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Abstract
This paper introduces a novel optimisation problem motivated by the real-world 
application of transferring between trains. The driving idea is to minimise the walk-
ing distances of all transferring passengers by optimising the assignment of passen-
gers to railcarriages in the seat reservation process. The focus of this work is on 
formalising and modelling the problem, which has not been studied before. It aims 
to provide a framework for future considerations. We present three versions of the 
problem with increasing difficulty: one-train-one-station, one-train-many-stations, 
and a general problem with multiple trains and stations. Since the simplest version 
of the problem is a pure assignment problem in the form of minimum-cost bipartite 
matching, our problem modelling and algorithmic solution approach remain closely 
related to maxflow problems as they represent a proven method for assignment prob-
lems. However, even the one-train-many-stations problem cannot be solved by trans-
forming it into a standard maximum-flow problem. The main result shown is the 
NP-hardness of the general problem.

Keywords  Seat reservation · Maximum flow problem · Bipartite matching · 
NP-hardness

Mathematics Subject Classification  05C90 · 68Q17 · 90B20 · 90B80 · 90C27 · 
90C35

1  Introduction

The operation of public transport depends on diverse, often operation-critical optimi-
sation problems with different planning scopes (Huisman et al. 2005)—from strategic 
goals such as line planning to short-term goals such as crew scheduling (Neufeld et al. 
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2021). For an individual traveller, many framework conditions such as line planning 
cannot be influenced. All the more important are the optimisation problems which 
affect the solution of his individual journey within the given framework conditions. 
These optimisation problems include the search for train connections (Pyrga et  al. 
2007), which, in addition to a pure search for the fastest connection, also takes into 
account other factors such as the reliability of a connection or the walking distances to 
be covered in urban public transport (Disser et al. 2008). Seat reservation is also one 
of the customer-oriented optimisation problems, although up to now this has primar-
ily been considered for group reservations as a variant of the 2-dimensional knapsack 
problem (Clausen et al. 2010).

This paper approaches the seat reservation process from a different angle. In order to 
increase travel comfort, passengers’ seat reservations should be made in such a way that 
individual walking distances are as short as possible. This applies in particular to trans-
fers at stations where, due to clumsy reservations in two trains, the entire platform has 
to be walked although both trains stop there. When transferring to a train at the same 
platform, the next reservation should be close to the position where you left the train 
before. When transferring to a train at another platform, or even at the beginning and 
end of the journey, the reserved seats should be close to the platform access. The objec-
tive of this work is to develop a mathematical model of the application problem and to 
classify the optimisation problems in terms of problem complexity. To our knowledge, 
this problem has not yet been formally addressed.

In the long term, this should answer questions as to whether there are suitable heu-
ristics that can be used to efficiently find an acceptable approximate solution offline. 
Based on this, an experimental study can give an answer as to how big a difference 
between such a reservation system and a random placement of passengers is. Last but 
not least, an optimised reservation system could also have an impact on the operation 
of the railway, since transfer times between connections and dwell times of trains at the 
station can be planned differently.

These considerations are largely driven by the future vision that tickets will not only 
be used digitally via smartphone, but that the seats reserved will be determined shortly 
before the journey. In particular, this allows us to take into account situations such 
as trains arriving in reverse, missing railcarriages, and replacement trains. An online 
adjustment of reservations during operation is out of the scope of this work.

In the following section, the newly considered problem is framed by a literature 
review. Section 4 introduces the basic concepts of the railway infrastructure. The fol-
lowing sections define the optimisation problem with increasing problem difficulty: 
Sect.  5 considers one train in one station, Sect.  6 one complete train, and Sect.  7 a 
complete interconnection network. The latter problem is then analysed in Sect. 8 with 
regard to its computational complexity. The final Sect. 9 summarises the findings.

2 � Related work

Seat reservation on trains has been the subject of various studies and publications 
in the past, which we summarise in this section. In addition, we also discuss some 
research that is closely related to the results presented here.
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Online seat reservations. The oldest publications on seat reservations take an eco-
nomic perspective and examine online reservation algorithms where not all requests 
are yet complete when seats are allocated. Those publications examine the degree 
to which online reservation algorithms can fill trains to capacity (Boyar and Larsen 
1999; Bach et al. 2000; Miyazaki and Okamoto 2010), the so-called accommodating 
ratio. Two pricing schemes are compared: a fixed flat price and costs that are pro-
portional to the length of the journey. In short, these works show that a significant 
proportion of seats cannot be allocated by an online algorithm because each deci-
sion is made with incomplete information. This effect can be countered by certain 
techniques, e.g. reserving only partial sections or by requiring passengers to change 
seats on a train (Solanki and Patidar 2019).

Offline group seat reservations. The conceptual counterpart is the offline alloca-
tion of seat reservations, where all reservation requests are known. From an algorith-
mic point of view, this is hardly interesting for individual reservations. Therefore, 
the research here deals with group reservations, which make it difficult to allocate 
all seats. Clausen et al. (2010) transform the problem into a two-dimensional knap-
sack problem or two-dimensional bin packing and investigate branch-and-bound 
algorithms with different bounds. Deplano et al. (2019) have extended the problem 
by attaching additional profits to various properties of the seats.

Offline seating arrangements. While the train utilisation is significantly better 
with an offline reservation, the business model of a railway company suggests an 
online algorithm. Kohrt and Larsen (2005) address this conflict by separating the 
mere decision as to whether a reservation can be fulfilled (as an online problem) 
from the actual allocation of seats (as an offline problem). They present a data 
structure in which the insertion and deletion of a reservation is possible in O(log p) 
(where p is the number of stations). This concept is an essential basis for the prob-
lem presented in our article, which attempts to achieve greater customer-friendliness 
when allocating seats offline in the second step.

Dwell times of passengers and the transfer coordination design problem. When 
approaches are presented in the literature to make a passenger’s journey more com-
fortable, it is mostly about adjustments to departure schedules and better coordina-
tion of the different trains. Liu et al. (2021) present an extensive survey article on 
this type of problem, which mostly has minimising transfer waiting time, minimising 
total cost, or maximising of the number of successful transfers as the optimisation 
objective. Since these considerations concern mass transportation, they are only of 
marginal importance for our problem. Mostly, cycle times, frequencies, or departure 
times are optimised, e.g. Jansen et al. (2002) minimise the weighted sum of transfer 
times with a tabu search heuristic and Nieuwenhuis (2021) uses a metaheuristic to 
adjust the departure times by few minutes achieving a 5.7% reduction in transfer 
times. A few works also consider passenger assignment as a decision variable, but 
this refers to the choice between different possible connections or paths and not to 
seat reservations (Zhou et al. 2019; Chu et al. 2019).

Modelling of connecting trains. In the reservation problems from the literature, 
transfer processes have not been taken into account so far, which is why the associ-
ated problem models do not have the concept of the connecting train. Therefore, 
we will now take a brief look at the models used in timetable query. Pyrga et  al. 
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(2007) present two different ways of introducing time-dependencies into the graph 
representing the rail network and train connections. The time-dependent model con-
tains only one node for each station and, for many queries, is superior to the time-
expanded model, which duplicates the station nodes in the graph for the different 
departure times. To make the time-expanded model more competitive, Delling et al. 
(2009) simplified the original model by representing unimportant stations differ-
ently. As part of our work, we decided not to store time in the graph or model itself, 
but to consider time-dependencies externally when generating passenger travel 
plans.

Transfer cost. Passenger transfer costs beyond the dwell time between two con-
necting trains are rarely considered in the existing literature. An example of this is 
work by Li et al. (2021) in the context of optimised coordination of full-length and 
short-turn trains on an urban train line. The transfer costs are levied rather coarsely 
on the basis of the number of transfers.

