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Abstract
We focus on estimating daily integrated volatility (I V ) by realized measures based on
intraday returns following a discrete-time stochasticmodelwith a pronounced intraday
periodicity (IP). We demonstrate that neglecting the IP-impact on realized estimators
may lead to invalid statistical inference concerning I V for a common finite number
of intraday returns. For a given IP functional form, we analytically derive robust IP-
correction factors for realizedmeasures of I V aswell as their asymptotic distributions.
We show both in Monte Carlo simulations and empirically that the proposed bias
corrections are the robust way to account for IP by computing realized estimators.

Keywords Bipower variation · Integrated volatility · Integrated quarticity ·
Intraday periodicity

1 Introduction

For the majority of financial markets, the pervasive intraday periodicity (IP), which
often takes aU - ormirrored J -form during the daily trading time, is awell documented
empirical feature of intraday absolute returns (Wood et al. 1985; Harris 1986). As it
appears to be highly correlated with intraday variation of trading volume, Admati
and Pfleiderer (1988) propose to explain daily IP-shape by strategic interaction of
traders around market openings and closures, whereas the periodicity at weekly or
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monthly horizons could be attributed to the impact of slowly varying macroeconomic
fundamentals (Andersen and Bollerslev 1998b; Andersen et al. 2001, 2003).

The availability of high-frequency data allows for the construction of precise esti-
mators of daily integrated volatility (I V ) for risky asset returns. The realized volatility
(RV ) defined as a sum of squared intraday returns is known to be a consistent esti-
mator of daily I V in absence of jumps. Other realized measures such as the bipower
variation (BV ) should be used for I V estimation in presence of finite-activity jumps
during the day (cf. Aït-Sahalia and Jacod 2014). Barndorff-Nielsen and Shephard
(2004) derive the asymptotic properties of these quantities for the number of intraday
returns M → ∞ under mild assumptions on the corresponding pricing process. In
practice, however, the number of intraday returns available for computing realized
estimators often remains limited due to insufficient liquidity and/or irregular trading
activity. Even for highly liquid stocks a practitioner could prefer to rely on simple real-
ized estimators based e.g. on 5 min returns primarily in order to escape from adverse
effects of market microstructure noise (MMN) which are particularly pronounced at
(ultra) high sampling frequencies (cf. Aït-Sahalia and Jacod 2014).

In this paper we analyze and quantify the impact of IP on the finite M properties
of RV and BV estimators by providing corresponding formal statements given the
IP functional form. To the best of our knowledge, this research agenda has not been
explored yet, although there is a vast amount of literature devoted to modeling and
estimating IP (cf. Engle et al. 1990; Andersen et al. 2019; Christensen et al. 2018).
Thus, our investigation provides useful insights for exploring differences between the
asymptotic theory and the practical finite sample performance of realized measures
based on intraday data.

To model intraday returns, we presume a discrete time stochastic specification as
in Andersen and Bollerslev (1997), where the variance of intraday returns is written
as a product of the deterministic periodic and stochastic volatility (SV) components.
The IP is assumed to be constant for all days, whereas the SV part is slowly changing
over time. Our framework is motivated by the empirical evidence that the IP captures
a vast part of intraday volatility variation whereas the SV impact is of a smaller order
(cf. Christensen et al. 2018). We show that for the commonly available finite number
of intraday returns M neglecting the impact of IP would lead to non-valid statistical
inference concerning daily I V . For a given IP, we compute the first and the second
moments of RV and BV , moreover, we establish the asymptotic bivariate distribution
of these measures as M → ∞. We also quantify the impact of IP on realized tri-power
(T P) and quad-power (QP) estimators of daily integrated quarticity (I Q) required
for statistical inference about I V .

Our major finding is that for the commonly available finite number of intraday
returns the impact of IP should be explicitly addressed when making statistical infer-
ence concerning I V . While the RV estimator of I V is unaffected by IP, BV has a
finite sample bias negligible only for large sample sizes which are not always available
in practice. Moreover, by estimating I Q one should account – at least for small M
values – for scaling factors, which depend on the functional form of the IP. We derive
the explicit expressions for these IP-correction factors and provide the asymptotic
distribution for their estimators.
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Our theoretical results are illustrated in a Monte Carlo study, where we investigate
the impact of IP onvarious realizedmeasures.Wefind that the IP-correction procedures
proposed in this paper are helpful against the adverse impact of IP on realizedmeasures
in finite samples. Moreover, our IP-corrected estimates are advantageous compared
to immediate removing of the estimated IP due to their robustness with respect to IP
misspecifications at days with unusual pattern of intraday volatility (cf. Gabrys et al.
2013; Kokoszka and Reimherr 2013). In such situations our approach is preferable
in terms of relative bias and mean squared error (MSE) compared to the standard
procedure with immediate scaling of intraperiod returns by the estimated IP profile as
in Boudt et al. (2011), for example. In the empirical application we estimate the IP
for the daily volatility of the Dow Jones Industrial Average Index with and without IP
bias corrections.

The remaining part of the paper is organized as follows. In Sect. 2, we introduce
the model for intraday returns and discuss the realized estimators of daily I V and I Q.
The theoretical results are derived in Sect. 3 where we establish both finite sample
and asymptotic stochastic properties of commonly applied realized estimators for a
given IP form. Moreover, we provide expressions for IP correction factors and derive
the asymptotic distributions of their estimators. Our approach is illustrated in Sect. 4
by means of a simulation study and in Sect. 5 by an empirical application. Sect. 6
concludes, whereas the proofs are placed in the Appendix.

2 Measuring daily volatility based on intraday information

Before we introduce our model in Sect. 2.2, we provide definitions of the objects
which are of importance for our analysis. For this purpose we start from a general
jump-diffusion model for log price increments in order to define the objects of our
interest, namely the daily I V and daily I Q. Next, we present the corresponding
realized estimatorswhich are based onM intraday returns. These realizedmeasures are
consistent estimators of I V for M → ∞, however, in practice we often face M ≤ 102

primarily because ultra high frequency returns are contaminated by MMN. Thus, it is
of importance to explore the finite sample stochastic properties of realized estimators.
For this purpose we then consider a discrete time model for intraday returns with an
explicit functional specification of intraday periodicity (IP) and study the impact of
IP on the realized measures of I V and I Q for finite M .

2.1 Model for intraday returns and realizedmeasures

Assume that log-prices of risky assets p(t) = ln Pt follow a continuous time process
with (possible) additive jump components.We consider a day t as the period of interest
with the daily return rt = p(t) − p(t−1) and focus on the integrated volatility (I V ),
which is defined for day t as
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318 H. Dette et al.

I Vt = σ 2
t =

∫ t

t−1
σ 2(u)du,

where σ(u) is a spot volatility. In order tomake statistical inference about I V measures
one also needs statements concerning the daily integrated quarticity (I Q) defined by

I Qt =
∫ t

t−1
σ 4(u)du.

The availability of intraday returns allows to construct precise realized estimators
(Andersen and Bollerslev 1998a) for the daily I V which are of immense practical
importance for estimation and inferences concerning daily volatility. Assume that M
equally spaced intraday returns are available for day t . We denoted them by rt,m =
p(t−1 + m/M) − p(t−1 + (m−1)/M) for m = 1, . . . , M . Then the daily return rt
is the sum of intraday returns with rt = ∑M

m=1 rt,m . The most popular I V estimator
is the realized volatility (RV ) measure given as

RVt =
M∑

m=1

r2t,m .

