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Abstract Digital process data are becoming increasingly important for social sci-
ence research, but their quality has been gravely neglected so far. In this article,
we adopt a process perspective and argue that data extracted from socio-technical
systems are, in principle, subject to the same error-inducing mechanisms as tradi-
tional forms of social science data, namely biases that arise before their acquisition
(observational design), during their acquisition (data generation), and after their
acquisition (data processing). As the lack of access and insight into the actual pro-
cesses of data production renders key traditional mechanisms of quality assurance
largely impossible, it is essential to identify data quality problems in the data avail-
able—that is, to focus on the possibilities post-hoc quality assessment offers to us.
We advance a post-hoc strategy of data quality assurance, integrating simulation and
explorative identification techniques. As a use case, we illustrate this approach with
the example of bot activity and the effects this phenomenon can have on digital pro-
cess data. First, we employ agent-based modelling to simulate datasets containing
these data problems. Subsequently, we demonstrate the possibilities and challenges
of post-hoc control by mobilizing geometric data analysis, an exemplary technique
for identifying data quality issues.
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Datenqualitiit digitaler Prozessdaten
Ein generalisierter Orientierungsrahmen und eine Simulations-/Post-Hoc-Identifizie-
rungsstrategie

Zusammenfassung Digitale Prozessdaten werden fiir die sozialwissenschaftliche
Forschung immer wichtiger, doch ihre Qualitit wurde in der Diskussion bisher
stark vernachlassigt. In diesem Beitrag nehmen wir eine Prozessperspektive ein und
argumentieren, dass Daten, die aus soziotechnischen Systemen extrahiert werden,
im Prinzip denselben fehlerverursachenden Mechanismen unterliegen wie traditio-
nelle Formen sozialwissenschaftlicher Daten, nimlich Verzerrungen, die vor ihrer
Erfassung (Beobachtungsdesign), wihrend ihrer Erfassung (Datengenerierung) und
nach ihrer Erfassung (Datenverarbeitung) entstehen. Da der fehlende Zugang und
Einblick in die eigentlichen Prozesse der Datenproduktion wichtige Mechanismen
der traditionellen Qualitdtssicherung weitgehend unmoglich machen, ist es uner-
lasslich, Datenqualitétsprobleme in den zur Verfiigung stehenden Daten zu identi-
fizieren — das heiflt, sich auf die Moglichkeiten zu konzentrieren, die uns die post-
hoc Qualititspriifung bietet. Wir entwickeln eine Post-hoc-Strategie der Datenqua-
litatssicherung, die Simulation und explorative Identifizierungstechniken integriert.
Als Anwendungsfall illustrieren wir diesen Ansatz am Beispiel von Bot-Aktivititen
und den Auswirkungen, die dieses Phdnomen auf digitale Prozessdaten haben kann.
Dazu setzen wir zunichst eine agentenbasierte Modellierung ein, um Datensétze
mit derartigen Datenproblemen zu simulieren. AnschlieBend demonstrieren wir die
Mobglichkeiten und Herausforderungen der Post-hoc-Kontrolle, indem wir die geo-
metrische Datenanalyse einsetzen, eine exemplarische Technik zur Identifizierung
von Datenqualititsproblemen.

Schliisselworter Digitale Prozessdaten - Datenqualitit - Agentenbasierte
Simulationen - Relationale Daten - Post-hoc-Identifikation - Mixed-Methods -
Sozio-technische Systeme

1 Introduction

Data generated on a massive scale and recorded automatically within digital contexts
is increasingly forming the basis for contemporary social science research. One
reason for this shift is that the object of study itself is transforming before our eyes:
Social practices now take place to a great extent in digital spheres and social fields are
extensively digitized. Depending on the viewpoint of the respective paradigm, digital
environments allow people to perform everyday practices, to realize choices, to
represent themselves, or to interact based on symbols, which makes data from digital
contexts interesting for a variety of contemporary social scientists. Another reason
for the enduring scientific popularity of these forms of data lies in the methodological
advantages often attributed to them when compared with traditional data types, in
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particular objectivity, unobtrusiveness, unbiasedness, reliability, and so on (see Boyd
and Crawford 2012, p. 663). As a result, however, the actual quality of digital process
data is a rather neglected topic in the current discourse.

Yet, in the context of data generated by modern socio-technical systems! (Dolata
2009; Riebling 2018), there are in fact quite serious problems regarding data quality.
These problems include phenomena of bias, selectivity, erroneous aggregation, and
recursive effects of the research instrument, in short, a whole series of abstract mech-
anisms that are anything but unfamiliar to social scientists. As with written surveys,
digital data are equally capable of containing erroneous and biased information (see
Japec et al. 2015, p. 854f.; Sen et al. 2019; Baur et al. 2020; Diaz-Bone et al. 2020).
Although in the context of written or online surveys, it is usually considered essential
both to ensure data quality in the process of data generation and to correct potential
quality problems, the systematic conceptualization of data quality for digital process
data is still in its infancy. Even if numerous individual problems in data quality are
known, or at least suspected, to exist in specific research settings, there is still a lack
of a systematic understanding of the different quality-distorting mechanisms in the
context of digital process data. This systematic deficiency occludes from our view
the potentially considerable distortions of substantive findings and may, ultimately,
threaten the legitimacy of research based on the analysis of digital process data.
This is why the German Research Foundation (DFG 2020) recently emphasized the
increasing importance of digital data and the need for quality assurance of these
data.

In order to be able to deal with this major challenge of present and future re-
search, social science requires two essential tools, which it in principle already has at
its disposal: First, a systematic overview of abstract error mechanisms, and second,
ways of inferring quality problems in existing data sets. For the first component, we
delineate a systematic process perspective on error-inducing mechanisms of digital
process data along three ideal-typical dimensions: Observational design, data gen-
eration, and data processing. For the latter component, we outline a mixed methods
strategy of post-hoc quality control using a combination of simulation models and
statistical identification techniques. Simulations are particularly promising, in that
they allow researchers to (i) systematically control the data-generating process under
different contextual conditions, (ii) model the various hypothetical error-generating
mechanisms, and (iii) screen the resulting data using explorative techniques to deter-
mine what they can and cannot tell us about implemented quality impairments. As
a practical use case, we will discuss a fundamental and far-reaching issue: The activ-
ities of non-human actors (bots). Bots account for the majority of global web traffic
and bots of various types are active on most social media platforms, sometimes
significantly affecting data structures, which thus poses one of the key challenges
for modern quantitative social research and computational socioeconomics (see Gao

