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Abstract
Based on the concept of ambidexterity, we develop a multi-objective, multi-product, and
multi-period model to integrate planning for research and development (R&D) and pro-
duction and distribution (P&D) in a global pharmaceutical supply chain (PSC) considering
delays in the entire supply chain. We also propose robust possibilistic programming (RPP)
approach to deal with the epistemic uncertainty of some critical input parameters. Apply-
ing the ambidexterity approach that emphasizes optimizing a balanced framework based on
the R&D and P&D planning, our study reconciles the explorative and exploitative supply
chain strategies in the context of global PSCs. The proposed integrated model can manage
the inherent delays and uncertainties in the R&D processes and P&D systems via a novel,
credibility-based, robust possibilistic programming model. We illustrate the application of
our model using a real-world case study of one of the largest andmost reputable pharmaceuti-
cal companies in Iran. The results affirm the credibility and feasibility of the proposed model
when juxtaposed with a non-integrated model. Our study suggests the use of ambidexterity
approach in resource allocation planning, riskmanagement, and enhancement of performance
in sophisticated settings such as global PSCs.
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1 Introduction

The unique characteristics of pharmaceutical products in achieving sustainable community
health make global pharmaceutical supply chains (PSCs) dynamic and complex. Disruptions
at any stage of a global PSC’s planning and coordination can significantly impact the supply
chain efficiency and directly affect human lives at the global level (Lücker & Seifert, 2017).
Therefore, PSCs utilize strategies to minimize the risk of investment failures. Such strategies
involve planning for research and development (R&D) processes and optimizing production
and distribution (P&D) of pharmaceutical products.

Planning for R&D processes occurs in the early stages of global PSCs when the chains
adopt an explorative supply chain approach to produce new pharmaceutical products. This
can be seen in the cumulative R&D expenditure of a pharmaceutical company over the long
term. According to Austin and Hayford (2021), investments in R&D processes in the phar-
maceutical industry have a success rate of only 12% and may take up to a decade to be
commercialized. The industry has experienced increased investments in the R&D activities
over the past two decades (Marques et al., 2020). Prior studies proposed complex mathe-
matical models like the random capacity planning model for clinical trials, which used a
scenario-based approach (Rotstein et al., 1999), realistic risk-assessment models (Colvin &
Maravelias, 2011), multi-stage, multi-period stochastic capacity planning models (Gatica
et al., 2003), multi-period models for the development of new products (Jahani et al., 2017;
Rogers et al., 2002), and multi-site, multi-period, multi-product capacity-planning models
(Levis & Papageorgiou, 2004).

In addition, P&D planning allows the pharmaceutical industry to exploit currently devel-
opedproducts,market share, and solutions to responding to unprecedented changes in demand
patterns, especially at the times of crisis (Marques et al., 2019; Nasrollahi & Razmi, 2021;
Rekabi et al., 2021). Therefore, many companies in the pharmaceutical industry consider the
P&D planning as a solution to reducing supply chain costs and risks (Guerrero et al., 2013;
Liu et al., 2017). This requires the global PSCs to optimize operating models and speed up
the pace of mass production and delivery in a short period of time (Gilani & Sahebi, 2022).
Some prior studies, therefore, focused on exploitative strategies that demonstrate allocation-
distribution optimization (Laínez et al., 2012; Sousa et al., 2011), multi-product distribution
planning (Guerrero et al., 2013; Zandkarimkhani et al., 2020), or multi-period and multi-
product production, distribution and capacity planning models (Kabra et al., 2013; Saracoglu
et al., 2014). Some other studies applied fuzzy rule-based systems (Shakouhi et al., 2021;
Zandkarimkhani et al., 2020) and possibilistic programming (Savadkoohi et al., 2018).

We discerned that many prior studies predominantly focused on one of two areas in global
PSCs. They either examined planning for R&D processes, encapsulating the explorative
approach, or they concentrated on P&D planning, representing the exploitative approach.
This may render suboptimal solutions and increase the risk of failure across the supply
chain, as both planning for R&D processes and P&D planning are interlinked and neces-
sary (Marques et al., 2020). To bridge this research gap, the literature suggests the concept
of ambidexterity, which refers to an organization’s ability to simultaneously pursue both
explorative and exploitative approaches (Junni et al., 2013).
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The explorative approach is associated with the search, experimentation, and R&D pro-
cesses. However, it may require vast investment in the early stages of a product’s lifecycle
(Rojo et al., 2016). It will develop the long-term supply chain’s objective to improve prof-
itability (Kristal et al., 2010). In contrast, an exploitative approach is related to continuous
improvements, innovative execution, and waste reduction through optimal operational costs
that enhance supply chain efficiency (Blome et al., 2013). This study aims to propose an inte-
grated planning model for complex R&D processes and P&D systems that can help optimize
explorative and exploitative approaches to profitability across a PSC. Indeed, any delays in
the commercialization of pharmaceutical products increase risks of investments in planning
for R&D activities and reduce public trust and customer satisfaction. This study develops
a multi-objective, multi-product, and multi-period model for integrating R&D and P&D
planning decisions in a global PSC, considering delays and operational costs in the chain,
and proposes a robust possibilistic programming (RPP) approach to deal with the epistemic
uncertainty of some critical input parameters (e.g., those in crisis). Integrating R&D and
Production and P&D planning decisions in a global pharmaceutical supply chain requires a
multi-objective, multi-product, and multi-period model due to the inherently complex and
uncertain nature of this industry.

This model serves two opposing yet interconnected objectives. First, it aims to maximize
ENPV of total profit. The maximization of ENPV is a critical element in any business model,
but more so in pharmaceuticals, where significant upfront investment is required in the
early stages of a product’s lifecycle, particularly in R&D. The expected payoff from these
investments occurs over an extended period, thus emphasizing the need to focus on long-term
profitability. Second, the model strives to minimize the maximum unsatisfied demands. In
the pharmaceutical industry, unsatisfied demand can have serious health consequences for
patients and can harm a company’s reputation. It is essential to minimize such demands,
ensuring an adequate and consistent supply of products. The need for such a model is further
amplified by the industry’s complexity. With multiple products, each with its own lifecycle
and demand patterns, the planning process becomes increasingly sophisticated. In addition,
the model accounts for different time periods, recognizing that decisions made today have
impacts that unfold over many years. In addition, as the success rate of a patent in this
industry is low, generic pharmaceutical products will have a higher chance to enter the
market, with lower cost than innovative products. Therefore, we define another objective
function to maximize the production of innovative pharmaceutical products to better address
the profitability of innovative products.

The remainder of this paper is as follows: The next section provides a literature review on
the global pharmaceutical supply chain, with an emphasis on planning for R&D processes
and planning for P&D. In the following section, we articulate the significant research con-
tributions. We then explore the problem context where we discuss the specific environment
and circumstances in which our model was evaluated. The next section describes the formu-
lation of our model and the objective functions, detailing the mathematical representation of
the decision-making problem. After the model has been established, the following section
discusses the implementation and assessment of the proposed model, including the process
of data collection, as well as presenting the results from the Pareto analysis, model validity
checks, and sensitivity analysis. The paper culminates with a critical discussion on the results
of our study, where we interpret the findings in light of the existing literature and propose
the theoretical and practical implications that emerge from our work.
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2 Literature review

2.1 Pharmaceutical industry characteristics

The global pharmaceutical industry includes (1) innovative pharmaceutical products (an
exclusive patent of 10–20 years) that require high R&D expenditures at the early stages of
production; and (2) generic pharmaceutical products with limited expiration of the original
product’s copyright or license, maintained by manufacturers involved in the process of pro-
duction (Lücker & Seifert, 2017; Marques et al., 2020). It is noteworthy that governments
often set regulations for generic pharmaceutical products that the pharmaceutical industry
must comply with (Abraham et al., 2003). Regardless of the product type, the complexity of
pharmaceutical product development has significantly increased over the past two decades
(Laínez et al., 2012), requiring regulatory agencies to consider more rigorous procedures to
protect public health. For example, the Food and Drug Administration (FDA) in the USA and
the EuropeanMedicines Agency (EMA) in Europe are regulatory authorities that develop and
establish policies to ensure the safety, efficacy, and security of residents across the production,
marketing, and distribution phases in food, cosmetic, and pharmaceutical products (Marques
et al., 2020). These regulatory authorities also support the pharmaceutical industry to accel-
erate innovation in pharmaceutical products and make them more effective, affordable, and
secure (Abraham et al., 2003). Although some developing countries like India or China rely
on their own regulatory authorities (e.g., theDrugControllerGeneral in India) (Mahajan et al.,
2015), due to the rigid framework of the process of new product development in the global
pharmaceutical industry, governments in many developing countries pursue the regulations
recommended by the FDA in the USA or the EuropeanMedicines Agency (EMA) in Europe.
The Iran Food and Drug Administration (IFDA) is a regulatory agency that oversees clini-
cal investigations of pharmaceutical products in Iran (Iran Food and Drug Administration,
2021). According to the FDA (2021), the R&D processes of pharmaceutical products consist
of five phases (e.g., discovery and development, pre-clinical, clinical, FDA approval, and
safety monitoring), followed by the P&D processes (i.e., production, marketing, distribution
and delivery in customer zone). These phases are described in Fig. 1.

Indeed, the process of newproduct development, commercialization and distribution in the
pharmaceutical industry imposes substantial challenges for decision-makers. Many scholars
considered R&D and P&D processes as the two ends of a typical PSC (e.g., see Lücker &
Seifert, 2017; Narayana et al., 2014; Shah, 2004). In other words, R&D processes in a PSC
are tailored by the post-market safety monitoring phase (i.e., mass production, inventory, dis-
tribution and delivery), making a PSC more complex than a typical supply chain. Therefore,
the PSC design has been often a challenging topic in production and operations research
(Marques et al., 2018). As a result, Laínez et al., (2012, p. 20) stated that “[the] high cost
and low rate in product discovery and clinical development” create a paradoxical tension
in commercializing pharmaceutical products; therefore, the industry may be too uncertain
about investing in the new products and may look for externally developed products instead.

From the global perspective, strict regulations for new product development in a coun-
try can lead to a situation when P&D processes in other countries increase the burden of
inventory management, leading to the loss of product values. Furthermore, the complexity
of stakeholder engagement in a global PSC (e.g., R&D teams, manufacturers, distributors,
customers, service providers, regulatory agencies, and governments) makes investments in
new products too risky (e.g. see Bhakoo & Chan, 2011). In this vein, Marques et al. (2019)
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Fig. 1 R&D and P&D processes in a PSC

recommended that future modeling approaches consider key stakeholders’ roles in new phar-
maceutical development and commercialization to leverage efficiency in the entire PSC.
Therefore, pharmaceutical companies prefer to invest less in the early stages of new phar-
maceutical product development, and this in turn creates many opportunities for developing
countries (e.g., India) to take advantage of the capitalized low-cost production nature of the
pharmaceutical industry (Mahajan et al., 2015).

