Prescott, 1977, Barro and Gordon, 1983):

while in normal times, long-term inflation is centered around zero, inflation surges when the

persistent shock arrives. The persistent supply shock distorts the SSS, creating an incentive for the

central bank to loosen monetary policy to reduce the average markup. Private agents anticipate

this reaction, increasing their prices, which results in persistently positive inflation during bad

times.

Under commitment, the central bank can credibly commit to a state-contingent plan. The

optimal policy “leans against the wind”(Gaĺı, 2008), allowing inflation to increase once the persistent

shock arrives but progressively tightening monetary policy so that inflation returns to zero a few

quarters later. The central bank thus partially cushions the negative consequences of the shock on

the output gap, which converges progressively to the new, lower SSS.

The optimal response to the persistent cost-push shock markedly differs from the response to a

temporary cost-push shock. In the latter case, the central bank commits to a deflationary period

6An SSS refers to the equilibrium state when shocks are zero, and the economy remains within its current regime,
with agents anticipating the stochastic processes.

7The natural interest rate is defined as the real interest rate in each SSS corresponding to the long-term real
interest rate when temporary shocks dissipate.
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after the inflation spike to return the aggregate price level to its pre-shock value. With a persistent

shock, no such deflationary period exists, and the price level permanently increases—“bygones are

bygones”. This result shows that the price-level targeting features of standard monetary policy

prescriptions only hold in the case of autoregressive shocks, but they do not carry over to a more

general framework in which shocks are driven by Markov-chain processes.8

Third, we extend the model to include the zero lower bound (ZLB) on nominal interest rates

and show that the optimal policy under commitment justifies preemptive easing in bad times to

mitigate the constraints imposed by the ZLB, aligning with findings in Daudignon and Tristani

(2023). Preemptive easing refers to lower interest rates outside of the ZLB to counteract anticipated

deflationary pressures.

The optimal response to the arrival of a persistent shock implies a higher increase in inflation

and a more gradual policy tightening than in the counterfactual case without the ZLB. Thus,

the optimal response inherits some of the ”low for longer” features that characterize the optimal

response to demand shocks at the ZLB (Eggertsson et al., 2003).

Our findings underscore the crucial importance of accounting for persistent supply shocks

in monetary policy design, as they significantly influence the natural rate and require tailored

interventions, especially when constrained by the ZLB. This study highlights the limitations of

traditional policy rules and offers novel insights into optimal policy strategies across different

economic regimes.

Related literature. This paper relates to five strands of the literature. First, it contributes to

the literature on optimal monetary policy design in the non-linear New Keynesian model, both

under commitment (see, e.g., Benigno and Woodford, 2005; Yun, 2005; Benigno and Rossi, 2021)

and discretion (e.g., Albanesi et al., 2003; King and Wolman, 2004; Zandweghe and Wolman, 2019;

Arellano et al., 2020; or Afrouzi et al., 2023). We revisit the valuable insights of this literature and

find that some key results, such as the price-level features of optimal policy under commitment,

are modified in the presence of persistent shocks.

8As temporary autoregressive shocks become more persistent, the deflationary period increases, but the level of
negative inflation diminishes, ultimately vanishing in the limit.
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Second, the paper relates to the extensive literature analyzing monetary policy in regime-

switching models (e.g., Schorfheide, 2005; Davig and Doh, 2014; Blake and Zampolli, 2011; Bianchi

and Melosi, 2017). These models analyze regime switches in linear models, implying that the

dynamics are local around the deterministic steady state. Our focus instead is on how regime

changes open the door to the multiplicity of stochastic steady states, with the economy transitioning

among them in response to permanent cost-push shocks.

Third, while the traditional literature has focused on how the natural rate depends on structural

variables, such as total factor productivity (TFP) growth or demographics (Cesa-Bianchi et al.,

2022; Gagnon et al., 2021; Del Negro et al., 2017),9 an emerging literature highlights how policies,

such as fiscal (Rachel and Summers, 2019; Bayer et al., 2023; Kaplan et al., 2023; Campos et al.,

2024 ) and monetary policy (Fernández-Villaverde et al., 2023; Bianchi et al., 2021) may also affect

the natural rate. Our results introduce a new dimension in the debate: persistent supply shocks

may strongly affect natural rates through precautionary motives.

Fourth, this paper extends the literature analyzing optimal monetary policy at the ZLB (e.g.,

Eggertsson et al., 2003; Adam and Billi, 2006; Adam and Billi, 2007; Nakov et al., 2008). First,

we analyze optimal policy at the ZLB globally, which allows us to obtain the optimal inflation in

both regimes. This complements the existing literature, such as Coibion et al. (2012) or Andrade

et al. (2019), which analyze the optimal inflation target of a central bank following a Taylor rule.

Second, our focus is on how the ZLB interacts with cost-push shocks, instead of demand shocks.

Fifth, our paper extends the emerging literature on the use of deep learning to solve high-

dimensional general equilibrium models (e.g., Maliar et al., 2021; Han et al., 2021; Friedl et al.,

2023; Gu et al., 2024).10 Our paper extends the “deep equilibrium nets”methodology by Azinovic

et al. (2022) to the case of regime switching. Our deep learning algorithm allows us to analyze

dynamics globally, providing new insights into how the ZLB interacts with persistent supply shocks

—a topic not extensively explored in the existing literature.

The remainder of the paper is structured as follows. Section 2 introduces the model, while

9Climate change and inequality have also been suggested as drivers of natural rates, see Sahuc et al. (2023) and
Mian et al. (2021).

10See Fernandez-Villaverde et al. (2024b) for a recent review.
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Section 3 details the calibration and our deep learning-based solution method. Section 4 examines

the efficient allocation, the flexible price equilibrium, and the dynamics under Taylor rules. Section

5 analyzes optimal monetary policy, and Section 6 explores the implications of the ZLB. Finally,

Section 7 concludes.

2 Model

In this section, we present the formal structure of our model. Time is discrete, and there are three

types of agents: households, firms, and the central bank. We begin by describing the household’s

problem in Section 2.1, followed by the firms’ problem in Section 2.2, and finally characterize the

central bank in Section 2.3. Details on the specification of the regimes, as well as the autoregressive

processes driving the shocks in the model, are provided in Sections 2.4 and 2.5.

2.1 Households

Households consume goods ct, and supply labor ht to firms. Households maximize the expected

discounted utility:

E0

[
∞∑
t=0

βt c
1−γ
t

1− γ
− h1+ω

t

1 + ω

]
,

subject to the budget constraint:

ptct +Bt ≤ ptwtht + (1 + it)Bt−1 + Tt,

where Bt are holdings of a nominal bond which pays interest 1 + it, wt is the real wage, pt is the

price level, and Tt are the profits from monopolistic producers.

Under these assumptions, the optimal household choices of consumption, labor, and domestic
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bonds, as well as the first-order conditions are given by:

c−γ
t = λt, (1)

hωt = wtλt, (2)

λt = βEt

[(
1 + it

1 + πt+1

)
λt+1

]
, (3)

where λt is the Lagrange multiplier associated with the budget constraint, and inflation is πt ≡
pt

pt−1
− 1.

We assume that the good is a basket of varieties indexed by j. Thus, the household also wants

to choose the consumption of each variety ct(j) to minimize:

min
ct(j)

∫ 1

0

pt(j)ct(j)dj, (4)

subject to:

ct =

[∫ 1

0

ct(j)
ϵ−1
ϵ dj

] ϵ
ϵ−1

,

where ϵ is the elasticity of substitution among varieties. The outcome of the optimization problem

(4) is the optimal demand for j-th variety of good:

ct(j) =

(
pt(j)

pt

)−ϵ

ct.

Note that the optimization problem (4) implies that the price level is given by:

pt =

{∫ 1

0

[pt(j)]
1−ϵ dj

} 1
1−ϵ

, (5)

where pt(j) is the nominal price of j-th variety and pt is the nominal price index for the basket.

2.2 Firms

There is a continuum of monopolistic firms in a differentiated variety j, and a representative firm

produces a homogeneous good yt in a perfectly competitive environment. The firm uses labor
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to produce the good. There is a labor subsidy τ̄ = 1
ϵ
to correct the distortions associated with

monopolistic competition. Firms face temporary and persistent cost-push shocks, denoted by ξt

and ηt, respectively. The firm’s objective is to minimize its total cost (1− τ̄) ηtwtht (j) subject to

the available technology yt (j) = Atht (j), where At is the stochastic total factor productivity. In

addition, we define the labor wedge

(1 + τt) ≡ (1− τ̄) ξtηt, (6)

which lumps together the labor subsidy and the cost-push shocks.

Each of these firms has monopoly power over their respective variety and takes the demand for

its variety, ct(j), as given. We assume price stickiness à la Calvo: each retailer receives a random

signal to adjust their prices with a probability 1− θ, allowing them to choose a new price pt(j) to

maximize the stream of expected profits, that is:

max
P ∗
t (j)

Et

∞∑
k=0

θkΛt,t+k

[
P ∗
t (j)

pt+k

yt+k(j)−Ψ(yt+k, (j))

]

subject to (2.1), where Ψ (yt+k(j)) ≡ (1 + τy+k)wt

(
yt+k(j)

At

)
are total costs, and Λt,t+k ≡ βk λt+k

λt
is

the stochastic discount factor for payments between periods t and t + k. The rest of the firms

maintain prices constant, that is, pt+k(j) = pt(j). The optimization problem can thus be written

as:

max
P ∗
t (j)

Et

∞∑
k=0

θkΛt,t+k

[
P ∗
t (j)

pt+k

(
P ∗
t (j)

pt+k

)−ϵ

yt+k −Ψ

((
P ∗
t (j)

pt+k

)−ϵ

yt+k

)]
.

The optimality condition is given by:

Et

∞∑
k=0

θk∆t,t+kyt+k

[
(P ∗

t (j))
−ϵ (pt+k)

ϵ−1 −MΨ′ (yt+k(j)) (P
∗
t (j))

−ϵ−1 (pt+k)
ϵ] = 0,

where M ≡ ϵ
ϵ−1

, and where Ψ′ (yt+k(j)) = wt+k (1 + τt) (At+k)
−1.

We assume a symmetric equilibrium in which all firms are identical, and thus pt(j) = pt holds.
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The optimal price is given by:

P ∗
t

pt
= p∗t = MEt

∑∞
k=0 θ

kΛt,t+kyt+k (pt+k/pt)
ϵ Ψ′ (yt+k)

Et

∑∞
k=0 θ

kΛt,t+kyt+k (pt+k/pt)
ϵ−1 . (7)

Finally, we can express the numerator and denominator in (7) as

ΞN
t =ytwt (1 + τt) (At)

−1 + Et

[
θΛt,t+1 (1 + πt+1)

ϵ ΞN
t+1

]
, (8)

ΞD
t =yt + Et

[
θΛt,t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
. (9)

2.3 Central Bank

The central bank sets the nominal interest rate on bonds. Bonds are in zero net supply bt = 0. In

Section 4, we analyze monetary policy under a Taylor rule of the following form:

it =
(1 + π̄)

β
− 1 + ψ (πt − π̄) , (10)

where π̄ is the inflation target and ψ is the slope of the Taylor rule to deviations in inflation. In

Sections 5 and 6, we consider instead optimal policy both under discretion and commitment.