I Whereas the term “digital trace data” implies a rather objectivist view, the term “digital process data”
empbhasizes the institutional and technical preconditions and implications of data generation. The relational
term “socio-technical systems” is intended to take into account the fact that usage practices and infrastruc-
tures impact on each other and jointly generate data that represent neither pure objective measurements
nor mere technical artifacts (see also Hauf3ling 2020).
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et al. 2019, p. 94). For analyses based on the assumption that human actors are
the entities to be observed, the presence of bots calls into question any supposedly
unbiased “measurements”; equally, for approaches that conceive of bots as genuine
elements of socio-technical systems, their identification is crucial too (see Venturini
and Latour 2010, p. 8). Using agent-based simulations, we generate a series of ar-
tificial data sets including distortion effects from bots in systematic and controlled
ways. Subsequently, we demonstrate the possibilities and challenges of post-hoc
control by mobilizing geometric data analysis, an established exemplary technique
for identifying issues with data quality. In the conclusion, we discuss how the gen-
eralized data quality framework can inform further research and what contribution
our proposed combination of simulation and statistical screening can make as part
of a much-needed multi-paradigmatic and mixed-method discourse on the quality
of digital process data.

2 Conceptualizing Quality Issues in Digital Process Data

In recent years, more and more researchers have noticed that social sciences’ estab-
lished quality concepts, such as coverage error and non-response, can also be applied
and translated to digital process data (see Diaz et al. 2016, p. 3). Japec et al. (2015,
p- 851) relate the concept of total survey error (see Biemer 2010) to digital process
data in order to conceptualize “big data total error” (BDTE). Sen et al. (2019) have
developed a total error framework for digital trace data inspired by traditional error-
generating processes. Thus, after a phase of focusing on the apparent novelties and
unique features of digital process data, it is being increasingly recognized that the
prevailing quality problems in this context are in fact similar to the problems familiar
from (survey) research.

To derive a systematic overview of the possible phenomena, sources, and mecha-
nisms of errors, we employ a process perspective. We understand data production as
processes emerging from the genuine interplay of social and technological entities.
The systematic conception of the data-generating process and its accompanying er-
rors have been examined both in the context of a process-oriented theory of survey
research (Bachleitner et al. 2010) and as a “statistical chain”—that is, as a relational
interplay in which different entities, objects, practices, and situations jointly gener-
ate data (see Desrosieres 2009; Diaz-Bone 2018; Diaz-Bone et al. 2020, p. 319).
Problems with data quality (as well as adequate interpretability) arise from the incon-
sistency of conventions between the different links in the chain of data production.
Interviewers, data managers, statisticians, and recipients will differ in their data-
related knowledge, definitions, implicit assumptions, practical choices, and their
conceptions about the (realist or constructivist) status of the data and its constructs.
On this analytical basis, successful attempts have been made, for survey data, to
trace the process of data production from start to finish, to theoretically grasp the
mechanisms of distortion, and to thereby make them accessible for investigation
and, eventually, correction.

Expanding on this analytical tradition, we establish a generalized, ideal-typical
model of error mechanisms in digital process data along three analytically separated
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(yet empirically interacting) dimensions: Observational design, data generation, and
data processing. Observational design describes the processes that precede the actual
collection of data: The design of the architecture, programming rules (including the
specification of data structures and information flow), conventions of handling in-
formation and events, and thus ultimately the arrangement of the social environment
with and within which users interact and produce data. Data generation addresses
the actual process of data gathering and thus the interaction processes between the
users themselves and with the technical infrastructure. Data processing refers to
the techniques and conventions of data handling employed by social scientists, i.e.,
practices such as restructuring, editing, and statistically analyzing data.

2.1 Observational Design

Analytically, the first step of quantitative data collection is a priori construction, i.e.,
designing the architecture that will collect the data. In the various lines of social
science’s tradition, systematic, controlled, and reflective access to data has been
emphasized as an essential prerequisite for ensuring the validity and robustness of
findings. To this end, social scientists are, ideally, substantially involved in defin-
ing the research question, constructing the survey instrument, and conducting it in
the field. This allows the survey process to be controlled, and quality-reducing in-
fluences to be anticipated, identified, and managed. In this context, it is essential
to enable the accurate reconstruction of problems and their consequences through
careful documentation of the survey, the survey process, and the subsequent data
management. Therefore, data quality is essentially associated with process control
(Lyberg and Biemer, 2008). The problems of division of labor in the process of
data production and usage are well known from the organization of standardized
social research (Desrosieres 2009; see Diaz-Bone 2018). The division of labor in
the production process of data can lead to the data being used at the end of the
production chain (e.g., in secondary analyses) without knowledge of the underlying
conventions (Desrosiéres 2001b; see Diaz-Bone 2016) of data production and data
management. In traditional survey research, data problems and the conventions of
their treatment can be considered as rather congruent, at least from the perspective
of the survey institute and the evaluating researchers.

In the context of digital process data, however, a particularly profound division
of labor between providers, computer scientists, and social scientists can be said to
prevail. In contrast to survey research, the organization of the data infrastructure on
the part of a producer of digital data is considerably less oriented toward scientific
interests, instead following considerations of economy or efficiency (see Schmitz
et al. 2009). The fact that the data may also be used for scientific purposes is
a subordinate criterion and genuinely scientific quality criteria are—according to
this logic—often irrelevant (if not interfering with own quality criteria such as being
fit for use). As a result, the opacity or impenetrability of the statistical chain can
be said to be particularly pronounced in situations of this kind and the researcher’s
insight to be particularly limited (see Diaz-Bone et al. 2020, p. 324).

This problem is already evident in the elementary aspect of the definition of
the units: Desrosieres shows that, early in the history of statistics, the assumption

@ Springer



412 A. Schmitz, J. R. Riebling

of a statistical equivalence space with clearly definable and identifiable units was
a necessary prerequisite for subsequent analyses. In order to study the differences
between units, we must first assume their unity (Desrosieres 2001a). In past decades,
in the context of questionnaire research (which made use of the contributions of
sampling theory) it was comparatively easy to straightforwardly treat sampled actors
as a statistical unit. However, according to what rules is the unit constructed in the
context of digital process data? Which events and processes are attributed to an
actor, and according to which rules? The scientist should know exactly how entities
are defined a priori, what is actually treated (that is, kept) as a valid entity, and the
principles on which they are collected in the data-generating process. The problem
of unknown design decisions also manifests in the ways in which different users
are handled differently, for example, in the form of offers that can be distributed
differently with reference to time, specific user groups, or access type, such as when
access from one specific residential area (as opposed to another) or via a smartphone
(as opposed to a PC) results in a different offer in terms of price (see Morstatter
et al. 2013).