3 � Problem description

In this section, the optimisation problem is introduced informally and all assump-
tions concerning the modelling of the optimisation problem are summarised.

3.1 � Transfer cost

In this paper we assume that the routing of the trains, the train schedule and the 
trains used are invariant constant quantities. Likewise, the set of passengers with 
their individual travel plans, i.e. the assignment to a sequence of trains, is an input 
variable for our problem.

This leaves the seat reservations for passengers as the only decision variables 
within this optimisation problem. The objective variable is the length of the travel-
lers’ walking distances when transferring between the trains as well as when board-
ing and alighting the train at the beginning and at the end of the journey. The dis-
tances travelled by all passengers should be kept as short as possible, which is why 
square distances are used in the rest of the paper.

This problem is introduced in three variants with increasing difficulty. First, only 
boarding a train at a station is considered. In the second variant, the course of a train 
is modelled along the stations of its routing, the passengers stay on the train for an 
individual section at a time and they board the train and leave the train at a spe-
cific position on the platform in each case. In the last variant, a complete network of 
trains is considered and the passengers’ journey can extend over several trains.

3.2 � Assumptions for the optimisation problem

This section summarises the constraints and assumptions that we use to keep the 
model of the optimisation problem manageable enough for the scope of this paper.
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The focus of the work exclusively questions the extent to which clever seat reser-
vations can reduce the distances travelled. All other factors are assumed to be invari-
ant and we abstract from too fine details in the model.

Assumption 1  We assume that the assignment of a track to a train is immutable and 
a direct consequence of the given rail network.

Assumption 2  We assume that each railcarriage has exactly one entrance. Without 
loss of generality, the entrance is positioned in the middle of the railcarriage.

For purely technical reasons, we assume that the train line can be determined 
from the number of a railcarriage. In reality, a railcarriage is used several times a 
day on different train lines.

Assumption 3  Each railcarriage is only used in one train on one train line.

A model that takes into account individual travellers could easily be provided 
with in-depth details such as train departure times, waiting times, and alternative 
connecting trains. This would directly imply that route planning is also done as part 
of the optimisation. As this is outside the focus of the problem considered here, we 
refrain from providing this information and assume that the individual travel plans 
of the passengers were preceded by corresponding considerations.

Assumption 4  We assume that the temporal coupling of trains at a station arises 
from the existing individual travel plans.

In the literature, seat reservations have so far been considered mainly in the con-
text of group reservations, without which reservations would be a simple problem in 
itself (Clausen et al. 2010). In this introductory paper, we do not consider group res-
ervations because we first want to measure the complexity of the problem that arises 
from considering transfer paths alone.

Assumption 5  We assume that only individual reservations are possible.

This limits the directly applicable practical value of the considerations presented 
in this paper. Nevertheless, group reservations could be considered in a practical 
implementation. One possible approach could be direct reservation for groups and 
downstream optimisation for individual travellers.

4 � Modelling the infrastructure

This section introduces the concepts of rail infrastructure, in particular stations, train 
routes, and trains deployed. The operating conditions at the station can then be used 
to define the transfer costs for a passenger.
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4.1 � Notations

In order to keep the model clear and to increase readability, the notations are sum-
marised compactly in three tables. Table  1 contains the sets, indices, and param-
eters. Table 2 shows the relations and functions used to access certain properties of 
the objects in the model. Table 3 contains the single decision variable that is used in 
all three variants of the problem.

4.2 � Station configuration

Definition 1  (Station) A station st consists of several platforms st.pl ⊂ ℕ , each of 
which usually has two tracks. Each platform pl ∈ st.pl has positions pl.pos ⊂ ℕ that 
correspond to sections of the length of a railcarriage and that are labelled by a con-
tinuous sequence of numbers. In addition, the station has a cross connection between 

Table 1   Definition of sets, indices, and parameters

Notation Explanation

ST Set of all stations
st Parameter ( ∈ ST  ) denoting one station
st.pl Set of all platforms at station st
pl Parameter denoting one platform
st.cross Position ( ∈ ℕ ) of the access to all platforms at station st
pos Parameter ( ∈ ℕ ) denoting a relative position at any platform
TR Set of all train routes
tr Parameter ( ∈ TR ) denoting one train route
tr.len Number ( ∈ ℕ ) of stations visited in train route tr
tr.sti i-th station ( ∈ ST  ) of train route tr ( 1 ≤ i ≤ tr.len)
W Set of all possible railcarriages
Wtr Set of railcarriages ( ⊆ W ) in train tr
w, wi Parameters ( ∈ W ) denoting a railcarriage
w.tr Train route ( ∈ 𝕋ℝ ) on which railcarriage w is used
w.no Sequence number ( ∈ ℕ ) of railcarriage w in the deployed train for w.tr
w.cap Seat capacity ( ∈ ℕ ) of railcarriage w
P Set of all passengers
p Parameter ( ∈ P ) denoting a passenger
p.plin Platform ( ∈ ℕ ) at which passenger p arrives (in the one-station problem and the one-train 

problem)
p.plout Platform ( ∈ ℕ ) from which passenger p leaves (in the one-train problem)
p.posin Position ( ∈ ℕ ) at which passenger p arrives at the platform (in the one-station problem and the 

one-train problem)
p.stin Station ( ∈ ST  ) at which passenger p boards (in the one-train problem)
p.stout Station ( ∈ ST  ) at which passenger p alights (in the one-train problem)
p.route Individual travel route [ ∈ (ST × TR)+ × ST  ) of passenger p (in the general problem)]
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the platforms at position st.cross ∈ ℕ which is also the only access to the platforms. 
ST  denotes the set of all possible stations.

Example 1  Figure 1 shows an exemplary station with two platforms. From platform 
1 you can board the trains on tracks 1 and 2. At position 3, there is a cross connec-
tion to access the platform. Platform 2 illustrates the freedoms of the model: The 
platform does not start at position 1, but still has the cross connection at the same 
position as platform 1. In addition, platform 2 serves three tracks. A train on track 4 
can only stop at positions 8, 9, and 10.

In this paper, only transfer paths resulting from seat reservations on one or more 
trains are considered and minimised. This means that unavoidable path sections 

Table 2   Relations and functions Notation Explanation

cost Determines the square distance of two positions at two 
platforms

train Assigns a sequence of railcarriages to a train route
pl Assigns a platform of a station to a train route
pos Assigns a position at the platform to the train route
dir Indicates the direction of travel at the platform for the 

train route
cpos Computes the position of a railcarriage at the platform 

from the operation conditions pl, pos, and dir
occ Function used in the one-station problem to parameterise 

the number of already occupied seats in each railcar-
riage

Table 3   Definition of decision 
variables

Notation Explanation

Map Assignment of each passenger to a railcarriage of each 
involved train

access to cross connection

track 1

track 2
track 3

track 4

track 5

1 2 3 4 5 6 7 8 9 01 11
platform 1

platform 2
2 3 4 5 6 7 8 9 10

Fig. 1   Exemplary station
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of the transfer are not taken into account when calculating the costs. Because in 
the static view of the paper, due to Assumption  1, the track of each train stop is 
unchangeable, the distance between two platforms cannot be minimised and is not 
included in the subsequent definition of the costs.

We also do not take into account the distance within a railcarriage to the 
actual seat, but are only interested in the routes to the entrance of the carriage 
(Assumption 2).

In order to achieve the lowest possible transfer costs for all travellers, we define 
the transfer costs as squared distances. As we will later consider the sum of all trans-
fer costs, the squared cost function should penalise very long journeys by individual 
travellers—a technique borrowed from linear regression (cf. Downey 2014, p. 118).