Barndorff-Nielsen and Shephard (2004) show that RVt is a consistent estimator of I Vt
without jumps at day t , i.e. RVt

p−→ I Vt as M → ∞. Although the estimator RVt
possesses a set of appealing properties, it is not appropriate in the presence a non-zero
jump component.

The bipower variation (BV ) proposed by Barndorff-Nielsen and Shephard (2004)

BVt = M

M − 1

π

2

M∑
m=2

|rt,m ||rt,m−1| (1)

is a jump-robust estimator of I V . It is consistent even in presence of jumps, i.e.

BVt
p−→ I Vt as M → ∞. However, RV has a smaller variance than BV if there is

no jumps, so the common practice is first to test for a jump during day t . Then, in case
of a significantly large positive distance between RV and BV indicating jumps, one
should apply BV ; otherwise RV is to use.

Intraday returns are also suitable for the purpose of estimating the unknown daily
I Q required for computing variances of RV and BV measures. The realized quarticity
(RQ)

RQt = M

3

M∑
m=1

r4t,m,

is a consistent estimator of I Q in the case of no jumpswith RQt
p−→ I Qt asM → ∞.

However, as RQt measure is not robust (cf. Andersen et al. 2014), Barndorff-Nielsen
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and Shephard (2004) suggest to use the realized tri-power (T P) and quad-power (QP)
measures defined by

QPt = M2

M − 3
· π2

4
·

M∑
m=4

|rt,m−3||rt,m−2||rt,m−1||rt,m |, (2)

T Pt = M2

M − 2
· μ−3

4/3

M∑
m=3

|rt,m−2| 43 |rt,m−1| 43 |rt,m | 43 , with μ4/3 = 0.8309.

(3)

Although both RV and BV have appealing stochastic properties as M → ∞, their
practical implementation is often based on (say) 5 min intraday returns which makes
M = 78 intraday observations for a usual 6.5-hours trading day, because of MMN
which hinders the use of ultra high frequency data for construction of realized estima-
tors (McAleer and Medeiros 2008). To overcome these problems, the recent research
has been focused on making realized estimators more robust to these features. How-
ever, in many situations the common practice still remains to sample returns at a lower
frequency, i.e. to consider 5–, 10–, or even 15-min intraday returns (Andersen et al.
2011). We follow this strand of literature and concentrate on profound understand-
ing of stochastic properties of realized estimators for comparatively small values M .
Although we focus in our analysis primarily on the classical RV , BV , QP , and T P
measures, we also provide a discussion of recently proposed further realized measures
in Sect. 5.2 and in Dette et al. (2022).

2.2 Discrete timemodel for intraday returns

The IP in absolute intraday returns is one of the most important stylized facts charac-
terizing high frequency data. In order to investigate the IP impact on realized measures
for a fixed number of intraday returnsM , next we introduce a discrete timemodel in (4)
which is central for study. There is a substantial scope of recent literature concerning
discrete-time modeling of intraday returns whereas the IP is assumed to be a multi-
plicative scaling component (Boudt et al. 2011; Engle and Sokalska 2012; Bekierman
andGribisch 2021). Following Andersen and Bollerslev (1997), we focus on a discrete
stochastic model for intraday return without jumps, which is given as

rt,m = σt,m · ut,m, with ut,m ∼ iid N (0, 1),

σ 2
t,m = 1/M · s2t,m · γ 2

t,m, (4)

where st,m > 0 is the deterministic IP component and γ 2
t,m > 0 is the stochastic part.

Note that there is no leverage effect in (4), as it is mostly of importance for daily returns
but much less pronounced for high-frequency intraday returns, see e.g. Bollerslev et al.
(2006).

For our theoretical derivations we presume that the stochastic part remains constant
within day t (Andersen and Bollerslev 1998b; Hecq et al. 2012), i.e. γt,m = σt for all
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m = 1, . . . , M , but may change from one day to another. This assumption is justified
by the empirical evidence that IP commonly accounts for a vast part of intraday
volatility variation (cf. Christensen et al. 2018). In Sect. 4 we relax this assumption
in the Monte Carlo simulation study by considering the intraday SV which follows a
diffusion process as e.g. in Goncalves and Meddahi (2009). Based on the results of
our Monte Carlo simulations, we conclude that our major findings also hold in the SV
setting.

In line with the current literature (Hecq et al. 2012), we set the IP as constant
at different days so that we further skip the time index with st,m = sm . Moreover,
the periodic component is standardized such that it sums up to M over the day with∑M

m=1 s
2
m = M . Of course, a special case sm = 1 for all m = 1, . . . , M corresponds

to no IP. Putting all together, we separate the intraday periodic component sm which is
solely responsible for intraday heteroskedasticity, and interday stochastic component
σt which could change from one day to another by writing

σ 2
t,m = 1/M · s2m · σ 2

t with
M∑

m=1

s2m = M . (5)

Although the model in (4) and (5) is fairly simple, it allows a detailed analysis of the
IP impact on popular realized measures of the objects of our interest, which are the
I V for day t

I Vt = Var(rt ) =
M∑

m=1

Var(rt,m) = 1

M

M∑
m=1

s2mσ 2
t = σ 2

t , (6)

as well as the I Q written by (Andersen et al. 2014)

I Qt = M/3 ·
M∑

m=1

E(r4t,m) = σ 4
t /M ·

M∑
m=1

s4m . (7)

Note that as in general it holds that
∑M

m=1 s
4
m ≥ M , the I Q is directly influenced by

IP. We aim to investigate the impact of IP on realized measures of I V and I Q.

3 The impact of intraday periodicity on RV and BV

To gain results on the IP impact on realized measures, re-write the normalized IP
{sm}Mm=1 as

s2m = g
( m
M

) /
gM , with gM = 1

M

M∑
m=1

g
( m
M

)
, (8)
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The effect of intraday periodicity… 321

where g : [0, 1] �→ R
+ with R

+ := (0,+∞) is a given non-normalized function.
This normalization is very common in IP-literature (cf. Andersen and Bollerslev 1997,
p. 153). The functional formof g(·) could be quite flexible and is subject to very general
regularity conditions specified in the following propositions.

3.1 Bias and variance of realized estimators

For the discrete model of intraday returns (4)–(5) and the IP from {g(m/M)}Mm=1, we
derive expectation, bias and variance of RV and BV estimators of daily I V in the
next proposition.

Proposition 1 Assume that the IP component is given by (8) for some function g :
[0, 1] �→ R

+.
(A) The estimator RVt for daily I V is unbiased so that E[RVt ] = I Vt . The estimator
BVt is biased, that is E[BVt ] = M/(M−1)σ 2

t (1− RM ) = M/(M−1)I Vt (1− RM ),
where the factor RM ∈ (0, 1) is given by

RM =
(
g

(
1

M

)
+

M∑
m=2

g
( m
M

)1/2 [
g
( m
M

)1/2 − g

(
m − 1

M

)1/2
])

/

M∑
m=1

g
( m
M

)
.