Another example for design principles one would need to know are pre-structured
sets of choices and interactions that can compromise the validity of interactional and
network analyses as well as of constructs based thereon: Recommender systems such
as those used by Netflix or Amazon that direct the users’ attention by latent system-
immanent choices as part of their customer retention strategy, and other algorithms
implemented on similar platforms, pre-structure interactions and thereby shape the
observation of interactional processes. For example, Twitter uses network indica-
tors that define a position in the timeline, which makes the application of network
analyses problematic; they do not “measure” the actual communication structure,
but also the communication as structurally triggered by Twitter itself. The effects
of suggestions on matching-based platforms suffer from a comparable problem (see
Malik and Pfeffer 2016). Principles of data aggregation represent another example
of a priori design decisions that can distort network analyses. Unknown pre-defined
aggregation rules make it difficult to reconstruct original data structures based on
end-user data (for example, network relationships (see Howison et al. 2011, p. 781)).
One might think here of Twitter’s mostly opaque agglomeration of retweets: User A
retweets a post by C via user B’s timeline. In the final data set, however, it looks as
if A has referred directly to B. This can be particularly problematic if conclusions
are to be formulated regarding the extent of the polarization of Twitter users, for
example. Beyond that, the temporal mode of data storage can distort the processual
structure of data and its temporal granularities. For example, several researchers who
analyze Reddit data rely on the pushshift archive, which does not have a consistent
way of keeping entries up to date. Events that may in fact be one minute apart in
real time, can be stored and misrepresented in the data as co-occurring within one
second. Similarly, Facebook’s CrowdTangle stores time-series information about the
evolution of likes for a post simply on an hourly basis.

As socio-technical systems are usually not embedded in scientific fields, prob-
lems of this kind are further exacerbated, as these systems are subject to constant
(economic, political, legal, etc.) adaptation pressures. For example, with changing
business strategies, the architecture of a platform can be repeatedly altered. Such
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reorganizations of design can lead to significant transformations of data structures
over time, thereby inducing structural breaks in the data (Think of YouTube’s re-
cent reorganization of how one can react to a video: today, only thumbs up and no
longer thumbs down can be given). Design changes in the choice and interaction
options offered to users can lead to far-reaching problems in the use of data. For
instance, if profiles on platforms are redesigned, and new categories (e.g., additional
gender categories) are introduced, interaction practices change, and so does the data
structure. Although this can be compared with survey research, where panel studies
can include modified item blocks, more radical changes can be introduced in digital
environments, such as a redesign of recommender systems, which becomes the more
problematic (e.g., for construct reliability) the less potential data users are aware of
such reorganizations.

Yet, when compared with (institutionally) collected survey data, sociologists are
much less likely to be involved in the conceptualization, design, and planning phases
of digital process data. Private companies such as social media platforms provide
such data without the detailed documentation that would correspond to the informa-
tion necessary for social scientists. In fact, because a private company is unlikely to
have any interest in making these principles public, this can be seen as the default
situation in large parts of current research. Thus, today, the assurance of process
quality, traditionally so important in empirical research, is systematically hampered
by a fundamental division of labor between private-sector providers, computer sci-
entists, and sociologists (see Diaz-Bone et al. 2020, p. 324). Consequently, in the
context of socio-technical systems, the procedures and conventions underlying data
generation and data structures are not transparent to the scientist for the most part.
A lack of understanding of the underlying conventions concerning the definition of
data frames and the predefined data recording rules can lead to severe restrictions
in the extent to which the data can be meaningfully used. If researchers are not
informed about design-specific conditions, a substantial lack of knowledge about the
underlying observational design will engender the risk of misjudging the phenomena
observed (or to misconstrue opaquely constructed data as neutral, valid “measure-
ment”).

2.2 Data Generation

After the construction phase and the design of an observational instrument, analyti-
cally, the phase of actual data generation follows, which is traditionally referred to
as the “field phase”.? Here, apart from technically flawed observation and recording
processes in the narrower sense, several biasing phenomena can occur.

Again, the first issue—representativeness—is well known from traditional social
sciences (see Baur et al. 2020). As a consequence of a social media company’s
design principles, the population (of actors and events) under analysis in a digital
context can represent a distorted image of the overall population, which is remi-
niscent of the coverage error and sampling error discussed in survey research (see

2 It goes without saying that—depending on the paradigmatic orientation—there are several recursive
steps.
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Sen et al. 2019, p. 5). Further aspects such as the question of which client is used
can impact representativeness, as some clients make it possible to avoid tracking;
consequently, specific events of specific users remain unobserved, or are not con-
nected with previous information (comparable with the differences between different
modes of survey delivery such as landline vs. mobile). Human users may also gen-
erate distorted patterns whenever they do not actually constitute a single unit in the
resulting data. In abstract terms, this reminds us of the situation where a third party
influences a respondent during an interview, so that the resulting interview contains
different patterns of response. This can be particularly problematic in the digital
context, where different users can share an account (such as in streaming services)
or one individual can create and operate a large number of user profiles (such as in
dating services).

When it comes to the processes taking place in a socio-technical system, it is
possible that entities that may not be defined as elements of the population actually
become part of the data (similar to distorted selection frames in survey research). For
example, bots can be designed to defraud or manipulate, or they can be used by the
operators of the platform itself. Here, the problem does not end in the mere number
of such artificial actors. Bot-generated events (such as contact patterns) represent
even more problematic distortions for substantive analyses. For example, Schmitz
et al. (2012) show that bots on a German dating platform make up less than 3%
of all entities, but produce up to 33% of all first contacts and—by simultaneously
exhibiting a high level of attractiveness and yet little selectivity—thereby establish
a contact pattern in the data that diverges from human mating patterns, thus biasing
statistical analyses of contact practices. Likewise, ideologically motivated third par-
ties may try to exert external influence on digital interactions and communication
contexts via bots or trolls (see Bratu 2017; Bulut and Yoriik 2017; Starbird 2019).

