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1 Introduction In 1964,Wei andNorman [11] showed that a system of linear differen-
tial equations with non-constant coefficients can under certain conditions be translated
into another possibly simpler system of equations. The Wei–Norman method finds
many applications throughout science but has not been used much in applied proba-
bility (Exceptions are [4], [6] and [7].) We propose as an application the PH/G/∞
infinite server queue with phase-type arrivals and general service time distribution.
Denoting Xt the process counting the customers in the system and Jt the current
phase of the arrival process at time t , it has been shown in [8] that the matrix of
generating functions G(t) given by

Gi j (t) =
∞∑

k=0

zkP(Xt = k, Jt = j |X0 = 0, J0 = i), z ∈ [−1, 1], t ≥ 0 (1)

fulfills a system of nonlinear differential equations, namely

G ′(t) = (A + f (t)B)G(t), G(0) = I . (2)

Here, the matrices A and B and the scalar function f are defined as follows. The
arrival distribution is assumed to be continuous phase-type (see, e.g., [2]), coinciding
with the distribution of the absorption time of a continuous-time Markov chain on the
state space {1, 2, . . . , n, n + 1} with generator matrix

[
T t
0 0

]
. The n × n matrix T has

non-positive entries in the diagonal and non-negative entries offside the diagonal. The
column vector t is such that the row sums of the generator matrix are zero. With q =
(q1, . . . , qn)T the vector of the initial probabilities, we then define B = t ·qT and A =
T+B. Finally, f (t) = (z−1)(1−H(t)), with H the cdf of the service timedistribution.

If A and B commute or f is constant, then A + f (s)B and A + f (t)B commute
for any combination of s, t ≥ 0 and we readily find a solution of (2) by means of

the matrix exponential, namely G(t) = e
∫ t
0 (A+ f (s)B) ds . However, if the commutator

AB := AB− BA is not zero, then this is no longer true. For example, in the E2/G/∞
queue, where the interarrival distribution is Erlang-2, we have (with q1 = 1)
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T = [ −λ λ
0 −λ

]
, t = [

0
λ

]
, A = λ

[ −1 1
1 −1

]
, B = λ

[
0 0
1 0

]
, (3)

and it follows that AB = λ2
[
1 0
0 −1

] �= 0.
Suppose that there arem matricesMi (henceforth called ‘basis’) such that [Mi , Mj ]

is itself a linear combination of basis elements for every i, j = 1, 2, . . . ,m and A and
B are expressible as linear combinations of the identity matrix I and the Mi . Then, it
is shown in [11] that at least locally around t = 0 one has the product representation

G(t) = e−a0t
m∏

i=1

egi (t)Mi . (4)

The functions gi , i = 1, . . . ,m fulfill a system of—hopefully easier or more
insightful—differential equations.

We will briefly demonstrate the idea with the above E2/G/∞ example. Here, we
can choose the basis M1 = [

1 0
0 −1

]
, M2 = [

0 1
0 0

]
and M3 = [

0 0−1 0

]
, with [M1, M2] =

−2M2, [M1, M3] = 2M3 and [M2, M3] = M1. We then express A and B in (3) in
terms of the identity matrix I and the basis elements as A = −λI + λM2 − λM3 and
B = −λM3. It can be shown that with this choice of the basis we obtain the system
(cf. [3, 10])

⎡

⎣
1 0 g2
0 e−2g1 e−2g1g22
0 0 e2g1

⎤

⎦

⎡

⎣
g′
1

g′
2
g′
3

⎤

⎦ =
⎡

⎣
0
λ

−λ(1 + f )

⎤

⎦ , (5)

where the dependence on t was omitted.After some rearrangements and setting R(t) =
g1(t)′, we obtain the Riccati equation

R′(t) = −R2(t) + f ′(t)
1 + f (t)

R(t) − λ2(1 + f (t)), (6)

which is still difficult to solve, but once a solution R is found, g1, g2 and g3 follow by
integration.
2ProblemstatementThere are still considerable problems andmany open questions
related to this approach.

i. The Erlang-2 example led us to the classical standard basis of the special linear Lie
algebra sl(2,R). For the E3/G/∞ system, A and B can bewritten as linear combi-
nations of I and a basis of sl(3,R). Are A and B in the presence of Erlang-n arrivals
in general representable in terms of a basis of sl(n,R)? More generally: Which
basis has to be chosen? The question whether the representation in (4) is only local
around t = 0 or global depends also on the choice of the basis. For 2×2matrices, it
has been shown in [10] that there is always an appropriate basis leading to a global
representation. What does this mean for two-phase distributions? A peculiarity of
the approach is that the order of the basis elements in (4) influences the system (5).
What is the most useful ordering for different phase-type arrival distributions?

ii. What use can be made of systems like (5)? Even if no solution can be found one
might still draw conclusions regarding the generating function (1) and hence the
joint distribution of Xt and Jt .

iii. Riccati equations appear frequently in connectionwith themethod ( [3]). Are some
of these equations solvable in the PH/G/∞ context? Obviously, we could not
solve (6), so this is an open question to begin with.
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3DiscussionTheNorman–Weimethod is clearly not restricted to this particular appli-
cation. After all, similar systems of differential equations are quite common in applied
probability. The Kolmogorov forward equation for time-inhomogeneous CTMCs is
an immediate example. (See also the application for birth-and-death processes in [7]
and more general jump processes in [1].) As in the PH/G/∞ setting, the primary
question is how the structure of the problem at hand influences the choice of the
basis and thereby the form of the new system of differential equations. In case of the
Kolmogorov equation, it would be interesting which generator matrices are related
to which Lie algebras ([9] goes into this direction). We note that there is a second
algebraic approach complementing the Wei–Norman method, namely the apparently
more popular Magnus expansion that searches for representations of G(t) of the form
e
∑m

i=1 gi (t)Mi (see, e.g., [5], where also the Wei–Norman approach is mentioned). This
approach could also beworthwhile to investigate in connection with queuing problems
such as the one presented here.
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