2.2 Ambidexterity in the global PSC

The concept of ambidexterity refers to situations in which an organization or a network of
organizations explore new knowledge while simultaneously exploiting current opportunities
(Junni et al., 2013). Ambidexterity enables organizations to achieve a sustainable competi-
tive advantage by utilizing the existing opportunities and getting ready for future challenges
(Ardito et al., 2020). In the context of supply chain management, actors must actively coor-
dinate and integrate organizational resources to achieve these two objectives (Aslam et al.,
2018). Early conceptualization of ambidexterity in supply chain management is rooted in
studies by Kristal et al. (2010) and Blome et al. (2013), which examined the simultaneous
influence of exploitative and explorative supply chain approaches. These studies later inspired
a body of research on how ambidextrous supply chain approaches can improve supply chain
performance (Aslam et al., 2018). Rojo et al. (2016) and Salvador et al. (2014) suggested that
ambidexterity in supply chain management enables the chain to become efficient by focusing
on existing opportunities and acquiring external knowledge aboutmarket demand. Therefore,
Aslam et al. (2018) concluded that in the supply chain ambidexterity, organizations could
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quickly respond to short-term market changes and establish long-term strategies to improve
profitability.

To better understand the role of ambidexterity in the pharmaceutical industry, we need to
articulate the relationships between the explorative and exploitative supply chain approaches
and how these two can impact performance. In a meta-analysis on ambidexterity and perfor-
mance in eight industries (e.g., the pharmaceutical industry), Junni et al. (2013) found that
integrating explorative and exploitative approaches can improve organizational profitability.
He and Wong (2004) found that organizations may respond differently toward these two
approaches (e.g., emphasizing one over the other). Uotila et al. (2009) stated that the bal-
ance between the explorative and exploitative supply chain approaches is defined based on the
power of internal and external factors. For example, an explorative approachmay be appropri-
ate for R&D planning, whereas an exploitative approach may work better in situations where
the pharmaceutical products must meet the market demand. Uotila et al. (2009) therefore
highlighted that the integration between the two approaches is critical in the R&D-intensive
supply chain design (e.g., the pharmaceutical industry).

2.2.1 Planning for R&D processes (the explorative approach)

Schmidt and Grossmann (1996) and Jain and Grossmann (1999) proposed optimization
models using a mixed-integer linear program (MILP) with resource constraints to reduce the
scheduling of testing tasks in phases of discovery and development and preclinical research
in R&D planning. Rotstein et al. (1999) presented a random capacity planning model (based
on the MILP methodology) for Phase 3 of R&D planning (clinical trials). They also used
the model to minimize investments in product development and introduction strategy of
pharmaceutical products. Gatica et al. (2003) presented amulti-stage, multi-period stochastic
capacity planning model to optimize planning for R&D processes in the clinical trial phase.
They proposed the R&D planning as a large-scale, multi-stage, and multi-period stochastic
optimization problem that must be resolved through an optimization-based approach. Their
methodology reformulated the problem as a multi-scenario MILP model, enabling R&D
planning for multiple products to be efficient. This methodological approachwas also applied
by Maravelias and Grossmann (2001), Rogers et al. (2002) and Levis and Papageorgiou
(2004) who proposed a multi-period model for the development of new products, using
MILP to maximize the net value of introducing new products to the market. However, these
studies applied a heuristic algorithm based on Lagrangean decomposition to propose optimal
or near-optimal solutions to the R&D processes.

Some other studies have applied a combination of mathematical modeling approaches to
resolving the issues of R&D planning in the pharmaceutical industry. For example, Luna and
Martínez (2018, p. 1063) proposed a model-based optimization strategy using a probabilistic
tendency approach to efficiently improve operating scenarios in new product development.
Their mathematical modeling helped mitigate the risk of failure in the early stages of product
development. Colvin and Maravelias (2011) proposed a multi-stage stochastic programming
framework to (1) optimize the selection and scheduling of R&D activities using the pass/fail
uncertainty conditions; (2) optimize the resource planning decisions (e.g., contracts, out-
sourcing procedures) for multiple products; and (3) provide a framework for formulating
value at risk in pharmaceutical companies. Considering the importance of decisions at the
early stages of R&D processes, Marques et al. (2018) presented a multi-objective integer
programming model to develop the best design strategy for maximizing the productivity of
R&D processes. None of these studies, however, has explicitly considered links of R&D and
P&D—a distinct and substantial contribution made by our study.
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2.2.2 Planning for P&D processes (the exploitative approach)

Planning for P&D is as important as R&D in designing a PSC. Although clinical trials (Phase
3 of R&Dactivities) help gather important information, the true picture of a product’s efficacy
and safety evolves over time, especially when it enters the market for consumption (Lücker
& Seifert, 2017; Mahajan et al., 2015). Furthermore, after a new pharmaceutical product is
prepared for commercialization (Phase 5 of R&D activities), the success of P&D systems
is not necessarily guaranteed (FDA, 2021). Accelerating the pharmaceutical product’s P&D
systems is, therefore, important for two reasons. First, capturing a large portion of the market
share for a new product may require years of marketization and commercialization (Marques
et al., 2020). Second, to maximize the pace of P&D systems for the pharmaceutical product
while minimizing operational costs (e.g., mass production, storage, transportation), it is
important not to focus only on one part of the PSC.

Many studies in P&D planning reviewed settings with primary and secondary pharmaceu-
tical production operations (Marques et al., 2020). Primary production (i.e., pharmaceutical
substance manufacturing) focuses on transforming primary components into active pharma-
ceutical ingredients that require a chain of chemical and separation processes. Secondary
production (i.e., pharmaceutical product manufacturing) focuses on transforming the active
pharmaceutical ingredients into end products that are ready for delivery to customers. This
often involves further procedures such as standardizing dosages for different groups, pack-
aging, and developing security against expiration. Therefore, the secondary production must
be aligned with distribution networks to ensure the efficiency of the entire PSC (Jahani et al.,
2023). Although time and cost are two aligned constraints in the literature of PSC design,
some studies focused on these two constraints to provide better strategic decisions for pol-
icymakers in both the primary and secondary production operations. According to Rekabi
et al. (2021), operating times in the production and delivery of pharmaceutical products in
PSCs is vital; therefore, they combined the twomulti-objective methods using LP-metric and
goal attainment to increase the performance of a real-world production–distribution system.
In contrast, Zandkarimkhani et al. (2020) proposed a bi-objective MILP model using fuzzy
rule-based systems for perishable pharmaceutical products to minimize the different yet
interlinked variables of the network costs and lost demand amount. They note that some lost
sales are inevitable; therefore, companies must invest more in distribution facilities to cover
a wide variety of hidden demands in the market. The same findings are also observed in the
study by Nasrollahi and Razmi (2021), although their model was based on a multi-objective
non-dominated ranked genetic algorithm.

Sousa et al. (2011) proposed a mathematical model for optimizing the allocation and dis-
tribution structure of a PSC in both primary and secondary production operations. The model
was aimed at optimizing the allocation of products to different locations and to customers
in various age groups to increase demand satisfaction. However, we found that the study
by Uthayakumar and Priyan (2013) is one of the early studies that directly applies opera-
tions research and optimization in PSCs to decrease the level of unsatisfied demands. They
stated that pharmaceutical product shortages, restrictions in production, and storage and dis-
tribution matters require high-level coordination in establishing optimal PSC and inventory
management policies; therefore, they proposed a two-echelon mathematical procedure for
determining optimal solutions to simultaneously reduce the PSC costs and improve the com-
petitive business environment through minimizing unsatisfied demands. In another study by
Akbarpour et al. (2020), an integrated pharmaceutical relief network (min–max robustmodel)
under demand uncertainty and perishability of products in times of crisis was developed and
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tested in a developing country. This study showed that P&D modeling in the pharmaceutical
industry could substantially improve the efficiency of PSCs. Sousa et al. (2011) then con-
sidered the critical roles of production cost, transportation cost, tax, and insurance rates at
various locations, utilizing a profit maximization objective function, and proposed a model
based on two decomposition algorithms. The same practical approach was taken into consid-
eration in the study by Susarla and Karimi (2012), which proposed an integrated procurement
P&D planning model for a multi-product PSC. In their study, the integrated mixed-integer
programming model is formulated in terms of holding inventory and raw material costs and
tax differences.

According to Sheu and Lin (2012), with the rapid maturity of globalization, global supply
chainsmust utilize operational objectives that help reduce the level of uncertainty and cost and
improve coordination inP&Dchannels. Theyproposed amulti-objective programmingmodel
to systematically minimize network configuration cost and unsatisfied demand andmaximize
operating profit. Their study later inspired some other PSC studies. For example, Liu et al.
(2017) developed two distribution planning models (uncertain demand and service time) for
pharmaceutical products using a time–space network approach for daily delivery in a hospital.
In addition, Zahiri et al. (2017) proposed a new mathematical model to design a distribution
network in a PSC in France in times of crisis. They developed a new approach based onmean-
absolute deviation and fuzzy possibilistic-stochastic programming to minimize the total cost
of pharmaceutical product delivery while increasing the resilience of the PSC with respect
to the social responsibilities of France’s pharmaceutical companies.

2.3 Research contributions

As evident in Table 1, we found that studies on PSC planning addressed either R&D planning
or P&D planning, even if an integration between these two areas could improve profitability
andminimize unsatisfied demand. A lack in this integrationmay render suboptimal solutions.
The integrated planning of R&D processes and P&D operations can help the PSC optimize
investments in R&D activities as well as increasing profitability andmarket share by utilizing
effective strategies. Furthermore, delays in R&D phases of production and delivery can
jeopardize PSC resilience, both individually and collectively; this is also overlooked in prior
studies. Indeed, the timely arrival of pharmaceutical products in the market can increase
profitability and reduce unsatisfied demands; this is useful for further investments in R&D
processes. To summarize, many prior studies did not consider both the long-term and short-
term benefits of integration in supply chain approaches (i.e., ambidexterity in supply chain
management) during PSC planning.

This studymakes the following contributions to the literature to bridge these research gaps.
First, we develop a multi-objective, multi-product, and multi-period model for integrating
R&DandP&Dplanning decisions in a global pharmaceutical supply chain considering delays
in R&D and P&D phases. Second, we propose an RPP approach to deal with the epistemic
uncertainty of some critical input parameters. Third, applying the ambidextrous approach
that emphasizes optimizing a balanced framework based on the R&D planning and P&D
planning, our study reconciles the explorative and exploitative supply chain strategies in the
context of global PSCs through maximizing ENPV of Total Profit; (ii) minimizing the maxi-
mum unsatisfied demands; and (iii) maximizing the production of innovative pharmaceutical
products.