To further complicate matters, digital process data are characterized by the fact
that they are generated in a context that can have a decisive influence on the actors’
practices—for example, by defining and sorting their interaction options. In the
social science literature, this is referred to as the obtrusiveness of collection methods
(Webb et al. 1966). From survey research, it is well-known that the influence of
the data-generating context is particularly problematic when different mode effects
occur, such as in a survey that is realized by a computer-assisted questionnaire on the
one hand and a written one on the other (Shin et al. 2012). Mode effects can distort
digital process data, too, such as when different users are treated differently by an
algorithm or by moderators in commercial algorithmic systems. As a consequence,
a platform’s users and their practices can be subjected to different representations of
the socio-technical environment (e.g., owing to client strategies), resulting in their
actions and interactions being affected by different processes or modes. For example,
YouTube recommendations are provided depending on a user’s history, as the work
of Faddoul et al. (2020) shows for exposure to conspiracy theories.

Conversely, in the context of digital interaction and communication, the observed
units of inquiry can react substantially to the socio-technical system, a circumstance
that social science has been referring to as reactivity. In addition to and in conjunction
with the designers’ influences, the users’ reactions are of particular importance when
it comes to potential issues with data quality. Similar to the way different respondents
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react differently to the same survey instrument, thereby revealing different “response
styles” (van Vaerenbergh and Thomas 2013), different usage styles can influence the
content of data derived from digital interaction contexts (see Olteanu et al. 2019).
Take the example of those Twitter users who are particularly opinionated about
a topic and post long threads that span more than ten items. For the researcher, for
example, ten separate tweets on one topic may result in that topic being perceived
as ten times more frequent than an antagonistic statement that may be expressed in
just one tweet.

Reactivity may also manifest as strategic reaction towards the technology; for
example, privacy concerns can induce self-censorship and practices of subtweeting,
or mock-retweeting (see Tufekci 2014). A particularly severe problem can result
from the users’ (legitimate) control over the data that they created in the past. For
different reasons, some users may delete posts or accounts, thus creating gaps in
the data that are difficult to track and can lead to misinterpretation of content. In
socio-technical systems, strategies emerge in yet another respect: For surveys, it is
known that respondents sometimes exhibit strategic response behavior by orienting
themselves to norms of social desirability, e.g., in the social situation of a face-
to-face interview (see Blasius and Thiessen 2012). Such strategic behaviors are
disproportionately more likely to occur in digital interaction contexts. In contrast
to surveys, relational, digital process data are not created in a context in which
actors are socially independent of each other—instead, the actors observed strongly
influence each other. Rather, they find themselves in a genuine social situation vis-
a-vis other actors, thus reciprocally inducing strategic practices (e.g., on dating
platforms, see Zillmann et al. 2011). Social desirability can manifest in the form
of strategic postings with socially desirable content, which may lead to clickbait
strategies. These strategies are part of the digital attention economy, with users of
social platforms adjusting their publicly posted metrics in order to be placed higher in
lists (referred to colloquially as “playing the algorithm game”). Other users respond
reflexively to these metrics that are presented to them. On Twitter, for example,
likes, retweets, and displayed “ratios” become the basis for reflexive practices that
cannot be understood in the resulting data without understanding their context.

On top of that, in socio-technical systems, the provider can react to the users’
behavior, in a further recursion. For example, provider-side handling of unwanted
content can involve the complete removal of specific users’ actions and communica-
tion acts from the database, e.g., when providers identify bot activities. But there are
more subtle techniques that providers apply, such as “shadow banning,” where users
are not banned per se, but their output is made invisible; as such, the opportunities
for being perceived are severely limited (or “throttled”). If, however, the probability
of a user’s actions being seen by other users is artificially decreased, their actions
are not adequately represented in the resulting data. Such practices of the “silent
truncation of data” have been observed, for example, in cases such as Sourceforge
and Wikipedia dumps (see Howison et al. 2011). Although the problem of missing
data is a familiar phenomenon (here reminiscent of item non-response and unit-
nonresponse from survey tradition), the problem is even more far-reaching for dig-
ital interaction data. Within the relational environments of socio-technical systems,
data that have been deleted may have elicited reactions (e.g., responses) prior to the
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deletion. Such relations, however, cannot be observed and the original occasion of
a response remains unknown.

When it comes to data dissemination, missing and biased data—again, familiar
from written surveys—can result from providers being interested in only making
available certain specific subsamples (of entities, events and their relations) for
strategic reasons. Just as survey institutes can provide users with selective samples,
selective provision (temporally, spatially, socio-structurally, etc.) of data excerpts
will often result in a bias, especially because data that contain relational processes
is not suitable for random samples (see Morstatter et al. 2013; Driscoll and Walker
2014; Gonzilez-Bailén et al. 2014). Using Facebook as an example, Allen et al.
(2021) show that censoring URLs with fewer than 100 public shares results in
a biased data set that will overestimate the share of fake news by a factor of 4.

In sum, the problem identified in the context of the definition of observational
design is perpetuated. More often than not, the actual data generation process—and
the potential issues of data quality entailed—remain unknown to the social scientist
(see Baur et al. 2020, p. 220; Diaz-Bone et al. 2020, p. 324). But beyond that, the
advantages of digital process data environments, namely the fact that actors proac-
tively access them and perform their practices there (in contrast to surveys), and that
recording is highly standardized and automated, go hand in hand with systematic
challenges for data quality. Cultural norms and the architecture of platforms can
influence user behavior, and vice versa, which may result in severe “measurement”
errors (see Malik and Pfeffer 2016), a problem that has also been labelled as “plat-
form affordances error” (see Sen et al. 2019, p. 8). Consequently, the objectivity
sometimes attributed to digital process data when compared with survey data is
called into question by the complex reactivity relations and the diverse entities in-
volved that underlie socio-technical systems (and that are—again—hardly known to
the end-user).

2.3 Data Processing

From an analytical perspective, quantitative data can be understood to be further
processed after they have been collected. Although the production of digital data
is characterized by a specific back and forth between data generation and data
processing, it is still true that all kinds of (intermediate) data sets are handled,
transformed, and processed in various ways, which can lead to errors that were not
originally present. For survey research, we already know that the providers’ (here:
Survey institutes) decisions regarding data processing can be unsatisfactory for the
end users. For example, an institute’s technocratic quality conventions, which lead to
specific respondents being sorted out of the final data, can render specific ideological
positions invisible (Barth and Schmitz 2018). In the survey tradition, such mistakes
subsequent to data collection have been referred to as “processing errors” (see Groves
and Lyberg 2010). Analogously, providers of digital data can also compromise the
quality of their data through faulty processing, such as biasing transformations of
signals and entities (see Sen et al. 2019, p. 71f.). Japec et al. (2015, p. 854f.) discuss
the different steps of (digital) data processing, in which errors can be generated via