2.4 Market clearing conditions

The market clearing conditions for goods are given by:

yt (j) = ct (j) + gt,

where gt is a government spending shock. By aggregating, we obtain:

yt =

∫
yt (j) dj =

∫
(ct (j) + gt) dj = ct + gt.

Since all firms face the same probability, θ, of keeping prices fixed, the law of large numbers

ensures that a fraction θ of firms will keep their prices fixed, while the remaining fraction, (1− θ),
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will optimally reset their prices. As a result, equation (5) becomes:

pt =
{
θ (pt−1)

1−ϵ + (1− θ) (P ∗
t )

1−ϵ} 1
1−ϵ ,

which implies

1 = θ (1 + πt)
ϵ−1 + (1− θ) (p∗t )

1−ϵ .

The market clearing condition for labor is given by:

ht =

∫
ht (j) dj =

∫ (
ct (j)

At

)
dj =

(
yt
At

)∫ (
pt (j)

pt

)−ϵ

dj.

We define price dispersion as:

∆t ≡
∫ (

pt (j)

pt

)−ϵ

dj = θ (1 + πt)
ϵ ∆t−1 + (1− θ) (p∗t )

−ϵ ,

such that the aggregate production function becomes:

yt = Atht∆
−1
t .

2.5 Shocks and regimes

Temporary shocks. We consider TFP, government spending, and cost-push shocks, each following

an AR(1) process in logs. First, we define:

gt = ḡg̃t,

where ḡ is a constant. Then, we have:

log (At) =
(
1− ρA

)(
−
(
σA
)2

2

)
+ ρA log (At−1) + εAt ,
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log (g̃t) = (1− ρg)

(
−(σg)2

2

)
+ ρg log (g̃t−1) + εgt ,

and:

log(ξt) = (1− ρτ )

(
−(στ )2

2

)
+ ρτ log(ξt−1) + ετt ,

where εAt ∼ N
(
0, σA

)
, εgt ∼ N (0, σg), and ετt ∼ N (0, στ ).

Regimes. We assume that the persistent cost-push shock, ηt, evolves according to a two-state

Markov chain. We consider two regimes. In regime 1, “normal times”, the value of ηt is one. In

regime 2, “bad times”, its value is η̄ > 1. This implies that the shock is only active during bad

times. The transition probabilities are p12 from regime 1 to 2:

p12 = P (ηt = η̄ | ηt−1 = 1) , (11)

and p21 from 2 to 1

p21 = P (ηt = 1 | ηt−1 = η̄) . (12)

All expectations are taken with respect to the AR(1) shocks and the persistent shock.

3 Calibration and numerical method

3.1 Calibration

The model outlined in Section 2 is calibrated at a quarterly frequency, and the parameters are

reported in Table 1. The calibration relies as much as possible on standard values from the

literature. Regarding preferences, the quarterly discount factor is 0.9975, implying a real interest

rate of 1 percent in the deterministic steady state. The elasticity of substitution across products is

ϵ = 7, resulting in a frictionless net markup of 1/6. The inverse of the intertemporal elasticity of

substitution, γ, is set to 2, and the inverse of the Frisch elasticity, ω, is set to 1. The long-run

productivity level, A, is normalized to one, and the government spending constant, ḡ, is set to 20

percent.
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Parameter Value

Long-run productivity level A 1
Inverse Frisch elasticity ω 1
Inverse of intertemporal elasticity of substitution γ 2
Discount factor β 0.9975
Elasticity of substitution among varieties ϵ 7
Government spending constant ḡ 0.2
Calvo constant θ 0.75
Taylor rule slope ψ 2
Inflation target π̄ 0
Labor subsidy τ̄ 1

ϵ

Mean of cost-push shock during persistent supply shock η̄ M = ϵ
ϵ−1

Transition probability from normal to negative supply times p12 1/48
Transition probability from negative supply to normal times p21 1/24
Persistence of TFP shock ρA 0.99
Persistence of cost-push shock ρτ 0.90
Persistence of government spending shock ρg 0.97
Standard deviation of TFP shock σA 0.009
Standard deviation of cost-push shock στ 0.0014
Standard deviation of government spending shock σg 0.0052

Table 1: Key parameters of the model.

If the central bank follows a Taylor rule, the inflation coefficient ψ is set to 2, and the inflation

target π̄ is zero. This makes the results comparable with the optimal monetary policy explored

later.

The parameters of the TFP, government spending, and cost-push shocks are taken from Coibion

et al. (2012). The value of the persistent cost-push shock is set to η̄ = M, so that it fully offsets

the optimal labor subsidy. The average duration of regime 1 (“normal times”) is 48 quarters (12

years), giving p12 = 1/48, while the average duration of regime 2 (“persistent supply shock”) is 24

quarters (6 years), so p21 = 1/24. We later explore the sensitivity to alternative parameter values.

3.2 Deep Equilibrium Nets

A global solution to our model is crucial, as it involves solving a nonlinear stochastic dynamic general

equilibrium model with three exogenous autoregressive shocks, one endogenous state variable, and

two distinct regimes. This complexity intensifies when analyzing optimal monetary policy under

13



commitment, which introduces two additional endogenous state variables corresponding to the

Lagrange multipliers associated with forward-looking equations. The high dimensionality resulting

from these state variables exceeds the capabilities of most numerical methods due to the “curse of

dimensionality,” where computational demands scale exponentially with each added dimension. To

address this challenge, we significantly modify the deep equilibrium networks (DEQNs) approach

of Azinovic et al. (2022), adapting it to effectively handle Markov-switching models. In what

follows, we outline the basic DEQN algorithm, closely following the exposition by Azinovic et al.

(2022) and Friedl et al. (2023), before detailing the necessary enhancements required to extend it

to Markov-switching models.11

The DEQN algorithm is a simulation-based solution method that utilizes deep neural networks

to compute an approximation of the optimal policy function p : X → Y ⊂ RM for a dynamic model,

assuming that the underlying economy is characterized by discrete-time first-order equilibrium

conditions, expressed as:

G(x,p) = 0, ∀x ∈ X ⊂ Rd. (13)

Intuitively, DEQNs operate as follows: An unknown policy function is approximated using a

neural network, denoted as p(x) ≈ Fν(x), with trainable parameters ν. These parameters are

initially unknown and must be determined based on an appropriate loss function that measures

the accuracy of the approximation at a given state of the economy.

Although there are several types of deep neural networks, in this paper, we utilize densely-

connected feedforward neural networks (FNNs).12 Following the literature, we define an L-layer

FNN as a function N L(x) : Rdinput → Rdoutput and specify that there are L− 1 hidden layers, with

the ℓ-th layer containing Nℓ neurons. In our case, N0 = dinput and NL = doutput.
13 Furthermore,

for each 1 ≤ ℓ ≤ L, we define a weight matrix Wℓ ∈ RNℓ×Nℓ−1 and a bias vector bℓ ∈ RNℓ . Letting

Aℓ(x) = Wℓx+ bℓ be the affine transformation in the ℓ-th layer, for some non-linear activation

11See also Azinovic and Žemlička (2024), who build on DEQN to solve a rare disaster model with overlapping
generations and multiple assets.

12Neural networks are universal function approximators (Hornik et al., 1989) capable of resolving highly non-linear
features and handling high-dimensional input data. See, for example, Goodfellow et al. (2016) for a general
introduction to deep learning, and Scheidegger et al. (2023) for an introduction within the context of economics.

13Our models have at least dinput = d = 5 input dimensions and doutput = 3 output dimensions (see, for example,
the discretion model in Section 5.1).
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Figure 1: The figure above depicts a stylized neural network with an input x ∈ R6. It consists of
two hidden layers, each containing 512 neurons, using SELU activation functions, and produces an
output p(x) ∈ R8.

function σ(·) (such as ReLU, Swish, or SELU), an FNN is expressed as:

p (x) ≈ Fν (x) = N L (x) = AL ◦ σL−1 ◦ AL−1 ◦ · · · ◦ σ1 ◦ A1 (x) . (14)

Figure 1 illustrates a simple neural network with two hidden layers. The selection of hyperparam-

eters
{
L, {Nℓ}Lℓ=1 , {σℓ (·)}

L
ℓ=1

}
is known as the architecture selection. Approaches to determine

these hyperparameters include using prior experience, manual tuning, random or grid search, as

well as more sophisticated methods such as Bayesian optimization (see, e.g., Bergstra et al., 2011).

The DEQN algorithm to determine p (x) begins by randomly initializing the parameters ν,

representing an initial guess for the unknown approximate policy function. Next, a sequence of

Npath length states is simulated. Starting from a given state xt, the next state xt+1 is determined by

the policies encoded in the neural network, Fν (x), combined with the remaining model-implied

dynamics.

If the (approximate) policy function satisfying the equilibrium conditions were known, equation

(13) would hold along the simulated path. However, since the neural network is initialized with
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random coefficients, G (xt,Fν (xt)) ̸= 0 along the simulated path of length Npath length. This

discrepancy is leveraged to improve the guessed policy function. Specifically, DEQNs use a loss

function based on the error in the equilibrium conditions:

ℓν =
1

Npath length

∑
xt on sim. path

Neq∑
m=1

(Gm(xt,Fν(xt)))
2 , (15)

where Gm (xt,Fν (xt)) represents each of the Neq first-order equilibrium conditions of the model,

i.e., G (xt,Fν (xt)) =
∑Neq

m=1 (Gm(xt,Fν (xt)). Equation (15) is then used to update the network

weights using any variant of (stochastic) gradient descent,14 specifically,

ν ′k = νk − αlearn∂ℓ (ν)

∂νk
, (16)

where ν ′k denotes the updated k-th weight of the neural network, and αlearn ∈ R is the learning

rate. The updated neural network-based policy is subsequently used to simulate a new sequence of

length Npath length, during which the loss function is recorded and again used to update the network

parameters. This iterative process continues until ℓν < ϵ ∈ R, indicating that an approximate

equilibrium policy has been found.

To manage Markov-switching models, several modifications to the baseline DEQN method

are necessary. In this context, the transition probabilities depend on the current Markov state,

requiring an adjustment to our numerical integration routine.

To illustrate, consider a model with one continuous shock at and a two-state Markov chain

st ∈ {0, 1} with transition probabilities π(i|j). We first employ quadrature to approximate the

expectation computation with respect to the continuous shock. Let wi denote the weights and xi

the nodes for the quadrature. For a function f(at, st), the expectation is then computed as:

E [f(at+1, st+1)|st] ≈ (1− st)
∑

l∈{0,1}

∑
i

π(l|0)wif(xi, l) + st
∑

l∈{0,1}

∑
i

π(l|1)wif(xi, l).

14In our applications, we employ the “Adam” optimizer (Kingma and Ba, 2014).
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Note that while the nodes are fixed, the weights depend on the state. This allows the expectation

operation to be computed in batches, thereby reducing runtime.

