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Abstract
Black box machine learning models are currently being used for high-stakes deci-
sion making in various parts of society such as healthcare and criminal justice. 
While tree-based ensemble methods such as random forests typically outperform 
deep learning models on tabular data sets, their built-in variable importance algo-
rithms are known to be strongly biased toward high-entropy features. It was recently 
shown that the increasingly popular SHAP (SHapley Additive exPlanations) values 
suffer from a similar bias. We propose debiased or "shrunk" SHAP scores based on 
sample splitting which additionally enable the detection of overfitting issues at the 
feature level.

Keywords Interpretable machine learning · Feature importance · Random forests · 
SHAP values · Explainable artificial intelligence

1 Introduction

The unprecedented success of machine learning (ML) algorithms in diverse fields 
such as medicine, finance, biology, marketing, public health, image classification 
and natural language processing is truly revolutionary. In these applications it is 
often important to have models that are both accurate and interpretable, where being 
interpretable means that we can understand how the model uses the input features 
to make predictions. Given a data input, how did an algorithm arrive at the output? 
Which inputs influenced the decision of the algorithm? More specifically, why did 
the model, e.g., reject the loan application of a person? Which risk factors led to, 
e.g., the prediction of a high risk of heart disease?

Many approaches have been proposed to address the lack of interpretability in 
ML. For an overview, see Molnar (2022). In bioinformatics, variable importance 
measures for random forests have gained popularity, particularly for selecting rele-
vant genetic markers to predict diseases. Additionally, they have served as screening 
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tools in significant applications, emphasizing the importance of reliable and well-
understood feature importance measures.

The overall goal of these approaches is to attribute importance to the features of 
a model according to their contribution to the model outcome. The importance of 
features in tabular data can be quantified at a local and global level. That is, how 
important is a feature for a particular decision (local) and how important is a feature 
for the overall decision-making process (global).

Tree-based ensemble methods such as random forests and gradient boosted trees 
achieve state-of-the-art performance in many domains and have consistently outper-
formed deep neural network models on tabular-style datasets so common in medi-
cine and public health (Grinsztajn et al. 2022). The default choice to measure global 
feature importances in most software implementations of random forests is the mean 
decrease in impurity (MDI). The MDI of a feature is computed as a (weighted) mean 
of the individual trees’ improvement in the splitting criterion produced by each vari-
able. A well-known shortcoming of this default measure is its evaluation on the in-
bag samples which can lead to severe distortions of the reported ranking (Kim and 
Loh 2001; Strobl et al. 2007a). This bias is shown in the left panels of Fig. 1 for a 
simulation design used by Strobl et al. (2007a) with details as follows.

1.1  Data with varying cardinality

A binary response variable Y is predicted from a set of 5 predictor variables that 
vary in their scale of measurement and number of categories. The first predictor 
variable X1 is continuous, while the other predictor variables X2,… ,X5 are multi-
nomial with 2,  4,  10,  20 categories, respectively. The sample size for all simula-
tion studies was set to n = 120. In the first null case, all predictor variables and 
the response are sampled independently. We would hope that a reasonable 

Fig. 1  Distributions of global 
feature importance scores 
(MDI and SHAP) for random 
classification forests using five 
features of different cardinalities 
(details of which are explained 
in the text). Upper row: Null 
simulation where no feature is 
informative; lower row: Power 
simulation where only feature X2 
affects the outcome ( r = 0.15 ). 
Both simulations illustrate 
the severe bias exhibited by 
MDI and—to a lesser extent—
SHAP scores which inflate the 
importances of high cardinality 
features X1,3,4,5
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variable importance measure would not prefer any one predictor variable over any 
other. In the second simulation study, the so-called power case, the distribution 
of the response is a binomial process with probabilities that depend on a param-
eter r ∈ [0;0.5] which is related to the signal-to-noise-ratio (SNR) of x2 , namely 
P(y = 1|X2 = 1) = 0.5 − r,P(y = 1|X2 = 2) = 0.5 + r . For all figures, we repeatedly 
(100 times) fitted a random forest using the R1. ranger2. library with 400 classifica-
tion trees and default parameters. SHAP values were computed using the R trees-
hap3. library.