EEINT3 EEIRT3 EEINT3

“creating or enhancing meta-data,” “record matching,” “variable coding,” “editing,”
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“data munging (or scrubbing),” or “data integration” (linking records across disparate
systems). Ideally, a researcher (whose particular methodological perspective and
research interest will determine the specific conception of data quality) should be
informed about the quality conventions according to which a company processes
data internally. For example, the criteria of data cleansing may vary and so does,
accordingly, which entities and events are considered to be irregular (e.g., bots)
and are removed from the system and thus from our observation. Errors can also
be caused by providers when aggregating, selecting, and reducing the data to be
forwarded (Hellerstein (2008, p. 2) refers to this as “distillation error”), whereas the
end user assumes the data were of high quality and unbiased. Of course, the end
users themselves can also introduce numerous errors in any kind of data through
faulty data management, e.g., through the incorrect identification of valid (or invalid)
cases or incorrect recoding. In the context of digital process data, there is a more
systematic problem that arises from the considerable distance between the links of
the statistical chain described above, i.e., between provider and end user (see Diaz-
Bone et al. 2020, p. 324). End users do not know the rules according to which data
structures have been created during and processed after collection. Yet not knowing
provider-based conventions of data processing (e.g., classifications, aggregations,
transformations, etc.) can mislead the end user into wrongly assuming that the data
structure thus obtained represents an adequate image of the original, underlying
data structures and processes (see Venturini and Latour 2010, p. 8; Japec et al.
2015, p. 853). For example, entities can be “concealed in logs” (Van der Aalst 2016,
p. 148).

Another more general phenomenon is the example of divergent definitions of
units. Working from the assumption of a classical, individual-centered epistemol-
ogy, social scientists sometimes still request or arrange the data in an actor-centric
manner, i.e., as a two-dimensional flat file with human actors as the sole type of
entity. However, this may be problematic when the original data structure is non-
linear, e.g., relational, and contains multiple entities and interrelations, such as com-
municating parties and their communication acts nested in multiple and reciprocal
hierarchies (see Sen et al. 2019, p. 6; Diaz-Bone et al. 2020, p. 334).

Thus, in light of the problems that will occur during this process of data pro-
duction, any statistical analysis based on data from digital sources can face severe
difficulties (see Olteanu et al. 2019, p. 16f.; Japec et al. 2015, p. 854f.). Biases may
appear in many different situations, for example, in univariate distributions, descrip-
tive parameters, estimates of regression parameters, or network parameters. In sum,
when misconstruing (and thus misconstructing) actually underlying complex data
relations, inappropriate data management and data analysis conventions can lead to
situations where statistical models and substantive conclusions that draw on digital
process data can be severely impaired.

3 Temporal relationality, a genuine trait of socio-technical systems, exacerbates this problem to a great
extent.
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3 Simulation and Post-Hoc Identification

To summarize up to this point: The quality of digital process data can be distorted
in different, often unknown ways. Yet what we do know is that digital process
data—much vaunted by some for its methodological virtues—are in fact haunted by
issues that remind us of classic problems of data generation and data processing, such
as selectivity, bias, validity, reliability, objectivity, etc. As outlined in the preceding
section, a core difference between survey data and digital process data is that, for
the latter, there is scarcely any comprehensive documentation for scientific end
users, and scientists have little knowledge of, let alone control over, construction
and collection processes. Under such conditions, however, both a priori control and
process control of data quality become virtually impossible tasks and the adequacy
of statistical analyses based on them must be fundamentally called into question.

For this reason, it is essential to identify data quality problems in the data avail-
able—that is, to focus on the possibilities that post-hoc quality assessment offers us.
In fact, in addition to the goal of high-quality survey methodology and systematic
process control, social scientists have traditionally conducted post-hoc analyses to
develop hypotheses about possibly biasing phenomena. Employing descriptive statis-
tics, and exploratory and visualization techniques such as cluster analyses (Bredl
et al. 2012), classification models (Biemer 2010), or scaling approaches (Blasius
and Thiessen 2015), scientists have been able to accumulate a great deal of insight
by examining countless empirical data sets from different contexts. The practical
knowledge gained in dealing with empirical contexts and the general phenomena of
error mechanisms has proven instructive in asking the right questions of the data
and using the statistical models in meaningful ways. Still, the problem of post-hoc
control is that the actual error-generating mechanisms cannot be verified, but only
assumed to be plausible. Whether, for example, social desirability actually guides
actions in a questionnaire is ultimately an educated guess. This is why researchers
have also used qualitative (cognitive) interviews with respondents to determine their
perceptions of a survey.

Yet, in order to consolidate and systematize the insights gained from empirical
data sets, a further methodological tool has proven to be of value in the context of
survey data: Simulation techniques have been employed in order to systematically
supplement the body of empirical experience. Some authors have worked with sim-
ulations that enable a more systematic understanding of data-generating (and error-
generating) processes, and of what problems (and of what magnitude) are to be
expected under specifiable conditions (Dijkstra et al. 1995; West 2013; McCarthy
et al. 2017). Overall, in the tradition of survey research, the abductive interplay of
human experience, empirical data, simulated mechanisms, and theory building has
enabled social scientists to collectively achieve considerable advances in making
quality problems more amenable to regulation.

In contrast to the survey tradition, however, there are not yet as many gener-
ally available empirical data sets for digital process data, and there is still a lack
of practical experience, systematic comparability between contexts, and theoretical
knowledge. Taking our argumentation so far into consideration, one would need
to know how different kinds of biasing mechanisms are manifested in the highly
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aggregated and selective digital data that are provided to end users from the field
of social sciences. In order to achieve such systematic knowledge, we propose the
implementation of simulation techniques to model the process of data production,
including possible biases, and to thereby yield data sets where the error-generating
mechanisms are known. Simulation techniques are particularly promising for the
objective at hand, as they allow the otherwise merely hypothesized mechanisms of
quality impairment to be generated and examined in a controlled manner, which is
impossible for any kind of empirically collected data (unless we are dealing with
experimental approaches). However, it is important to note that simulation models
are not aimed at being complex and realistic. In fact, the majority of phenomena
and effects that are known to be present must be consciously kept out of the model,
with a few others added parsimoniously and incrementally. It is precisely this con-
trolled approach that underlies the potential of simulations to systematically enrich
the stock of empirical experience with a series of artificial datasets.