In all our numerical experiments, we use a neural network architecture consisting of two hidden

layers, each with 512 nodes, and SELU activation functions. Only the input and output dimensions

vary depending on the model, as detailed in the respective sections below. Training is performed

using the Adam optimizer with an initial learning rate of 1 × 10−5, initially in single precision,

and then resumed in double precision.

4 Response to persistent supply shock under a monetary

policy rule

In this Section we focus on the case in which the central bank operates its monetary policy via a

Taylor rule. We first introduce the efficient and flexible-price allocations as benchmarks, and then

we discuss how the presence of persistent supply shocks affect macro dynamics.

4.1 Efficient allocation and flexible-price equilibrium

Efficient allocation. We begin by analyzing the efficient allocation in the model, which is the

allocation produced by a social planner maximizing household welfare subject to technological

constraints. In this case, the optimal allocation equates the marginal rate of substitution between

consumption and labor, ĥωt ĉ
γ
t , to the corresponding marginal rate of transformation (which

corresponds to the marginal product of labor), At:
15

ĥωt ĉ
γ
t = At.

Combining this result with the aggregate budget constraint

ĉt + gt = ŷt = Atĥt = A
1
ω
+1

t ĉ
− γ

ω
t ,

15We denote variables in the efficient allocation with a hat.
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implicitly defines efficient consumption ĉt via the equation

(ĉt + ĝt)
ω − Atĉ

−γ
t = 0.

Notice how the efficient allocation is influenced by TFP and government expenditure shocks, but

not by cost-push shocks. The value of the real interest rate in the non-stochastic steady state is

given by r̂ = 1
β
− 1, which corresponds to 1 percent in annual terms. We define the efficient output

gap as the difference between log- consumption in the baseline model and that in the efficient

allocation:

xt ≡ log (ct)− log (ĉt) .

Flexible-price equilibrium. We consider the counterfactual equilibrium with flexible prices,

that is, when θ = 0. The optimal relative reset prices and price dispersion remain at one,

p∗t = ∆t = 1, reflecting that individual prices are always optimal. This setup creates a potential

wedge between the marginal rate of substitution between consumption and labor and the marginal

rate of transformation, as

h∗ωt c
∗γ
t =

At

(1 + τt)M
=

At

ηtξt (1− τ̄)M
=

At

ηtξt
,

where, in the last equality, we apply the fact that the labor subsidy neutralizes the average

markup.16 Here, ηtξt represents the cost-push shock, which has a mean of one in the normal-times

regime, but a mean of M in the persistent supply shocks regime. Consumption in this case satisfies

the equation

c∗t + gt = y∗t = Ath
∗
t = A

1
ω
+1

t (ηtξt)
− 1

ω c∗t
− γ

ω . (17)

This can be rewritten as (
c∗t + gt
At

)ω

− At

(ηtξt)c∗t
γ = 0. (18)

Notice that consumption now depends on the cost-push shock. We define a stochastic steady state

16We denote variables in the flexible-price equilibrium with a star.
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(SSS) in this economy as a steady state when the innovations of the temporary and persistent

shocks are zero, and the temporary shocks remain at their mean values. This is an adaptation of

the standard concept of stochastic steady state (SSS) to the case of a Markov-switching model,

which is instrumental in understanding model dynamics. Given that the persistent shock has two

different values, the economy exhibits two SSSs, one in each regime.

Natural rates. The real interest rate in the flexible-price economy satisfies the Euler equation

1 = βEt

[
c∗t

γ

c∗t+1
γ

]
(1 + r∗t ) .

If the economy is in regime 1, this equation implies

1

β (1 + r∗t )
= c∗1,t

γ

(
p12Et

[
1

c∗2,t
γ

]
+ (1− p12)Et

[
1

c∗1,t
γ

])
,

where the notation zn,t denotes variable z at time t and regime n = {1, 2}. The neutral rate in the

SSS of regime 1 thus satisfies

1 + r∗1,ss =
1

β

c∗2,ss
γ(

p12c∗1,ss
γ + (1− p12) c∗2,ss

γ
) , (19)

reflecting that if the economy remains in regime 1, consumption remains at its SSS value c∗1,ss,

whereas if a regime change occurs in the next period, consumption jumps to the SSS in regime 2,

c∗2,ss. We denote the SSS value of the real rate in the flexible-price economy as the natural rate,

similar to the definition in Obstfeld (2023): the “real rate prevailing over a long-run equilibrium in

the absence of nominal rigidities.”

Each of these consumption levels is a solution to the SSS case of equation (17):

c∗n,ss + ḡ = (ηnξn,ss)
− 1

ω (c∗n,ss)
− γ

ω ,

where ηnξn,ss equals one in regime 1, and M in regime 2. The values are c∗1,ss = 0.9377 and

c∗2,ss = 0.8877. Since c∗2,ss < c∗1,ss, the denominator on the right-hand side of equation (19) exceeds

the numerator (c∗2,ss)
γ. This implies that the natural rate in regime 1, r∗1,ss, is lower than that in
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the efficient allocation, 1/β. Conversely, the natural rate in regime 2, r∗2,ss, is higher than that in

the efficient allocation. In our calibration, these values are 0 percent and 2.7 percent, respectively,

compared to 1 percent in the efficient allocation, as shown in the first column of Table 2.

The large differences in the natural rate as a result of the cost-push shock regime are driven by

a precautionary-savings motive by households. In normal times, households anticipate that, with a

certain probability, the economy may shift to the other regime, where consumption will be lower.

In anticipation of this event, they attempt to save more, but given the fixed supply of government

debt —the only asset in this economy— their increased demand for savings merely leads to a fall

in the bond return, i.e., in the natural rate. During bad times households are forced to reduce

their savings to smooth consumption, which results in a higher natural rate.

4.2 The economy under a standard Taylor rule

Ergodic distribution and SSSs. In the baseline case with nominal rigidities and a Taylor rule

of the form (10), the central bank controls nominal interest rates to steer the economy towards an

inflation level π̄. Figure 2 shows the ergodic distribution in this case. It is obtained by simulating

the economy for a large number of periods. The blue bars represent the share of the ergodic

distribution that happens during the normal times regime, whereas the orange bars correspond to

those periods in the persistent supply shock regime.

Several results emerge. First, the considered variables (inflation, output gap, nominal and

real interest rates) exhibit bimodality : the distribution of realizations clusters around two distinct

points. These two points correspond to the stochastic steady states (SSS) of each variable, as

reported in the second column of Table 2.

Second, long-term inflation in this model is not zero. In the normal times regime it is negative

(-0.9 percent) and in the bad times regime it is positive (1.6 percent). Such deviations from the

central bank target π̄ = 0 are the result of the Taylor rule not targeting the adequate natural rate.

If we evaluate the Taylor rule in a SSS n = 1, 2, we obtain

in,ss ≃
(
1

β
− 1

)
+ π̄ + ψ (πn,sss − π̄) = r̄ + (1− ψ) π̄ + ψπn,sss,
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Figure 2: Ergodic distribution
Note: The figure displays the ergodic distribution in the model under a standard Taylor rule and a modified one.

Colors distinguish the two regimes: blue denotes the samples corresponding to the standard Taylor rule in normal

times, and orange in bad times. Green is the modified Taylor rule in normal times and red in bad times. The figure

is produced by simulating the model for a large number of periods.

where r̄ is the real rate target of the central bank, which, under the Taylor rule (10), coincides

with the real rate in the non-stochastic steady state of the efficient allocation, r̄ = r̂. Replacing

the nominal rate using the Fisher equation in,ss = rn,ss + πn,sss, we get

πn,sss ≃ π̄ +
rn,ss − r̄

ψ − 1
. (20)

Equation (20) illustrates how long-run inflation deviates from the central bank’s target if the

monetary policy rule targets an incorrect long-term real rate. This equation was first proposed

by Campos et al. (2024) in the context of HANK models, where the natural rate is endogenous
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Flex. prices Taylor rule Mod. Taylor rule
Inflation
normal times 0.0% -0.9% 0.0%
bad times 0.0% 1.6% 0.0%

Output gap
normal times 0.0% -0.1% 0.0%
bad times -5.5% -5.4% -5.5%

Real interest rates
normal times 0.0% 0.1% 0.0%
bad times 2.7% 2.6% 2.7%

Nominal interest rates
normal times 0.0% -0.8% 0.0%
bad times 2.7% 4.2% 2.7%

Table 2: Stochastic steady state values.

to fiscal policy. In contrast, in our model, it is the regime-switching nature of the cost-push

shock that drives changes in the natural rate. In our model, there is a significant gap between

the natural rate in each regime and the central bank’s target rate: in normal times, the central

bank targets a natural rate that is too high, which tightens monetary policy excessively and

explains why inflation is consistently below target: π1,sss ≃ 0.1%− 1% = −0.9%. Conversely, in

bad times the central bank sets nominal rates too low, explaining why inflation is above target:

π2,sss ≃ 2.6%− 1% = 1.6%.

Despite the central bank’s failure to stabilize inflation in this economy, it meets its price

stability mandate on average. Average inflation in the ergodic distribution is -0.1 percent, and the

average real interest rate is 0.9 percent, satisfying equation (20) on average: 0.9%− 1% = −0.1%.

Third, real rates are slightly higher than natural rates in normal times and lower in the

persistent shocks regime. This small divergence between the long-term real rates and the natural

rates is due to the different values of SSS consumption. Compared to the flex-price allocation,

consumption is lower in normal times and higher in bad times: the SSS values are c1,ss = 0.9368

and c2,ss = 0.8883. Following the logic of equation (19) again, the jump in consumption between

the two regimes becomes slightly narrower, and so does the gap in real interest rates.

The difference in consumption concerning the flex-price allocation is a consequence of the

long-term impact of non-zero inflation on markups. Combining equations (7) and (2.4) in steady
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state, we have

wn,ss = At (ηnξn,ss)
−1

(
1− θ (1 + πn,ss)

ϵ−1

(1− θ)

) 1
1−ϵ

1− θβ (1 + πn,ss)
ϵ

1− θβ (1 + πn,ss)
ϵ−1 .

In the flex-price allocation, θ = 0 and this expression simplifies to wn,ss = At (ηnξn,ss)
−1, such

that in normal times wages coincide with those in the efficient allocation, w1,ss = At, whereas in

the bad times regime they are distorted w1,ss = At (η̄)
−1 < At, which leads to lower labor and

consumption in equilibrium. In the economy with nominal rigidities, long-term wages are also

affected by long-term inflation. This distortion operates against the effect of persistent cost-push

shocks. In the normal times regime, there is no distortion due to cost-push shocks. Still, negative

inflation introduces an additional distortion on wages, which leads to slightly lower output and

consumption. In the bad-times regime, however, the distortion due to cost-push shocks is high,

and positive inflation mitigates it to a limited extent, thus marginally increasing consumption.