1.2  Conditional feature contributions (CFCs)

The conventional wisdom of estimating the impact of a feature in tree-based models 
is to measure the node-wise reduction of a loss function, such as the variance of the 
output Y, and compute a weighted average of all nodes over all trees for that feature. 
By its definition, such a mean decrease in impurity (MDI) serves only as a global 
measure and is typically not used to explain a per-observation, local impact. Saabas 
et  al. (2019) proposed the novel idea of explaining a prediction by following the 
decision path and attributing changes in the expected output of the model to each 
feature along the path:

Let f be a decision tree model, x the instance we are going to explain, f(x) the 
output of the model for the current instance, and fx(S) ≈ E[f (x) ∣ xS] the estimated 
expectation of the model output conditioned on the set S of feature values, then—
following Lundberg et al. (2019)—we can define the Saabas value4 for the i’th fea-
ture as

where Di
x
 is the set of nodes on the decision path from x that split on feature i, and Aj 

is the set of all features split on by ancestors of j. Equation (1) results in a set of fea-
ture attribution values that sum up to the difference between the expected output of 
the model and the output for the current prediction being explained. When explain-
ing an ensemble model made up of a sum of many decision trees, the CFCs for the 
ensemble model are defined as the sum of the CFCs for each tree.

1.3  SHAP values

Lundberg et al. (2020) point out that CFCs are strongly biased to alter the impact 
of features based on their distance from the root of a tree. This causes CFC scores 
to be inconsistent, which means one can modify a model to make a feature clearly 

(1)�s
i
(f , x) =

∑

j∈Di
x

fx(Aj ∪ i) − fx(Aj),

1 https:// www.r- proje ct. org/
2 https:// github. com/ imbs- hl/ ranger.
3 https:// github. com/ Model Orien ted/ trees hap.
4 Synonymous with conditional feature contributions.

https://www.r-project.org/
https://github.com/imbs-hl/ranger
https://github.com/ModelOriented/treeshap
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more important, and yet the CFC attributed to that feature will decrease. The authors 
extend the original Shapley values from game theory to explain machine learning 
models based on SHapley Additive exPlanation (SHAP). For trees, these SHAP 
values can be computed efficiently in polynomial time. SHAP values can be seen 
as a solution to this problem, though often incurring potentially unnecessary com-
putational cost as pointed out in Loecher (2022). As explained in Lundberg et  al. 
(2019), Shapley values are computed by introducing each feature, one at time, into 
a conditional expectation function of the model’s output, fx(S) ≈ E[f (x) ∣ xS] , and 
attributing the change produced at each step to the feature that was introduced; then 
averaging this process over all possible feature orderings. Shapley values represent 
the only possible method in the broad class of additive feature attribution methods 
that will simultaneously satisfy three important properties: local accuracy, consist-
ency, and missingness. They are defined as:

where R is the set of all feature orderings, PR
i
 is the set of all features that come 

before feature i in ordering R, and M is the number of input features for the model. 
Local accuracy states that for a specific input x, the explanation’s attribution values 
�i for each feature i need to sum up to the output f(x):

In this paper we are mainly concerned with global importance measures, which is 
naturally defined as the average of the absolute SHAP values per feature across the 
data:

All of our results pertain to marginal SHAP values.

1.4  Related work

Marginal Shapley values are used to calculate the average contribution of a feature to 
the prediction when all possible coalitions of features are considered. This approach 
assumes that each feature is independent of the others, which may not be the case 
in reality. When features are highly correlated, the marginal Shapley value for one 
feature may be misleading as it doesn’t consider the influence of the other correlated 
features. On the other hand, conditional Shapley values consider the contribution of 
a feature based on a specific set of conditions. In other words, it takes into account 
the correlation among the features and calculates the average contribution of the fea-
ture based on the specific values of the correlated features. This approach provides a 
more discerning understanding of the contribution of each feature to the prediction. 

(2)�i(f , x) =
∑

R∈R

1

M!