Simulation models make it possible to recreate the different ways in which the
observational design underlying socio-technical systems influence the generation of
data. Techniques such as agent-based simulation models (see Jun and Sethi 2008;
Macal and North 2009) can simulate both the defined forms of permissible inter-
actions between users and the principles of hierarchizing displayed information, as
well as another essential structural feature of socio-technical systems: Mutual reac-
tivity, and thus the relationships between interacting entities. These aspects can be
implemented by choosing specific topologies in agent-based simulations, and thus
the rules that govern, enable, and restrict interaction and communication. In contrast
to a post-facto study of the quality of data, simulation studies enable the systematic
exploration of elements of the observational design that would not be observable
otherwise. This is crucial in situations where the scientific community is scarcely
involved in the construction of the data-generating architecture. Likewise, in the
actual data generation process, simulation models can take into account the myriad
ways in which interaction in socio-technical systems can actually occur; this repre-
sents a powerful way to control and to partition out the concrete effects in which
social scientists are interested. In doing so, error mechanisms can be added, such as
information gaps that result from the users’ or producers’ clean-up activities. These
aspects of the data-generating process can be implemented by specifying the strate-
gies and rules of interactions the actors follow. Consequently, a variety of distortion
mechanisms can be simulated not only by modelling different technically possible
but also differing socially common ways of interacting. Finally, the simulation ap-
proach is useful as it enables us to study distorting mechanisms that may arise from
applying specific data processing conventions, such as by transforming the simu-
lated data to different data structures or selecting only very specific elements of the
overall process.

In sum, this approach allows us to learn more about biasing mechanisms, and
whether we can detect these built-in problems, for example, when we use statistical
techniques of post-hoc identification.
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4 A Case Study: Simulating and Identifying Bot Behavior

In order to illustrate the general strategy outlined above, we use the example of
bot activity. The distortion effect we try to capture is the influence, in different
scenarios, of bots on interaction patterns and on the resulting overall data structures.
The population of our simulation model consists of two different agents, users
and bots, and we assume a series of situations in which actors perceive, contact,
and respond to each other in different scenarios, i.e., in different socio-technical
systems that produce and (partly) provide data on the users’ profile characteristics
and actions. The simulations contain examples of the three aspects of the general
principle outlined above: Observational design (the a priori specification of possible
interactions based on profile selection), the process of data generation (as a result
of the interactions of bots and users), and data processing (where the originally
relational data will be transformed to and analyzed as a cross-sectional flat file).

Socio-technical systems differ according to their prevailing interaction structures
and norms; the role of bots is, of course, different in each context, depending on
the respective type of empirical environment (dating platform, platform for the ex-
change of political views, etc.). Therefore, we simulate different scenarios, each with
a different parameterization of a crucial factor: What are the consequences of bot
presence in contexts that differ only in terms of the prevailing interaction structure?
That is, bot activity will remain constant over the series of scenarios, but the inter-
action style specific to the respective socio-technical system will be systematically
modified. We model the differences between the scenarios as varying homophily
thresholds. In terms of empirical examples, one may compare online dating plat-
forms—where the homophily principle is more relevant—with consumer/business-
to-consumer e-commerce websites such as eBay, where homophily is less prevalent
(see Huber and Malhotra 2016; ééepanovic’ et al. 2017); one may think here, for
example, about harvester or spam-bots. Furthermore, it has been shown that ho-
mophily is sometimes even used as a strategy for so-called astroturfing bots in order
to influence discussions on certain social media and to reinforce specific opinions
(Lazer et al. 2018). Although homophily cannot be considered a general principle
of all interaction, it can serve as an established starting point for an exemplary,
parsimonious model.

The agents are defined as being endowed with some invariant attributes. In reality,
these attributes could take on many different forms, such as profile information,
publicly displayed affiliations, or social status within an online community. We
assign the values 0 or 1 to these invariant attributes for nine variables. For bots,
we assume that they have been programmed in such a way that they are widely
considered to be attractive or interesting (e.g., by publishing appealing content) in
the eyes of a target audience. To instrumentalize this effect in the construction of
our bots, we set one part of their profile information to 1, whereas the rest is filled
randomly from a binomial distribution. As a result, an average bot is very similar to
many human actors (in fact, even more similar than a randomly selected human).

Further, we assume that interactions are driven by some form of commitment in
order to be sustained. As what is involved in interaction processes is not a mere
deterministic process that runs given the constellation of two actors’ attributes and
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the interaction-process does not only involve manifest (dis)similarities between two
actors, but rather the joint production of shared conceptions (such as complementary
role conceptions or complementary hierarchy relations). For a real-world example,
we might consider an online media discussion where people congregate around
a shared interest or topic. As the interaction continues, it can develop in such a way
that participants are no longer in sufficient agreement and thus terminate the inter-
action. The continuation of the interaction is modeled as being dependent on a given
similarity as well on the participants’ willingness to adapt to the ongoing changes
caused by the interaction, that is, by additional similarity regarding attributes that
can change during an interaction. Constellations in which no shared meanings are
established will cease over the course of the interaction and the resulting processes
of reciprocal classification; this pattern of communication cessation should be par-
ticularly typical for bots owing to their severely restricted communicative compe-
tencies. This is why our bots are simulated in such a way that they cannot adapt to
the communication offers of human users.

The actual simulation process is set up as follows: First, the agents are randomly
drawn from a population of all agents. If the newly drawn agent (ego) is not currently
interacting with another agent, a new draw is made from the entire population (alter).
If ego and alter have not interacted in the past, the Jaccard distance between all fixed
attributes is calculated.* If the Jaccard distance falls below or is equal to a threshold
value, both alter and ego are said to be interacting. The size of the threshold between
0 and 1 represents the degree to which interactions are structured by homophily, with
values closer to 0 being indicative of interactions that have a higher requirement in
terms of similarity (homophily) in order to be present. Following this step, a new
agent is drawn from the pool, and we check again whether the agent is part of
an interaction. If not, the process above is repeated until an agent with a raised
interaction flag is drawn or the pool of available agents is empty. In the latter case,
the next round begins by returning all agents to the pool. If the agent that has been
drawn is marked as interacting, the interaction proceeds: In this case, the agent whose
turn it is (ego) selects an element of its binary profile vector in a specified range and
flips that bit, i.e., turns a 0 into a 1 and vice versa. After this change of a specific
bit, the interaction partner (alter) can reciprocate by setting its corresponding bit
to the same position as ego’s. However, this reciprocity can only be exercised by
non-bots. Therefore, if alter is not a bot, alter will reciprocate with a probability
of p,, determined by a global parameter.’ After this change, the profile vectors are
compared again, and the interaction is only continued if the Jaccard distance still
falls below the threshold a.