This can be confirmed by comparing the values of the output gap, -0.1 percent and -5.4 percent,

with those under flexible prices, 0 percent and -5.5 percent. In both regimes, non-zero inflation

increases price dispersion, but this effect is second order compared to that on the average markup.

These results provide a rationale for the joint dynamics of inflation and long-term interest rates

before and after the Covid pandemic (Benigno et al. (2024)). Before Covid, long-term inflation

expectations in advanced economies, such as the Euro area, were below target while natural rate

estimates were close to zero or even negative. Since the pandemic, both inflation expectations and

natural rate estimates have increased abruptly in line with negative supply shocks, such as the

war in Ukraine or an incipient deglobalization process.

Modified Taylor rule. We consider an alternative monetary policy rule that is regime-

contingent. The new Taylor rule is

it = r̄t + ψ (πt − π̄) , (21)
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where the Taylor rule intercept equals the natural rate in each regime

r̄t = r∗n, if the regime at time t is n.

Here r∗n is the natural rate in regime n, that is, the SSS real rate in the counterfactual flex-price

allocation. In this case, it is easy to see that equation (20) is compatible with a zero inflation

target π̄ = 0. The third column in Table 2 confirms this: inflation is zero in both SSS and real rates

and output gaps coincide with those in the flex-price allocation. The red and green bars in Figure

2 display the ergodic distribution under this modified Taylor rule. They are again centered on the

SSS values. In particular, the inflation distribution is centered on zero inflation. The variances of

the different variables are similar under the original and the modified Taylor rules.

The policy prescription is clear: in the presence of persistent supply shocks the central bank

should endogenously adapt its interest rate target to track the natural rate, which becomes a

regime-contingent object.

Figure 3 displays the transitional dynamics after a regime change. It assumes that the economy

starts at the SSS of the normal-times regime and, at time zero, a transition happens to the

persistent-supply-shock regime, leaving the realization of all shocks at zero.

Under the Taylor rule (solid blue line) inflation, the output gap, and the real interest rate

(panels a-c) jump after the shock arrival and remain constant at their new SSS values. The price

level (panel d) changes its normal-times deflationary trend to an inflationary trend. The modified

Taylor rule (dashed red line) corrects the latter effect by keeping inflation anchored at zero.

Sensitivity to regime length. Figure 4 displays the sensitivity of SSS inflation and real

rates to alternative average lengths of the persistent supply shock period under the Taylor rule

(10). The blue solid line represents the baseline model. As discussed above, the parameter p21

controls the probability of transitioning from regime 2 (bad times) to 1 (normal times). This is

the inverse of the duration of the persistent cost-push shock. The baseline calibration implies an

average duration of 48 quarters.

The SSS values of inflation and the real interest rate are very nonlinear with respect to changes

in the average ration of the persistent supply shock. If the duration is reduced, making it less
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Figure 3: Response to a regime change (Taylor rule).
Note: The figure displays the transition from a normal times regime to a bad times regime in the case of a Taylor

rule (solid blue line) and modified Taylor rule (dashed red line). We set the innovations to the temporary shocks at

zero. The economy starts at the SSS of the normal times regime.

persistent, the SSS value of inflation and real rates during normal times converges to the one in

the efficient allocation (zero inflation and 1 percent rates). This is precisely because as p21 → 1

agents understand that the regime change is equivalent to a one-period iid shock, and thus the

SSS converges to the one in a model without regimes. If instead the duration increases, the values

of inflation and real rates eventually converge to values close to those in the baseline calibration.

The dashed red line in Figure 4 shows a counterfactual case in which p12 → 1, that is, in which

the average duration of the normal times times is one period. In this case, the convergence to the

SSS of the efficient allocation happens if the duration of the persistent shock regime increases.

The logic is reversed compared to the previous case. In this case the economy spends most of the

time in the bad times regime, but it experiences very short transitions to the normal-times regime,
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Figure 4: Sensitivity to regime length (Taylor rule).
Note: The figure displays the SSS values of inflation and the real interest rate for alternative values of the average

duration of the bad times regime. The blue line displays values in the baseline model and the dashed red line shows

a counterfactual case in which p12 → 1. The dotted gray line indicates the values in the efficient allocation.

equivalent to positive iid cost-push shocks, with temporarily reduced markups.

5 Optimal monetary policy response to persistent supply

shock

We turn next to analyze optimal monetary policy under both discretion and commitment. In

Section 5.1 we introduce each of these problems, and in 5.2 we discuss the main results.
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5.1 Statement of the problem

Discretion. First, consider the case in which the central bank maximizes household welfare under

discretion. The central bank value function is V (∆, A, τ, g, n), where price dispersion ∆t is the

endogenous state variable, {At, τt, gt} is a vector of TFP, cost-push, and government spending

shocks, and nt is the regime. This problem, therefore, includes one endogenous state variable,

three exogenous variables, and a regime change. The value function satisfies the Bellman equation,

that is,

V (∆t−1, At, τt, gt, nt) = max
ct,ht,wt,πt,p∗t ,∆t

c1−γ
t

1− γ
− h1+ω

t

1 + ω
+ βEt [V (∆t, At+1, τt+1, gt+1)]

subject to the equilibrium conditions

c−γ
t = hωt /wt, (22)

1 = θ (1 + πt)
ϵ−1 + (1− θ) (p∗t )

1−ϵ , (23)

∆t = θ (1 + πt)
ϵ ∆t−1 + (1− θ) (p∗t )

−ϵ , (24)

yt = Atht (∆t)
−1 , (25)

yt = ct + gt. (26)

p∗t = M
ytwt (1 + τt) (At)

−1 + Et

[
θΛt,t+1 (1 + πt+1)

ϵ ΞN
t+1

]
yt + Et

[
θΛt,t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

] . (27)

Under discretion, the central bank cannot commit to future policy paths. It, however, understands

how its policies may affect price dispersion, which in turn affect expectations by constraining the

actions of the central bank itself in the future. The complete set of first-order conditions can be

found in Appendix A.2.

Commitment. We also consider the case in which the central bank maximizes household

welfare under commitment. In this scenario, the central bank solves the Ramsey problem

max
{ct,ht,wt,πt,p∗t ,∆t}t≥0

E0

∞∑
t=0

βt

 c1−γ
t

1− γ
−

(
(ct+gt)∆t

At

)1+ω

1 + ω

 ,
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subject to the equilibrium conditions (22)-(26) and the constraints

p∗tΞ
D
t = MΞN

t ,

ΞN
t = (ct + gt)

1+ω

(
∆t

At

)ω

cγt (1 + τt) (At)
−1 + Et

[
βθcγt c

−γ
t+1 (1 + πt+1)

ϵ ΞN
t+1

]
, (28)

ΞD
t = (ct + gt) + Et

[
βθcγt c

−γ
t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
. (29)

The first-order conditions can be found in Appendix A.3. There, it can be seen that a recursive

solution to the Ramsey problem is a function of seven states: the five states already present in the

problem under discretion, plus the two backward-looking Lagrange multipliers associated with

equations (28)-(29).

We focus on the optimal “timeless policy” (Woodford, 2003), which assumes that the economy

has been operating under the optimal policy for a long period of time. Consequently, the central

bank is bound by a past history of commitments. The backward-looking Lagrange multipliers,

associated with equations (28) and (29), evolve around their SSS values.17

5.2 Optimal response to persistent supply shock

Ergodic distribution and SSSs. Similar to our approach in Section 4, we first analyze the

ergodic distribution of the main macroeconomic variables under the optimal policy. Figure 5

displays the ergodic distributions in the case of discretion. The results show that inflation, the

output gap, and real interest rates still exhibit bimodal distributions, as in the standard Taylor

rule discussed earlier, but the distribution differs markedly from the previous case.

First, inflation clusters around two points: zero inflation and 2.6 percent inflation. This is

confirmed by the SSS analysis, shown in the first column of Table 3. Compared to the Taylor rule,

inflation in normal times now clusters around zero, as the central bank correctly identifies the

long-run natural rate in this regime and thus achieves its inflation target. This contrasts with the

bad times regime, where inflation centers around 2.6 percent, a value significantly higher than

under a Taylor rule. This difference is not due to a systematic error by the central bank in assessing

17This contrasts with the case of the optimal “time-0” policy, in which the backward-looking Lagrange multipliers
start at zero, reflecting the absence of pre-commitments.
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Figure 5: Ergodic distribution: discretion.
Note: The figure displays the ergodic distribution in the model under discretion. Colors distinguish the two regimes:

blue denotes the samples corresponding to normal times, and orange to bad times. The figure is produced by

simulating the model for a large number of periods.

the natural rate, as was the case with the Taylor rule, but rather due to the “inflationary bias”

originally highlighted by Kydland and Prescott (1977) and Barro and Gordon (1983). This bias

emerges due to the distortion created by the persistent supply shock, as it offsets the optimal labor

subsidy leading to a distorted average markup.The central bank has an incentive to surprise private

agents by loosening monetary policy and creating inflation, in an attempt to reduce the markup.

However, the private sector anticipates this incentive and incorporates it into their expectations,

leading to higher prices. The outcome is that the economy ends up with a systematically higher

level of inflation due to the central bank’s lack of commitment.

The situation is quite different in the case of optimal monetary policy under commitment (cf.

Figure 6). Inflation is now tightly centered around zero in both regimes, as the central bank can

29



Discretion Commitment
Inflation
normal times 0.0% 0.0%
bad times 2.6% 0.0%

Output gap
normal times 0.0% 0.0%
bad times -5.5% -5.4%

Real interest rates
normal times 0.1% 0.4%
bad times 2.6% 2.2%

Nominal interest rates
normal times 0.1% 0.4%
bad times 5.2% 2.2%

Table 3: Stochastic steady state values.

credibly commit to maintaining long-run inflation at zero. The SSS values of the real interest

rate differ from the natural rates, as shown in the second column of Table 3. This occurs because

consumption is higher in the bad times regime compared to the flexible-price equilibrium, and

lower in normal times. The reason is that, as we will see next, monetary policy provides some

cushion during the dynamic transition between the two regimes, thereby reducing precautionary

saving motives.18

Dynamics. Figures 5 and 6 also illustrate that the variance of inflation is quite low in both

models compared to the cases with a Taylor rule, as the central bank now optimally responds to

shocks. This is especially pronounced under commitment, as the “divine coincidence” (Blanchard

and Gaĺı, 2007) holds, and the central bank responds to TFP and government spending shocks

by maintaining inflation at zero.19 This contrasts with the case of the modified Taylor rule (21)

above, where the central bank responds following the same rule regardless of the origin of the

shock and the variance of macroeconomic variables is larger.

In the case of temporary (autoregressive) cost-push shocks, the prescription in the New

Keynesian model is to “lean against the wind” (Gaĺı, 2008), tolerating a rise in inflation to partially

cushion the fall in the output gap. This differs from the dynamics in the flexible-price equilibrium,

18All cases with nominal rigidities, whether under Taylor rules or optimal policy, show lower real interest rates
between the two regimes compared to the natural rates for this reason. However, the effect is most pronounced in
the case of the optimal policy under commitment.