The integration of these three objective functions within a multi-objective model
acknowledges the interconnectedness and interdependencies among various aspects of the
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Fig. 2 The supply chain ambidextrous approach proposed in this study

supply chain which is identified as ambidexterity in supply chain management. It helps
decision-makers navigate the complexity and uncertainties by considering the trade-offs
and contradictions between the explorative approach (R&D planning) and the exploitative
approach (P&D planning). The R&D phase of the pharmaceutical supply chain (explorative)
focuses on innovation, experimentation, and long-term value creation. It requires flexibility,
exploration, and investment in research activities to develop new and innovative pharma-
ceutical products. On the other hand, the P&D phase emphasizes efficiency, reliability, and
meeting current market demands. It focuses on cost optimization, timely delivery, and ensur-
ing customer satisfaction.

As discussed in the literature, these two conflicting demands are identified in all three
objective functions, justifying the need to address the conflicting demands between the R&D
and P&D phases. The concept of ambidexterity recognizes the need to balance exploration
and exploitation within the pharmaceutical supply chain. This facilitates decision-making
that integrates both long-term innovation objectives and short-term operational efficiency,
enabling the global PSCs to navigate the complexities and uncertainties while effectively
managing conflicting demands.

To achieve these contributions, this study utilizes unique global parameters in advancing
supply chain performance such as exchange rates, taxes, import rights, and international
transport insurance. The proposed model also considers the inclusion of transfer pricing
using an authentic case study. Figure 2 exhibits the role of ambidexterity in developing the
integrated model in this study.

3 Problem context

Although many pharmaceutical organizations possess a portfolio of generic and innovative
pharmaceutical products, this study focuses on the innovative products to better accommodate
its objectives. The innovative products are produced based on a set of criteria, including the
market situation, government regulations, and social acceptance, the quality of competing
products, and financial profitability (Austin & Hayford, 2021; Marques et al., 2020). When
a new product from an R&D portfolio is selected for mass production, capacity planning
may become complicated due to the limited number of production lines (Gatica et al., 2003);
therefore, a cost–benefit analysis must be undertaken tomaximize the production capacity for
both the innovative and generic products, based on the above criteria (Lücker&Seifert, 2017).
As such, it becomes increasingly important to integrate R&D planning for new products and
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Fig. 3 HPC supply chain network

use P&D planning for both the generic and innovative pharmaceutical products to optimize
the PSC planning.

To achieve this, we implemented our proposed model in an authentic case study, Hakim
Pharmaceutical Company (HPC), one of the largest and most well-known pharmaceutical
companies in Iran. HPC can produce a diverse range of medicines such as tablets, coated
tablets, hard gelatin capsules, gel capsules, oral drops, syrups, oral suspensions, topical
solutions, topical gels, topical creams, and ointments (HPC, 2021). The underlying structure
of the HPC supply chain is shown in Fig. 3.

The company has a candidate portfolio of generic and innovative pharmaceutical products
that flexibly shape the P&D lines based on the rate of profitability and market share. HPC has
also outsourced the production of some generic products to other pharmaceutical companies
(HPC, 2021). However, the innovative products that require passing the five phases of R&D
planningmust be undertaken within HPC itself. Delays in pre-clinical and clinical testing and
the IFDA review and approval may also impact benefits resulting from early commercializa-
tion (e.g., profitability). Therefore, these delays are also taken into consideration in this study.
Although HPC has a large portion of the local market of Iran, its pharmaceutical products
are exported to other countries, including Iraq, Afghanistan, Pakistan, United Arab Emirates,
Qatar, Turkmenistan, Syria, and Armenia (HPC, 2021). Therefore, the integrated planning
for R&D and P&D must comply with international regulations, contracts, and agreements
(e.g., Free on Board (FOB) and Cost, Insurance, and Freight (CIF)). This requires us to con-
sider the cost of transportation, insurance, and tax rates between the origin and destination
countries.

The multi-objective multi-period optimization model for the HPC case is formulated
by defining the problem’s parameters, decision variables, objectives, and constraints. The
decision variables in this model represent adjustable parameters that have a direct impact on
the outcomes.
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4 Model formulation

The following indices, parameters, and variables are used to formulate the integrated R&D
planning and P&D planning problem.

4.1 Nomenclature

Indices

t Index of time periods, t ∈ {1, 2, . . . , T }, unit = year, season, or several months
f Index of manufacturing centers, f ∈ {1, 2, . . . , F}, unit = number
d Index of distribution centers, d ∈ {1, 2, . . . , D}, unit = number
g Index of customer zones, g ∈ {1, 2, . . . ,G}, unit = number
i Index of pharmaceutical products, i ∈ {1, 2, . . . , I }, unit = number

Parameters (R&D planning)

dli R&D time for product iεn, unit = days, months
CDN P1

i Unit R&D cost of product i in formulation phase, unit = a currency like $ or
Rial

CDN P2
i Unit R&D cost of product iεn in IFDA approval phase, unit = a currency like

$ or Rial
cr1 Marginal cost of delay time in formulation phase, unit = a currency like $ or

Rial
cr2 Marginal cost of delay time in FDA approval phase, unit = a currency like $ or

Rial
lr1i Delay time for product i in formulation phase, unit = days, months
lr2i Delay time for product i in FDA approval phase, unit = days, months

Parameters (P&D planning)

Pl
f i Delay times in production center f for product i , unit = days, months

PC f i Storage capacity of production center f for product iεo, unit = number
CP f i Unit manufacturing cost of product i in production center f , unit = a currency

like $ or Rial
C I f i Unit storage cost of product i in production center f , unit = a currency like $ or

Rial
I I f i t Initial inventory of product i in production center f at time period t , unit =

number
DLC f t Unit delay time cost in production center f at time period t , unit = days, months
πi Weight of importance for product i , unit = percentage
T Rt

f Tax rate of income of production center f at time period t . If production center
is losing out, the tax rate is zero, unit = percentage

CF f i Storage capacity of production center f for product iεn, unit = number
Dt
gi Demand in customer zone g for product i at time period t , unit = number

Pdi Price of product i in domestic distribution center d , unit = a currency like $ or
Rial

P ′di Price of product i in external distribution center d, unit = a currency like $ or
Rial

L f d Delay times between production center f and distribution center d, unit = days,
months
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Ldg Delay times between distribution center d and customer zone g, unit = days,
months

C Idi Unit storage cost of product i in distribution center d , unit = a currency like $ or
Rial

Cd Storage capacity of distribution center d for product iεo, unit = number
I I ′dit Initial inventory of product i in distribution center d at time period t , unit =

number
TC1

f d Unit transportation cost between production center f and external distribution
center dεd f in the country of origin, unit = a currency like $ or Rial

TC2
f d Unit transportation cost between production center f and distribution centerdεd f

in destination country, unit = a currency like $ or Rial
TC3

dg Unit transportation cost between distribution center dεd f and external customer
zone g, unit = a currency like $ or Rial

TCdg Unit transportation cost between domestic distribution center dεdh and domestic
customer zone g, unit = a currency like $ or Rial

TC ′ f d Unit transportation cost between production center f and domestic distribution
center dεdh , unit = a currency like $ or Rial

I Nd Unit insurance cost in domestic distribution center dεdh via marine, unit = a
currency like $ or Rial

I N ′d Unit insurance cost in external distribution center dεd f via marine, unit = a
currency like $ or Rial

μi Percentage of marketing cost, unit =%
r f Rate of inflation, unit =%
r t Rate of interest, unit =%
ex f i Expiration time of product i , unit = months, years
T Rt

d Tax rate of income of distribution center d at time period t . If distribution center
is losing out, the tax rate is zero, unit = %

DRt
di Import duty of product i to the country of distribution center d at time period t ,

unit = a currency like $ or Rial
T RCt

f di Upper bound of CIF transfer price of transshipped product i from production

center f to external distribution center dεd f at time period t , unit = a currency
like $ or Rial

T RCt
f di

_

Lower bound of CIF transfer price of transshipped product i from production

center f to external distribution center dεd f at time period t , unit = a currency
like $ or Rial

T RFt
f di Upper bound of FOB transfer price of transshipped product i from production

center f to external distribution center dεd f at time period t , unit = a currency
like $ or Rial

T RFt
f di

_

Lower bound of FOB transfer price of transshipped product i from production

center f to external distribution center dεd f at time period t , unit = a currency
like $ or Rial

P I tf di Domestic sales price of transshipped product i from production center f to dis-
tribution center d at time period t , unit = a currency like $ or Rial

CDd Storage capacity of distribution center d for product iεn, unit = number

Other parameters

I t Marginal cost of delay, unit = a currency like $ or Rial
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M Large number (using in the model’s constraints)
EXt Exchange rate at time period t , unit =

Decision variables

I tf i Inventory level of product i in production center f at the end of time period i , unit
= number

I ′tdi Inventory level of product i in distribution center d at the end of time period i , unit
= number

ytf d Abinary variable equal to 1 if relation between production center f and distribution
center d in period t is existed, 0 otherwise

y′tdg A binary variable equal to 1 if the relation between distribution center d and cus-
tomer zone g in period t exists, 0 otherwise

Stf di Quantity of product i transshipped from production center f and distribution center
d at time period t

S′tdgi Quantity of product i transshipped to distribution center d and customer zone g at
time period t

Qt
f i Quantity of product i manufactured in production center f at time period t

X t
f i A binary variable equal to 1 if product iεn is available for entering the market, 0

otherwise
X ′t

f i Abinary variable equal to 1 if product iεn is researched, and developed by the R&D
sector, approved by IFDA, manufactured and commercialized by the company for
entering the market at time period t, 0 otherwise

X ′′t
i A binary variable equal to 1 if product iεn is transferred from formulation test to

IFDA approval at time period t, 0 otherwise
re f fi t Quantity of deteriorated product i in all production centers at time period t
re f dit Quantity of deteriorated product i in all distribution centers at time period t
y f tf di 1 if FOB transshipment term between production center f and distribution center

dεd f for product t in period t is selected, 0 otherwise
yctf di 1 if CIF transshipment term between production center f and distribution center

dεd f for product t in period t is selected, 0 otherwise
zt+f Profit before tax deduction from production center f at time period t, unit = a

currency like $ or Rial
zt−f Losses before tax deduction from production center f at time period t, unit = a

currency like $ or Rial
zt+d Profit before tax deduction from distribution center d at time period t, unit = a

currency like $ or Rial
zt−d Losses before tax deduction from distribution center d at time period t, unit = a

currency like $ or Rial
tr f tf di FOB transfer price of transshipped product t fromproduction center f to distribution

center dεd f at time period t, unit = a currency like $ or Rial
trctf di CIF transfer price of transshipped product t from production center f to distribution

center dεd f at time period t, unit = a currency like $ or Rial

4.2 Objective functions

The first objective function maximizes the expected net present value (ENPV) of total profit
after tax deduction in Eq. (1). Jahani et al. (2019) stated that the ENPV calculation in the
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supply chain network design could help better illustrate how the supply chain performs in
different scenarios. To achieve this in the studied global PSC, the objective function can be
formulated as follows:

Maxz1 =
∑

t

(
1 + r f

1 + r t

)t−1(
zt1 + z′t1 + z′′t1

)
(1)

zt1 =
∑

f

(
1 − T Rt

f

)
zt+f − zt−f ∀t (2)

z′t1 =
∑

d

(
1 − T Rt

d

)
zt+d − zt−d ∀t (3)

z′′t1 = −
∑

i∈n

(
CDN P1

i X
′′t
i + CDN P2

i X
′t
f i

)
−

∑

f ,i∈n
DLC f t

(
X ′t

f i − Xt+dli
f i

)

−
∑

i

(
cr1lr1i X

′′t
i + cr2lr2i X

′t
f i

)
∀t (4)

Equations (2) and (3) calculate the after-tax profit at P&D centers, respectively. Equa-
tion (4) reflects the penalty cost of delays in different R&D, production, and market entry
stages. In addition, zt+f andzt+d represent the profit of the production center f and distribution

center d at time period t , respectively. zt−f andzt−d represent the loss of the manufacturing
center f and distribution center d at time period t , respectively. Given tt the tax belongs
to the profit in the proposed objective function, only zt+f andzt+d are dependent on taxation.
Equation (5) represents the profit (or loss) before tax in the production center f in period t .
Table 2 describes all terms used in this equation accordingly.

zt+f − zt−f =
∑

d∈d f ,i

tr f tf ,d,i S
t
f di y f

t
f di E Xt +

∑

d∈d f ,i

trctf di S
t
f di yc

t
f di E Xt

+
∑

d∈d f ,i

P I tf di S
t
f di −

∑

d∈d f ,i

TC1
f d y f

t
f di E Xt

−
∑

d∈d f ,i

(
TC1

f d + TC2
f d + I N

)
yctf di E Xt −

∑

d∈dh

(
TC ′

f d + I N ′)ytf d

−
∑

i

C I f i I
t
f i −

∑

i

C Pf i Q
t
f i − I t

∑

d

L f d y
t
f d E Xt ∀ f , t, (5)

zt+d − zt−d =
∑

g,i

Pdi S
′t
dgi E Xt −

∑

f ,i

tr f tf di S
t
f di y f

t
f di E Xt −

∑

f ,i

trctf di S
t
f di yc

t
f di E Xt

−
∑

f

(
TC2

f d + I N
)
ytf d E Xt −

∑

f

TC3
dg y

t
f d E Xt −

∑

f ,i

DRt
di tr f

t
f di S

t
f di y f

t
f di E Xt

−
∑

f ,i

DRt
di

(
TC2

f d + I N
)
y f tf di −

∑

f ,i

DRt
di trc

t
f di S

t
f di yc

t
f di E Xt

−
∑

d,i

C Idi I
′t
di E Xt −

∑

g,i

μi Pdi S
t
dgi E Xt − I t

∑

g
Ldg y

′t
dg E Xt

−
∑

g
TCdg y

t
dg EXt ∀d ∈ d f , t, (6)

Equation (6) calculates the profit (or loss) before tax in the foreign distribution center d f

at time period t , described in Table 3.
It is noteworthy that import duties in many countries are calculated based on the value of

CIF goods reported by the importers (Grivani & Pishvaee, 2017). In this study, therefore, the
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Table 2 Explanation of terms used in Eq. (5)

Number Term Description

1
∑

d∈d f ,i tr f
t
f ,d,i S

t
f di y f

t
f di E Xt Revenues at production centers where

pharmaceutical organizations sell
products directly to external
distribution centers through FOB or
CIF contracts and domestic
distribution centers using
inter-organizational agreements

2
∑

d∈d f ,i trc
t
f di S

t
f di yc

t
f di E Xt

3
∑

d∈d f ,i P I tf di S
t
f di

4
∑

d∈d f ,i TC
1
f d y f

t
f di E Xt The portion of shipping costs when a

pharmaceutical product is shipped
from a production center to a
distribution center that is often paid
once when an FOB contract is selected

5
∑

d∈d f ,i

(
TC1

f d + TC2
f d + I N

)
yctf di E Xt The shipping and associated insurance

costs from a production center to a
distribution center when a CIF contract
is agreed upon, which would be paid
once, as well

6
∑

d∈dh
(
TC ′

f d + I N ′)ytf d The transportation and associated
insurance costs between a production
center and a domestic distribution
center

7
∑

i C I f i I
t
f i The cost of preserving pharmaceutical

products in all production centers

8
∑

i C P f i Q
t
f i The cost of producing generic and

innovative pharmaceutical products

9 I t
∑

d L f d y
t
f d E Xt The delay transition cost of generic and

innovative pharmaceutical products
from a production center to a
distribution center

CIF value is used to calculate the import duties in our model. To convert the value (price)
from FOB to CIF, the following formulation is used: Value (price) of CIF goods = Value
(price) of FOB goods + Shipping cost between every two ports of P&D centers + insurance
cost between every two ports of P&D centers.

Equation (7) shows the before-tax profit (or loss) gained from domestic distribution center
dh in period t . The expressions used in Eq. (7) are from the sales of pharmaceutical products to
consumers, the cost of a purchasing product at an internal price, the cost of storing the product
at a distribution center, the cost of transportation from a distribution center to consumers, the
marketing cost, and the cost of delays in delivering generic and innovative pharmaceutical
products from a distribution center to consumers.

zt+d − zt−d =
∑

g,i

P ′
di S

′t
dgi −

∑

f ,i

P I tf di S
t
f di −

∑

i

C Idi I
t
di −

∑

g

TCdg y
′t
dg

−
∑

g,i

μi Pdi S
′t
dgi − I t

∑

g

Ldg y
′t
dg ∀d ∈ dh, t (7)
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Table 3 Explanation of terms used in Eq. (6)

Number Expression Description

1
∑

g,i Pdi S
′t
dgi E Xt Revenues gained by external distribution centers

from selling pharmaceutical products to
customers

2
∑

f ,i tr f
t
f di S

t
f di y f

t
f di E Xt The cost of purchasing pharmaceutical products

from manufacturing centers under FOB and CIF
contracts3

∑
f ,i trc

t
f di S

t
f di yc

t
f di E Xt

4
∑

f (TC2
f d + I N )ytf d E Xt The cost of transportation and insurance between

the port of production centers and distribution
centers

5
∑

f TC
3
dg y

t
f d E Xt The cost of transportation between two

distribution centers

6
∑

f ,i DRt
di tr f

t
f di S

t
f di y f

t
f di E Xt The costs of import duties and taxes when goods

are purchased under FOB and CIF contracts,
respectively7

∑
f ,i DRt

di (TC
2
f d + I N )y f tf di

8
∑

f ,i DRt
di trc

t
f di S

t
f di yc

t
f di E Xt

9
∑

d,i C Idi I
′t
di E Xt The cost of storing pharmaceutical products in

warehouses of distribution centers

10
∑

g,i μi Pdi S
t
dgi E Xt The cost of marketing for pharmaceutical products

11 I t
∑

g Ldg y
′t
dg E Xt The delay cost related to the shipping of

pharmaceutical products from a distribution
center to consumers

12
∑

g TCdg y
t
dg EXt The cost of shipping from a distribution center to

consumers

The second objective function in this study intends to minimize the maximum unsatisfied
demands. The maximum unsatisfied demands are multiplied by the parameter πi in Eq. (8)
to consider the importance of pharmaceutical products. We consider the maximum possible
loss here for a worst-case (maximum loss) scenario.

Minz2 = Maxg,i

(
πi

(
Dt
gi −

∑

d

S
t−Ldg
dgi

))
(8)

The coordination of R&D activities and production of innovative pharmaceutical prod-
ucts is critical in the pharmaceutical industry since it ensures the long-term profitability of
pharmaceutical companies. In addition, patenting in the pharmaceutical industry is quite dis-
similar to other industries, as the patent is the product itself (a new medicine) that has been
developed under costly R&D activities and long-term clinical examinations (Masoumi et al.,
2012). Therefore, the success rate of a patent in this industry is low, indicating that generic
pharmaceutical products will have a higher chance to enter the market, with lower cost than
innovative products. This is a threat to the profitability of innovative products. Therefore,
we define another objective function formulated in Eq. (9) to maximize the production of
innovative pharmaceutical products in our model.

Maxz3 =
∑

t,i∈n
Qt

f i (9)
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4.3 Flow balance constraints

The flow balance constraints at each facility of the PSC network are formulated at Constraints
(10)–(16).

I tf i = I I f i t + I t−1
f i + Q

t−Pl
f i

f i −
∑

d

Stf di , ∀ f , i, t, (10)

I ′t
di = I I ′

dit + I ′t−1
di +

∑

f

S
t−L f d
f di −

∑

g

S′t
dgi, ∀d, i, t, (11)

∑

d

S
′t−Ldg
dgi ≤ Dt

gi , ∀g, i, t, (12)

∑

f

S
t−L f d
f di + I ′t−1

di ≥
∑

g

S′t
dgi , ∀d, i, t, (13)

Q
t−Pl

f i
f i + I

t−1−Pl
f i

f i ≥
∑

d

Stf di , ∀ f , i, t, (14)

∑

i

Stf di ≤ Mytf d , ∀ f , d, t, (15)

∑

i

S′t
dgi ≤ Mytdg, ∀d, g, t, (16)

Constraints (10) and (11) indicate the flow and inventory balance at the production center
f and the distribution center d , respectively, in each period. Constraint (12) ensures that
the products shipped to customer zones should be less than or equal to the demand of the
corresponding customer zone. However, Constraints (13) and (14) calculate the imbalance
in supply and demand of a product between P&D centers and customer zones. Equation (15)
demonstrates the flow of pharmaceutical products from a production center to a distribution
center if there is a link between the centers. A similar limitation is also considered in Eq. (16)
for the flow of pharmaceutical products from a distribution center to a customer zone.

4.4 Capacity constraints

Below, the capacity constraints of P&D centers are formulated:

Qt
f i ≤ PC f i , ∀ f , i ∈ o, t, (17)

∑

f ,i∈o
Stf di ≤ Cd , ∀d, t, (18)

Qt
f i ≤ CFf i X

′t−lr2i
f i , ∀ f , i ∈ n, t, (19)

∑

f ∗,i∗∈n
Stf ∗di∗ ≤ CDd X

′t−lr2i
f i , ∀d, i ∈ n, f , t, (20)

Constraints (17) and (18) represent the capacity of generic pharmaceutical products at
P&D centers, respectively. Accordingly, Eqs. (19) and (20) indicate the capacity of innovative
pharmaceutical products in P&D centers.
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4.5 New product allocation

We also develop a set of constraints and equations to rationalize the new product allocation
in both explorative and exploitative planning.