[
fx(P

R
i
∪ i) − fx(P

R
i
)
]
,

(3)f (x) = E(f ) +

M∑

i=1

�i(f , x)

(4)Ij =
1

N

N∑

i=1

|�j(f , xi)|
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Janzing et al. (2020) offer a causal interpretation of Shapley values that replaces the 
conventional conditioning by observation with conditioning by intervention.

Sundararajan and Najmi (2020) highlighted several drawbacks of the SHAP 
method, including the production of counterintuitive explanations when some fea-
tures are deemed unimportant. However, the Baseline Shapley (BShap) method 
offers an improvement to this "uniqueness" issue in attribution methods.

At first glance similar to our findings, Kwon and Zou (2022) also demonstrate 
that Shapley values often fail to sort features in order of influence on a model predic-
tion. These attribution mistakes are especially pronounced when different marginal 
contributions have different signal and noise. The authors also propose a reweighing 
scheme as a solution which they refer to as WeightedSHAP. However, the underly-
ing reasons for the incorrect ordering of features are very different from our rather 
narrow situation which combines the greedy tree splitting algorithm with varying 
feature entropies.

Covert et  al. (2020) introduce Shapley additive global importance (SAGE) for 
quantifying a model’s dependence on each feature. These global measures are the 
result of minimizing a structured loss function and hence much less heuristic than 
the ones defined by Eq. (4). Sutera et al. (2021) demonstrated that SAGE applied 
to tree-based models is very similar to the Gini importance. Supplement  1.2 con-
tains limited results on SAGE values for our simulated data introduced in Fig. 1. We 
refrained from delving deeper into this alternative method because (i) the provided 
code on the repository runs extremely slowly, and (ii) our focus are the original 
SHAP values which have become extremely popular.

Additional approaches have been suggested to compute global SHAP values 
(Frye et al. 2020; Williamson et al. 2020; Casalicchio et al. 2019) where the latter 
reference proposes local and global feature importance methods based on the ideas 
of partial dependence and ICE which are lend themselves particularly well for visu-
alization. Nevertheless, it is important to note that the inherent bias resulting from 
the underlying tree structure persists across all of these methods, provided that the 
tree-building algorithm remains unchanged.

Yasodhara et al. (2021) conducted extensive experiments to assess the accuracy 
and stability of global feature importance scores, including SHAP and Gini. Their 
findings revealed notably low correlations with the true feature rankings, even in sce-
narios without additional noise. Moreover, when inputs or models were perturbed, 
these correlations further decreased. However, the authors did not specifically exam-
ine the impact of uninformative variables with different levels of cardinality.

2  Smoothed SHAP

Less known than the distortions w.r.t MDI is the persistence of the bias of feature 
importance rankings based on (global) SHAP values, as shown in the right panels 
of Fig.  1. Similar to MDI, SHAP shows a strong bias toward high-entropy varia-
bles which in the power case yields distorted rankings of variable impact. The grave 
consequences of providing such flawed explanations for, e.g., financial decisions 
or predictions of medical outcomes cannot be taken serious enough. To the best of 
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our knowledge, no debiasing method has been successfully applied to SHAP scores 
(yet).

2.1  Sample splitting

It was recognized early on that separating the split variable selection from the split 
point selection can reduce or eliminate the bias (Loh and Shih 1997; Hothorn et al. 
2006). A somewhat similar approach is implemented in so-called “honest trees” 
(Athey and Imbens 2016). Honest trees are based on sample-splitting: Each node 
value is estimated using a different sub-sample of the training data than the one used 
to decide the split point. The sample-splitting successfully eliminates the split bias 
but comes with a cost of lower performance, as the number of samples for each esti-
mation (split point and prediction) is reduced.

It is somewhat surprising that the clear differentiation between validation and 
training data, which is typically observed for most other metrics in statistical mod-
eling, has not been consistently applied to variable importance measures. Recently, 
several authors (Li et al. 2019; Loecher 2020b; Zhou and Hooker 2021) effectively 
eliminated the outlined bias inherent to the tree splitting procedure by including out-
of-train samples in order to compute a debiased version of the MDI importance. 
These post-hoc adjustments of scores derived from tree-based models do not alter 
the tree structure, as opposed to attempts to prevent overfitting directly during the 
growth of the tree, as described in, e.g., Adler and Painsky (2022).