19The divine coincidence only holds in normal times, as the SSS in the persistent supply shock regime is distorted,
and government purchases are present (see Benigno and Woodford, 2005).
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Figure 6: Ergodic distribution: commitment.
Note: The figure displays the ergodic distribution in the model under commitment. Colors distinguish the two

regimes: blue denotes the samples corresponding to normal times, and orange to bad times. The figure is produced

by simulating the model for a large number of periods.

where inflation is always zero. By tolerating the rise in inflation, the central bank aims to minimize

the distortions associated with the temporary increase in markups, albeit at the cost of higher

price dispersion. When the central bank can commit, it ensures that the initial rise in inflation is

later offset by a deflationary period, bringing the price level back to its pre-shock position. The

solid blue line in Figure 7 shows the optimal response to a temporary AR(1) shock when the

economy is in the bad times regime. The optimal policy exhibits this price-level targeting feature,

as the price level returns to its initial value. This contrasts with the modified Taylor rule (dashed

red line), where “bygones are bygones” and the price level increases permanently. Compared to

the modified Taylor rule, the strategy under commitment results in lower inflation and reduced

output gap volatility.

31



Figure 7: Impulse response to a transitory cost-push shock: commitment versus Taylor rule.
Note: The figure displays the impulse response to a temporary AR(1) cost-push shock when the economy is in the

bad times regime. The figure displays the response in the case of an optimal policy under commitment (solid blue

line) and with a modified Taylor rule (dashed red line).

The optimal prescription regarding cost-push shocks changes when these shocks become

persistent. Figure 8 shows the transition from normal times to the persistent-supply-shock regime,

similar to Figure 3, but this time comparing discretion and commitment.

Two conclusions emerge. First, in the case of discretion, the transition to the high-inflation

SSS occurs almost immediately after the regime shift, without any overshooting of inflation. The

only exception is price dispersion, which progressively evolves towards its higher SSS value. This

result complements the findings in Afrouzi et al. (2023), who analyze the transitional dynamics

under discretion from a low to a high non-stochastic steady state in a similar model. The main

difference between the two studies is that while risk is anticipated here, Afrouzi et al. (2023)

examine transitional dynamics following a one-off, unanticipated shock under perfect foresight.
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Figure 8: Response to a regime change: commitment versus discretion.
Note: The figure displays the transition from a normal times regime to a bad times regime in the case of the

optimal policy under commitment (solid blue line) and discretion (dashed red line). We set the innovations to the

temporary shocks at zero. The economy starts at the SSS of the normal times regime.

They find that inflation overshoots before converging to the high-inflation steady state. In our

model, there is only one non-stochastic steady state, and we do not consider transitional dynamics.

Second, the optimal policy under commitment tolerates a temporary increase in inflation in

response to a permanent cost-push shock. This is similar to the case with temporary shocks, but

the key difference is that inflation now reverts back to zero without a subsequent disinflation

period. In other words, bygones are bygones, and the central bank does not attempt to reverse the

increase in the price level.

To provide some intuition for this result, Figure 9 plots the optimal response under commitment

to two autoregressive cost-push shocks: one calibrated as in Table 1, and the other with a higher

persistence, featuring an autoregressive coefficient of 0.99. The figure shows that, as cost-push
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shocks become more persistent, the optimal policy results in a smaller but longer deflationary

period, leading to prolonged deviations of the price level from its pre-shock value. This is consistent

with the theoretical results derived from the log-linear approximation around the non-stochastic

steady state found in textbooks (e.g., Gaĺı, 2008). In that framework, the optimal response under

commitment is given by:

πt = −1

ϵ
(xt − xt−1) ,

where x is the output gap. This implies that inflation reacts in the opposite direction to the change

in the output gap. As the shock becomes more persistent, the change in the output gap diminishes.

In the limit, xt jumps down on impact and then remains constant, which implies that inflation

increases on impact and then remains constant. The logic above is local in nature; nonetheless, it

provides a reasonable approximation to the global dynamics in response to a regime change, as

shown in Figure 8.

It could be argued, however, that even if the central bank tolerates persistent deviations in the

price level, the positive inflationary periods during the transition to the persistent-supply-shocks

regime should offset the deflationary periods when the transition occurs in the opposite direction,

thus keeping the average price level constant in the ergodic distribution. This is not the case, as

shown in Figure 12 in Appendix B. The increase in inflation is greater than the decrease, resulting

in an overall positive trend in prices.20

Robustness to shock size. Figure 14 in Appendix B analyzes the optimal response under

commitment to a larger regime change: instead of a mean of η̄, we consider a mean of 2η̄. The

new mean implies a greater change in both the output gap and the real interest rate between the

two regimes. This occurs because the change in SSS consumption between the two regimes is now

larger, and the level of distortions in the bad times regime is also higher than in the baseline. The

temporary increase in inflation is also more pronounced in this case, leading to a larger increase

in price dispersion. Nonetheless, the key qualitative results remain unchanged: in particular, the

optimal response still implies an increase in inflation that reverts back to zero after a few quarters,

20In the standard New Keynesian model, the optimal response to a large temporary cost-push shock deviates
slightly from pure price-level targeting. This deviation is nevertheless tiny compared to the one introduced by the
optimal response to a persistent cost-push shock, as displayed in Figure 13 in Appendix B.

34



Figure 9: Impulse response to a transitory cost-push shock with different levels of persistence.
Note: The figure displays the impulse responses to a temporary cost-push shock under the optimal policy with

commitment. We consider two shocks of different autoregressive coefficients in a model without persistent cost-push

shocks. The solid blue line is the baseline with ρτ = 0.90 and the dashed red line is more persistent ρτ = 0.99.

without any deflationary period.

6 Optimal policies with the zero lower bound

We now extend the model to include an occasionally-binding zero lower bound (ZLB) constraint,

introducing an additional source of nonlinearity at the macroeconomic level. First, we analyze the

results under Taylor rules in Section 6.1, and then we revisit the case of optimal monetary policy

in Section 6.2.

35



6.1 Taylor rules

Standard Taylor rule. We consider the case in which the Taylor rule (10) includes a ZLB

constraint:

it = max

{
(1 + π̄)

β
− 1 + ψ (πt − π̄) , 0

}
.

The ergodic distribution is displayed in Figure 10 in blue and orange, and the SSS values are

shown in the first column of Table 4. In the absence of the ZLB, the nominal interest rate in the

SSS of the normal-times regime is negative (-0.8%, see Table 2), leading to a significant mass in

the negative territory within the ergodic distribution of nominal rates. However, when the ZLB

constraint binds, as shown in panel (d) of Figure 10, instead of negative nominal rates, we observe

a mass point at zero interest rates. The nominal interest rate in the SSS of the normal-times

regime is slightly above zero (0.1%), resulting from both a higher long-term rate (0.6% versus 0.1%

without the ZLB) and higher inflation (-0.4% compared to -0.9%).

Taylor rule Mod. Taylor rule Discretion Commitment
Inflation
Normal times -0.4% 0.0% 0.0% 0.0%
persistent supply shock 1.6% 0.0% 2.6% 0.0%
Output gap
Normal times -0.2% -0.1% 0.0% -0.1%
persistent supply shock -5.4% -5.5% -5.5% -5.4%
Real interest rates
Normal times 0.6% 0.1% 0.1% 0.3%
persistent supply shock 2.6% 2.7% 2.6% 2.3%
Nominal interest rates
Normal times 0.1% 0.1% 0.1% 0.3%
persistent supply shock 4.2% 2.8% 5.2% 2.3%

Table 4: Stochastic steady-state values, model with ZLB.

These results may seem counterintuitive in light of existing research. Several papers have

found that the presence of the ZLB introduces a “deflationary bias” in both RANK and HANK

models, decreasing rather than increasing the long-term real interest rate.21 The intuition is that

the central bank cannot provide the necessary degree of monetary policy accommodation during

ZLB spells, which are both deflationary and contractionary. Households anticipate this, increasing

21See, for instance, Nakata and Schmidt (2019), Bianchi et al. (2021), or Fernández-Villaverde et al. (2023).
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Figure 10: Ergodic distribution: Taylor rules with a ZLB
Note: The figure displays the ergodic distribution in the model under a standard Taylor rule and a modified one

with an occasionally binding ZLB. Colors distinguish the two regimes: blue denotes the samples corresponding to

the standard Taylor rule in normal times, and orange in bad time. Green is the modified Taylor rule in normal

times and red in bad times. The figure is produced by simulating the model for a large number of periods.

their demand for safe assets even when the economy is outside the ZLB, thereby depressing the

natural rate.

The reasoning changes in the face of persistent supply shocks. During normal times, the nominal

rate would be negative in the SSS absent the ZLB. As the nominal rate cannot be negative if the

ZLB is active, the central bank should guarantee that SSS inflation is large enough. According to

equation (20), SSS inflation is a function of the policy gap between the long-term real rate and

the central bank’s target of 1%, thus the real rate needs to increase in order to raise inflation.

A long-term real rate of 0.6% and an inflation rate of -0.4% are the smallest pair of values that

satisfy both the Fisher equation and equation (20).
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Modified Taylor rule. We also extend the modified Taylor rule (21) to include a ZLB

constraint. Results are displayed in Figure 10 in green and red, and the SSSs in the second column

of Table 4. In this case, the presence of the ZLB does not change significantly the SSS. In terms

of the ergodic distribution, the presence of the ZLB skews the distribution of inflation, real and

nominal rates to the right.

6.2 Optimal monetary policy

We turn next to the design of optimal monetary policy. The ZLB introduces an additional

occasionally binding constraint, it ≥ 0, into the central bank’s optimization problem. The complete

set of first-order conditions can be found in Appendix A.4.

Ergodic distribution and SSS. Figure 15 in Appendix B and the third and fourth columns

in Table 4 display the ergodic distribution as well as the SSS values in the case of optimal policy

under discretion and commitment. In the case of discretion, results are very similar to those

without the ZLB.22 The main difference is the right skewness in the ergodic distribution of inflation

and interest rates.

In the case of commitment, SSS optimal inflation remains at zero in both regimes, despite

the presence of the ZLB. Real interest rates, however, increase in normal times but decrease in

bad times compared to the case without the ZLB. The reason is, again, precautionary savings.

The difference is that, in this case, the ZLB affects more during normal times, as the central

bank cannot provide the necessary monetary policy stimulus when nominal rates hit the ZLB.

Agents now save comparatively more in bad times, and less in normal times, which explains the

comparative change in rates. This “preemptive easing” of policy in the presence of the ZLB

has been discussed by Daudignon and Tristani (2023) in the context of a New Keynesian model

with natural rate shocks. Here we show how this effect can be second-order compared to that of

persistent supply shocks.