Furthermore, during every interaction, the bot might terminate the interaction
(depending on the base chance p, times the duration of the ongoing interaction);
this simulates a bot’s tendency to follow a specific pattern, that is, trying to achieve
a desired outcome, such as getting (exclusively human) users to click on a link.

4 This measure is based on the overlap between two binary vectors, ranging between 0 (no overlap) and 1
(complete overlap) (Jaccard 1912).

5 This parameter was invariably set to 0.5, meaning that there was a constant 50% chance for alter to
reciprocate.
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Finally, we include the users’ competency to unmask bots dependent on the number
of experiences gained with their prior bot interactions. The rule states that a user
can employ a test for every interaction they have had with a bot: The test gives the
user a chance of 25% of stopping the interaction. These simulations were run for
a certain number (n=5000) of interaction steps.

Subsequently, we selected three datasets for an exemplary statistical post-hoc
analysis. In this way, we not only simulate data-generating and error-generating
mechanisms, but rather the very situation in which sociologists usually find them-
selves—namely, having to work with highly aggregated, selective data and no defini-
tive information on how these data are generated and which quality problems they
might entail. In the specific case, we are interested in whether bot presence as gen-
erated in the simulated data sets is easily noticeable and to which extent cases are
falsely classified as being problematic.

In each case, the resulting relational data were aggregated to a data format still
common in the social sciences: A two-dimensional data extract, which is composed
of the profile variables mentioned above, and augmented by selected continuous
variables expressing the number of unique partners, the overall sum of interactions
in which this agent participated, and the average interaction duration by contact
partner. To select the sub-set of illustrative datasets, we apply the homogeneity
criterion (Rosenberg and Hirschberg 2007) to both profile and interactional variables.
This criterion serves to select scenarios that differ in their underlying multivariate
data structure (and thus in the difficulty of their statistical classifiability). In doing so,
we yield three datasets that differ with respect to their similarity thresholds (a=0.3,
0.65, and 0.8, with O being the maximum possible and 1 the minimum possible
similarity)®:

e Scenario 1: Strong homophily selection (a=0.3)
e Scenario 2: Moderate homophily selection (a=0.65)
e Scenario 3: Low homophily selection (a=0.8)

For identifying bots in the artificially generated datasets, we mobilize geometric
data analysis as an exploratory tool, which has proven useful in the context of error
identification in survey data (see Blasius and Thiessen 2012). Explorative methods
of this kind are appropriate when it can be assumed that error-inducing mechanisms
are involved and that these errors might manifest in the resulting data, but when it
is not known a priori which errors are actually present and in which ways they will
be reflected in the data. The solutions yielded by geometric data analyses represent
multivariate associations in the data, in the form of two kinds of interrelated spaces:
Spaces of characteristics, which enable researchers to interpret the meaning of the
variables analyzed, and spaces of individuals, which can indicate and visualize
multivariate outliers.

The idea is that a researcher does not know the nature and extent of the prob-
lem, but is generally aware that bots may differ both in terms of their (e.g., more
homogeneous) profile characteristics and in terms of their (e.g., more extreme) in-

6 Figures D1-D4 in the online appendix illustrate the rationale for the selection of the three exemplary
scenarios.
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teraction patterns. As the data contain variables with different scales, we employ
multiple factor analysis (Pages and Bécue-Bertaut 2006), which integrates factorial
solutions for categorical and continuous variables into a common solution. Online
appendix 1 contains the space of characteristics for all analyses, separated by con-
tinuous (interaction) and categorical (profile) variables. The spaces of individuals,
i.e., the dispersions, are shown below. For easier visibility, bots (blue) and human
users (gray) have been color-coded differently and the dispersion of both categories
is indicated by concentration ellipses.

Analyzing dataset 1, which exhibits the greatest extent of homophily-based selec-
tion, yields a space of characteristics where three of the binary profile variables (1,
2, 3), a high number of contact partners, and low average interaction length describe
the lower, right area of the graph (see Figs. Al and A2 in the online appendix). Based
on existing knowledge, a researcher might surmise a pattern matching the charac-
teristics and interaction modes of bots, as this specific pattern (many contacts, short
interactions) is known from bots’ activities on, for instance, dating platforms (see
Schmitz et al. 2012). In fact, Fig. 1, which shows the space of individuals and thus
the dispersion of all cases in the plane, allows us to identify outliers in the fourth
quadrant (bottom right).

Yet most bots are still located within the distribution of human users (gray circle)
and would not have been unmasked without further ado. Of the 30 bots actually
present, the visual inspection of the outliers would identify only six to eight cases,
while not suggesting false-positive assignments. This circumstance is the result
of two effects: Bots are more likely to engage in an interaction (i.e., have high
numbers of interactions) owing to their advantageous profile characteristics, which
make them comparatively more similar to more contact partners than the average
human user, resulting in a high number of different contact partners. However, the
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Fig. 1 Space of Individuals Dataset 1 (MFA)
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intense demand for homophily makes continuing the interaction much harder, as bots
cannot adapt to human users over the course of the symbolic interaction process, so
that the distance between bots and human users increases during the interaction and
the resulting average interaction length is very low. Nevertheless, this effect is not
so extreme that bots could be immediately distinguished from humans in a highly
distinctive form based on an initial exploratory analysis.

For dataset 2 (moderate homophily-based selection), the overall number of inter-
actions and the average count of interaction events by contact partner are strongly
positively correlated with each other, but strongly negatively correlated with the
number of unique contact patterns (see Fig. B1 in the online appendix). This indi-
cates, overall, a clearly ordered, uniform interaction structure in which agents only
interact with a few contacts, although over a longer series of events. Assuming that
bots do not establish numerous lasting interactions, and will have unsuccessfully
tried to approach many unique contact partners, one might expect them to be lo-
cated at the left side of the space. As in scenario 1, this region is also described
by some of the profile properties, although no longer with the same discriminatory
precision (see Fig. B2 in the online appendix); thus, as expected, the profile char-
acteristics have less importance for the initiation and continuation of interactions.
However, the space of individuals does not suggest any readily identifiable outliers
(see Fig. 2). Although the bots are located with disproportionate frequency in the
expected second and third quadrants (top and bottom left), they do not take extreme
positions in the cloud of individuals.

In this scenario, by design, homophily is of less significance when it comes to
continuing or terminating an interaction. The moderate pressure of homophily-based
selection provides human users with sufficient potential interaction partners to which
they can adapt and with whom they can form lasting, exclusive relationships, thereby

Dim2 (11.1%)

Dim1 (17.9%)

Fig. 2 Space of Individuals Dataset 2 (MFA)
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obfuscating the specific interaction patterns that could potentially reveal the bots as
outliers.