Definition 2  (Avoidable distance cost when changing trains) A passenger who has 
to walk from position pos on platform pl to position pos′ on platform pl′ at station st 
has the avoidable squared distance cost

Because we only take into account the distance travelled on the platforms and not 
between the platforms, the platform numbers only serve as identifiers. The further 
definitions do not require a consistency check regarding the number of platforms at a 
station or the length of the platforms.

Example 2  Figure 2 illustrates two scenarios for calculating distance costs. In sce-
nario (a), the trains stop at the same platform and there is a cost of (2 − 5)2 = 9 . In 
scenario (b), the trains stop at different platforms. In that case, only the horizontal 
distances are taken into account for the calculation of the distance costs. This leads 
to the costs (‖4 − 3‖ + ‖5 − 3‖)2 = 32 = 9.

4.3 � Train configuration

To introduce the trains that connect the different stations, we distinguish between 
two different concepts. We first introduce the pure train route as a sequence of the 
stations visited. This is initially detached from the physical train, which is addressed 
as the second concept in Definition 5. The train route is also often referred to as a 
train line, which usually means the abstraction of several trains serving the same 
sequence of stations at different times. The definition of the train route implicitly 
includes a timetable and can therefore only be implemented through one train per 
day.

Definition 3  (Train route) A train route tr is defined by its timetable with a sequence 
of tr.len stations

(1)

cost(pl, pos, pl�, pos�) =

�
(pos − pos�)2, if pl = pl�

(‖pos − st.cross‖ + ‖pos� − st.cross‖)2, otherwise .

(2)⟨tr.st1,… , tr.sttr.len⟩ ∈ ST
∗
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with tr.sti ≠ tr.stj for i ≠ j . A train route tr defines a partial order <tr on the set ST  
as follows:

Let TR be the set of all considered train routes. For the sake of simplicity, STtr ⊆ ST  
denotes the set {tr.st1,… , tr.sttr.len}.

The notation using the Kleene star in ST∗ denotes the set of all sequences con-
sisting of an arbitrary number of elements in ST .

The train actually used on a train route is introduced in the following definition 
by its railcarriages with their seating capacities. The separation of the train from 
the train route makes it possible to easily replace a train with a differently sized 
train in later work.

Definition 4  (Deployed train) A train route tr is implemented by a deployed train. 
For this purpose, a concrete sequence of railcarriages is assigned to the train

with the set W containing all possible railcarriages. For the sake of simplicity, 
Wtr ⊆ W denotes the set {w1,… ,w

�
}.

Because of Assumption  3, for tr, tr� ∈ TR with tr ≠ tr′ it holds: 
train(tr) ∩ train(tr�) = � . As a consequence, the following definition introduces 
the properties of a railcarriage within a train.

(3)
tr.sti < tr.stj if and only if i < j

and tr.sti ≤ tr.stj if and only if i ≤ j.

(4)
train ∶ TR → W

∗

tr ↦ ⟨w1,… ,w
�
⟩ (wi ≠ wj for i ≠ j)

Fig. 2   Two scenarios to illustrate the computation of the distance cost. The horizontal distances are valid 
and the vertical distances are disregarded
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Definition 5  (Railcarriage) For given set of railcarriages W , set of trains TR , and an 
arbitrary but fixed deployment of trains train, the train of the railcarriage is denoted 
by

and the number of a railcarriage w within tr is denoted by

Moreover, each railcarriage w has a capacity of w.cap ∈ ℕ0 seats.

Example 3  On the German railways (Deutsche Bahn), typical railcarriages are the 
ICE open-plan coach with 80 seats, the ICE coach with combined open-plan and 
compartment seating with a capacity of 72 seats, and the Intercity 2 double-decker 
coach with a capacity of 112 seats. The railcarriage with the on-board restaurant 
does not contain any reservable seats and therefore has a capacity of 0.

The presented definition of the deployed train affects the reservations on all 
sections of the entire train route. In contrast, the operating condition at the station 
in the following definition only affects the position of the individual railcarriages 
in the station and thus only the reservations of the passengers changing trains 
there.

Definition 6  (Operation at station) A train route tr deployed as train(tr) is operated 
at station s ∈ STtr

•	 On platform pl(tr, s) ∈ ℕ,
•	 With the smallest position pos(tr, s) ∈ ℕ that is used by train(tr) , and
•	 The direction of travel dir(tr, s) ∈ {↗,↙} where ↗ indicates an ascending 

order of the railcarriages on the platform and ↙ indicates a descending order.

Example 4  In the complex and closely interwoven rail network of Europe, the opera-
tion of a train and the order of its railcarriages is not trivial. Figure 3 shows a simple 
example with three stations. While the railcarriages at stations A and B are arranged 
with the direction of travel ( ↙ ), the train changes its direction of travel at station B, 
arriving at station C in reverse order ( ↗ ). However, if the train has to take the detour 
shown in dashed lines, it will keep its original direction at station C as well.

Caution: The direction of travel is a concept that refers exclusively to one sta-
tion of the train. So this direction of travel actually depends on the side from 
which a train enters the station and the physical orientation of the train. In the 
following examples we will simplify and derive the direction of travel solely from 
the physical orientation.

The following definition determines how the positions of the railcarriages are 
actually calculated from the operation at the station.

(5)w.tr = tr where w ∈ Wtr

(6)w.no = i where train(w.tr) = ⟨w1,… ,w
�
⟩ and w = wi.
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Definition 7  (Carriage position) A train route tr using train(tr) with railcarriages Wtr 
stops at station st according to position p = pos(tr, st) and direction d = dir(tr, st) . 
Then, when boarding and alighting, a railcarriage w ∈ Wtr stops at platform position

Example 5  The resulting position of the railcarriages is shown in Fig.  4 for two 
trains. Depending on the variables pos and dir, the four cars are positioned differ-
ently on the platform.

This completes the introduction of the necessary infrastructure. The deployed train 
and its operation at the station provide all the information needed to calculate the dis-
tance cost for a passenger who leaves a railcarriage and goes to the exit (at the connect-
ing corridor of the station).

5 � One‑station transfer problem

This section introduces the one-station transfer problem (or one-train-one-station prob-
lem) as a first, simple version of the transfer problem. It only considers multiple passen-
gers boarding one train at one station.

5.1 � Optimisation problem

Each passenger has a fixed point of arrival, either at the entrance to the platform or 
at an arbitrary position when actually transferring from another train. In addition, 
only selected seats are still available on the train in question. Now an allocation of the 

(7)cpos(w, p, d) =

{
p + w.no − 1, if d =↗

p + � − w.no, otherwise.

station A
31 2

13 2

station C

31 2
station B

Fig. 3   Small example with three stations to illustrate the operation at the station. The dashed line corre-
sponds to a train route that can be used as a reroute

Fig. 4   Operation at station. 
Position of the railcarriages is 
determined by the minimal posi-
tion and the direction of travel
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passengers to the free seats in the railcarriages is to be determined for which the sum of 
the distance costs is minimal.

Definition 8  (One-station transfer problem) A train route tr is implemented by 
train(tr) = ⟨w1,… ,w

�
⟩ and operated at station st ∈ STtr according to pl∗ = pl(tr, st) , 

pos∗ = pos(tr, st) and dir∗ = dir(tr, st) . In each railcarriage wj ( 1 ≤ j ≤ � ), there are 
occ(wj) ≤ wj.cap seats permanently occupied. Given is the set of passengers P where 
each p ∈ P arrives at platform p.plin ∈ ℕ at position p.posin ∈ ℕ ( 1 ≤ i ≤ n ) and 
transfers to train route tr. Then, in the one-station transfer problem, an assignment

is sought such that

is minimal over all possible mappings Map.