Impulse responses. Finally, we analyze the optimal policy under commitment in response to

a regime change when the economy is in the normal-times regime and nominal rates are close to

22The long-run real rate is slightly lower in normal times, 0.07% instead of 0.09%, consistent with the preemptive
easing identified by Adam and Billi (2007) and Nakov et al. (2008).
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Figure 11: Response to a regime change: commitment with ZLB.
Note: The figure displays the transition from a normal times regime to a bad times regime in the case of the

optimal policy under commitment without the ZLB (solid blue line) and with the ZLB (dashed red line). We set

the innovations to the temporary shocks at zero. The economy starts at the SSS of the normal times regime in each

case.

the ZLB constraint. Figure 11 compares the baseline without the ZLB (solid blue line) with the

case featuring an occasionally binding ZLB.

Once the regime change occurs, the central bank tolerates a temporary rise in inflation in

both cases, as described above. However, the path of nominal rates differs significantly. In the

baseline model, nominal rates abruptly fall on impact, as the central bank uses monetary policy to

partially cushion the distortions in markups. When the ZLB is present, this abrupt reduction in

nominal rates is not feasible as they hit the ZLB. The central bank tightens them at a slower pace

compared to the baseline to compensate for the lack of “policy space”. Consequently, in the ZLB

case, the increase in inflation is larger, leading to a greater deviation in the price level from its
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pre-shock value. The “bygones are bygones”effect is amplified at the ZLB. Notice that this result

shares some of the logic of the “low for longer”optimal policy response to demand shocks in the

presence of the ZLB (Eggertsson et al., 2003). The inability of the central bank to reduce nominal

rates as much as needed due to the ZLB forces it to tighten nominal rates at a slower pace.

7 Conclusions

This paper advances the understanding of optimal monetary policy in the presence of persistent

supply shocks by extending the standard New Keynesian framework. We introduce a novel,

regime-switching cost-push shock that captures the economy’s transition between “normal times”

and “bad times”, characterized by sustained increases in production costs.

This extension challenges traditional monetary policy prescriptions derived under the assumption

of temporary shocks, particularly the price-level targeting strategies that may not be applicable in

a regime-switching environment. First, we demonstrate that traditional Taylor rules fail to stabilize

inflation across different regimes due to endogenous shifts in the natural interest rate. Second, an

inflationary bias emerges during bad times when analyzing optimal policy under discretion because

the central bank cannot commit to future policies. Third, under commitment, the central bank

cushions the persistent supply shocks by allowing for a temporary increase in inflation, followed by

a gradual return to the target without necessitating a deflationary period. This contrasts with

the standard prescription under temporary shocks, where future deflation is used to offset current

inflation, reaffirming that “bygones are bygones” in the context of persistent shocks. This result is

reinforced if monetary policy is constrained by the zero lower bound.

These findings have significant implications for both academic research and practical policy-

making. They suggest that central banks need to consider the potential for persistent supply

disruptions and the associated shifts in the natural rate when designing monetary policy frameworks.

Traditional rules that do not account for regime changes may lead to systematic deviations from

inflation targets and suboptimal economic outcomes.

Methodologically, our paper is, to the best of our knowledge, the first to solve such a New

Keynesian model globally with a persistent, regime-switching cost-push shock, utilizing advanced
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computational techniques based on deep learning. This allows us to capture the global dynamics

of the model accurately and efficiently.
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Gaĺı, J. (2008): Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New

Keynesian Framework, Princeton University Press.

Goodfellow, I., Y. Bengio, and A. Courville (2016): Deep Learning, MIT Press, http:

//www.deeplearningbook.org.

Gu, Z., M. Lauri‘ere, S. Merkel, and J. Payne (2024): “Global Solutions to Master Equa-

tions for Continuous Time Heterogeneous Agent Macroeconomic Models,” Papers 2406.13726,

arXiv.org.

Han, J., Y. Yang, and W. E (2021): “DeepHAM: A global solution method for heterogeneous

agent models with aggregate shocks,” arXiv preprint arXiv:2112.14377.

Hornik, K., M. Stinchcombe, and H. White (1989): “Multilayer feedforward networks are

universal approximators,” Neural Networks, 2, 359–366.

Kaplan, G., G. Nikolakoudis, and G. L. Violante (2023): “Price Level and Inflation

Dynamics in Heterogeneous Agent Economies,” Tech. rep., Princeton.

King, R. G. and A. L. Wolman (2004): “Monetary Discretion, Pricing Complementarity, and

Dynamic Multiple Equilibria,” The Quarterly Journal of Economics, 119, 1513–1553.

Kingma, D. P. and J. Ba (2014): “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980.

45

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Kydland, F. E. and E. C. Prescott (1977): “Rules Rather Than Discretion: The Inconsistency

of Optimal Plans,” Journal of Political Economy, 85, 473–491.

Maechler, A. (2024): “Monetary policy in an era of supply headwinds – do the old principles still
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Online appendix

A Optimal policy derivations

This Appendix first reproduces the private equilibrium conditions and then derives the first-order

conditions of the optimal monetary policy problem under discretion and commitment that we

introduced in Section 5.

A.1 Equilibrium conditions

The equilibrium conditions are given by:

c−γ
t =λt, (30)

hωt =wtλt, (31)

λt =βEt

[(
1 + it

1 + πt+1

)
λt+1

]
, (32)

ΞN
t =ytwt (1 + τt) (At)

−1 + Et

[
θΛt,t+1 (1 + πt+1)

ϵ ΞN
t+1

]
, (33)

ΞD
t =yt + Et

[
θΛt,t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
, (34)

p∗t =MΞN
t

ΞD
t

, (35)

1 =θ (1 + πt)
ϵ−1 + (1− θ) (p∗t )

1−ϵ , (36)

∆t =θ (1 + πt)
ϵ ∆t−1 + (1− θ) (p∗t )

−ϵ . (37)

The shocks are:
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gt = ḡg̃t, (38)

log (At) =
(
1− ρA

)(
−
(
σA
)2

2

)
+ ρA log (At−1) + εAt , (39)

log (g̃t) = (1− ρg)

(
−(σg)2

2

)
+ ρg log (g̃t−1) + εgt , (40)

log(ξt) = (1− ρτ )

(
−(στ )2

2

)
+ ρτ log(ξt−1) + ετt , (41)

ηt = εηt . (42)

where εAt ∼ N
(
0, σA

)
, εgt ∼ N (0, σg), ετt ∼ N (0, στ ), and εηt ∼ [[1− p12, p12], [p21, 1− p21]].

A.2 Optimal policy under discretion

Next we derive the first-order conditions of the problem under discretion. In the case in which the

central bank cannot commit to future policies, we express the problem as follows:

V (∆t−1, At, τt, gt) = max
c1−γ
t

1− γ
−

(
(ct+gt)∆t

At

)1+ω

1 + ω
+ βEt [V (∆t, At+1, τt+1)]

subject to

p∗t [(ct + gt) + cγtEt [F (∆t, At+1, τt+1)]] = M
[
(ct + gt)

1+ω

(
∆t

At

)ω

cγt (1 + τt) (At)
−1+

cγtEt [G (∆t, At+1, τt+1)]] ,

1 = θ (1 + πt)
ϵ−1 + (1− θ) (p∗t )

1−ϵ ,

∆t = θ (1 + πt)
ϵ ∆t−1 + (1− θ) (p∗t )

−ϵ .
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where we have defined

F (∆t−1, At, τt, gt, nt) =θβc
−γ
t (1 + πt)

ϵ−1 ΞD
t ,

G (∆t−1, At, τt, gt, nt) =θβc
−γ
t (1 + πt)

ϵ ΞN
t .

The Lagrangian is given by:

L =
c1−γ
t

1− γ
−

(
(ct+gt)∆t

At

)1+ω

1 + ω
+ βEt [V (∆t, At+1, τt+1)]

+ µt (p
∗
t [(ct + gt) + cγtEt [F (∆t, At+1, τt+1)]]−M[

(ct + gt)
1+ω

(
∆t

At

)ω

cγt (1 + τt) (At)
−1 + cγtEt [G (∆t, At+1, τt+1)]

])
+ ρt

[
−1 + θ (1 + πt)

ϵ−1 + (1− θ) (p∗t )
1−ϵ]

+ ζt
[
−∆t + θ (1 + πt)

ϵ ∆t−1 + (1− θ) (p∗t )
−ϵ] .

The first-order condition with respect to consumption reads:

0 =c−γ
t − (ct + gt)

ω

(
∆t

At

)1+ω

+ µt

[
p∗t
(
1 + γcγ−1

t Et [F (∆t, At+1, τt+1)]
)
−

M
(
((1 + ω) ct + γ (ct + gt)) (ct + gt)

ω cγ−1
t

(
∆t

At

)ω

(1 + τt) (At)
−1 + γcγ−1

t Et [G (∆t, At+1, τt+1)]

)]
.

(43)

The first-order condition with respect to inflation is given by:

0 = ρtθ (ϵ− 1) (1 + πt)
ϵ−2 + ζtθϵ (1 + πt)

ϵ−1∆t−1. (44)

The first-order condition with respect to the optimal price is:

0 =µt [(ct + gt) + cγtEt [F (∆t, At+1, τt+1)]] +

ρt(1− θ) (1− ϵ) (p∗t )
−ϵ − ζt(1− θ)ϵ (p∗t )

−ϵ−1 .

(45)
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We substitute ΞD
t = (ct + gt) + cγtEt [F (∆t, At+1, τt+1)] and obtain:

0 =µtΞ
D
t + ρt(1− θ) (1− ϵ) (p∗t )

−ϵ − ζt(1− θ)ϵ (p∗t )
−ϵ−1. (46)

Finally, the first order condition with respect to price dispersion

0 =−

(
(ct+gt)∆t

At

)1+ω

∆t

+ βEt

[
∂V

∂∆t

]
− ζt+

µt

[
p∗t c

γ
tEt

[
∂F

∂∆t

]
−M

(
(ct + gt)

1+ω cγt
ω

∆t

(
∆t

At

)ω

(1 + τt) (At)
−1 + cγtEt

[
∂G

∂∆t

])]
.