If g(·) is continuously differentiable on interval [0, 1], it holds as M → ∞

M · RM =
[
1

2

∫ 1

0
g′(x)dx

/∫ 1

0
g(x)dx + g(0)

/∫ 1

0
g(x)dx

]
· (1 + o(1)) ,

so that limM→∞ RM = 0, i.e. BVt is an asymptotically unbiased estimator of I V .
(B) The (co)variances of RVt and BVt are given as

Var(RVt ) = 2σ 4
t

M2g2M

M∑
m=1

g2
( m
M

)
,

Var(BVt ) = σ 4
t

(M − 1)2g2M

{(
π2

4
− 1

) M∑
m=2

g

(
m

M

)
g

(
m − 1

M

)

+(π − 2)
M∑

m=3

g
( m
M

)1/2
g

(
m − 1

M

)
g

(
m − 2

M

)1/2
}

,

Cov(RVt , BVt ) = σ 4
t

M(M − 1)g2M

[
M∑

m=2

g

(
m − 1

M

)1/2

g
( m
M

)3/2

+
M−1∑
m=1

g

(
m + 1

M

)1/2

g
( m
M

)3/2]
.
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For g(·) continuously differentiable on interval [0, 1] and for M → ∞ it holds that
V ar(RVt ) = (1/M) · 2σ 4

t · ξ (1 + o(1)),

V ar(BVt ) = (1/M) · σ 4
t · ξ

(
π2

4
− 3 + π

4

)
(1 + o(1)), (9)

and Cov(RVt , BVt ) = (1/M) · 2σ 4
t · ξ(1+ o(1)). The asymptotic scaling factor ξ is

defined by

ξ =
∫ 1

0
g2(x)dx

/(∫ 1

0
g(x)dx

)2

. (10)

It holds that ξ ≥ 1 with ξ = 1 if and only if g(·) is almost everywhere constant, i.e.
there is no IP.

The property RM ∈ (0, 1) follows from the proof of Proposition 1 in the Appendix.
More precisely, by the Cauchy-Schwarz inequality, we have

0 < 1 − RM =
∑M

m=2

[
g
( m
M

)
g
(m−1

M

)]1/2
∑M

m=1 g
( m
M

)

≤
(∑M

m=2 g
( m
M

))1/2 (∑M
m=2 g

(m−1
M

))1/2
∑M

m=1 g
( m
M

) < 1.

Thus, in the case of IP, RV is an unbiased estimator for I V but BV has a finite M bias
which should be corrected in applications. Since the expectation of BV is given by

E[BVt ] = σ 2
t

(M − 1) · gM ·
M∑

m=2

g
( m
M

)1/2
g

(
m − 1

M

)1/2

= σ 2
t

M − 1
·

M∑
m=2

smsm−1,

we suggest the following bias-corrected measure

B̃V t = π

2
· M ·

(
M∑

m=2

smsm−1

)−1

·
M∑

m=2

|rt,m ||rt,m−1|. (11)

Hence, it holds that B̃V t = (M − 1)

(
M∑

m=2
smsm−1

)−1

BVt leading the correction

factor ζM for BV :

ζM = ζM,BV = BVt/B̃V t = 1

M − 1
·

M∑
m=2

smsm−1, (12)
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which should be replaced by its empirical counterpart ζ̂M based on IP estimates ŝm in
practice. By the same principle, we define the IP factor ξM in RQ for finite M values
as

ξM = ξM,RQ = 1

M
·

M∑
m=1

s4m, (13)

with limM→∞ ξM = ξ as in (10) of Proposition 1. Note that in case of no IP it holds
that ξM = ξM,RQ = 1. Of course, in applications we replace ξM,RQ by its estimator
ξ̂M = ξ̂M,RQ which is discussed below in Sect. 3.3. Hence, we show analytically
that although for BV it holds that limM→∞ ζM = 1, its counterpart ξ for the realized
measures of I Q is still present and could be (depending on the data) rather substantial.
In the context of the IP-bias corrections for further realized measures, we investigate
by means of numerical analysis several popular MMN-robust realized estimators such
as min RV or med RV in the follow-up paper of Dette et al. (2022).

In the next proposition we provide the expectations of realized estimators RQ, T P
and QP serving as the measures for I Q under the model defined in (4) and (5) with
the function g(·).
Proposition 2 Assume that the IP is given by (8), then the expectations of RQt , QPt
and T Pt are given as E[RQt ] = σ 4

t
M ·g2M

∑M
m=1 g(

m
M )2, i.e. RQt is unbiased, and

E[QPt ] = σ 4
t

(M − 3) · g2M

M∑
m=4

[
g

(
m − 3

M

)
g

(
m − 2

M

)
g

(
m − 1

M

)
g
( m
M

)] 1
2

,

E[T Pt ] = σ 4
t

(M − 2) · g2M

M∑
m=3

[
g

(
m − 2

M

)
g

(
m − 1

M

)
g
( m
M

)] 2
3

.

Moreover, limM→∞ E[RQt ] = E[T Pt ] = E[QPt ] = σ 4
t · ξ = I Qt if g(·) is square

integrable, where the asymptotic scaling factor ξ which comprises the impact of IP is
given by (10).

Proposition 2 suggests the following factorization of QP and T P measures of I Q in
finite samples:

Q̃Pt = QPt/ξM,QP , ξM,QP = 1

M − 3
·

M∑
m=4

smsm−1sm−2sm−3,

T̃ Pt = T Pt/ξM,T P , ξM,T P = 1

M − 2
·

M∑
m=3

(smsm−1sm−2)
4/3,

whereby ξM,QP and ξM,T P are the IP scaling factors for QP and T P , respectively.
This factorization appears to be useful both in the simulations in Sect. 4 and in the
empirical study in Sect. 5.
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3.2 Asymptotic distribution in case of intraday periodicity

Next, we provide the corresponding bivariate limit distribution for RV and BV as
M → ∞ for our discrete time model of intraday returns with IP.

Theorem 1 Consider model (4) and (5) without jumps and assume that the IP compo-
nent is given by (8) with a continuously differentiable function g : [0, 1] �→ R. Then,
as M → ∞,

M1/2 · I Q−1/2
t ·

(
RVt − σ 2

t
BVt − σ 2

t

)
L−→ N

([
0
0

]
,

[
2 2

2 π2

4 + π − 3

])
.

The integrated quarticity I Qt = ξ · σ 4
t can be consistently estimated by RQt , QPt ,

or T Pt .

Thus, a pronounced IP with ξ > 1 causes more variability of I V estimators com-
pared to the case of no IP where ξ = 1. The asymptotic (1 − α)-confidence interval
for daily I V and I Q based on RV and RQ measures is given according to Theorem 1
as

C It (1 − α) =
[
RVt + zα/2

[
2

M

]1/2
· RQ1/2

t , RVt − zα/2

[
2

M

]1/2
· RQ1/2

t

]
,

where zα/2 is the (α/2)-quantile of the standard normal distribution. The asymptotic
confidence intervals based on BV , T P or QP measures are constructed similarly.

The results in Proposition 2 and Theorem 1 are useful for statistical inference on
I V . As RQ is not robust, one could estimate I Q in presence of jumps by either T P
or QP directly as in (2) or (3), i.e. without estimating ξ separately. However, as we
show in the Monte Carlo simulation, the approximation T Pt ≈ I Qt is only precise
for fairly large M . For this reason, for finite M we recommend to use the IP-scaled
estimators Q̃Pt or T̃ Pt as well as the estimated scaling factor ξ̂M,RQ from Eq. (15)
below for the construction of confidence intervals as

C̃ I t (1−α) =
[
B̃V t+zα/2

[
π2/4 + π − 4

M

]1/2
· ξ̂

1/2
M,RQ · Q̃P

1/2
t ,

B̃V t − zα/2

[
π2/4 + π − 4

M

]1/2
· ξ̂

1/2
M,RQ · Q̃P

1/2
t

]
,

because of E[ξ̂M,RQ · Q̃Pt ] = E[ξ̂M,RQ · T̃ Pt ] = E[T Pt ] = E[QPt ] = E[RQt ].