The main idea is based on sample splitting in order to counteract the severe over-
fitting of high-cardinality features. Instead of evaluating feature importance scores 
solely on the same in-bag (IB) samples that were used to grow the trees, we penalize 
discrepancies with the same scores evaluated on out-of-bag (OOB) samples. While 
random forests—at least when fitted with the bootstrap—conveniently provide these 
IB/OOB without any "extra costs," we choose to generalize our presentation by 
splitting the data into train/test sets instead. This leads to a more model agnostic 
debiasing approach and hopefully simplifies the clarity of presentation. Whenever 
applicable, we show results for both train/test splits as well as IB/OOB splits. The 
initial steps of our proposed algorithm are as follows. 

1. Split data into train/test sets. (Note the unusual terminology, since we are also 
"training" a model on "test" data)

2. Fit two separate random forest models on train/test each: RFtrain , RFtest

3. Compute separate in/out SHAP values for, e.g., the test data 

(a) SHAPin : RFtest predicts on test
(b) SHAPout : RFtrain predicts on test

We would expect weak/no correlations between SHAPin and SHAPout for non-
informative features and in turn strong correlations for relevant features, which is 
confirmed by Fig. 2.
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Based upon these two sets of in-sample and out-sample SHAP scores, we pro-
pose the following debiasing/smoothing/shrinkage scheme. For each feature j: 

1 Fit a linear model SHAP j,out = �j ⋅ SHAPj,in + u

2 Use the estimates �SHAP
shrunk

j,in
= 𝛽j ⋅ SHAPj,in as local explanations instead of 

SHAPj,in,

We can think of these predictions as "smoothed" version of the original SHAP 
values.

We can avoid the need to fit two random forests by computing SHAP scores sep-
arately for each tree which was fitted on a specific bootstrapped subset (inbag). If 
the number of trees is sufficiently high, the union of these tree-wise disjoint inbag/
oob data sets will "generously" cover the entire original data, i.e., each row would 
have been part of the oob set sufficiently often. By averaging over all trees we hence 
obtain the equivalent of RFtrain and RFtest SHAP scores with just one random forest.

We expect the correlation between these inbag and oob SHAP values to be high 
for informative and nearly zero for uninformative features, which motivates the fol-
lowing equivalent but simpler smoothing method. For each feature j

1. Fit a linear model SHAPj,oob = �j ⋅ SHAPj,inbag + u

x4 x5

x1 x2 x3
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Fig. 2  In-sample versus out-sample SHAP scores for the power simulation where only feature X2 is 
informative ( r = 0.25 ), illustrating the low correlations for features X1,3,4,5 and a strong relationship for 
X2 , with values of R2

1,2,3,4,5
= [0.038, 0.91, 0.004, 0.05, 0.044] respectively. (sample size n = 240)
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2. Use the estimates �SHAPj,oob = 𝛽j ⋅ SHAPj,inbag as local explanations instead of the 
original SHAPj which mix inbag and oob values.

The two right panels of Fig.  3 display the main results: the non-informative 
features are shrunk toward zero while the relevant variable x2 is hardly modified. 
The benefits are most striking for low signal-to-noise ratio, e.g., the null simula-
tion (top row) and for a moderate value of r = 0.15 . We notice in passing that 
Kwon and Zou (2023) takes the idea of using oob data much further and propose 
them as a general data valuation method.

We emphasize that our main goal so far has been to debias global SHAP scores 
rather than local explanations; hence the emphasis on relative rankings and the 
loss of an absolute interpretable scale. If local accuracy as expressed by Eq. (3) 
shall be preserved, we can simply rescale the scores by multiplying with

(5)𝛾 =

M∑

j=1

𝜙j(f , x)∕

M∑

j=1

𝛽j ⋅ 𝜙j(f , x),

raw shrunk_oob shrunk_test
0

0.15
0.25

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
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Fig. 3  Raw vs. shrunk SHAP scores for the null (top row) as well as 2 power simulations where only 
feature X2 is informative ( r = 0.15, 0.25 in middle and bottom row, respectively). The oob/inbag sample 
split (middle column) seems to lead to a similar debiasing effect as the computationally more expensive 
train/test method (right column)
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where �j(f , x) ≡ SHAPj,in would be the "raw", unmodified SHAP score for feature 
j and input x. We redefine the smoothed scores as �𝜙j(f , x) ≡ 𝛾 ⋅ 𝛽j ⋅ 𝜙j(f , x) which 
ensures that Eq. (3) still holds:

Fig. 5 serves to illustrate Eq. (6) by a specific example. Supplement 1.1 shows that 
the other two essential properties consistency and missingness are also unchanged.