Qt
f i ≤ MXt

f i , ∀ f , i ∈ n, t, (21)
∑

t∗≤t

X ′t∗
f i ≥ Xt+dli

f i , ∀ f , t, i ∈ n, (22)

∑

i∈n
Xt

f i = 1, ∀ f , t, (23)

X ′t
f i ≤ X ′′t

i , ∀ f , i ∈ n, t, (24)

Constraint (21) indicates that if an innovative pharmaceutical product is produced, it should
have been previously available for market entry at the end of R&D processes. According to
Eq. (22), once the innovative pharmaceutical product arrives at time periods less than t , it
should have passed from the R&D process at least for a period of t to be able to enter the
production line. In this vein, Constraint (23) implies that in each production center, only one
innovative pharmaceutical product can be researched and developed and then entered the
production line. We also develop Constraint (24) to indicate that a pharmaceutical product
must earn IFDA approval once it enters the production line.

4.6 Perishability constraints

Perishability may influence supply chain network planning, especially in the exploitative
phase. The related restrictions are formulated in Eqs. (25) and (26).

t∑

t ′′=1

Qt ′′
f i −

min(t+ex fi ,T )∑

t ′′=1

St
′
f di = re f fi t , ∀ f , d, i, t �= T , (25)

t∑

t ′′=1

Stf di −
min(t+ex fi ,T )∑

t ′′=1

S′t ′
dgi = re f dit , ∀ f , d, g, i, t �= T , (26)

Equation (25) reflects the number of deteriorated pharmaceutical products in production
center f at each time period. Equation (26) assigns the number of deteriorated pharmaceutical
products in distribution center d at each time period. It is noteworthy that the medicines
produced in period t . Are maximally consumable up to t + ex fi according to the First In,
First Out (FIFO) warehouse management system.

4.7 Shipping contract constraints

FOB and CIF are the most common international shipping agreements in transporting goods
between a buyer and a seller, which are formalized in Eqs. (27)–(31).

∑

i

yctf di ≥ ytf d , ∀ f , d, t, (27)

∑

i

y f tf di ≥ ytf d , ∀ f , d, t, (28)

y f tf d + yctf d ≤ Stf di ≤
(
y f tf di + yctf di

)
M, ∀ f , d ∈ d f , t, i, (29)
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According to constraints (27) and (28), the FOB and CIF contracts are applied between
a production center and a distribution center once these two center connected. Constraint
(29) ensures that the shipping contract is only agreed upon once the flow of goods between
a production center and a distribution center exists.

T RCt
f di ≤ trctf di ≤ T RCt

f di , ∀ f , d ∈ d f , t, i, (30)

T RFt
f di ≤ tr f tf di ≤ T RFt

f di , ∀ f , d ∈ d f , t, i, (31)

Equations (30) and (31) introduce the upper and lower bounds of transfer prices under the
CIF and FOB contracts, respectively.

4.8 Non-negativity and binary constraints

Equations (32) and (33) are proposed to reinforce the decision variable types.

ytf d , y
′t
dg, y f

t
f di , yc

t
f di , X

t
f i , X

′t
f i , X

′′t
i ∈ {0, 1}, ∀ f , d, g, i, t, (32)

I tf i , I
′t
di , S

t
f di , S

′t
dgi , Q

t
f i , z

t+
f , zt−f , zt+d , zt−d , tr f tf di , trc

t
f di ≥ 0, ∀ f , d, g, i, t . (33)

5 Solutionmethodology

5.1 Linearization of the proposedmodel

The proposed model is nonlinear due to several terms of the objective functions. One is the
minimum–maximum structure formulated in the second objective function (Eq. (8)). The
following linearization method is used to transform this objective function into linear.

Minz2 = θ (34)

s.t

θ ≥ πi

(
Dt
gi − ∑

d
S

′t−Ldg
dgi

)
, ∀g, i, (35)

In the first term of Eq. (5), three variables are multiplied, leading to another source of
nonlinearity. These three comprise two continuous variables (Stf di , tr f

t
f di ) and one binary

variable (y f tf di ). To convert this expression to a linear form, we first define the multiplication
of the continuous variable Stf di and the binary variable y f tf di through the development of
a new variable wt

f di = Stf di y f
t
f di . We apply the technique proposed by Chang and Chang

(2000) and include Constraints (36), (37) and (38) to the model.

wt
f di ≤ Stf di , ∀ f , d ∈ d f , t, i, (36)

wt
f di ≤ My f tf di , ∀ f , d ∈ d f , t, i, (37)

wt
f di ≥ Stf di − My f tf di , ∀ f , d ∈ d f , t, i, (38)

These three constraints suggest that if y f tf di is equal to zero, the auxiliary variable wt
f di

will be zero, as well. Otherwise, if y f tf di is equal to one, the variable wt
f di will be equal to
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Stf di . We then apply the method proposed by Vidal and Goetschalckx (2001) to convert the
multiplication of the three variables to the multiplication of two continuous variables, w1tf di
and tr f tf di . This method helps us linearize and simplify the multiplication. Nobly, at least
one of the continuous variables must be characterized by the upper and lower limits to allow
the multiplication of two variables. The variable tr f tf di has upper and lower limits and can be
used for linearization. In this method, the multiplication of these two continuous variables is
defined by the development of a new variable r tf di = wt

f di tr f
t
f di . By replacing this variable,

Constraint (31) is converted to Eq. (39).

T RFt
f diw

t
f di ≤ r tf di ≤ T RFt

f diw
t
f di , ∀ f , d ∈ d f , t, i, (39)

We apply the same approach explained above to convert the second term of Eq. (5) to a
linear term. Consequently, the multiplication of the continuous variable Stf di and the binary

variable yctf di are considered by defining the new variablew′t
f di = S

t

f di
yctf di . By replacing

the new variable in the corresponding equations, the following Constraints should be added:

w′t
f di ≤ Stf di , ∀ f , d ∈ d f , t, i, (40)

w′t
f di ≤ Myctf di , ∀ f , d ∈ d f , t, i, (41)

w′t
f di ≥ Stf di − Myctf di , ∀ f , d ∈ d f , t, i, (42)

Using the linearizationmethod, themultiplication of the three binary variables is converted
to themultiplication of the two continuous variablesw′t

f di and trc
t
f di . To correct themultipli-

cation of these two continuous variables in themethod, the new variable r ′t
f di = w′t

f di trc
t
f di

is defined and replaced by the corresponding equations. By replacing this variable, Constraint
(30) is transformed to Eq. (43).

T RCt
f diw

′t
f di ≤ r ′t

f di ≤ T RCt
f diw

′t
f di , ∀ f , d ∈ d f , t, i, (43)

In addition, Constraints (3) and (6) contain non-linear expressions that should be changed
to the following linear expressions:

zt+d − zt−d =
∑

g,i

Pdi S
′t
dgi E Xt −

∑

f ,i

r tf di E Xt −
∑

f ,i

r ′t
f di E Xt −

∑

f

(
TC2

f d + I N
)
ytf d E Xt

−
∑

f

TC3
dg y

t
f d E Xt −

∑

f ,i

DRt
di r

t
f di E Xt −

∑

f ,i

DRt
di

(
TC2

f d + I N
)
y f tf di

−
∑

f ,i

DRt
di r

′t
f di E Xt −

∑

d,i

C Idi I
′t
di E Xt −

∑

g,i

μi Pdi S
t
dgi E Xt − I t

∑

g
Ldg y

′t
dg E Xt

−
∑

g
TCdg y

t
dg EXt ∀d ∈ d f , t, (44)

zt+f − zt−f =
∑

d∈d f ,i

r tf di E Xt +
∑

d∈d f ,i

r ′t
f di E Xt +

∑

d∈d f ,i

P I tf di S
t
f di

−
∑

d∈d f ,i

TC1
f d y f

t
f di E Xt −

∑

d∈d f ,i

(
TC1

f d + TC2
f d + I N

)
yctf di E Xt

−
∑

d∈d f

(
TC ′

f d + I N ′)ytf d −
∑

i

C I f i I
t
f i −

∑

i

C Pf i Q
t
f i

− I t
∑

d

L f d y
t
f d ∀ f , t, (45)

123



Annals of Operations Research

5.2 Robust possibilistic programming approach

Some critical parameters like demand, production cost, delay cost, R&D cost, P&D capacity
in production, domestic and external distribution centers, marketing cost, and exchange rates
are disrupted by complexities and uncertainties within a supply chain network. Due to the
nature of pharmaceutical products and their production (from R&D to trials to P&D) in
complex and uncertain environments, historical data is barely ascertainable and accessible
in the pharmaceutical industry. Therefore, many studies suggest estimating these critical
parameters through experts’ opinions and experiences. One reason for this unavailability is
that future innovative pharmaceutical products may not necessarily follow the same pattern
as other products. The other reason is the high level of data confidentiality, especially in
R&D and production phases that prevent an accurate estimation of these critical parameters.

Therefore, some of the parameters, like˜Dt
gi , ˜CPf i , ˜DLC f t ,

˜CDN P1
i ,

˜CDN P2
i , ˜PC f i , C̃d ,

˜CFf i , ˜CDd ,μ̃i and ˜EXt in our model, are shown in the form of trapezoidal fuzzy numbers
to help us better estimate the role of the parameters.

Fuzzymathematical programming can be generally classified via two approaches (Alem&
Morabito, 2012): (i) objective function targets and constraints with flexibility and variability
and (ii) the exact value of input parameters due to the lack of data and knowledge (i.e.,
epistemic uncertainty). The former approach uses fuzzy rule-based systems to determine a
set of alternatives for decision-makers. The latter approach uses a possibilistic programming
method to deal with uncertainty due to the lack of prior information and knowledge on the
exact value of input variables. It is noteworthy that non-deterministic parameters can be
modeled by a set of appropriate functions, like triangular or trapezoidal functions, while the
model relies only on the knowledge and experience of domain experts.