Example 6  A small problem instance is shown in Fig. 5a, where there are three rail-
carriages with a capacity of 10 seats. Up to seven seats are already occupied in the 
individual railcarriages. There are 10 arriving passengers. A solution is shown in 
Fig. 5b with minimal cost 7 ⋅ 12 + 1 ⋅ 22 + 2 ⋅ 0 = 11.

5.2 � Runtime complexity and problem difficulty

Because there is a close link between assignment problems and minimum flow prob-
lems (Ford and Fulkerson 1956; Gabow and Tarjan 1988; Kennedy 1995), this paper 
uses network flow as a modelling and solution approach for the problems presented. 
The simple problem variant described in this section is equivalent to weighted bipar-
tite matching.

Example 7  Figure 6 shows how the transfer problem of Fig. 5 can be modelled by 
an minimum-cost flow problem (MCFP). There is a vertex for each position at the 
platform in which the number of arriving passengers are induced using the incoming 

(8)Map ∶ P → Wtr

(9)
∀w ∈ Wtr ∶ occ(w) + ‖{p ∈ P � Map(p) = w}‖ ≤ w.cap and
�

p∈P

cost(p.plin, p.posin, pl
∗, cpos(Map(p), pos∗, dir∗))

Fig. 5   Small example for the one-station transfer problem



1 3

Optimisation of seat reservations on trains to minimise transfer… Page 13 of 31  49

edges. Analogously, there is a vertex for each railcarriage and the free seat capacity 
of the railcarriage is bound by the capacity of the outgoing edge. The edges between 
the positions and the railcarriages determine the transfer cost for all possible transfer 
distances. The minimum cost flow corresponds to the solution in Fig. 5b.

Because there are known polynomial-time algorithms for weighted bipartite 
matching, the following corollary holds.

Corollary 1  The one-station transfer problem is in P.

This was shown for minimum-cost bipartite matching by Kuhn (1955) via 
the Hungarian method with runtime O(n4) (where n is the number of vertices). 
Gabow and Tarjan (1988) presented a maximum-flow algorithm with runtime 
O(

√
nm log(n ⋅ C)) , where in addition m is the number of edges and C bounds 

the absolute value of the integer cost values. Schwartz et al. (2005) presented an 
approximation algorithm that solves the problem in O(n2) with high probability. It 
is likewise an open question whether further properties of the problem instances 
can be used to design more efficient exact algorithms for the one-station transfer 
problem.

passengers
arriving

position 1

position 2

position 3

position 4

position 5

train at
station

(∞, 1)

(3, 0) (∞, 4)

(1, 0)

(4, 0)
(3,0)

(4,0)

(3,0)(∞, 0)

(∞, 0)

(∞, 9)

(2, 0)

(∞, 4)

(∞, 4)

(∞, 9)

(∞, 1)

(∞, 1)

(∞, 1)

(∞, 1)

Fig. 6   Transformation of the one-station transfer problem in Fig. 5 into a minimum-cost flow problem 
(MCFP). The edge labels denote (capacity, cost) and the underlines capacity values are lower bounds for 
the required flow
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6 � One‑train transfer problem

In this section, the problem is generalised by considering a train with all stops. 
Each passenger enters the train at one station and leaves it at a later stop. The 
problem is referred to as one-train transfer problem (or one-train-many-stations 
problem).

6.1 � Optimisation problem

The following definition introduces the extended problem. Besides additional 
information for the passengers and some technical conditions, the costs for the 
footpaths of all passengers at all stations are summed up as a major change.

Definition 9  (One-train transfer problem) A train route tr serving the stations 
⟨tr.st1,… , tr.sttr.len⟩ is implemented by train(tr) = ⟨w1,… ,w

�
⟩ and operated at 

stations STtr according to the functions pl (platforms), pos (positions) and dir 
(directions).

Given is the set of passengers P where each passenger p ∈ P is travelling using 
train route tr

•	 from station p.stin ∈ STtr at platform p.plin ∈ ℕ and position p.posin ∈ ℕ

•	 to station p.stout ∈ STtr at platform p.plout ∈ ℕ and position p.posout ∈ ℕ

where p.stin <tr p.stout.
Then, in the one-train transfer problem, an assignment

is sought such that

is minimal over all possible mappings Map.

Example 8  We consider a small, highly simplified example on the train route of 
Fig. 3 with three stations. The train consists of three carriages with two seats each. 
The upper part of Fig.  7 shows the sections where seven passengers arrive at the 
platform and leave the platform. Inside the station boxes the placement and travel 

Map ∶ P → Wtr

(10)
∀st ∈ STtr ∀w ∈ Wtr ∶ ‖ {p ∈ P �Map(p) = w ∧ p.stin ≤tr st

∧ st <tr p.stout}‖ ≤ w.cap and

(11)

∑

p∈P

(cost(p.plin, p.posin, pl(tr, p.stin), cpos
∗(p, tr, p.stin))

+ cost(p.plout, p.posout, pl(tr, p.stout), cpos
∗(p, tr, p.stout)))

with cpos∗(p, tr, st) ∶= cpos(Map(p), pos(tr, st), dir(tr, st))
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direction of the train is shown as well as one solution for the assignment of the pas-
sengers to the railcarriages.

The passenger’s distances going from station A to station B equals a cost of 1 
when boarding and a cost of 0 when alighting. Passengers from A to C have a cost 
of 2 ⋅ 1 when boarding and a cost of 2 ⋅ 22 + 1 when alighting. Passengers from B 
to C have a cost of 2 ⋅ 1 + 22 when boarding and a cost of 2 ⋅ 1 when alighting. This 
brings the total cost to 20.

The passenger from A to B could also be placed in the first railcarriage at the 
same cost. However, moving one of the three passengers travelling from A to C from 
the third railcarriage to one of the other railcarriages would significantly increase 
the cost of boarding the passengers at station B. This would also increase the total 
cost: If only one passenger is placed in the third railcarriage at station A, the cost 
would be at least 22.

6.2 � Algorithmic approach using maxflow

Since the single transfer at a station corresponds to weighted bipartite matching, it 
makes sense to model the one-train transfer problem in principle as a minimum-cost 
flow problem (MCFP) using a sequence of matching problems. Figure 8 illustrates 
the basic idea:

•	 Passengers transferring at a station are modelled by complete bipartite sub-
graphs, similar to the example in Fig. 6 for the one-station transfer problem. In 
Fig. 8, these are the incoming edges to station A and the outgoing edges from 
station B.

•	 The movement of the train between two stations is modelled by edges that deter-
mine the new position for each railcarriage. In Fig. 8, these are the edges between 
station A and station B.

However, Fig. 8 shows that such naïve modelling is not sufficient: Because the 
passengers are required to exit at station B in reverse order (see the left part of 
Fig. 8), the correct minimum cost solution has transfer cost 2. But when the two 

Fig. 7   Small example for the one-train transfer problem: Given problem instance with a capacity of 2 in 
each railcarriage. The arrows within the station boxes indicate a solution with minimal transfer cost
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stations are lined up as subsequent matching problems, the direct assignment of 
the individual passenger to the boarding and alighting position is lost. As a con-
sequence the sketched solution in the right part of Fig. 8 is computed that has 
the minimal transfer cost 0. The naïve modelling as MCFP only ensures that the 
correct number of passengers enters and leaves the train.

Instead, the modelling must be extended to include differently labelled items, 
leading to an instance of the minimum-cost multicommodity flow problem 
(MCMCF) (Ahuja et al. 1993). A separate commodity is used for each combina-
tion of traveller origin and destination.

Example 9  Figure 9 shows an instance of the minimum-cost multicommodity flow 
problem that can be used to solve the small example with three stations given in 
Fig. 7.