(6)

E(f ) +

M�

i=1

�𝜙i(f , x) = E(f ) +

M�

i=1

𝛾 ⋅ 𝛽j ⋅ 𝜙i(f , x)

= E(f ) +

M�

j=1

𝜙j(f , x)

∑M

i=1
𝛽j ⋅ 𝜙i(f , x)

∑M

j=1
𝛽j ⋅ 𝜙j(f , x)

= E(f ) +

M�

j=1

𝜙j(f , x)
!
= f (x)

Fig. 4  Local SHapley Additive exPlanation (SHAP) values for the Titanic data. Original, "raw" (left 
panel) vs. SHAP scores computed only on oob data (middle panel) vs. shrunk, "smoothed" scores (right 
panel) as explained in the text

Fig. 5  Decomposition of a specific survival prediction for passenger with ID = 42 from the Titanic data. 
The original SHAP scores (upper panel) are highly variable and yield a large weight for passengerID 
while the smoothed explanations in the lower panel are (i) much less extreme, (ii) yield the same final 
prediction thanks to the applied rescaling in Eq. (5) and (iii) rank passengerID as a minute contribution
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2.2  Real data

Previous studies (Loecher 2020, 2022a) have used the well-known titanic data set 
to illustrate the severity of the bias of commonly used feature importance scores in 
random forests. In this section we show that even (SHAP) values suffer from (i) a 
strong dependence on feature cardinality, and (ii) assign non zero importance scores 
to uninformative features.

In the following model5 we include passengerID as a feature along with the more 
reasonable Age, Sex and Pclass. The left panel of Fig. 4 shows the high variance of 
SHAP scores for passengerID which would hence result in a large global impor-
tance score. Simply separating the inbag from the oob SHAP values helps but is not 
a remedy as shown in the middle graph. Our proposed smoothing algorithm selec-
tively shrinks the scores for passengerID and Age as seen in the right panel. While 
we strictly speaking have no "ground truth", we can make a very strong argument 
for passengerID to be a truly non-informative feature since the left panel boxplot 
barely changes when we randomly scramble the order of passengerID.

To close this section we examine the explanation of a specific prediction as 
decomposed by the original SHAP values, illustrated in the upper panel of Fig. 5 
(referred to as a "force plot" in Lundberg et  al. 2020). It seems highly implausi-
ble that the ID of the passenger would carry the second largest impact on the sur-
vival probability, while passenger class takes on a distant fourth rank. The smoothed 
explanations in the lower panel appear much more sensible; we also notice the 
reduced variability of the shrunk scores (The axes are not aligned).

2.3  Feature ranking as a classification task

For a more systematic study of the proposed shrunk SHAP scores, we closely follow 
the simulations outlined in Li et al. (2019) and pose the discrimination of relevant 
from noisy features as a classification task. Our generated data (2000 rows) contain 
50 discrete features, with the jth feature taking on j + 1 distinct values 0, 1,… , j . 
As shown in previous sections, discrete features with different number of distinct 
values constitute a critical challenge for MDI and SHAP. We randomly select a set S 
of 5 features from the first ten as relevant features. The remaining features are non-
informative. All features are independent and—of course—samples are i.i.d. The 
binary dependent variable is generated using the following rule:

Treating the noisy features as label 0 and the relevant features as label 1, we can 
evaluate a feature importance measure in terms of its area under the receiver oper-
ating characteristic curve (AUC). We grow 100 deep trees (minimum leaf size 

P(Y = 1|X) = Logistic

(
2

5

∑

j∈S

xj∕j − 1

)