3.3 Estimation of IP correction factors

For a given number of intraday returns M , one needs consistent estimators of the IP
functions {ŝ2m}Mm=1 in order to obtain the estimators of the quantities ξM and ζM defined
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in (13) and (12), respectively. For this purpose we exploit the SD estimator (cf. Boudt
et al. 2011) given as

ŜD
2
m,T = 1

T

T∑
t=1

r2t,m , and ŝm = ŜDm,T(
(1/M)

∑M
m=1 ŜD

2
m,T

)1/2 , (14)

and use the statistics

ξ̂M = ξ̂M,RQ = (1/M) ·
M∑

m=1
ŝ4m , ζ̂M = ζ̂M,BV = (1/M) ·

M∑
m=2

ŝm ŝm−1 (15)

as the estimators of ξM and ζM , respectively. If the variance

σ 2 := lim
T→∞ σ 2

T := lim
T→∞

1

T

T∑
t=1

σ 2
t > 0 (16)

exists, it follows from (5) that limT→∞ E[ŜD2
m,T ] = σ 2s2m/M which motivates the

definition (14). As a consequence, we expect that the estimators in (14) and (15) are
consistent for sm , m = 1, . . . , M , as well as for ξM and ζM , respectively. Note that
as long as the ergodicity condition (16) is met, the assumption of constant intraday
volatility as in Sect. 2 could be relaxed for the following analysis in Sect. 3.3, e.g. by
allowing intraday stochastic volatility.

In order to make the intuitive arguments above more precise we investigate in the
following the asymptotic distribution of the statistics ζ̂M and ξ̂M for finite M and
T → ∞. Note that under common assumptions, such as mixing conditions (see, for
example Dehling et al. 1986, among many others) or physical dependence conditions
(cf. Wu 2005), the vector ŜDM,T = (ŜD

2
1,T , . . . , ŜD

2
M,T )� is asymptotically normal

distributed if T → ∞, that is

√
T
(
ŜDM,T − SDM,T

) L−→ N (0, σ 4�) with SDM,T = (SD2
1,T , . . . , SD2

M,T )� ,

(17)

where SD2
m,T = E(ŜD

2
m,T ) = σ 2

T s
2
m/M for m = 1, . . . , M , σ 4� ∈ R

M×M denotes

a covariance matrix reflecting the underlying dependence structure and σ 2, σ 2
T are

defined in (16).
Nowweprovide the theoretical result concerning the estimators ξ̂M and ζ̂M for finite

number of intradayobservationsM and the estimationperiodT → ∞,which are based
on the SD-estimator of the IP components sm , m = 1, . . . , M , although similar type
of result could be also obtained for other IP-estimators. We denote by 〈x, y〉 = x�y
the common inner product on R

M with the corresponding norm ‖x‖ = 〈x, x〉1/2 and
by 1M an M-dimensional vector of unit entries.
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Proposition 3 Assume that (16) and (17) hold, then, as T → ∞, that

√
T (ξ̂M − ξM )

L−→ N (0, τ 21 ) (18)
√
T (ζ̂M − ζM )

L−→ N (0, τ 22 ) , (19)

where the asymptotic variances are given by

τ 21 = 4

(
S�
M�SM − 2

M
‖SM‖21�

M�SM + 1�
M�1M
M2 ‖SM‖4

)
, (20)

τ 22 = 1

4

(
R�

M�RM − 2

M
〈RM ,SM 〉1�

M�RM + 1�
M�1M
M2 〈RM ,SM 〉2

)
, (21)

and the vectors SM and RM are defined by

SM :=
(
s21 , . . . , s

2
M

)�
, RM :=

(
s2
s1

,
s1 + s3

s2
, . . . ,

sM−2 + sM
sM−1

,
sM−1

sM

)�
,

respectively. In particular, if � = diag (ϑ2
1 , . . . , ϑ2

M ) is a diagonal matrix, we have

τ 21 = 4

⎧⎨
⎩

M∑
m=1

ϑ2
ms

4
m − 2

M

M∑
m=1

ϑ2
ms

2
m

M∑
m=1

s4m + 1

M2

(
M∑

m=1

s4m

)2 M∑
m=1

ϑ2
m

⎫⎬
⎭ , (22)

τ 22 = 1

4

{
M∑

m=1

ϑ2
m

s2m
(sm−1 + sm+1)

2 − 2

M

M∑
m=1

sm(sm−1 + sm+1)

M∑
m=1

ϑ2
m
sm−1 + sm+1

sm

+ 1

M2

M∑
m=1

ϑ2
m

(
M∑

m=1

sm(sm−1 + sm+1)

)2
⎫⎬
⎭ , (23)

where we put s0 = sM+1 = 0.

When estimating IP elements sm , we require for consistency that the number of days
T → ∞, whereas the number of intraday observations M is here fixed. Hence, we
derive the distributions of the correction factors ζ̂M and ξ̂M for fixed M and T → ∞
in Proposition 3. Differently, inference about the asymptotic correction factor ξ in
Theorem 1 would require that M → ∞ because then ξ̂M is a consistent estimator of
ξ . These results allow to make statistical inferences and conduct tests for IP correction
factors ξM and ζM with T → ∞. Of course, an extension of our theoretical findings
for IP estimated from a finite sample T is also of interest. However, this is also a quite
challenging task, for which Christensen et al. (2018) present with some theoretical
considerations in their Proposition 3.1. We investigate this issue in the Monte Carlo
simulations in Sect. 4.2.

In Proposition 3 we provide the explicit asymptotic results for IP scaling factors
given the SD estimator. In general, our results for the SD estimator could be extended
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for any consistent estimator of IP. In this paper both in our simulations and empirical
studies we use a more robust WSD estimator of Boudt et al. (2011) which is described
in the Appendix. However, it is much more difficult to get analytical results such as
in Proposition 3 for this more complicated WSD estimator which is based on order
statistics. For this reason we recommend to make statistical inferences for the WSD
approach by using bootstrap procedures, as e.g. in Goncalves and Meddahi (2009) or
in Dette et al. (2022).

4 Simulation study

We illustrate our theoretical findings bymeans of an extensiveMonte Carlo simulation
study which is structured as follows. First, we introduce the U -shaped IP functional
form and discuss the parameter choice for the model in (4)–(5). We generate intraday
returns for estimation of IP shape and construction of various realized measures. In
Sect. 4.1 we study the impact of IP on various realized estimators. In Sect. 4.2 we
investigate our IP-corrections in terms of MSE whereby we compare our approach
with those of Boudt et al. (2011).

We consider M = 26, M = 78, or M = 390 intraday returns, which roughly
correspond to sampling at 15 min, 5 min, or 1 min for 6.5-hour trading days, respec-
tively. For constant intraday volatility, we fix I V = σ 2 = 1 and I Q = ξ · σ 4 = ξ .
We generate M intraday returns for each of T = 104 days with rt,m ∼ N (0, γ 2

t,ms
2
m)

where γ 2 and s2m are the respective SV and IP components. As a baseline, we set
γ 2
t,m = 1/M which corresponds to I V = 1 and I Q = ξ .
Later we also consider a SV model where we assume that γ 2

t,m is governed by the
process

�γ 2
t,m = 0.035(0.636 − γ 2

t,m)�t + 0.144γ 2
t,m(�t)1/2ut,m, (24)

where �t = 1/M and ut,m ∼ iidN (0, 1), with γ 2
1,1 = 1. This model is a dis-

cretized version of the GARCH (1,1) diffusion used by Andersen and Bollerslev
(1998a), Goncalves and Meddahi (2009) with parameters implying an autoregressive
persistence; in the time series context it is related to state-space models for realized
volatilities (cf. Golosnoy et al. 2021). In presence of intraday SV there is no exact
analytical expression for the impact of IP on realized measures. However, since the
SV in (24) follows a highly persistent process, the empirical contribution of γ 2

t,m to
intraday heteroskedasticity is of a smaller order compared to the impact of IP (see e.g.,
Christensen et al. 2018; Bekierman and Gribisch 2021). Moreover, from the empir-
ical perspective, one could precisely estimate the SV components γt,m ex post, see
Bekierman and Gribisch (2016). Then one could calculate the product components
ŝt,m = ŝm γ̂t,m and compute the IP correction factors for this day t based on the
obtained estimates ŝt,m .