We note that the one train transfer problem has more complexity than the 
mere sequencing of one station transfer problems. This also means that we can-
not yet offer a polynomial-time algorithm for the one-train transfer problem, 
since MCMCF is known to be NP-complete (Even et al. 1976). Besides the open 
research question whether the one-train transfer problem still lies in P , efficient 
heuristics and approximation algorithms are also a short-term research goal.

7 � General train transfer problem

In this section, the problem is extended again by combining different trains. The 
problem is referred to as general train transfer problem.

Fig. 8   Counterexample for reducing the one-train transfer problem to minimum-cost flow problem 
(MCFP). The left part shows the transfer problem and the right part the respecting model using two 
subsequent one-station problems. The first number at the edges corresponds to the capacity. The second 
number to the cost per transfered unit. The incoming and outgoing edges have a lower capacity bound 
noted as 1
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7.1 � Optimisation problem

To generalise the problem, the following definition introduces several trains and 
the individual travel plans of each passenger. As with the result of a timetable 
query, each passenger uses a combination of individual journey sections of the 
trains and thus determines the transfer between the trains.

Definition 10  (General train transfer problem) Given is the set of train routes TR 
implemented according to train and operated in the stations in ST  according to pl 
(platforms), pos (positions) and dir (directions). The set P describes all passengers 
where each p ∈ P is travelling with an individual travel schedule p.route of length 
p.len:

where p.sti, p.sti+1 ∈ STp.tri
 and p.sti <p.tri

p.sti+1 for all 1 ≤ i < p.len.
Then, in the general train transfer problem, a partial function

defined for all ⟨p, tr⟩ with p ∈ P and tr ∈ {p.tr1,… , p.trp.len−1} is sought such that

(12)p.route = (p.st1, p.tr1,… , p.stp.len) ∈ (ST × TR)+ × ST

(13)Map ∶ P × TR → W

(14)
∀tr ∈ TR ∀st ∈ STtr ∀w ∈ Wtr ∶ ‖ {p ∈ P � ∃ 1 ≤ i < p.len ∶ p.tri = tr ∧ Map(p, tr) = w

∧ p.sti ≤tr st ∧ st <tr p.sti+1} ‖ ≤ w.cap and

Fig. 9   Minimum-cost multicommodity flow problem equivalent to the one-train transfer problem in 
Fig. 7. The edges are labeled with (capacity, cost) and the nodes are labeled with the maximal capacity. 
The incoming and outgoing edges have a lower capacity bound noted as 1
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is minimal over all possible mappings Map.

In the general problem, we assume that passengers always enter the system at 
the cross connection. Therefore, platform 0 is used for all arriving passengers and 
the position of the cross connection p.st1.cross is used as the position. The same 
applies to passengers leaving the system at the destination station.

Unlike time-expanded graphs for travel connection queries (Pyrga et al. 2007), 
we do not specify departure times at all and only link trains by travelling passen-
gers (Assumption 4).

This property enables the modelling of time anomalies: After changing trains 
several times, we arrive back at the first train at the beginning of our journey - 
similar to the time loop in the movie “Groundhog Day”. However, all examples 
below (including instances generated from other problems) do not exhibit such 
time anomalies.

Example 10  Figure  10 presents a small connection network with three trains and 
eight stations. Train t1 serves stations A, B, C, D, and E and has two railcarriages 
with a capacity of 3. Train t2 serves stations F, G, D, and H and has three railcar-
riages with a capacity of 2. And train t3 travels directly from G to B and has one 
railcarriage with a capacity of 3. Table 4 introduces a total of 13 travellers with their 
individual travel plans.

(15)

∑

p∈P

(
cost(0, p.st1, p.st1.cross, pl(p.tr1, p.st1), cpos

∗(p, p.tr1, p.st1))

+
∑

1<i<p.len

cost(pl(p.tri−1, p.sti), cpos
∗(p, p.tri−1, p.sti),

pl(p.tri, p.sti), cpos
∗(p, p.tri, p.sti))

+ cost(pl(p.trp.len, p.stp.len), cpos
∗(p, p.trp.len, p.stp.len), 0, p.stp.len.cross)

)

with cpos∗(p, tr, st) ∶= cpos(Map(p, tr), pos(tr, st), dir(tr, st))

Fig. 10   Train network as part of an example for the general train transfer problem
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A possible solution with minimal transfer costs is shown in Fig. 11. The aim is to 
keep individual contributions to boarding, transferring, or alighting as small as pos-
sible and to avoid the values 22 = 4 or 32 = 9 . In the given solution, cost 4 occurs 
when passengers e1 , f1 , and h disembark; they are unavoidable because, due to the 
railcarriage capacities, passengers have to be placed at higher costs. The solution 
has total cost of 33.

7.2 � Solution using max flow

Let us assume here that the general problem should also be solved via a maximum 
flow problem. In principle, an MCMCF could be used as in Sect. 6.2, where each 
commodity corresponds to one passenger. However, the difficulty arises that a flow 
does not have to follow the specified route of a passenger’s individual travel plan. 
Instead, the maximum flow is used to reproduce the timetable query, since there 
are several paths in the graph that connect a starting point and an ending point via 

Table 4   Passengers as part of the general train transfer problem given in Fig. 10

passengers route passengers route

a B
t1−→ E e1, e2, e3 G

t2−→D
t1−→E

b A
t1−→ D f1, f2 F

t2−→H

c1, c2, c3 A
t1−→ D

t2−→ H g F
t2−→D

d F
t2−→ G

t3−→ B
t1−→ C h C

t1−→ E

Fig. 11   One possible solution for the instance of the general train transfer problem given in Fig.  10 
and Table 4. The labelling on the edges shows the occupancy of the railcarriages. The transfer costs for 
boarding, transferring and alighting are shown at the nodes
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different trains. However, the problem to be solved requires that the routes of the 
passengers be implemented directly.

As a countermeasure, we need to expand the MCMCF with individual lower 
capacity bounds for each commodity (cf. Cappanera and Frangioni 2003). This way, 
the basic path can be described for each passenger.

We note here that while this is a fundamentally viable path for possible opti-
misation, we do not pursue this idea further. Modelling with the tight restrictions 
leads to overloaded maximum flow problems, which calls efficiency into ques-
tion—especially since the theorem in the following section rather suggests the use of 
metaheuristics. Nevertheless, other optimisation techniques, e.g. mixed-integer pro-
gramming solvers, might be able to efficiently solve problem instances of moderate 
size or with special properties of real-world scenarios.

8 � Computational complexity

To assign the general train transfer problem to a problem class of computational 
complexity, we first transform it into a decision problem.

Definition 11  (Decision variant of the transfer problem) An instance of the general 
train transfer problem (TR , ST  , train , pl, pos, dir, P) can be turned into a decision 
problem by adding an upper bound costmax for the minimal transfer costs.

This leads us to the following statement, which suggests that there is no algo-
rithm for solving the problem in polynomial runtime.

Theorem 2  (NP-hardness of the general problem) The decision variant of the gen-
eral train transfer problem is NP-hard.

The proof of the theorem is developed in the following sections.

8.1 � Idea of the reduction

A common proof technique for the NP-hardness of a problem A is the reduction 
of a known NP-hard problem B to problem A. This means that from the detailed 
information of a problem instance of B a problem instance of A is calculated, so that 
from its solution the solution of the problem instance of B can be inferred. The con-
version itself, however, may require at most polynomial time.

We prove the theorem by constructing a polynomial-time reduction from 3-SAT, 
the satisfiability of a formula in conjunctive normal form, to the general train trans-
fer problem. However, we restrict the considered space of admissible formulas with 
the following assumptions.



1 3

Optimisation of seat reservations on trains to minimise transfer… Page 21 of 31  49

Assumption 6  Each clause has at least two literals.

Assumption 7  All literals in a clause use different variables.