5 In all random forest simulations, we choose mtry = 2, ntrees = 100 and exclude rows with missing Age.
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equals 1, mtry = 3 ), repeat the whole process 100 times and report the average AUC 
scores for each method in Table 1. For completeness, we also compute the AUC for 
the permutation importance MDA which was long considered a gold standard but 
is not without its own issues (Hooker and Mentch 2019). For this simulated set-
ting, ŜHAP

shrunk

in
 achieves the best AUC score under all cases, most likely because it 

shrinks noise features toward zero. We notice that the AUC score for the OOB-only 
SHAPoob outperforms the permutation importance and—unsurprisingly—the overall 
SHAP scores.

3  Discussion

We can make the proposed train/test split more efficient in various ways. The obvi-
ous one is exploiting the symmetry by also computing SHAP values for RFtest and 
RFtrain on the train data: 

1. SHAPin : RFtest predicts on test, RFtrain predicts on train
2. SHAPout : RFtrain predicts on test, RFtest predicts on train

One benefit would be the possibility to average the respective slopes, which should 
lead to more robust estimates. Alternatively we can view the above scheme as essen-
tially akin to a 2-fold cross-validation with the obvious advantage that with enough 
computational resources one can generalize to a larger number of k-fold CV.

4  Conclusion

In this paper we have demonstrated that simple sample splitting can be utilized to 
substantially reduce the tendency of tree-based methods to overfit categorical fea-
tures with large number of categories. The proposed debiasing scheme leans on the 
well-known statistical principle to not validate a model on the same ("in") data that 
were used to fit the model but instead to compute a goodness-of-fit measure on a 
separate ("out") data set. While perhaps most relevant to tree-based algorithms, our 
method is model agnostic and in fact its benefits extend beyond just debiasing SHAP 
values. We believe that the strength of the correlations between SHAPin and SHAPout 
scores could be used to detect overfitting at a feature level in the following sense.

Table 1  Average AUC 
scores for relevant feature 
identification. The ŜHAP

shrunk

in
 

scores highlighted in bold face 
outperform all other methods MDA  permutation importance, MDI (default) Gini impurity, 

SHAP
oob

 scores are based upon only the oob data. The ŜHAP
shrunk

in
 

scores outperform all other methods

SHAP
ŜHAP

shrunk

in

SHAP
oob

MDA MDI

0.66 0.89 0.73 0.65 0.10
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While there are established tools (such as cross validation) to control model com-
plexity in order to optimize performance on unseen data,

• Feature selection remains notoriously difficult
• The minima of, e.g., out-of-sample loss measures are typically rather broad 

allowing for a wide range of model parameters and feature subsets
• The consequences of choosing sub-optimal, overly adapted models (e.g., in 

terms of including non-informative features or allowing high local flexibility) are 
often

• Rather modest/minor for predictive accuracy
• But extremely misleading for model explanations

• This "interpretational overfitting" can be diagnosed at the feature level by 
inspecting the correlations between in and out SHAP values.

Summarizing, we view the well-established bias in Gini and SHAP importance 
measures as a specific case of overfitting and propose a post-hoc, easy-to-implement 
solution to this problem. We have illustrated its effectiveness on three simulated data 
sets as well as the well-known Titanic data.

It is crucial to acknowledge that the bias examined in this study is only con-
sidered a bias when we employ variable importance measures to infer the sig-
nificance of variables in relation to underlying relationships within the data. 
However, if our interest lies in comprehending the tree-based model itself, then 
this "bias" actually represents a true effect. This is because the tree-based struc-
ture does utilize variables with more categories more frequently and places them 
closer to the top of the trees compared to variables with fewer categories. This 
distinction between biases is significant: a variable importance measure can 
exhibit bias in identifying which variable is important in determining the true 
outcome, as well as bias in identifying which variable is important in determin-
ing the predicted outcome, i.e., the model output. If the model being explained is 
not a perfect representation of the underlying relationship in the data, then any 
variable importance measure will demonstrate one of these biases. Hence, when 
employing a variable importance measure, it is crucial to always consider what 
the measure intends to explain: the model output or the real-world outcome.
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