The IP components follow a quadratic convex U -shaped given by

g(m/M) =
[
c1 + c2(m − M/2)2

]2
, c1, c2 > 0, (25)

123



328 H. Dette et al.

Fig. 1 The asymptotic factor ξ in (10) and averages of finite sample estimates ξ̂M,T P , ξ̂M,QP , ξ̂M,RQ for
M = 26, 78, 390 depending on parameter c1 of the intraday profile (25)

so that the standardized IP values are s2m = g(m/M)/gM . The choice of the functional
form is (25) is motivated by our empirical findings, see Fig. 5. Note that our theoretical
results are applicable for any functional form of IP including asymmetric mirrored J -
shape specifications, as e.g. a more flexible asymmetric U -shaped IP specification as
in Hasbrouck (1999) and Andersen et al. (2012). Because of

∑M
m=1 s

2
m = M , it holds

for (25) that c2 = 12 (1 − c1) / (M2 + 2). We select c1 ∈ {0.01, 0.11, . . . , 0.91, 1}
with the most IP curvature for c1 → 0+ whereas c1 = 1 is the no-IP case. Next we
focus on the value c1 = 0.71 corresponding to the evidence from U.S. stock market.
Note that the IP form could be very distinct at ‘special’ days characterized by specific
announcements and/or unexpected events where the IP curvature could be much more
(or less) pronounced.

The asymptotic scaling factor ξ defined in (10) is plotted as a function of c1 in Fig. 1
where we observe that ξ is substantially larger than one even for c1 close to one. As
the IP is unknown in practice, we construct estimators ĝ(·) and ŝ2(·) by applying the
WSD estimator of Boudt et al. (2011) which does not require a-priori specification of
the IP functional form; the implementation details for theWSD estimator are provided
in the Appendix. Then we compute the average estimates of the scaling factors ξ̂M,RQ ,
ξ̂M,T P , ξ̂M,QP which are plotted in Fig. 1. We observe that the factor ξ̂M,RQ appears
to be very close to ξM even for a fairly small value M = 26.

4.1 The impact of IP on realizedmeasures

As RV measure is not affected by IP, we study the IP impact on other measures, such
as BV for I V , and T P , QP for I Q. After generating IID intraday returns as specified
above, we calculate BVt , T Pt , and QPt as well as the IP-corrected estimators denoted
by B̃V t , etc. for each day t = 1, . . . , T . Additionally, we compute the jump-robust
medRV andminRV measures of Andersen et al. (2012). Thenwe build time averages,
e.g. BV = (1/T ) ·∑T

t=1 BVt , for all measures. These averages of BV , B̃V , medRV ,

and minRV are shown in Fig. 2; whereas of T P , QP , T̃ P , and Q̃P in Fig. 3 for
different M and c1 values. All measures should be equal to one for no IP with c1 = 1.
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Fig. 2 Uncorrected BV , medRV , minRV as well as corrected B̃V as a function of c1

Fig. 3 Original QP and T P as well as scaled Q̃P and T̃ P as a function of c1

In Fig. 2 the IP-bias in BV is quite pronounced for M = 26 and M = 78 for large
and medium curvatures and is still visible even for M = 390. Remarkably, the biases
in medRV and minRV are even stronger than in BV . As expected, the bias-corrected
mean of B̃V is close to the true I V for all M , so the suggested correction functions
properly.

The averages of the original T P , QP and scaled T̃ P , Q̃P are reported in Fig. 3.
The original measures are downward biased for finite M = 26, 78, compared to
almost unbiased measures for M = 390 which is close to the asymptotic value ξ , see
Fig. 1. Remarkably, in case of 5 minute returns with M = 78 the bias is still quite
substantial for empirical relevant values of IP curvature parameter c1 ∈ [0.6, 0.8]. As
expected, QP is more biased than TP for finite M due to longer lags involved in its
computing. Our scaled T̃ P and Q̃P measures are equal to the value σ 4 = 1 for all
considered values of c1 and M which is an appealing property. Summarizing, the IP
has a substantial influence on BV , minRV , medRV , so that IP-corrections are needed
to get valid statistical inference on I V .

In order to shed light on the finite sample validity of the result in Proposition 3, we
provide the exemplary QQ-plots in Fig. 4 for the statistics ζ̂M and ξ̂M for the case of
M = 78 and c1 = 0.6 which are based on the WSD estimator of IP (cf. Boudt et al.
2011). Being standardized properly, both statistics seem to approach normality with
the increase of estimation period T , in particular, even T = 250 the QQ plots show a
decent fit.
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Fig. 4 QQ-plots for the statistics ζ̂M (top panel) and ξ̂M (bottom panel) for various values of T , M = 78
and c1 = 0.6

4.2 The comparison of IP-bias corrected estimators

In Proposition 1 we show analytically that the original BV is downward biased so that
the true level of risk measured by I V is underestimated. This is a rather undesired
scenario from the riskmanagement point of viewmaking anMSEcomparisonof biased
and unbiased measures not reasonable because the MSE is symmetric for upward and
downward biases. For this reason, we provide an MSE comparison only for IP-bias
corrected estimators.

In particular, we contrast the relative bias and MSE of our corrected estimator B̃V t

in (11) with those of Boudt et al. (2011) where the estimated IP component ŝm is
immediately removed from intraday returns by computing r∗

t,m = rt,m/ŝm . Then the
BCL-estimator BV ∗

t is given as
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BV ∗
t = M

M − 1
· π

2
·

M∑
m=2

|r∗
t,m ||r∗

t,m−1|, with E[BV ∗
t ] = I Vt . (26)

This immediate removing of IP appears to be a common approach in the current
literature (cf. Golosnoy et al. 2012; Bekierman and Gribisch 2021; Christensen et al.
2018), whereby the IP estimates ŝm are based on historical data.

To contrast the relative biases and MSEs of BV ∗
t and B̃V t , we generate intraday

returns for T = 250 pre-sample dayswith the IP parameter value ch1 = 0.5 as in (4) and
(25) and use them to get IP estimates ŝm . We denote by ch1 the ‘historical’ value of c1
assumed to be constant during the pre-sample period. Then, we focus on the next day’s
IP which functional form is described by the ‘current value’ of c1 denoted by cc1. That
means, for this next (single) day of our interest, intraday returns are generated with
either unchanged current IP parameter cc1 = 0.5 = ch1 or changed parameter cc1 �= ch1 .
The latter case could occur at some ‘special’ days characterized by announcements,
unexpected events etc. Note that the values cc1 = 0.1 (extremely pronounced IP) and
cc1 = 0.9 (almost no IP) are not empirically relevant but considered for the illustration
purposes only.We calculate BV ∗ and B̃V for this day of interest using the historical IP
estimates ŝm , so there is an IPmisspecification when cc1 �= ch1 .We repeat the procedure
(generating T = 250 pre-sample days and an additional ‘day of interest’) 104 times
and put the computed relative biases and MSEs in Table 1, where we show results for
constant intraday volatility in Block A and intraday SV is Block B.