Without loss of generality, only formulas are considered that have clauses with 
two or three literals. Furthermore, a variable may appear only once in each clause. 
Clauses with only one literal imply the truth value of the associated variable and the 
formula can be simplified (cf. Hromkovič 2004, p. 185).

In short, we translate the propositional 3-SAT-formula into a train route network, 
where the clauses are assigned to stations and the left-to-right reading corresponds 
to the travelling direction of the involved trains. Simplified, the logical variables cor-
respond to passengers boarding, transferring or terminating their journey at the sta-
tions that contain the variable in their associated clauses. For each clause (or its 
corresponding station), a train is set up to transport the up to three variables of its 
literals to their respective next clause/station: clause ck is included as a stop for the 
train starting at clause ci ( i < k ) if there is a common variable in ci and ck that does 
not occur in clauses ci + 1,… , ck − 1 . For each variable considered in this con-
struction, the corresponding passenger’s itinerary requires the use of the trains thus 
defined.

A minimum-cost solution to the transfer problem must correspond to an assign-
ment of the logical variables to truth values that satisfies the 3-SAT problem. There-
fore, each deployed train contains a railcarriage that carries the variables whose 
assignment satisfies the clause ci corresponding to the first station of the train. An 
additional railcarriage carries the remaining variables that do not satisfy the clause. 
Depending on the size s of the clause ci , the capacity of the railcarriage with the 
satisfying variables is set to s and that of the railcarriage with the non-satisfying 
variables is set to s − 1 . Consequently, at least one variable must be placed in the 
satisfying railcarriage. If a variable changing to another clause due to its travel plan 
is negated in the next clause, the direction of travel at the station is inverted: con-
sequently, a variable satisfying the previous clause is classified as a non-satisfying 
variable in the next train route (and vice versa) with transfer cost of 0. If several 
negated and non-negated variables enter the next clause, additional precautions must 
be taken, which are discussed in the next section.

Furthermore, the same costs (amounting to 1) are incurred for each passenger 
when entering the system, regardless of whether the respecting variable is assigned 
the logical value true or false. The same applies when leaving the system.

Thus, satisfactory assignment to the logical variables of the 3-SAT formula cor-
responds to an occupancy of the seats where only the costs for the beginning and the 
end of each trip of a variable are incurred, i.e. the cost 2⋅(number of variables).

If the minimum-cost solution to the train transfer problem serves all passengers 
and has higher costs, the truth value of one of the variables changes during the train 
journey and there is no satisfying assignment for the 3-SAT formula.
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8.2 � Reduction algorithm

Algorithm 1 presents the individual steps of the reduction. The technical details are 
explained in more depth in the rest of this section.

For each clause, a train with three railcarriages is introduced in step 2(a). The 
middle railcarriage has capacity of 0 and is positioned at each station at the cross 
connection where passengers arrive and leave the station. The first railcarriage takes 
the satisfying variables, the last railcarriage the non-satisfying ones. In a clause with 
three (resp. two) literals, the first railcarriage has 3 (resp. 2) seats and the last car-
riage has a capacity of 2 (resp. 1).

Since checking whether there is a satisfying literal in each clause corresponds to 
the seat occupancy during the train’s journey, the corresponding train must travel 
a distance. Therefore, for the i-th clause, a station S′

i
 is introduced next to the train 

route’s starting station Si , which serves as the train’s first stop [steps 1(a) and 2(b)]. 
If the i-th clause is the first clause containing a variable, the respecting passenger 
boards the train in station Si . If the i-th clause is the last clause containing a variable, 
the respecting passenger alights the train in station S′

i
 [step 2(b)].

All trains stop at the same platform and the same positions within the stations, 
aligned with each other. As a consequence there are no costs for changing between 
the first railcarriages in the same direction of travel; analogously for changing 
between the last railcarriages.

Figure  12 illustrates how the route of the train is constructed from a clause in 
step 2(b). Since the variables involved in clause 3 are negated (related to the last 
clause visited), the train must change its direction of travel [step 2(c)]. Variable x3 
is also negated in clause 4, but since the train has already changed to the negated 
state before, the direction of travel must not be inverted again. A renewed change of 
direction would be necessary if clause 4 would say x3 instead of x3.

Obviously, this construction is not sufficient when both negated and non-negated 
literals occur in the next clause because the inversion of train affects all involved 
variables. To solve this problem, we introduce an additional train [steps 2(d)–2(f)]. 
Let j be the current clause and k be the next clause. We introduce a new train that 
also starts from station j′ to station k, but arrives there in the opposite direction. Fig-
ure 13 shows this technique for the variables x1 and x2 , of which only x2 is negated 
in the next clause. At the additionally introduced station 1’, the passenger belonging 
to x2 boards the newly introduced train. Thus x1 and x2 arrive at different positions at 
station 2, although they were assigned to the same railcarriage in clause 1. The new 
train has the same capacity restrictions as the original train; however, this does not 
imply any restriction as only passengers of the original train will transfer to the new 
train. Tables 5 and 6 shows for all possibles cases how the train routes and the addi-
tional train are introduced.
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Algorithm 1   Reduction of a 3-SAT instance to an instance of the general train transfer problem.
3SAT-to-Traintransfer( formula F) computes a set of stations ST  , a set of train routes TR , their imple-

mentation train, and a set of passengers P in such a way that the solubility of the train transfer problem 
indicates the solubility of the 3-SAT formula. Let F ≡ c1 ∧… ∧ ck be a formula with k clauses and lit-
erals from the set of variables V. According to assumption 6, the i-th clause ci has the form (�i,1 ∨ �i,2) 
or (�i,1 ∨ �i,2 ∨ �i,3) . 

1.  (initialisation of stations and passengers) 
   (a) For each clause in F two stations are generated: ST = {Si, S

�
i
∣ 1 ≤ i ≤ k}

   (b) �For each variable x ∈ V  : create a passenger px , search the first clause ci where x is used, and 
initialise the travel route px.route = (Si) . Set P = {px ∣ x ∈ V}.

   (c) �Iterate through the clauses and, for each variable x, create a sequence clausesx that contains the 
clauses with x or x as a literal.

   (d) Initialise TR = � and train accordingly.
2.  (train routes and passenger routes.) For each clause ci : 
   (a) �In the remainder of the formula, search those clauses in which the variables of clause ci reappear 

for the first time (using clausesx ). The result are three clauses cq , cr , and cs ( i < q < r < s ), two 
clauses cq and cr ( i < q < r ), one clause cq ( i < q ) or no clause.

   (b) �Establish the train route tri with stations Si , S′i , Sq , S
′
q
 , Sr , S′r , Ss , S

′
s
 according to the clauses in the 

previous step. The case with no clause results in Si and S′
i
 only, with one clause in Si,...,S′q , etc. Add 

tri to TR . Modify train such that tri has three railcarriages with capacities (3,0,2), if ci has three 
literals, and capacities (2,0,1) otherwise.

   (c) �(if ci has only one variable in common with each other clause.) Set the direction of travel at each 
station to ↗ if the literal in the respective clause is equal to the one in ci , and to ↙ otherwise. For 
each variable x used in ci look up the subsequent entry cj in clausesx . If there is an entry cj append 
(tri, Sj) ( j ∈ {q, r, s} ) to px.route . If cj is the last entry in clausesx , append (tri, S�j ) instead.

   (d) �(if ci and cq have more than one variable in common and neither none nor all of the variables in the 
literal of cq are negated relative to ci .) Introduce a train route tr′

i
 with stations S′

i
 and Sq . Add tr′

i
 to 

TR . Set the railcarriages of tr′
i
 and their capacities in train to (3,0,3).