In our PSC planning problem, some parameters are disrupted by epistemic uncertainty; a
possibilistic programming method would help cope with such imprecise parameters. In the
literature of possibilistic programming, several methods are introduced to confront imprecise
coefficients in objective functions and constraints (see Jiménez et al., 2007; Pishvaee &
Khalaf, 2016). In the solution method presented in this paper, the method proposed by
Liu (2004) is used to transform the proposed model using the possibilistic programming
method. Instead of the possibility (Pos) and necessity (Nec) measures, which do not have a
self-duality property to build a fuzzy chance-constrained programming (FCCP) model, Liu
(2004) proposed the credibility measurement as a self-dual measure. We follow this method
and formulate the FCCP model based on the problem described in this study. The compact
form of the developed model is presented as follows:

Maxz1 = F̃ ′x −
(
F̃ x + C̃ y

)
,

Minz2 = x,

Maxz3 = Nx,
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s.t .
Ax = 0,
J x ≥ 0,
Sy ≥ 0,
Rx ≤ My,
L ′x ≥ D̃,

Lx ≤ D̃,

Ox ≤ P̃C,

O ′x ≤ C̃,

Bx ≤ C̃ F y,

B ′x ≤˜CDy,
Py = 1,
Dx ≥ Qy,
y ∈ {0.1}, x ≥ 0

(46)

Vectors of C, F, F ′, D, PC, PD,CF,CD represent the cost of the binary variable, the
cost of the continuous variable, revenue, demand, and the capacity of manufacturing and
distribution centers for generic and innovative pharmaceutical products, respectively. In
addition,A, J , S, R, L ′, L, O, O ′, B, B ′, P, D, Q, M show the coefficient matrices, and x
and y specify the continuous and binary variables. Finally, C̃, F̃, F̃ ′, D̃, P̃C,˜PD, C̃ F,˜CD
represent the uncertain parameters. Assuming that a minimum satisfaction degree of possi-
bilistic chance constraints is controlled by β ′, β, α, ∂,ℵ, ρ, the following crisp equivalent
model could be achieved using the credibility measure.

Maxz1 =
(
F ′
1 + F ′

2 + F ′
3 + F ′

4
4

)
x −

[(
F1 + F2 + F3 + F4

4

)
x +

(
C1 + C2 + C3 + C4

4

)
y

]

s.t . (
2 − 2β ′)D3 + (

2β ′ − 1
)
D4,

Lx ≤ (2 − 2β)D2 + (2β − 1)D1,

Ox ≤ (2 − 2α)PC2 + (2α − 1)PC1,

O ′x ≤ (2 − 2α)PC2 + (2α − 1)PC1,

Bx ≤ ((2 − 2ℵ)CF2 + (2ℵ − 1)CF1)y,

B′x ≤ ((2 − 2ρ)CD2 + (2ρ − 1)CD1)y,

(47)

In a study by Pishvaee et al. (2012), the concept and mathematical modeling of the RPP
approach were developed and conceptualized to ensure the robustness of the solution. This
approach helps find the optimal value of the minimum satisfaction degree of chance con-
straints, as well as control the worst-case value of objective functions that enables managers
to better decide about situations with high complexity and uncertainty. Our study benefits
from the RPP method developed by Pishvaee et al. (2012). Equation set (47) presents the
robust form of our main model:

MaxE[z1] + γ (E[z1] − z1min) + π ′(D4 − (2 − 2β)D3 + (2β − 1)D4) + ϑ((2 − 2β)D2

+ (2β − 1)D1 − D1) + σ((2 − 2α)PC2 + (2α − 1)PC1 − PC1)

+ τ((2 − 2∂)C2 + (2∂ − 1)C1 − C1) + ω[((2 − 2ℵ)CF2 + (2ℵ − 1)CF1 − CF1)]y

+ ϕ[((2 − 2ρ)CD2 + (2ρ − 1)CD1 − CD1)]y

Minz2 = x + π ′(D4 − (2 − 2β)D3 + (2β − 1)D4) + ϑ((2 − 2β)D2 + (2β − 1)D1 − D1)

Maxz3 = Nx + π ′(D4 − (2 − 2β)D3 + (2β − 1)D4) + ϑ((2 − 2β)D2 + (2β − 1)D1 − D1)
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+ σ((2 − 2α)PC2 + (2α − 1)PC1 − PC1)

+ τ((2 − 2∂)C2 + (2∂ − 1)C1 − C1)

+ ω[((2 − 2ℵ)CF2 + (2ℵ − 1)CF1 − CF1)]y

+ ϕ[((2 − 2ρ)CD2 + (2ρ − 1)CD1 − CD1)]y

s.t .
L ′x ≥ (

2 − 2β ′)D3 + (
2β ′ − 1

)
D4,

Lx ≤ (2 − 2β)D2 + (2β − 1)D1,

Ox ≤ (2 − 2α)PC2 + (2α − 1)PC1,

O ′x ≤ (2 − 2α)PC2 + (2α − 1)PC1,

Bx ≤ ((2 − 2ℵ)CF2 + (2ℵ − 1)CF1)y
B′x ≤ ((2 − 2ρ)CD2 + (2ρ − 1)CD1)y

0.5 < α, β, ∂,ℵ, ρ ≤ 1.

(48)

In which z1min is calculated as follows:

z1min = (
F ′
1 − F1

)
x + C1y (49)

In the robust model, the worst value of the objective function z1min occurs when the non-
deterministic parameters in the objective function are placed in the worst possible values
(Homayooni et al., 2023, Gholizadeh et al., 2021). In our study, they occur in their minimum
value. The first term of this objective function is associated with the expected value of
the original objective function. The second term is related to the over-deviation penalty cost
obtained from the expected value. This value proves the optimality robustness. The remainder
expressions describe the violation cost of constraints. All these values are presented inModel
(48). Model (48) is nonlinear based on the multiplication of ℵ.y and ρ.y. To convert this
model to a linear model, two continuous variables ϕ and ω are fined and added into the
model:

ω′ = ℵ × y

ϕ′ = ρ × y

To ensure the correct value for the two newly defined variables, the following constraints
are added to the model:

Bx ≤ 2
(
y − ω′)CF2 + (

2y − ω′)CF1,

ω′ ≤ M × y,

ω′ ≥ M × (y − 1) + ℵ,

ω′ ≤ ℵ,

B ′x ≤ 2
(
y − ϕ′)CD2 + (

2y − ϕ′)CD1,

ϕ′ ≤ M × y,

ϕ′ ≥ M × (y − 1) + ρ,

ϕ′ ≤ ρ,

ω′, ϕ′ ∈ [0, 1]. (50)

We then convert the first and third objective functions of the presented model to linear
forms using Eq. (51):

MaxE[z1] + γ (E[z1] − z1min) + π ′(D4 − (2 − 2β)D3 + (2β − 1)D4)

+ ϑ((2 − 2β)D2 + (2β − 1)D1 − D1) + σ((2 − 2α)PC2 + (2α − 1)PC1 − PC1)
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+ τ((2 − 2∂)C2 + (2∂ − 1)C1 − C1) + ω
(
2
(
y − ω′)CF2 + (

2y − ω′)CF1 − CF1
)

+ ϕ
(
2
(
y − ϕ′)CD2 + (

2y − ϕ′)CD1 − CD1
)

Maxz3 = Nx + π ′(D4 − (2 − 2β)D3 + (2β − 1)D4) + ϑ((2 − 2β)D2 + (2β − 1)D1 − D1)

+ σ((2 − 2α)PC2 + (2α − 1)PC1 − PC1) + τ((2 − 2∂)C2 + (2∂ − 1)C1 − C1)

+ ω
(
2
(
y − ω′)CF2 + (

2y − ω′)CF1 − CF1
) + ϕ

(
2
(
y − ϕ′)CD2 + (

2y − ϕ′)CD1 − CD1
)

(51)

Wealso apply thewell-knownmethod of -constraint (Haimes, 1971) to copewithmultiple
objectives of the presentedmodel. In thismethod, one objective is chosen to be optimized, and
the others are formulated as constraints so that their right-hand-side values (upper bounds),
εi , are changed systematically to achieve different Pareto solutions (Chaleshtori et al., 2020).
Equation (52) formulates this procedure.

Min f j (x)

s.t .

fi (x) ≤ εi ∀i �= j

x ∈ f easibleregion (52)

6 Implementation and evaluation of themodel

We implement ourmodel in an authentic case study to examine how themodel would perform
in varied real scenarios. We collected data from one of the largest pharmaceutical companies
in Iran, Hakim pharmaceutical company (HPC), which produces both innovative and generic
pharmaceutical products.Other thandomestic consumption, the products ofHPCare exported
to countries like Iraq, Afghanistan, Pakistan, United Arab Emirates, Qatar, Turkmenistan,
Syria, and Armenia (HPC, 2021). HPC produces Gemfibrozil, Pregabalin, and Pioglitazone
as innovative pharmaceutical products and Acetaminophen, Ibuprofen, and Omeprazole as
generic products. The HPC’s supply chain includes the R&D sector, production sites, and
distribution centers. Due to the high-level confidentiality in data and the low level of R&D
activities in the generic products, we only collected and analyzed the data for the innovative
pharmaceutical products. We reiterate that the main objective of this study is to integrate
R&D planning (explorative approach) and P&D planning (exploitative approach) to deter-
mine whether the integrated model can increase the profitability of innovative products in a
global PSC. Therefore, the data relating to the innovative products can better examine the
applicability of our model.

6.1 Case study

We found that the planning horizon for both the R&D and P&D of innovative products in
HPC consists of twelve-time windows (each time window equals six months). This process
often lasts for six years (T = 12). The HPC’s supply chain includes four production centers
(F = 4) and four distribution centers (D = 4). The geographical locations of these facilities
are illustrated in Fig. 4. As evident in Fig. 4, HPC has two external centers (D f = 2) and two
domestic centers (Dh = 2). It is noteworthy that in our model, we considered four customer
groups and six product families, including three generic (I o = 3) and three innovative
(I n = 3) products. This shows that the problem size is equal to 12 × 4 × 4 × 4 × 6. In other
words, the problem described in this study can be categorized as a medium-sized problem.
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Fig. 4 Geographical locations of P&D centers of HPC

To resolve such a problem, we used a personal computer with INTEL core i7 and 8 GB of
RAM, helping us find the 20 distinct Pareto optimal solutions within one hour and 13 min.

Table 4 shows the detailed demand values for each pharmaceutical product and customer.1

6.2 Results

Using theHPC data, the proposed robust possibilistic programmingmodel is coded inGAMS
optimization software and solved by the CPLEX solver. Robust optimization is critically
important for several reasons, as can be seen in the context of the use of our robust possi-
bilistic programming model. When dealing with complex systems such as the production of
pharmaceuticals, several variables need to be considered simultaneously. These variables can
range from production rates, time windows, capacity allocation, delays in R&D, and produc-
tion timelines, all of which are inherently uncertain. In the absence of robust optimization,
these uncertainties could lead to suboptimal or even incorrect decision-making, resulting in
potentially significant losses in profit and efficiency.

Themodel thatwe coded in theGAMSoptimization software and solved using theCPLEX
solver, demonstrated this clearly. The results (as presented in Table 5) showed the optimal
production amount of generic and innovative pharmaceutical products in each time window,
providing key insights for production planning. Particularly, themodel was able to effectively
manage delays in R&D and production of innovative products, suggesting optimal times to
introduce these products into the production line to maximize profit.