Hence, we study both the effect of estimation risk in case of unchanged IP and the
effect of a change in the IP form. The latter is of much practical importance, as there
are many empirical confirmations for time variability of IP even after excluding days
with importantmacroeconomic announcements, seeAndersen et al. (2001), Hecq et al.
(2012), or Andersen et al. (2019).

We observe in Table 1 that in case of no IP change with ch1 = cc1, the realized
measure BV ∗ of Boudt et al. (2011) is preferable in terms of relative bias and MSE.
These findings are in line with the recent theoretical results of Ghysels et al. (2021)
who show under similar assumptions that the most efficient quarticity estimators (in
terms of MSE) can be obtained by an immediate adjustment of intraday returns for the
IP as e.g. by Boudt et al. (2011) which is also confirmed by our evidence. However,
even a comparatively small change in IP, e.g. from ch1 = 0.5 to cc1 = 0.7, leads to
a substantial increase in the relative bias and MSE of BV ∗. This evidence remains
also for intraday SV in Block B. Hence, our IP-correction approach is more robust
compared to the procedure of Boudt et al. (2011) which is rather sensible to even small
changes in the IP form.

5 Empirical study

In our application we work with intraday returns for the Dow Jones Industrial Average
Index with the focus on measuring daily I V . Our dataset consists of intraday obser-
vations from January 1996 to December 2010 with non-regular trading time days
skipped. Days with non-regular trading times are those where the trading time have
been substantially shorter than the common 6.5 hours because of these or that reasons.
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Table 1 Relative bias andMSE of BV ∗ and B̃V . The IP parameter c1 equals to c
h
1 during estimation period

of the IP components and to cc1 when realized measures are calculated

Relative bias in %
Block A: constant intraday volatility Block B: intraday SV

M = 78 M = 390 M = 78 M = 390

ch1 cc1 BV ∗ B̃V BV ∗ B̃V BV ∗ B̃V BV ∗ B̃V

0.5 0.5 0.12 0.25 0.06 0.07 −0.08 0.05 0.02 0.03

0.5 0.1 −37.77 −0.58 −36.44 0.34 −39.69 −1.66 −38.10 −0.15

0.5 0.3 −23.24 0.22 −22.13 0.52 −25.48 −0.83 −24.19 0.01

0.5 0.7 39.60 2.44 40.13 1.05 35.94 1.53 36.32 0.46

0.5 0.9 86.69 3.64 86.88 1.35 81.93 2.83 81.77 0.71

Mean squared error (MSE)

Block A: constant intraday volatility Block B: intraday SV

M = 78 M = 390 M = 78 M = 390

ch1 cc1 BV ∗ B̃V BV ∗ B̃V BV ∗ B̃V BV ∗ B̃V

0.5 0.5 0.0332 0.0567 0.0067 0.0115 0.0390 0.0703 0.0083 0.0190

0.5 0.1 0.1767 0.0819 0.1498 0.0170 0.2134 0.1053 0.1823 0.0308

0.5 0.3 0.0873 0.0705 0.0635 0.0145 0.1046 0.0896 0.0775 0.0256

0.5 0.7 0.1936 0.0439 0.1444 0.0087 0.2390 0.0524 0.1766 0.0127

0.5 0.9 0.8054 0.0369 0.6946 0.0070 0.9995 0.0432 0.8499 0.0089

We consider 15 min, 10 min, 5 min and 2 min intraday returns; 5 min returns is the
most popular choice in practice. To avoid the opening bias effects, we skip the first
daily observation which is the common practice to escape from the impact of noisy
overnight quotes. The final sample consists of 3329 days with M = 24, 37, 76 or 193
observations for 15, 10, 5 or 2 min frequency, respectively.

We estimate the intraday IP sm , and calculate the IP correction factors ζ and ξ .
Then we present descriptive statistics for both uncorrected and IP-corrected realized
measures. Finally, we discuss the impact of IP bias in some further realized measures
which are proposed in the literature.

5.1 Estimation of intraday pattern and descriptive statistics

We estimate the IP with the non-parametricWSD estimator of Boudt et al. (2011) and
show them in Fig. 5 with components ŝm normalized such that

∑M
m=1 ŝ

2
m = M . The

IP pattern has a convex U -shape for all considered sampling frequencies. It is high
during morning and afternoon hours and low during the lunch break. In numerical
terms, it is about twice as high during the peak in the morning compared to the trough
in the middle of the day. Hence, in our empirical application for Dow Jones index the
IP estimate approximately corresponds to c1 ≈ 0.7 in our simulation study. However,
the IP curvature could be more pronounced for individual stocks. For example, in
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Fig. 5 Full sample estimated intraday patterns of the Dow Jones index

Table 2 Estimated empirical IP factors with bootstrapped 95% confidence intervals in parentheses

Correction factor 15 min, M = 24 10 min, M = 37 5 min, M = 76 2 min, M = 193

ζ̂ 1.0619 1.0375 1.0190 1.0085

(1.0607,1.0633) (1.0368, 1.0383) (1.0187, 1.0195) (1.0084, 1.0088)

ξ̂M,T P 1.1325 1.0610 1.0036 0.9715

(1.1287, 1.1364) (1.0587, 1.0639) (1.0017, 1.0056) (0.9701, 0.9733)

ξ̂M,QP 1.2283 1.1225 1.0294 0.9829

(1.2236, 1.2332) (1.1199, 1.1258) (1.0275, 1.0315) (0.9815, 0.9845)

ξ̂M,RQ 1.0445 1.0452 1.0501 1.0584

(1.0418, 1.0475) (1.0431, 1.0478) (1.0483, 1.0524) (1.0566, 1.0607)

Christensen et al. (2018) the IP curvature parameter takes values around c1 = 0.60
for some assets from the Dow Jones index.

Given these IP estimates, we calculate the finite M scaling factors for IP bias
correction, all reported in Table 2 with 95% confidence intervals obtained by the
bootstrap procedure with 103 − 1 replications outlined in Dette et al. (2022). The
estimated factor ξ̂M,RQ is larger than one and numerically similar for all sampling
frequencies which corresponds to the evidence of similar patterns in Fig. 5. We also
estimate finite sample corrections for BV , T P , and QP . The correction estimate
ζ̂M for BV gets closer to one with increasing sampling frequencies. The same holds
for other finite M scaling factors so that BV is biased downward. For example, we
get ξ̂M,QP ≈1.23 for 15 min frequency but only ξ̂M,QP ≈1.03 for 5 min frequency
returns. This evidence indicates that the IP bias problem should not be very acute for
the U.S. stock market during the considered period of time.