   (e) analogously to (d) with r instead of q.
   (f) �(if step (c) was not executed) Update the direction of travel and the passenger routes according to 

Tables 5 and  6.
3.  (return.) ST  , TR , train, P

Exactly one passenger is created for each variable (step 1(b)) and the trains of 
the itinerary are composed according to the construction of the trains explained 
above (steps 2(c) and 2(f)). For each passenger, his last station is the intermediate 
station of the last clause in which the according variable occurs. Each passenger 
enters the station of his first clause at the middle position of the railcarriages and 
leaves the last station also at the middle position. Tables 5 and 6 shows the result-
ing passenger routes for the complex cases in step 2(f).

8.3 � Proof

The proof of Theorem 2 follows directly from the two lemmata discussed in this 
section, which determine the correctness and algorithmic runtime complexity of 
the reduction.
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Lemma 3  Algorithm  1 performs a correct reduction from 3-SAT to the general 
transfer problem.

Proof  The construction of an instance of the train transfer problem ( ST  , TR , train, 
P ) from a given 3-SAT instance F with variables V was presented in detail in the 
previous section.

Suppose F is satisfiable and A ∶ V → {true, false} is a satisfying assignment. 
Then we show by contradiction that there is also a corresponding train reserva-
tion with the minimum cost 2‖V‖ . So we assume that the minimum cost solution 
requires a transfer cost > 2‖V‖ . This is only the case if a passenger does not re-
board at exactly the same position at a stopover, which means that the associated 
variable changes its truth value between two clauses. However, this case is only pos-
sible if all passengers want to get from a railcarriage with capacity 3 (or 2) to a 
railcarriage with capacity 2 (or 1) due to different directions of travel. However, this 
means that the clause corresponding to the station is not satisfied with the initial 
fulfilling assignment, which implies that the entire formula is not satisfied. Yet, there 
is a satisfying assignment A and, due to the construction in the reduction algorithm, 
we know that in each clause the literals evaluated true by A can be placed in the 

Fig. 12   Example visualizing the construction of a train from the first 3-SAT clause

Fig. 13   Example for the introduction of an additional train. Both x1 and x2 re-appear in the next clause 
but only x2 is negated. Therefore, the passenger for x2 will be routed using the additional lower train, and 
x1 will stay in the original train
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Table 5   Different cases for the processing of a clause ci for which exactly two variables reappear for the 
first time in the same clause in the remainder of the formula. The clause ci contains either literals � , �′ , 
and �′′ (in any order) or only literals �′ and �′′

1The variables of clause ci reappear for the first time in the clauses cq and cr ( i < q < r ). The table entries 
indicate whether the literal is negated.
2The train route is specified in the column header and the table entries indicate the direction of travel at 
each station.
3The variable of literal � does not reappear in any clause or the clause ci contains only two literals.
4 If ci is the last clause of � , append the primed version of the last station entry. Analogously for �′ and 
�
′′

Literal in clause1 Train route tri 2 Add. train Append to passenger route 4

cq cr Si Sq Sr tr′
i
 to pvar(�) pvar(�� ) pvar(��� )

� �
′,�′′ ↗ ↗ ↗ — (tri , Sq) (tri , Sr) (tri , Sr)

� �
′ , �′′ ↗ ↙ ↗ — (tri , Sq) (tri , Sr) (tri , Sr)

� �′ , �′′ ↗ ↗ ↙ — (tri , Sq) (tri , Sr) (tri , Sr)

� �′ , �′′ ↗ ↙ ↙ (tri , Sq) (tri , Sr) (tri , Sr)

� �
′ , �′′ ↗ ↗ ↗ Sr ↙ (tri , Sq) (tri , Sr) (tri , S′i , tr

′
i
 , Sr)

� �′ , �′′ ↗ ↙ ↙ Sr ↗ (tri , Sq) (tri , Sr) (tri , S′i , tr
′
i
 , Sr)

�
′,�′′

� ↗ ↗ ↗ — (tri , Sr) (tri , Sq) (tri , Sq)
�
′ , �′′

� ↗ ↗ ↙ — (tri , Sr) (tri , Sq) (tri , Sq)

�′ , �′′ � ↗ ↙ ↗ — (tri , Sr) (tri , Sq) (tri , Sq)

�′ , �′′ � ↗ ↙ ↙ (tri , Sr) (tri , Sq) (tri , Sq)

�
′ , �′′ � ↗ ↗ ↗ Sq ↙ (tri , Sr) (tri , Sq) (tri , S′i , tr

′
i
 , Sq)

�′ , �′′
� ↗ ↙ ↙ Sq ↗ (tri , Sr) (tri , Sq) (tri , S′i , tr

′
i
 , Sq)

�
′,�′′ — 3 ↗ ↗ — (tri , Sq) (tri , Sq)

�′ , �′′ — 3 ↗ ↙ — (tri , Sq) (tri , Sq)

�
′ , �′′ — 3 ↗ ↗ Sq ↙ (tri , Sq) (tri , S′i , tr

′
i
 , Sq)

Table 6   Different cases for 
the processing of a clause ci 
with literals � , �′ , and �′′ (in 
any order) if all three variables 
reappear in the same clause

1The train route is specified in the column header and the table 
entries indicate the direction of travel at each station.
2 If ci is the last clause of � , append the primed version of the last 
station entry. Analogously for �′ and �′′

Negation of 
literals in 
clause

Train 
route 
tri 1

Add. train Append to passenger route 2

cq Si Sq tr′
i
 to pvar(�) pvar(�� ) pvar(��� )

� , �′,�′′ ↗ ↗ — (tri , Sq) (tri , Sq) (tri , Sq)

� , �′,�′′ ↗ ↗ Sq ↙ (tri , Sq) (tri , Sq) (tri , S′i , tr
′
i
 , Sq)

� , �′,�′′ ↗ ↙ Sq ↗ (tri , Sq) (tri , Sq) (tri , S′i , tr
′
i
 , Sq)

� , �′,�′′ ↗ ↙ — (tri , Sq) (tri , Sq) (tri , Sq)
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associated first railcarriage. Because of this contradiction, the assumption must have 
been wrong.

Conversely, let the solution of the train transfer problem have transfer cost 2‖V‖ . 
Assume that there is no satisfying assignment A for the formula F. Again, we know 
from the construction of the reduction algorithm that missing transfer costs in the 
changeover mean that the truth value of the variables involved remains consistent. In 
addition, there must be a satisfying literal in each clause due to the capacities of the 
railcarriages. This contradicts the assumption, which must therefore also be false. 
This proves the statement of the lemma. 	�  ◻

Lemma 4  The runtime complexity of Algorithm 1 is in P.

Proof  In the runtime analysis we use of the following simple facts: All clauses are 
bound by length 3 ( ∈ Θ(1) ) and the number of clauses ‖C‖ in F is bound by ‖F‖ as 
given by the equation 1

3
⋅ ‖F‖ ≤ ‖C‖ ≤ ‖F‖.

In the initialisation phase, the runtime of step (a) is in O(‖F‖) , step (b) in 
O(‖V‖ ⋅ ‖F‖) , step (c) in O(‖V‖) , and step (d) in Θ(1) . In the second phase, totalled 
over all clauses, steps (b) can be accomplished in O(‖F‖) , all other steps in O(‖F‖2).

Since ‖V‖ ≤ ‖F‖ , the total runtime is in O(‖F‖2) and, thus, the reduction algo-
rithm in P. 	�  ◻

8.4 � Examples

Finally, the polynomial reduction of 3-SAT to the general train transfer problem will 
be illustrated with two small examples.

Example 11  Consider the following small propositional formula in 3-CNF with vari-
ables {x1, x2, x3} and four clauses.

The conversion of the 3-SAT-formula to the general train transfer problem results in 
the problem instance shown in Fig. 14.