(47)

According to the envelope theorem, the following holds at the optimum:

∂V

∂∆t−1

=
∂L

∂∆t−1

= θ(1 + πt)
εζt. (48)

Therefore we can substitute it in equation (47):

Et

[
∂V

∂∆t

]
= Et [θ(1 + πt+1)

εζt+1] . (49)
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The full set of equations is then given by:

0 =c−γ
t − (ct + gt)

ω

(
∆t

At

)1+ω

+ µt

[
p∗t
(
1 + γcγ−1

t Et [F (∆t, At+1, τt+1)]
)
− (50)

M
(
((1 + ω) ct + γ (ct + gt)) (ct + gt)

ω cγ−1
t

(
∆t

At

)ω

(1 + τt) (At)
−1 + γcγ−1

t Et [G (∆t, At+1, τt+1)]

)]
,

0 =ρtθ (ϵ− 1) (1 + πt)
ϵ−2 + ζtθϵ (1 + πt)

ϵ−1∆t−1, (51)

0 =µt [(ct + gt) + cγtEt [F (∆t, At+1, τt+1)]] + ρt(1− θ) (1− ϵ) (p∗t )
−ϵ − ζt(1− θ)ϵ (p∗t )

−ϵ−1 , (52)

0 =µtΞ
D
t + ρt(1− θ) (1− ϵ) (p∗t )

−ϵ − ζt(1− θ)ϵ (p∗t )
−ϵ−1 , (53)

0 =−

(
(ct+gt)∆t

At

)1+ω

∆t

+ βEt [θ(1 + πt+1)
εζt+1]− ζt+ (54)

µt

[
p∗t c

γ
tEt

[
∂F

∂∆t−1

]
−M

(
(ct + gt)

1+ω cγt
ω

∆t

(
∆t

At

)ω

(1 + τt) (At)
−1 + cγtEt

[
∂G

∂∆t−1

])]
,

c−γ
t =λt, (55)

hωt =wtλt, (56)

ΞN
t =ytwt (1 + τt) (At)

−1 + Et

[
θΛt,t+1 (1 + πt+1)

ϵ ΞN
t+1

]
, (57)

ΞD
t =yt + Et

[
θΛt,t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
, (58)

p∗t =MΞN
t

ΞD
t

, (59)

1 =θ (1 + πt)
ϵ−1 + (1− θ) (p∗t )

1−ϵ , (60)

∆t =θ (1 + πt)
ϵ∆t−1 + (1− θ) (p∗t )

−ϵ . (61)
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A.3 Optimal policy under commitment

Finally, we analyze the optimal policy under commitment. The Lagragian is given by:

L = E0

∞∑
t=0

βt

 c1−γ
t

1− γ
−

(
(ct+gt)∆t

At

)1+ω

1 + ω


+ E0

∞∑
t=0

βtµt

[
−p∗tΞD

t +MΞN
t

]
+ E0

∞∑
t=0

βtνt
[
−1 + θ (1 + πt)

ϵ−1 + (1− θ) (p∗t )
1−ϵ]

+ E0

∞∑
t=0

βtζt
[
−∆t + θ (1 + πt)

ϵ ∆t−1 + (1− θ) (p∗t )
−ϵ]

+ E0

∞∑
t=0

βtϑt

[
(ct + gt)

1+ω

(
∆t

At

)ω

cγt (1 + τt) (At)
−1 + Et

[
βθcγt c

−γ
t+1 (1 + πt+1)

ϵ ΞN
t+1

]
− ΞN

t

]
+ E0

∞∑
t=0

βtϱt
[
(ct + gt) + Et

[
βθcγt c

−γ
t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
− ΞD

t

]
.

The first-order condition with respect to consumption reads as:

0 = c−γ
t − (ct + gt)

ω

(
∆t

At

)1+ω

+ ϑt

[
((1 + ω) ct + γ (ct + gt)) (ct + gt)

ω cγ−1
t

(
∆t

At

)ω

(1 + τt) (At)
−1

+Et

[
βθγcγ−1

t c−γ
t+1 (1 + πt+1)

ϵ ΞN
t+1

]]
+ β−1ϑt−1 (−γ) βθcγt−1c

−γ−1
t (1 + πt)

ϵ ΞN
t

+ ϱt
[
1 + Et

[
βθγcγ−1

t c−γ
t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]]
+ β−1ϱt−1 (−γ) βθcγt−1c

−γ−1
t (1 + πt)

ϵ−1 ΞD
t .

(62)

The first order condition with respect to price dispersion is given by:

0 =−

(
(ct+gt)∆t

At

)1+ω

∆t

− ζt + βEt [ζt+1θ (1 + πt+1)
ϵ] + ϑtω (ct + gt)

1+ω cγt

(
∆t

At

)ω
1

∆t

(1 + τt) (At)
−1.

(63)

53



The first-order condition with respect to inflation reads as:

0 =νtθ (ϵ− 1) (1 + πt)
ϵ−2 + ζtθϵ (1 + πt)

ϵ−1∆t−1

+β−1ϵϑt−1βθc
γ
t−1c

−γ
t (1 + πt)

ϵ−1 ΞN
t

+β−1ϱt−1βθ (ϵ− 1) cγt−1c
−γ
t (1 + πt)

ϵ−2 ΞD
t .

(64)

The first-order condition with respect to the optimal price is:

0 =− µtΞ
D
t + νt(1− θ) (1− ϵ) (p∗t )

−ϵ + ζt(1− θ) (−ϵ) (p∗t )
−ϵ−1. (65)

The first order condition with respect to ΞN
t is given by:

0 = µtM− ϑt + β−1ϑt−1βθc
γ
t−1c

−γ
t (1 + πt)

ϵ (66)

Finally, the first order condition with respect to ΞD
t reads as:

0 = −µtp
∗
t − ϱt + β−1ϱt−1βθc

γ
t−1c

−γ
t (1 + πt)

ϵ−1. (67)
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The full set of equations is then given by:

0 =c−γ
t − (ct + gt)

ω

(
∆t

At

)1+ω

(68)

+ ϑt

[
((1 + ω) ct + γ (ct + gt)) (ct + gt)

ω cγ−1
t

(
∆t

At

)ω

(1 + τt) (At)
−1 +

Et

[
βθγcγ−1

t c−γ
t+1 (1 + πt+1)

ϵ ΞN
t+1

]]
+ β−1ϑt−1 (−γ) βθcγt−1c

−γ−1
t (1 + πt)

ϵ ΞN
t

+ ϱt
[
1 + Et

[
βθγcγ−1

t c−γ
t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]]
+ β−1ϱt−1 (−γ) βθcγt−1c

−γ−1
t (1 + πt)

ϵ−1 ΞD
t ,

0 =−

(
(ct+gt)∆t

At

)1+ω

∆t

− ζt + βEt [ζt+1θ (1 + πt+1)
ϵ] + ϑtω (ct + gt)

1+ω cγt

(
∆t

At

)ω
1

∆t

(1 + τt) (At)
−1 ,

(69)

0 =νtθ (ϵ− 1) (1 + πt)
ϵ−2 + ζtθϵ (1 + πt)

ϵ−1∆t−1 (70)

+ β−1ϵϑt−1βθc
γ
t−1c

−γ
t (1 + πt)

ϵ−1 ΞN
t

+ β−1ϱt−1βθ (ϵ− 1) cγt−1c
−γ
t (1 + πt)

ϵ−2 ΞD
t ,

0 =− µtΞ
D
t + νt(1− θ) (1− ϵ) (p∗t )

−ϵ + ζt(1− θ) (−ϵ) (p∗t )
−ϵ−1 , (71)

0 =µtM− ϑt + β−1ϑt−1βθc
γ
t−1c

−γ
t (1 + πt)

ϵ , (72)

0 =− µtp
∗
t − ϱt + β−1ϱt−1βθc

γ
t−1c

−γ
t (1 + πt)

ϵ−1 , (73)

c−γ
t =λt, (74)

hωt =wtλt, (75)

ΞN
t =ytwt (1 + τt) (At)

−1 + Et

[
θΛt,t+1 (1 + πt+1)

ϵ ΞN
t+1

]
, (76)

ΞD
t =yt + Et

[
θΛt,t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
, (77)

p∗t =MΞN
t

ΞD
t

, (78)

1 =θ (1 + πt)
ϵ−1 + (1− θ) (p∗t )

1−ϵ , (79)

∆t =θ (1 + πt)
ϵ ∆t−1 + (1− θ) (p∗t )

−ϵ . (80)
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A.4 ZLB

A.4.1 Discretion

We now consider the case in which the ZLB is a binding constraint. The Lagrangian is

L =
c1−γ
t

1− γ
−

(
(ct+gt)∆t

At

)1+ω

1 + ω
+ βEt [V (∆t, At+1, τt+1)]

+ µt (p
∗
t [(ct + gt) + cγtEt [F (∆t, At+1, τt+1)]]−M[

(ct + gt)
1+ω

(
∆t

At

)ω

cγt (1 + τt) (At)
−1 + cγtEt [G (∆t, At+1, τt+1)]

])
+ νt

[
−1 + θ (1 + πt)

ϵ−1 + (1− θ) (p∗t )
1−ϵ]

+ ζt
[
−∆t + θ (1 + πt)

ϵ ∆t−1 + (1− θ) (p∗t )
−ϵ]

+φt

[
−c−γ

t + (1 + it)Et [H (∆t, At+1, τt+1)]
]

+χtit,

(81)

where we define

H (∆t−1, At, τt) ≡β
(

1

1 + πt

)
c−γ
t . (82)

The first-order condition with respect to consumption is given by:

0 =c−γ
t − (ct + gt)

ω

(
∆t

At

)1+ω

+ µt

[
p∗t
(
1 + γcγ−1

t Et [F (∆t, At+1, τt+1)]
)
−

M
(
((1 + ω)ct + γ (ct + gt)) (ct + gt)

ωcγ−1
t

(
∆t

At

)ω

(1 + τt) (At)
−1

+γcγ−1
t Et [G (∆t, At+1, τt+1)]

)
+φtγc

−γ−1
t .

(83)

The first-order condition with respect to inflation reads as:

0 = νtθ (ϵ− 1) (1 + πt)
ϵ−2 + ζtθϵ (1 + πt)

ϵ−1∆t−1. (84)
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The first-order condition with respect to the optimal price is:

0 =µt [(ct + gt) + cγtEt [F (∆t, At+1, τt+1)]] +

νt(1− θ) (1− ϵ) (p∗t )
−ϵ − ζt(1− θ)ϵ (p∗t )

−ϵ−1 .

(85)

We substitute out ΞD
t = (ct + gt) + cγtEt [F (∆t, At+1, τt+1)] and obtain

0 =µtΞ
D
t + νt(1− θ) (1− ϵ) (p∗t )

−ϵ − ζt(1− θ)ϵ (p∗t )
−ϵ−1 . (86)

The first order condition with respect to nominal rates

0 = φtEt [H (∆t, At+1, τt+1)] + χt, (87)

where χt and φt are zero when the ZLB is not binding (it ≥ 0) .

Finally, the first order condition with respect to price dispersion is given by:

0 =−

(
(ct+gt)∆t

At

)1+ω

∆t

+ βEt

[
∂V

∂∆t−1

]
− ζt

+µt

[
p∗t c

γ
tEt

[
∂F

∂∆t−1

]
−M

(
(ct + gt)

1+ωcγt
ω

∆t

(
∆t

At

)ω

(1 + τt) (At)
−1 + cγtEt

[
∂G

∂∆t−1

])]
+(1 + it)Et

[
∂H

∂∆t−1

]
.