Next, we provide descriptive statistics of realized estimators. In Table 3 we report
the full sample averages of both uncorrected and IP-corrected realized measures of

123



334 H. Dette et al.

Table 3 Empirical averages of both uncorrected and IP-corrected realized measures

Uncorrected estimators Corrected estimators

Averages of 15 min 10 min 5 min 2 min Averages of 15 min 10 min 5 min 2 min

RV × 10−3 0.0944 0.0971 0.1041 0.0997 RV × 10−3 0.0944 0.0971 0.1041 0.0997

BV × 10−3 0.0840 0.0899 0.0973 0.0955 B̃V × 10−3 0.0892 0.0932 0.0992 0.0963

T P × 10−6 0.0433 0.0465 0.1081 0.2381 T̃ P × 10−6 0.0490 0.0493 0.1085 0.2314

QP × 10−6 0.0316 0.0442 0.0959 0.1919 Q̃P × 10−6 0.0388 0.0497 0.0987 0.1886

(RV − BV )/RV 0.1100 0.0748 0.0749 0.0425 (RV -B̃V )/RV 0.0549 0.0401 0.0472 0.0344

daily I V and I Q. The average RV is stable for all sampling frequencies, whereas
the average BV is biased downwards compared to RV even after the IP correction,
however, the corrected BV gets numerically closer to RV . The average values for T P
and QP are almost the same for 15 and 10 min frequencies, but are much higher for
5 min and 2 min returns. Note that there are reported difficulties in estimating I Q
based on frequencies of 5 min or higher (Andersen et al. 2014). Another important
quantity is the average relative component (RV − BV )/RV which, as expected, gets
substantially smaller with the IP-bias corrected B̃V both for all sampling frequencies.

5.2 Discussion and further extensions

Our study is primarily focused on the popular realizedmeasures which are widely used
in practice. Recently, there have been much developments in estimation of I V and
I Q based on high frequency observations. In particular, we would like to mention the
robust threshold power variations (Corsi et al. 2010), the minRV and medRV estima-
tors (Andersen et al. 2012), and the nearest neighborhood generalizations (Andersen
et al. 2014). Moreover, in order to mitigate MMN-problems which arise by using ultra
high frequency returns, several noise robust methods have been developed, as e.g. the
pre-averaged BV (Podolskij and Vetter 2009), pre-averaged threshold RV (cf. Aït-
Sahalia and Jacod 2014), or pre-averaged threshold BV (Christensen et al. 2014). The
IP bias problem is also present for some of these more advanced realized measures as
it could be shown by a simpleMonte Carlo simulation exercise. To illustrate this point,
we plot the IP-biases for minRV and medRV measures of Andersen et al. (2012) in
Fig. 2 and observe that they are even larger than for the original BV estimator. The
same argument applies to the minRQ and medRQ measures of I Q which are elabo-
rated by Andersen et al. (2014). Of course, the IP-correction factors should be newly
derived for each particular measure, however, this challenging task is beyond the scope
of our paper and is left for future research, as e.g. the task of deriving IP correction
factors for realized portfolio weights (Golosnoy et al. 2019, 2020, or Golosnoy and
Gribisch 2022). The impact of IP on these additional estimators is investigated in the
follow-up paper of Dette et al. (2022).

6 Summary

Availability of intraday high frequency returns on risky assets allows construction
of precise realized estimators such as realized volatility (RV ) and bipower variation
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(BV ) which are commonly applied for estimation of daily integrated volatility (I V ),
or tri-power (T P) and quad-power (QP) variations which are serving as measures for
daily integrated quarticity (I Q).

In this paper we investigate the impact of intraday periodicity (IP) on the finite sam-
ple properties of these realized measures. For our analysis we assume a discrete time
model for intraday returns on risky assets and postulate a multiplicative deterministic
IP component which is often ofU -shape empirically. For a number of intraday returns
M → ∞ the impact of IP is asymptotically negligible, however, we show that the
IP-impact should be taken into account for a practically relevant situation with finite
M . In particular, we prove that finite sample corrections of BV as well as of T P and
QP measures are necessary to obtain valid statistical inferences concerning daily I V .
We derive analytically the factors for IP-correction and analyse their stochastic prop-
erties. Our results are illustrated by means of a Monte Carlo simulation study for both
constant and stochastic intraday volatility models. Finally, we evaluate IP correction
factors empirically for daily I V of the Dow Jones Industrial Average Index.
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Appendix

Proofs

Proof of Proposition 1 Note that the statement for RVt is obvious and consider only
BV t = π

2

∑M
m=2 |rt,m ||rt,m−1| to simplify calculations and noting that E[BVt ] =

M
M−1 E[BV t ]. We use the fact that E[|X |] = √

2/π σ if X is a centered normal
distributed random variable with variance σ 2, which implies

E[BV t ] = σ 2
t

M

M∑
m=2

smsm−1 = σ 2
t

∑M
m=2

[
g
( m
M

)
g
(m−1

M

)]1/2
∑M

m=1 g
( m
M

) = σ 2
t (1 − RM ),
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where the term RM is given by

RM =
g
( 1
M

)+∑M
m=2 g

( m
M

)1/2 (
g
( m
M

)1/2 − g
(m−1

M

)1/2)
∑M

m=1 g
( m
M

) .

We assume that g is continuously differentiable, therefore g and g′ are continuous
and Riemann integrable on the interval [0, 1], and also Lebesgue-integrable. Hence,
the squares of g and g′ are Riemann integrable as well because the squares are also
continuous. Then we obtain by the mean value theorem

RM =
1
M

∑M
m=2 g

( m
M

)1/2 (
g1/2

)′
(ψm) + g

( 1
M

)
∑M

m=2 g
( m
M

) ,

whereψm ∈ (m−1
M , m

M ),m = 2, . . . , M . Consequently, using the fact that (g1/2(x))′ =
1
2

g′(x)
g1/2(x)

and an approximation of the sums by a Riemann integral it follows that

M · RM =
(
1

2

∫ 1
0 g′(x)dx∫ 1
0 g(x)dx

+ g(0)∫ 1
0 g(x)dx

)
· (1 + o(1)) ,

which proves the statement (A) of Proposition 1.
For the statement (B) in order to compute Var(BVt ) we first look at E(BVt )2,

setting rt,m = rm for notation simplification. We have

E[(BV t )
2] = π2

4
E

⎡
⎣ M∑
m1=2

M∑
m2=2

|rm1 ||rm1−1|]|rm2 ||rm2−1|
⎤
⎦

(E[BV t ])2 =
[

σ 2
t

M

M∑
m=2

smsm−1

]2
= σ 4

t

M2

[
M∑

m=2

smsm−1

]2
.

As the random variables rm are independent, the double sum contains three types of
non-vanishing expectations

E(|r2m1
||r2m1−1|) = σ 4

t

M2 s
2
ms

2
m−1,

E(|rm1 ||r2m1−1||rm1−2|) =
√
2σ 2

t

πM
s2m1

σ 2
t

M
s2m1−1

√
2σ 2

t

πM
s2m1−2 = 2σ 4

t

πM2 sm1s
2
m1−1sm1−2,

E(|rm1 ||rm1−1||rm2 ||rm2−1|) = 4σ 4
t

π2M2 sm1sm1−1sm2sm2−1.
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This yields

Var(BV t ) = π2

4

σ 4
t

M2

⎧⎨
⎩

M∑
m1=2

s2ms
2
m−1 + 4

π

M∑
m1=3

sm1s
2
m1−1sm1−2

+ 4

π2

M∑
m1=2

M∑
m2=2︸ ︷︷ ︸

|m1−m2|>1

sm1sm1−1sm2sm2−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

− σ 4
t

M2

[
M∑

m=2

smsm−1

]2
.