For instance, our integrated model recommended that production of product (1.4) should
commence in production center No.1 at the sixth time window (t7) with a capacity of 3500
units per time window over the remaining six-time windows (t7–12). This specific allocation
and timing strategy is derived from a deep understanding of the ambidextrous nature of
integrating R&D and production functions in our model. The optimized strategy proposed
by the model demonstrates that a new production capacity can lead to maximizing the total
profit. Thus, the robust optimization approach significantly contributes to decision-making

1 We did not present other parameters due to the high level of confidentiality for the HPC data.
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in complex and uncertain environments, ensuring optimal results under a variety of possible
conditions.

6.3 Pareto solutions

The -constraint method as a posteriori (generation) multi-objective solution method is
employed in this study to generate various balanced and unbalanced Pareto solutions (Mavro-
tas, 2007). Themain reason to generate the Pareto solutions is to ensure that themain objective
functions can be simultaneously improved, although theymay even be contradictive in nature
(Engau & Sigler, 2020). To ensure that the objective functions proposed in this study con-
tradict each other yet are coexistent and interlinked, we generated the Pareto solutions using
the -constraint method. Figure 5 displays the pairwise conflicts of the objective functions.
The monetary values are reported in MIRR (million Rial, the Iranian accuracy). The results
in Fig. 5 show that the first objective function (profit maximization) varies in a broader
range than the other two objective functions (minimizing maximum dissatisfied demand and
maximizing the production of innovative pharmaceuticals).
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Fig. 5 Pareto solutions generated by the ε-constraint method
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6.4 Validation of the proposedmodel

In this section, we develop several simulation tests to analyze the performance of the proposed
RPP model. To develop these tests, we apply the validation method presented in Pishvaee
et al. (2012). Ten simulation tests are randomly taken on non-deterministic parameters. For
each uncertain parameter presented by the trapezoidal membership function (for instance,
d̃ = (d1, d2, d3, d4), a random number must be generated uniformly between the most
pessimistic and optimistic values (for example, dreal = [

d1, d2
]
). We then extracted the

achieved optimal values of decision variables by solving the RPP model under a nominal
value that would later be used in Model (53). The following model is the compact form of
the model used to evaluate the solution obtained by the developed robust model.

Maxz1 = F ′x − (Fx + Cy) −
I ,T∑

i,t

pn
(
δ+
i t + δ−

i t

)
,

Minz2 = x

Maxz3 = Nx

s.t .
Ax = 0
J x ≥ 0
Sy ≥ 0
Rx ≤ My
L ′x ≥ Dreal − δ1+

i t + δ1−
i t ,

Lx ≤ Drealδ2+
i t + δ2−

i t ,

Ox ≤ PCrealδ3+
i t + δ3−

i t ,

O ′x ≤ PDreal − δ4+
i t + δ4−

i t ,

Bx ≤ CFreal y − δ5+
i t + δ5−

i t ,

B ′x ≤ CDreal y − δ6+
i t + δ6−

i t ,

Py = 1
Dx ≥ Qy

δ+
i t + δ−

i t =
n=6∑
n=1

(
δn+

i t + δn−
i t

)

δn+
i t , δn

−
i t ≥ 0

y ∈ {0.1}, x ≥ 0

(53)

Figure 6 shows the average profit value for the deterministic and robust model solutions
under simulation tests and based on varied penalty values (i.e., δ∗∗∗). Penalty values are used
to penalize the violation of constraints under simulation tests. The deterministic stands for
the optimization model are developed using Eqs. (1)–(45).

It is noteworthy that when the penalty increases, the use of risk aversion models (i.e., the
developed RPP model) is more desirable. Indeed, the RPP model can control the risk of con-
straint violation and create a reasonable balance between risk and operation costs. Therefore,
the proposed robust model results in higher profit for the company than the deterministic
model.
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6.4.1 Comparison of the integrated and non-integrated models

We conducted a series of comparative analyses to better understand the performance of the
developed model (the integrated model) compared to the non-integrated model. Herein, we
name the integrated model by using all formulations provided in Sect. 4. The non-integrated
model is implemented by creating two separate models: (1) Manufacturing-distribution
model in which the objective functions are optimized by excluding R&D parameters
(CDN P1

i CDN P2
i ) and the related constraints, and (2) R&D model in which the objec-

tive functions are optimized by only R&D parameters and the related constraints. We use the
results of model (1) for the decision variables as the parameters of this model.

Figure 7 illustrates the performance of both models through the maximization of ENPV in
Eq. (1). The results show that the integrated optimization of R&D planning (the explorative
approach) and production distribution planning (the exploitative approach) improves the
profit up to 67.45%, compared to attempts to optimize planning for these two approaches
separately (non-integrated model). Therefore, it can be argued that our model increases the
company’s profitability in its global supply chain.

Several analyses help us better position the role of the integrated model in the improved
profitability ofHPC in its supply chain. For example, Fig. 8 exhibits the delay times in produc-
ing all innovative products in both the integrated (IN-DLC) and non-integrated (NonIn-DLC)
models. The results show the delay times in two stages of the R&Dplanning (formulation and
IFDA approval). Although both the integrated and non-integrated models reduce profitability
over the four delay periods (note that zero represents no delay as the first of each stage), the
integrated model has less reduced profitability over the four delay periods.

In addition, the integrated model reduced profitability with a lower slope than that of the
non-integrated model. Similar trends are reported in Fig. 9, where delays are compared by all
product centers (Fig. 9a), between all production centers and distribution centers (Fig. 9b),
and between all distribution centers and customer zones (Fig. 9c). While all trends report that
delays in both the integrated and non-integrated models declined over time, the integrated
model helps the company mitigate the risk of more profit loss than in the non-integrated
model. This result may be better explained in Fig. 10, which indicates the accumulated delay
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Fig. 7 The integrated planning model versus the non-integrated model

Fig. 8 Delay times of all innovative products in the R&D phase

times across the supply chain (from R&D to customer zone).
As evident in Fig. 10, delays in the non-integrated model caused a significant decline in

the entire global supply chain of innovative products, reducing the profitability to 171,168
MIRR (equivalent to 4,048,930 USD) at delay period 4, based on the exchange rate recorded
in December 2021. That is, the profit at delay period 4 in the integrated model has been
recorded at 54.290 MIRR, which is equal to only 1,284 USD.

6.5 Sensitivity analysis

The most important parameter of our model is the R&D cost. Certainly, a change in the cost
of R&D has a significant impact on the selection and production of a new pharmaceutical
product. In this regard, the cost impact of the R&D phases, which includes the two phases
of formulation test and FDA approval, is evident in Fig. 11. The results show that if the
R&D cost increases, the company’s profitability will be decreased in both the integrated and
non-integrated models. For example, if the R&D cost increases four times, the ENPV of the
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Fig. 9 Delay times in production centers, distribution centers, and customer zones

Fig. 10 Accumulated delay times across the global PSC in both the integrated model (IN) and non-integrated
model (NonIN)

integrated and non-integrated models’ profits will decrease by 1% and 7.7%, respectively.
Therefore, it can be concluded that the integrated model results in more stable solutions
than the non-integrated model. If the cost of R&D increases, the superiority of the integrated
model over the non-integrated one increases significantly.

Using both models, we also analyzed the unit delay cost in producing all innovative
products. As evident in Fig. 12, the results of the integrated model suggest less decline in
profitability in all cost levels. However, it is reported that changes in cost level impact both
models differently. For example, the profitability differences in both models at the cost levels
of + 25% and + 50% are greater than that in − 25% and − 50%. In other words, the
more the company increases the production cost of all innovative products, the better the
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parameter

Fig. 12 Unit delay cost in producing all innovative products

integrated model performs, compared to the non-integrated model. Indeed, the integrated
model increases profitability and better manages cost.

Other than the unit delay cost, the unit production cost of all innovative products in all
production centers indicates that the integratedmodel performs better than the non-integrated
model (See Fig. 13) in all scenarios (i.e., cost levels of − 50%, − 25%, 0%, 25%, and 50%).

Our analyses indicated that the integrated model could significantly reduce transportation
cost in the entire supply chain compared to the non-integrated model. As evident in Fig. 14,
we identified four areas in which transportation cost will be significantly impacted: (a) trans-
portation cost between all production centers and all external distribution centers within the
origin country; (b) transportation cost between all production centers and all external distri-
bution centers while the products are being shipped toward their destination countries; (c)
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Fig. 13 Unit production cost of all products in all production centers

Fig. 14 Transportation cost in different parts of the global supply chain

transportation cost between all external distribution centers and all external customer zones;
and (d) total transportation cost across the global supply chain. All sub-figures in Fig. 14
indicate that the integrated model suggests a better performance in varying cost levels. For
example, the integrated model at the cost level of + 25% save USD 4,400,172 in Fig. 14a,
USD 4,542,100 in Fig. 14b, USD 1,442,489 in Fig. 14c, and finally USD 10,384,761 in
Fig. 14d for the entire supply chain of innovative products. However, cost reduction indices
in Fig. 14c appear similar in both integrated and non-integrated models. Thus, although an
increase in cost level (from − 50% to + 50%) intensifies the difference in both models to
save profitability, Fig. 14c suggests that the change in the cost level does not necessarily
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Fig. 15 Transportation cost in domestic supply chains

improve profitability. Figure 14d exhibits how the integrated model maintains the total prof-
itability compared to the non-integrated model. According to Fig. 14d, when the company
must increase the cost level by 50%, the integrated model will have the best performance
compared to the non-integrated model, helping to save up to USD 12,048,099 in the entire
supply chain of innovative products.

We found similar patterns for domestic distribution of innovative products, where all trans-
portation costs are calculated within the origin country. Figure 15 exhibits the transportation
cost between all production centers (Fig. 15a), between all domestic distribution centers and
all domestic customer zones (Fig. 15b), and total transportation cost in the domestic supply
chain (Fig. 15c). Figure 15 suggests that the integrated model significantly increases the
profit in all five different cost level scenarios. Figure 15a shows that the integrated model
generates USD 4,706,105 profit at the cost level of− 50%, whereas the non-integrated model
can only contribute to USD 2,111,546 at the same level. This pattern is also seen in all other
cost levels in Fig. 15. However, the most substantial difference in both models can be seen
in the cost level of 0%, where we assume that the company performs as it was when this
study was conducted. This means that if the company keeps performing with no change in
the transportation cost for domestic purposes, the integrated model will have the maximum
difference with the non-integrated model in profit-saving.

One of the most sensitive parameters, especially in global PSCs, is the unit insurance
cost. Due to the high level of confidentiality in unit insurance cost in the explorative phase
of this study (R&D planning), we only analyze unit insurance cost in distribution centers for
all innovative products (exploitative phase). As evident in Fig. 16, unit insurance costs in all
domestic distribution centers (Fig. 16a) and all external distribution centers (Fig. 16b) suggest
that the integrated model will enable the company to better maintain the level of profitability
in all scenarios. The profitability variation of the integrated model in both Fig. 16a and b is
less than that in the integrated model, indicating that changes in cost level in the integrated
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Fig. 16 Unit insurance cost in both domestic and external distribution centers
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Fig. 17 Storage capacity of all P&D centers for all innovative products

model have less of an impact than that in the integrated model. In other words, the integrated
model is more reliable than the non-integrated model in terms of unit insurance cost.