For dataset 3 (weak homophily-based choices), another pattern can be observed.
Again, several profile indicators describe the right-hand part of the plane (1, 2, 3,
and 4), but now, the overall sum of interaction events and the average duration of
an interaction have the highest values along the first diagonal, whereas the number
of unique interaction partners describes the second diagonal (see Fig. C1 and C2
in the online appendix). Thus, cases on the right side of the space possess a high
number of interactions and long average interactions, as well as more interaction
partners. One might assume that, in a context where the similarity and commitment
of the interacting actors are not relevant, bots should be relatively successful in
establishing numerous lasting interactions.

Accordingly, the space of individuals shows some clearly identifiable outliers on
the right-hand side (see Fig. 3) and 16 of the 30 bots would be identified (with two
or three false-positive classifications) via visual inspection.’

As it turns out, albeit only for the two extreme specifications (strong and weak
homophily-based contexts), we stumbled across bot-specific phenomena simply by
performing a basic explorative analysis. For scenario 1, it can be assumed that strong
homophily leads to a situation where bots have been sorted out by human users
during the interaction process, owing to the bots’ inability to adapt, whereas weak
homophily in scenario 3 promotes situations where human users did not exclude

Dim2 (11.2%)
o

Dim1 (13.8%)

Fig. 3 Space of Individuals Dataset 3 (MFA)

7 As homophily only played a weak role here, the pattern could also be the result of secondary effects:
both the fact that bots can move on to new users after they are revealed as bots and their tendency to
terminate unsuccessful interactions enables bots to establish an increased number of new interactions as
well as more long-term interactions, whereas, for humans, these effects have no impact (as their random
dispersion pattern suggests).
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bots, but instead kept on interacting with them. Or, in short: Both constellations
created discernible outlier patterns. In the case of strong homophily, bots were
conspicuous in that they were rarely involved in (lasting) interactions, whereas in
the case of weak homophily, bot presence became evident because they were very
strongly involved in the interaction processes.

This nonlinear way in which homophily impacts the identifiability of bots demon-
strates the need for further systematic simulations: Substantially more data sets need
to be generated (a) over a wider parameter space, (b) with more varying parame-
ters involved (such as heterophilous strategies), and (c) with multiple repetitions
to control random variations in the individual scenarios. Only in this way can we
specify the exact conditions in which the implemented errors can be understood and
identified; without such a systematic, controlled comparison it is always possible
that random effects will be mistaken for systematic effects.®

5 Discussion

While working with digital process data is becoming increasingly relevant to the
practice of social scientists from diverse paradigmatic backgrounds, the topic of data
quality is still in its infancy. To address this major challenge of modern empirical
research, this paper has drawn on the body of social science knowledge with re-
spect to the empirical phenomena, theoretical conceptualizations, and methodolog-
ical controllability of quality distortion. Therefore, we analytically distinguished
three generalized aspects that empirically interact in producing digital process data:
Observational design, data generation, and data processing. These three ideal-typical
dimensions describe mechanisms that may call into question the quality, validity,
and reliability of digital process data on entities, events, and their relations. Whereas
issues of quality of digital data can indeed be compared with traditional data types,
a crucial meta-quality criterion of such data is transparency, i.e., the degree of
inspectability and traceability into the underlying processes of data production.

Given the fact that transparency cannot be assumed, as sociologists usually have
very little if any insight into the conventions and processes that underlie the produc-
tion of digital process data, we discussed the promising role of combining simulation
and post-hoc identification techniques. Simulation techniques represent a way to re-
spond to the lack of control and insight and employing such approaches contributes
to the body of empirical knowledge by adding artificial data, gaining experience
about the effects of error mechanisms in the resulting data, and learning whether
the traditional identification techniques at our disposal are helpful in drawing our
attention to suspicious phenomena. We illustrated this approach using the example
of the identification of bots, a phenomenon that can be said to genuinely belong to
socio-technical environments and that cannot be understood as a mere “external”
nuisance. Yet to the extent that we are unaware of their activities, we always run the
risk of misinterpreting observed actions, interactions, and communications.

8 Likewise, this method allows us to systematically evaluate the consequences of the other two implied
effects (unmasking and termination).
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In order to grasp such problems—as well as other distorting phenomena within
observational design, data generation, or data processing—in a more systematic
fashion, future research can build on our mixed-methods strategy by systematically
generating data sets across a multitude of simulations and thereby accounting for
random variations. Applying a “pipeline strategy” over a series of simulated data,
varying the conditions and parameters, and running the simulations several times
will enable social scientists to systematically evaluate the threshold values at which
suspicious patterns come to light when using identification methods (geometric data
analysis, but also finite mixture models, or clustering methods).

Yet, such automated strategies must be realized in conjunction with the inter-
pretative competencies of the researcher. It is essential to have both an adequate
understanding of the respective empirical phenomena and a theoretical understand-
ing of possible distortion mechanisms, and, as in traditional survey research, insights
must be acquired through practical engagement with empirical data sets. In doing
so, knowledge gained from simulated datasets may sensitize empirical researchers
who screen their real-life datasets for comparable patterns using similar identifica-
tion techniques. For this purpose, entire large-N data sets cannot and need not be
examined manually: The iterative, abductive examination of samples of conspicuous
cases, as well as qualitative or ethnographic investigations, can be most useful in pro-
viding further clues regarding suspicious patterns and in specifying explorative iden-
tification models. In the context of survey research, researchers have already used
qualitative (cognitive) interviews with respondents on their perceptions of the sur-
vey as well as ethnographic observations of the classification practices subsequently
conducted by the researchers. In similar ways, future research will employ mixed-
methods approaches to quality issues of digital process data. A great deal can be
learned about observational design, data generation, and data processing procedures
through expert interviews with programmers (who operate in comparable contexts
of practice and can inform us about common conventions) and ethnographic ob-
servations of programming activities. Complementarily, qualitative interviews with
platform users can reveal their perspectives, practices (such as their ways of identify-
ing and interacting with bots), and effects on socio-technical systems. Such accounts
are essential to increase our contextual knowledge, and they can be useful for further
developing simulations (e.g., for implementing more realistic strategies).

Ultimately, such mixed-methods approaches to data quality in the digital realm
can help us to understand that phenomena that are interpreted as mere distortions
of otherwise accurate observational data are, in fact, constitutive and generative
elements of socio-technical systems.
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by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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