Observing the definition of s2m in (8), we get

Var(BV t ) = π2

4

σ 4
t

M2g2M

⎧⎨
⎩(1 − 4

π2 )

M∑
m1=2

g
(m1

M

)
g

(
m1 − 1

M

)

+ 4

π

(
1 − 2

π

) M∑
m1=3

{
g
(m1

M

)}1/2
g

(
m1 − 1

M

){
g

(
m1 − 2

M

)}1/2⎫⎬
⎭ ,

which proves the first assertion regarding the variance of BV t . The approximation
(9) finally follows by interpreting the sum as approximations of a Riemann integral.
The expressions for the variance Var(RVt ) and the covariance Cov(RVt , BV t ) are
obtained by similar arguments. However, we omit them for the sake of brevity. There-
fore, the statement (B) of Proposition 1 follows. ��

Proof of Proposition 2 Recall the definition of QPt in (2) and (8), then

E[QPt ] = M
π2

4

{
M∑

m=4

E
[|rm−3|

]
E
[|rm−2|

]
E
[|rm−1|

]
E [|rm |]

}

= σ 4
t

M

M∑
m=4

sm−4sm−2sm−1sm

= σ 4
t

M
(gM )−2

M∑
m=4

[
g

(
m − 3

M

)
g

(
m − 2

M

)
g

(
m − 1

M

)
g
( m
M

)]1/2
.

Thenweget limM→∞ E[QPt ] = σ 4
t ξ/M (1+o(1))which follows again by aRiemann

integral. The statement for RQ is obtained by analogy.
Next, consider T Pt defined in (3) and observe that E[|Z |4/3]/σ 4/3 = μ4/3 =

22/3π−1/2
(7/6) if Z is a centered normal distributed random variable with variance
σ 2. This yields observing (8)
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E[T Pt ]=Mμ−3
4
3

M∑
m=3

{
E
[
|rm−2| 43

]
E
[
|rm−1| 43

]
E
[
|rm | 43

]}
= σ 4

t

M

M∑
m=3

s
4
3
m−2s

4
3
m−1s

4
3
m

= σ 4
t

M
(gM )−2

M∑
m=3

[
g

(
m − 2

M

)
g

(
m − 1

M

)
g
( m
M

)]2/3
.

The statement limM→∞ E[T Pt ] = σ 4
t ξ/M (1+ o(1)) completes the proof of Propo-

sition 2. ��
Proof of Theorem 1 It follows from Proposition 2 that

V (BVt ) = σ 4
t

M

(
π2

4
+ π − 3

)
ξ · (1 + o(1)),

V (RVt ) = 2
σ 4
t

M
ξ · (1 + o(1)),

Cov(RVt , BV ) = 2
σ 4
t

M
ξ · (1 + o(1)),

where ξ = ∫ 1
0 g2(x)dx

/(∫ 1
0 g(x)dx

)2 ≥ 1 by the Cauchy–Schwarz inequality.

Therefore, Theorem 1 is a consequence of a straightforward application of a central
limit theorem for triangular arrays of m-dependent random variables (Romano and
Wolf 2000) and the Cramer–Wold device. ��
Proof of Proposition 3 Recall the definition of ŝm in (14), then we obtain the represen-
tation

ŜM =
(
ŝ21 , . . . , ŝ

2
M

)� = g1(ŜDM,T ) ,

with ŜDM,T = (ŜD
2
1,T , . . . , ŜD

2
M,T )� defined by (14), and the function g1 :

R
M → R

M is given by

g1(x) = (g11(x), . . . , g1M (x))� = M∑M
m=1 xm

(x1, . . . , xM )� . (27)

Let

g′
1(x) = M∑M

m=1 xm

{
IM − 1∑M

m=1 xm
(x1, . . . , xM )�1�

M

}

denote the derivative of g1 whereby IM is the M × M identity matrix, then, by (16),
it follows that

lim
T→∞ g′

1(SDM,T ) = M

σ 2 IM − 1

σ 2 SM1�
M , (28)
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where SM = (s21 , . . . , s
2
M )� and we have used the fact that

∑M
m=1 SD

2
m,T = σ 2

T →
σ 2. Now a componentwise Taylor expansion gives

√
T
(
g1(ŜDM,T ) − g1(SDM,T )

) = g′
1(SDM,T )

(
ŜDM,T − SDM,T

)+ �M,T .(29)

The components of the vector �M,T = (�1,T , . . . ,�M,T )� are given by

�m,T = √
T
(
ŜDM,T ) − SDM,T

)� ∇2g1m(
(1 − ψm)ŜDM,T + ψmSDM,T

) (
ŜDM,T − SDM,T

)
,

where ∇2g1m denotes the Hessian matrix of the m-th component g1m of the function
g1 and ψm ∈ (0, 1) is an intermediate point, m = 1, . . . , M . By (17) and (16) we
have

lim
T→∞SDM,T = σ 2

M
SM and lim

T→∞ ŜDM,T = σ 2

M
SM in probability ,

and �m,T = OP (1/
√
T ). Note that g′

1 and ∇2g1m are continuous at the point σ 2

M SM ,
m = 1, . . . , M . Consequently, it follows from (28), (29) and (17) that

√
T

((
ŝ21 , . . . , ŝ

2
M

)� −
(
s21 , . . . , s

2
M

)�)

= √
T
(
g1(ŜDM,T ) − g1(SDM,T )

) L−→ N (0, �1) , (30)

where the M × M matrix �1 is given by

�1 = M2� − M
(
SM1�

M� + �1MS�
M

)
+ 1�

M�1MSMS�
M .

Now note that ξ̂M = g2(ŜM ), where the function g2 : R
M → R is defined by

g2(x) = 1

M

M∑
m=1

x2m .

Observing that ∇g2(x) = 2
M (x1 . . . , xM ) assertion (18) follows by the Delta-method,

where a straightforward calculation yields the limiting variance in (20). Similarly, (19)
is obtained observing that ζ̂M = g3(ŜM ), where the function g3 : R

M → R is defined
by

g3(x) = 1

M

M∑
m=2

√
xmxm−1 ,

∇g3(x) = 1

2M

(√
x2√
x1

,

√
x1 + √

x3√
x2

, . . . ,

√
xM−2 + √

xM√
xM−1

,

√
xM−1√
xM

)�
.
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Finally, if � is a diagonal matrix as specified in Proposition 3 the formulas (22) and
(23) follow by a direct calculation which completes the proof of Proposition 3.

Moreover, the arguments provided in this proof show that the result of Proposi-

tion 3 would remain correct for any estimator
(
ŝ21 , . . . , ŝ

2
M

)�
, for which an asymptotic

normality in the sense (30) can be established. However, the limiting variances τ 21 and
τ 22 may change as they depend on the specific form of the estimator. ��

Implementation of theWSD estimator

In the following we outline the implementation of the WSD estimator as in Boudt
et al. (2011). Let m ∈ {1, . . . , M} be a fixed intraday interval and compute the returns
xt,m = rt,m/σ̂t where σ̂ 2

t is the BV measure. Next, consider the T order statistics
x(1),m ≤ x(2),m ≤ · · · ≤ x(T ),m . Let hT = �T /2� + 1. We first calculate SHm =
0.741 · min(x(hT ),m − x(1),m, . . . , x(T ),m − x(T−hT +1),m) and then

ŝSHm = SHm√
1
M

∑M
j=1 SH

2
j

.

The WSD estimates are then given by

ŝm = WSDm√
1
M

∑M
j=1 WSD2

j

with WSDj =
√√√√1.081 ·

∑T
t=1 wt, j x2t, j∑T
t=1 wt, j

.

The weights are given by wt, j = θ(xt, j/ŝSHm ) and the weight function is θ(z) =
1(z2 ≤ 6.635) where 1(·) denotes the indicator function.
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