There are two solutions for this problem instance that are shown in Table 7. All 
the transfer cost between the trains are 0. And, therefore, the total cost is 6 for board-
ing the first train and leaving the trains at stations 3b and 4b.

Solution 1 corresponds to the satisfying assignment x1, x2, x3 = 0 for formula 
(16): x2 is seated in the first railcarriage of train 1, which means that it satisfies 
clause 1. Being a negated literal in clause 1, x2 corresponds to the truth value 0 
(false). Both x1 and x3 are placed in the third railcarriage of train 1 and are non-
negated literals in clause 1. Consequently, both variables have the truth value 0 
(false) as well, since they do not satisfy the clause.

Solution 2 corresponds to the satisfying assignment x1, x2 = 1 and x3 = 0.

(16)
clause 1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(x1 ∨ x2 ∨ x3) ∧

clause 2

⏞⏞⏞⏞⏞

(x1 ∨ x2) ∧

clause 3

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(x1 ∨ x2 ∨ x3) ∧

clause 4

⏞⏞⏞⏞⏞

(x1 ∨ x3)
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Example 12  We consider a small propositional formula in 3-CNF with variables 
{x1, x2} and four clauses. This is a minimal example for a formula that cannot be 
satisfied.

Figure 15 shows the resulting instance of the the general train transfer problem.
There are only solutions with the minimum cost 8, which is composed of the cost 

4 for the start and end of the journeys and the cost 4 for a transfer to a carriage at 
another position on the platform. All solutions are shown in Table 8. The first four 
solutions meet the capacity limits of the railcarriages as long as this is possible; a 
transfer operation with cost ≠ 0 is only carried out if the capacity of a railcarriage 
would be exceeded. The passengers placed in this way are written in bold.

The solutions in the lower part of Table  8 already perform an expensive, non-
positional placement of a passenger at an earlier stage. All these solutions are varia-
tions of the first four solutions.

(17)
clause 1

⏞⏞⏞⏞⏞

(x1 ∨ x2) ∧

clause 2

⏞⏞⏞⏞⏞

(x1 ∨ x2) ∧

clause 3

⏞⏞⏞⏞⏞

(x1 ∨ x2) ∧

clause 4

⏞⏞⏞⏞⏞

(x1 ∨ x2)

Fig. 14   Resulting problem instance for formula (16). The individual itineraries are given by the labels at 
the sections of the trains

Table 7   Solutions for the problem instance in Fig. 14

There are two solutions for the given problem. The initial seat occupancy of the individual carriages is 
displayed in the fields of the table, with the railcarriages separated by 

Solution Train 1 Train 2 Train 2a Train 3 Train 3a Train 4

1 x2 ∣ ∣ x1, x3 x1 ∣ ∣ x2 ∣ ∣ x2 x1, x2, x3 ∣ ∣ x1 ∣ ∣ x3 ∣ ∣ x1

2 x1 ∣ ∣ x2, x3 x2 ∣ ∣ x1 x2 ∣ ∣ x3 ∣ ∣ x1, x2 ∣ ∣ x1 x1, x3 ∣ ∣
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There is no solution to this problem with cost 2⋅(number of variables)= 4 . Conse-
quently, the given instance of the decision problem with costmax = 4 cannot be satis-
fied. This corresponds to the unsatisfiability of formula (17).

Fig. 15   Resulting problem instance for formula (17). The individual itineraries are given by the labels at 
the sections of the trains

Table 8   Solutions for the problem instance in Fig. 15

There are ten solutions for the given problem with transfer cost 8. The initial seat occupancy of the indi-
vidual carriages is displayed in the fields of the table, with the railcarriages separated by  . The transfer 
causing the internal cost of 4 is marked in bold face

Solution Train 1 Train 1a Train 2 Train 2a Train 3 Train 3a Train 4

1 x1, x2 ∣ ∣ x2 ∣ ∣ x1 ∣ ∣ x2 x1 ∣ ∣ �
�
∣ ∣ x2 ∣ ∣ x2 x1, x2 ∣ ∣

2 x1 ∣ ∣ x2 ∣ ∣ x2 x1, x2 ∣ ∣ x1 ∣ ∣ x2 ∣ ∣ x1 x2 ∣ ∣ �
�
∣ ∣ x2

3 x1 ∣ ∣ x2 ∣ ∣ x2 x1, x2 ∣ ∣ x1 ∣ ∣ x2 ∣ ∣ x1 x2 ∣ ∣ �
�
∣ ∣ x1

4 x2 ∣ ∣ x1 x2 ∣ ∣ �
�
∣ ∣ x1 ∣ ∣ x1 x1, x2 ∣ ∣ x2 ∣ ∣ x1 ∣ ∣ x2

1’ x1, x2 ∣ ∣ x2 ∣ ∣ x1 ∣ ∣ x2 ∣ ∣ �
�

x1 ∣ ∣ x2 ∣ ∣ x2 x1, x2 ∣ ∣

2’ x1 ∣ ∣ x2 ∣ ∣ x2 x1, x2 ∣ ∣ x1 ∣ ∣ �
�
, x2 ∣ ∣ x2 ∣ ∣ x1 ∣ ∣ x2

2” x1 ∣ ∣ x2 ∣ ∣ x2 x1, x2 ∣ ∣ ∣ ∣ �
�

x1, x2 ∣ ∣ x2 ∣ ∣ x1 ∣ ∣ x2

2”’ x1 ∣ ∣ x2 ∣ ∣ x2 x2 ∣ ∣ �� ∣ ∣ x1 x1, x2 ∣ ∣ x2 ∣ ∣ x1 ∣ ∣ x2

3’ x1 ∣ ∣ x2 ∣ ∣ x2 x1, x2 ∣ ∣ x1 ∣ ∣ x2 ∣ ∣ x1 ∣ ∣ �
�

x2 ∣ ∣ x1

4’ x2 ∣ ∣ x1 ∣ ∣ �
�

x2 ∣ ∣ x1 ∣ ∣ x1 x1, x2 ∣ ∣ x2 ∣ ∣ x1 ∣ ∣ x2
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9 � Conclusions

This paper introduces a new, previously unexplored optimisation problem for train 
connections with seats to be reserved, which minimises walking distances when 
transferring between trains. With the increasing degree of digitisation, these consid-
erations could soon reach a relevance threshold for real-world application.

The train transfer problem is defined in three variants which reflect the radius 
of operation. In principle, all three problem variants can be mapped to minimum-
cost maximum flow problems with different extensions. However, while the simplest 
problem belongs to the complexity class P, NP-hardness is shown for the general 
problem in this paper.

While this work deals exclusively with the modelling of the new optimisation 
problem and its theoretical classification, it opens up a large number of research 
questions to be investigated in the future. This includes the development of heu-
ristics and approximation algorithms, the identification of benchmark problems, 
and possibly the development of realistic problem generators that produce problem 
instances tunable by difficulty. The primary goal is to determine through in-depth 
research and empirical studies to what extent such problem cases can be solved on 
a larger scale. Furthermore, possible metaheuristics raise the question of the cost-
benefit ratio: How much computing time must be invested to generate acceptable 
approximations, and are these costs worthwhile compared to the benefits?

In a vision where reservations are taken via online procedures and then customer-
friendly seats are assigned offline just before departure, the basic problem needs to 
be expanded. On the one hand, the problem must also be extended to group reser-
vations and it must be examined up to which group size or number of group reser-
vations such a two-stage procedure is still feasible. On the other hand, one of the 
strength of the method is the ability to react quickly to unfamiliar situations. In order 
to realise this, a non-stationary variant of the problem must be introduced, in which 
a change in the operating conditions leads to an online optimisation of the seat 
assignment that was initially optimised offline.
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