The other important parameter in this study is associated with storage capacity. Indeed,
storage capacity plays a crucial role in maintaining a high level of profitability across the
supply chain. As evident in Fig. 17a and b, we analyze the storage capacity of innovative
products in all P&D centers, respectively. Other than the better performance of the integrated
over the non-integrated model, we found that an increase in capacity level can significantly
increase the inventory costs of both P&D centers in the integrated model. For example, the
difference in storage capacity of bothP&Dcenters at the change level of 50% is approximately
two times greater than that at the change level of− 50%, indicating that the integrated model
is more beneficial when the company intends to expand its P&D operations.

7 Discussion and conclusion

In this study, we argue that a lack of attention to simultaneous yet mutual understanding of
both the explorative and exploitative approaches render suboptimal solutions that may not
fully mitigate supply chain risks and significantly improve profitability. However, it may
not necessarily be the best possible solution to manage operational costs in the long term.
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Drawing from the concept of ambidexterity (Kristal et al., 2010), we argued that the coor-
dination of the explorative and exploitative approaches to supply chain management could
improve the system productivity. We, therefore, proposed an integrated planning model for
both R&D activities and P&D in the global pharmaceutical supply chain to show how this
integration can reduce delays within R&D activities and between R&D activities and P&D
of innovative products in the pharmaceutical industry. We developed an RPP model that
can manage risks arising from the violation of operational costs and maintain profitability in
uncertain and complex environments. Indeed, operational costs in global PSCs rely heavily on
changes in regulatory environments (e.g., FDA approval or affordable supply) (Gatica et al.,
2003), investments in varying types of products (i.e., innovation versus generic) (Colvin &
Maravelias, 2011), and complexity in the process of new product development and commer-
cialization (i.e., innovative business models) (Maravelias &Grossmann, 2001). In this vein, a
high level competitiveness in the pharmaceutical industry to capture market share intensifies
the importance of operational costs in global PSC success (Kelle et al., 2012). Therefore,
it appears impractical to predict operational costs, especially for products that may take a
decade to be researched, developed, approved, and commercialized. Our model helps esti-
mate these costs and propose solutions that maintain profitability in different uncertainty
scenarios.

In particular, we investigated an integrated decision-making problem context when deci-
sions in R&D planning and P&D planning need to be synchronized. First, we developed a
new mathematical model which appropriately integrates the R&D and P&D planning deci-
sions of a global PSC. Our definition generalizes a unique problem setting with inherent
delays and uncertainties in R&D activities and other supply chain functions. The deterio-
ration of pharmaceutical products, as well as the delays in R&D phases (formulation test
and FDA approval), production, and distribution systems, are incorporated in the proposed
model. A novel credibility based RPPmodel was elaborated upon to adjust the feasibility and
optimality robustness of output decisions against uncertainty. With this model, we offered
an optimization decision-making support tool that showed how to determine the optimal
entrance time of an innovative and urgently needed pharmaceutical product and integrate the
R&D and P&D planning systems to ensure more profit for PSCs.

We examined our model using a real-life case-study of a pharmaceutical supply chain that
produces both innovative and generic pharmaceuticals. The results showed that the integrated
model (the ambidexterity approach) yields significant savings compared to the either/or
approach to planning for R&D activities and P&D systems. We, therefore, found that the
performance of the integrated model is significantly better than that of the non-integrated
model.

Concerning the delay times, we found that the integrated model significantly reduced
delay times in the entire supply chain (e.g., delays in approval, inventory, quality control,
and market entry). According to Shah (2004, p. 933), “the long lead times to make capacity
effective mean that decisions often need to be taken at times of high uncertainty. Waiting
for the uncertainties to be resolved might delay the time to market by an unacceptable
amount.” Our model was able to maintain the efficiency in capacity planning and managing
uncertainties to accelerate the process of product commercialization. We also found that
with an increase in the number of delays over time, the integrated model can better preserve
profitability than the non-integrated model, as the accumulated delay times may jeopardize
optimal decision-making in managing the operational costs in the entire supply chain.

We also analyzed the unit production cost of all products in all production centers and
found that the integrated model maintains higher profitability than the non-integrated model
at all five different scenarios (cost levels of− 50%,− 25%, 0, 25%, and 50%). Although some
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studies proposed multi-objective models to optimize the clinical trial duration and minimize
the operational costs in PSCs, their focus was mainly on the dynamic inventory allocation
process (Savadkoohi et al., 2018; Zhao et al., 2019) rather than considering the simultaneous
yet interdependent relationships between R&D planning and P&D planning (see Fig. 2). Our
results indicate that the integrated model not only preserves higher profits, but also enables
the organization to improve efficiency in the most critical parts of the supply chain (e.g.,
shipping, domestic and international insurance). This result is especially important in light
of the building efficient supply chain resilience (Aldrighetti et al., 2021, 2023). All results
from the comparison analysis between both non-integrated model and integrated model and
sensitivity analysis demonstrated that the integrated model can significantly help to achieve
both objective functions.

7.1 Theoretical implications and future research directions

This study examined the coexisting yet interlinked approaches to ambidexterity in supply
chain management in the context of the global pharmaceutical industry: explorative approach
(R&D planning) and exploitative approach (P&D planning). Our study presents a gateway
for future studies to consider the concept of ambidexterity in resource allocation planning,
risk management, and improved performance in complex environments. It answers the calls
of Kristal et al. (2010), Blome et al. (2013), and Aslam et al. (2018) for more research
to consider the simultaneous role of exploration and exploitation in supply chain success.
The results demonstrate that an integrative approach to both exploration and exploitation
could significantly improve the global PSC performance regarding operational costs and
unsatisfied demands for innovative products. Our literature review showed that no research
has simultaneously targeted these components of a global PSC performance. Therefore, we
invite future research to consider ourmodel in other industries focusing onR&Dplanning and
P&D planning for a global supply chain, such as biotechnology, semiconductors, automotive
industries, and smart devices.

Our study contributes to the growing literature on supply chain performance and design
under disruption and uncertainty (Brusset et al., 2022; Hägele et al., 2023). It emphasizes the
vital role of ambidexterity for operational decisions to improve supply chain performance.
We, therefore, applied this concept in this study to explain how integration in explorative and
exploitative approaches, especially in the global context, can reduce operational costs and
maximize unsatisfied demands. This can help achieve supply chain viability (Ivanov, 2022a,
2022b; Ivanov & Keskin, 2023). Indeed, the importance of ambidexterity in supply chain
management has been primarily recognized in relation to firm performance and P&D plan-
ning. In other words, the research on supply chain performance from the lens of ambidexterity
is scarce. In addition, less attention has been paid to the simultaneous and interlinked role of
R&D processes and P&D systems across a supply chain, requiring future research to iden-
tify and examine factors that generate operational gaps between explorative and exploitative
phases in a supply chain. In this study, we considered demand and capacities as uncertain
parameters, however, delay parameters as the substantial parameters of the model can also
be assumed uncertain. This will enhance the level of complexity for the fuzzy probabilistic
model and may a heuristic model be of help for the solution methodology in this case, e.g.,
using learning approaches (La Torre et al., 2022; Rey et al., 2022; Rolf et al., 2022).

While we did not situate all these decision variables within the problem context for a
clearer understanding in this current work, we encourage future studies to incorporate each
decision variable within specific problem scenarios. This approach will foster the application
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of the model in diverse contexts. Such an exploration can reveal more insights and lead to
further fine-tuning of the model. This, we believe, is a worthwhile avenue for future research
and development in this field.

7.2 Practical andmanagerial insights

Throughout the development and implementation of our integrated model, we proposed a
working decision-making support tool for PSCs and the associated healthcare ecosystems that
can accelerate the process of pharmaceutical products’ R&D and commercialization while
minimizing their operational costs. We believe the model can be applied to all contexts (e.g.,
the Covid-19 pandemic) that require long-term R&D on innovative products and enormous
investments in commercialization. Therefore, this study proposes the following implications
for managers in the pharmaceutical supply chains and other supply chains dealing with R&D
processes to better make decisions for improving performance. In the case of a pandemic
situation, as it needs a quick (not typical) reaction to fight the emergency, we recommend
considering tight times and higher monetary values (e.g., unit costs and sales).

First, we encourage managers in pharmaceutical organizations to apply our integrated
model for resource allocation, performance improvements, cost management, and risk man-
agement across a supply chain. To achieve that, it is recommended to identify delays in
operations across organizational processes. For example, R&D processes in many organiza-
tions rely strongly on time constraints and the ability to quickly respond tomarket demands to
achieve a competitive advantage over outperforming competitors. These delays may require
an in-depth auditing over the working processes and flow of knowledge across the supply
chain. It is noteworthy that R&D-based industries requiring high-tech capabilities may be
evenmore fragile to delays than other industries due to uncertainty and competitiveness in the
market. Identifying these delays can help managers optimize operational decisions, leading
to a significant increase in total profit, as suggested in our integrated model (Ivanov, 2022b).
Given the hurdle of delay sensitivity in such organizations, ourmulti-objective,multi-product,
and multi-period model for integrating R&D and production–distribution planning decisions
provides solutions within a short period of time, helping managers increase efficiency in
operational decisions, especially when dealing with innovative products.

Second, our findings suggested that the integrated model can perform better than the non-
integrated model in reducing operational costs (e.g., transportation cost, production cost,
insurance, and shipping cost). Indeed, managers can use the insights provided by the results
of the authentic case study as input for long-term decisions about continuous improvements in
production lines, efficient supply chain networks, and transportation network improvements,
with an emphasis on flexibility, resilience, and efficiency in the entire supply chain. Improving
the efficiency of production lines and the utilization of global transportation networks enable
the global supply chain actors to focus on waste elimination through minimizing waiting
times, delays in operations and processes and operational costs, and ultimately encourage
managers to develop policies and practices tomove organizationsmore quickly toward global
sustainable supply chains. We, therefore, encourage future studies to add constraints and
objectives related to environmental concerns into the integrated model (Homayooni et al.,
2021). Finally, our proposed model can be extended toward the ripple effect analysis (Dolgui
& Ivanov, 2021; Li et al., 2021), correlated stochastic price and demand (Babai et al., 2023),
reconfigurable supply chain (Dolgui et al., 2020), contracting in PSCs (Choi et al., 2023),
modelling with incomplete information (La Torre & Mendivil, 2022), inclusion of a disease
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dynamics (Broekaert et al., 2022; Brusset et al., 2022; Rozhkov et al., 2022), and intertwined
supply networks (Ghanei et al., 2023; Ivanov & Dolgui, 2020; Liu et al., 2022).
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