(88)

According the the envelope theorem, we have at the optimum

∂V

∂∆t−1

=
∂L

∂∆t−1

= θ(1 + πt)
εζt. (89)

Therefore we can substitute out the following in (88):

Et

[
∂V

∂∆t−1

]
= Et [θ(1 + πt+1)

εζt+1] . (90)
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The full set of equations is given by:

0 =c−γ
t − (ct + gt)

ω

(
∆t

At

)1+ω

+ µt

[
p∗t
(
1 + γcγ−1

t Et [F (∆t, At+1, τt+1)]
)
− (91)

M
(
((1 + ω)ct + γ (ct + gt)) (ct + gt)

ωcγ−1
t

(
∆t

At

)ω

(1 + τt) (At)
−1

+γcγ−1
t Et [G (∆t, At+1, τt+1)]

)]
,

0 =νtθ (ϵ− 1) (1 + πt)
ϵ−2 + ζtθϵ (1 + πt)

ϵ−1∆t−1, (92)

0 =µtΞ
D
t + νt(1− θ) (1− ϵ) (p∗t )

−ϵ − ζt(1− θ)ϵ (p∗t )
−ϵ−1 , (93)

0 =φtEt [H (∆t, At+1, τt+1)] + χt, (94)

0 =−

(
(ct+gt)∆t

At

)1+ω

∆t

+ βEt [θ(1 + πt+1)
εζt+1]− ζt (95)

+µt

[
p∗t c

γ
tEt

[
∂F

∂∆t−1

]
−M

(
(ct + gt)

1+ωcγt
ω

∆t

(
∆t

At

)ω

(1 + τt) (At)
−1 + cγtEt

[
∂G

∂∆t−1

])]
+(1 + it)Et

[
∂H

∂∆t−1

]
+φtγc

−γ−1
t ,

c−γ
t =λt, (96)

hωt =wtλt, (97)

ΞN
t =ytwt (1 + τt) (At)

−1 + Et

[
θΛt,t+1 (1 + πt+1)

ϵ ΞN
t+1

]
, (98)

ΞD
t =yt + Et

[
θΛt,t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
, (99)

p∗t =MΞN
t

ΞD
t

, (100)

1 =θ (1 + πt)
ϵ−1 + (1− θ) (p∗t )

1−ϵ , (101)

∆t =θ (1 + πt)
ϵ ∆t−1 + (1− θ) (p∗t )

−ϵ . (102)
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A.4.2 Ramsey

The Lagragian is given by:

L = E0

∞∑
t=0

βt

 c1−γ
t

1− γ
−

(
(ct+gt)∆t

At

)1+ω

1 + ω


+ E0

∞∑
t=0

βtµt

[
−p∗tΞD

t +MΞN
t

]
+ E0

∞∑
t=0

βtνt
[
−1 + θ (1 + πt)

ϵ−1 + (1− θ) (p∗t )
1−ϵ]

+ E0

∞∑
t=0

βtζt
[
−∆t + θ (1 + πt)

ϵ ∆t−1 + (1− θ) (p∗t )
−ϵ]

+ E0

∞∑
t=0

βtϑt

[
(ct + gt)

1+ω

(
∆t

At

)ω

cγt (1 + τt) (At)
−1 + Et

[
βθcγt c

−γ
t+1 (1 + πt+1)

ϵ ΞN
t+1

]
− ΞN

t

]
+ E0

∞∑
t=0

βtϱt
[
(ct + gt) + Et

[
βθcγt c

−γ
t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
− ΞD

t

]
+ E0

∞∑
t=0

βtφt

[
−c−γ

t + βEt

[(
1 + it

1 + πt+1

)
c−γ
t+1

]]
+ E0

∞∑
t=0

βtχtit.

The first-order condition with respect to consumption reads as:

0 = c−γ
t − (ct + gt)

ω

(
∆t

At

)1+ω

+ ϑt

[
((1 + ω)ct + γ (ct + gt)) (ct + gt)

ωcγ−1
t

(
∆t

At

)ω

(1 + τt) (At)
−1 + Et

[
βθγcγ−1

t c−γ
t+1 (1 + πt+1)

ϵ ΞN
t+1

]]
+ β−1ϑt−1 (−γ) βθcγt−1c

−γ−1
t (1 + πt)

ϵ ΞN
t

+ ϱt
[
1 + Et

[
βθγcγ−1

t c−γ
t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]]
+ β−1ϱt−1 (−γ) βθcγt−1c

−γ−1
t (1 + πt)

ϵ−1 ΞD
t

+

[
φt − β−1φt−1

(
1 + it−1

1 + πt

)]
c−γ−1
t γc−γ−1

t .

(103)
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The first order condition with respect to price dispersion is given by:

0 = −

(
(ct+gt)∆t

At

)1+ω

∆t

− ζt

+ βEt [ζt+1θ (1 + πt+1)
ϵ] + ϑtω(ct + gt)

1+ωcγt

(
∆t

At

)ω
1

∆t

(1 + τt) (At)
−1 .

(104)

The first-order condition with respect to inflation is:

0 =νtθ (ϵ− 1) (1 + πt)
ϵ−2 + ζtθϵ (1 + πt)

ϵ−1∆t−1

+β−1ϵϑt−1βθc
γ
t−1c

−γ
t (1 + πt)

ϵ−1 ΞN
t

+β−1ϱt−1βθ (ϵ− 1) cγt−1c
−γ
t (1 + πt)

ϵ−2 ΞD
t

−βt−1φt−1
1 + it−1

(1 + πt)
2 c

−γ
t .

(105)

The first-order condition with respect to the optimal price reads as:

0 =− µtΞ
D
t + νt(1− θ) (1− ϵ) (p∗t )

−ϵ + ζt(1− θ) (−ϵ) (p∗t )
−ϵ−1 . (106)

The first-order condition with respect to ΞN
t is given by:

0 = µtM− ϑt + β−1ϑt−1βθc
γ
t−1c

−γ
t (1 + πt)

ϵ . (107)

The first-order condition with respect to ΞD
t is:

0 = −µtp
∗
t − ϱt + β−1ϱt−1βθc

γ
t−1c

−γ
t (1 + πt)

ϵ−1 . (108)

Finally, the first-order conditions with respect to nominal rates:

0 = φtβEt

[
1

1 + πt+1

c−γ
t+1

]
+ χt,

where χt and φt are zero when the ZLB is not binding (it ≥ 0) .
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The full set of equations is given by:

0 =c−γ
t − (ct + gt)

ω

(
∆t

At

)1+ω

(109)

+ ϑt

[
((1 + ω)ct + γ (ct + gt)) (ct + gt)

ωcγ−1
t

(
∆t

At

)ω

(1 + τt) (At)
−1

+Et

[
βθγcγ−1

t c−γ
t+1 (1 + πt+1)

ϵ ΞN
t+1

]]
+ β−1ϑt−1 (−γ) βθcγt−1c

−γ−1
t (1 + πt)

ϵ ΞN
t + ϱt

[
1 + Et

[
βθγcγ−1

t c−γ
t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]]
+ β−1ϱt−1 (−γ) βθcγt−1c

−γ−1
t (1 + πt)

ϵ−1 ΞD
t +

[
φt − β−1φt−1

(
1 + it−1

1 + πt

)]
c−γ−1
t γc−γ−1

t ,

0 =−

(
(ct+gt)∆t

At

)1+ω

∆t

− ζt (110)

+ βEt [ζt+1θ (1 + πt+1)
ϵ] + ϑtω(ct + gt)

1+ωcγt

(
∆t

At

)ω
1

∆t

(1 + τt) (At)
−1 ,

0 =− µtΞ
D
t + νt(1− θ) (1− ϵ) (p∗t )

−ϵ + ζt(1− θ) (−ϵ) (p∗t )
−ϵ−1 , (111)

0 =µtM− ϑt + β−1ϑt−1βθc
γ
t−1c

−γ
t (1 + πt)

ϵ , (112)

0 =νtθ (ϵ− 1) (1 + πt)
ϵ−2 + ζtθϵ (1 + πt)

ϵ−1∆t−1 (113)

+ β−1ϵϑt−1βθc
γ
t−1c

−γ
t (1 + πt)

ϵ−1 ΞN
t

+ β−1ϱt−1βθ (ϵ− 1) cγt−1c
−γ
t (1 + πt)

ϵ−2 ΞD
t − βt−1φt−1

1 + it−1

(1 + πt)
2 c

−γ
t , (114)

0 =− µtp
∗
t − ϱt + β−1ϱt−1βθc

γ
t−1c

−γ
t (1 + πt)

ϵ−1 , (115)

0=φtβEt

[
1

1 + πt+1

c−γ
t+1

]
+ χt, (116)

0 =χtit, (117)

c−γ
t =λt, (118)

hωt =wtλt, (119)

ΞN
t =ytwt (1 + τt) (At)

−1 + Et

[
θΛt,t+1 (1 + πt+1)

ϵ ΞN
t+1

]
, (120)

ΞD
t =yt + Et

[
θΛt,t+1 (1 + πt+1)

ϵ−1 ΞD
t+1

]
, (121)

p∗t =MΞN
t

ΞD
t

, (122)

1 =θ (1 + πt)
ϵ−1 + (1− θ) (p∗t )

1−ϵ , (123)

∆t =θ (1 + πt)
ϵ ∆t−1 + (1− θ) (p∗t )

−ϵ . (124)
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B Additional figures

In this Appendix, we provide additional illustrations of the paper’s main results. Figure 12 reports

the dynamics of the price level pt based on simulating 10, 000 quarters of the model economy when

monetary policy is optimal (under commitment). It addresses the concerns expressed in Section

5.2 regarding whether optimal policy with persistent shocks delivers a constant price level in the

long run, as is the case in the standard New Keynesian model with AR(1) shocks. The figure

shows that this is not the case, and there is a positive trend in prices.

Figure 13 compares a persistent shock with a temporary one calibrated to produce the same

inflation on impact. It shows how, for large shocks, the optimal response to cost-push shocks

deviates slightly from pure price-level targeting. Still, this deviation is small compared to the one

introduced by the optimal response to persistent shocks.

Figure 14 shows the differences in the response to a larger persistent shock. Results are

qualitatively similar, but the response is quantitatively larger. This confirms that our qualitative

results are independent of shock size.

Finally, Figure 15 displays the ergodic distribution of the model with the ZLB when the central

bank implements optimal policy under commitment or discretion. It clearly shows how the ZLB

creates a significant right skewness in inflation and interest rates.
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Figure 12: Price level pt dynamics under commitment.
Note: The figure shows the result of simulating 10, 000 quarters of the model economy when monetary policy is

optimal (under commitment).

Figure 13: Comparison between persistent and temporary shocks.
Note: The figure displays the transition from a normal times regime to a bad times regime in the case of the optimal

policy under commitment in the baseline (solid blue line) and a temporary cost-push shock calibrated to produce

the same level of inflation on impact as the permanent shock (dashed red line). We set the innovations to the

temporary shocks at zero. The economy starts at the SSS of the normal times regime in each case.
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Figure 14: Response to a regime change: shock size.
Note: The figure displays the transition from a normal times regime to a bad times regime in the case of the optimal

policy under commitment in the baseline (solid blue line) and with a larger shock (dashed red line). We set the

innovations to the temporary shocks at zero. The economy starts at the SSS of the normal times regime in each

case.
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Figure 15: Ergodic distribution: optimal policy at the ZLB.
Note: The figure displays the ergodic distribution in the model under optimal policy with an occasionally binding

ZLB. Colors distinguish the two regimes: blue denotes the samples corresponding to commitment in normal times,

and orange to bad times. Green is the optimal discretionary policy in normal times and red in bad times. The

figure is produced by simulating the model for a large number of periods.
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