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Abstract

We consider a linear measurement error model (MEM) with AR(1) process in the
state equation which is widely used in applied research. This MEM could be equiva-
lently re-written as ARMA(1,1) process, where the MA(1) parameter is related to
the variance of measurement errors. As the MA(1) parameter is of essential impor-
tance for these linear MEMs, it is of much relevance to provide instruments for
online monitoring in order to detect its possible changes. In this paper we develop
control charts for online detection of such changes, i.e., from AR(1) to ARMA(1,1)
and vice versa, as soon as they occur. For this purpose, we elaborate on both cumu-
lative sum (CUSUM) and exponentially weighted moving average (EWMA) con-
trol charts and investigate their performance in a Monte Carlo simulation study. The
empirical illustration of our approach is conducted based on time series of daily
realized volatilities.
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1 Introduction

The class of measurement error models (MEMs) is of much importance in numerous
empirical settings (Durbin and Koopman 2009; Hamilton 1994a). A standard MEM
is a system of linear equations, where state equations describe dynamics of latent
variables and measurement (observation) equations relate observable and latent
variables via measurement errors. In this paper we consider popular linear MEMs
which are bivariate linear state-space systems with only one observation equation,
whereby the single state equation is an AR(1) process with iid innovations (cf.
Hamilton 1994; Brockwell and Davis 2009). Under stationarity assumption, such
MEM processes can exhibit a broad variety of autoregressive dynamics. Its essential
characteristic is the ratio of the state innovation variance to the measurement error
variance which determines the usefulness of a MEM representation for a particular
application compared to a simple AR(1) alternative (cf. Kim and Nelson 1999; Tsay
2010; Bollerslev et al. 2016).

In this paper we focus on sequential (online) monitoring of possible changes in
this variance ratio, which—to the best of our knowledge—has not been done in the
current literature up to now. Our primer aim is to detect a change of the MEM to
AR(1) or vice versa as soon as it occurs. For these purposes, we re-write the MEM
under consideration equivalently as an ARMA(1,1) specification. In case of negligi-
ble measurement errors, ARMA(1,1) reduces to AR(1) model, so that our task is to
detect alterations in the MA(1) part. Hence, we show that monitoring of the MEMs
is equivalent to monitoring of changes from ARMA(1,1) to AR(1) and vice versa.
Sequential monitoring of parameter changes in autoregressive models has been con-
sidered already in the early papers of Schmid (1997), Lu and Reynolds (2001); a
comprehensive literature review is given by Okhrin and Schmid (2008) who discuss
various aspects of monitoring changes in parameters of linear time series models.
The literature dealing with the sequential monitoring of ARMA model parameters,
however, is mostly concentrated on detection of changes in the means, see e.g., Jiang
et al. (2000), Rabyk and Schmid (2016), Lazariv and Schmid (2019), Golosnoy and
Seifert (2021), with a remarkable exception of Rosolowski and Schmid (2006) who
elaborate tools for monitoring of the whole autocovariance function of a stationary
ARMA(1,1) process.

For online monitoring changes in the MA(1) parameter, we apply control charts
which are the instruments (decision rules) borrowed from statistical process control
for the purpose to detect changes in the parameters of the process of interest as soon
as they occur (cf. Montgomery 2013). In particular, we consider both exponentially
weighted moving average (EWMA) and cumulative sum (CUSUM) control charts
which are the most popular monitoring procedures in practice. The control statistics
suitable for our monitoring task are derived based on the ideas of the statistical test-
ing approach recently developed by Golosnoy et al. (2021) for the class of linear
state space models. We investigate the detecting ability of these control charts for
MA(1) parameter changes in an extensive Monte Carlo simulation study. We find
that the EWMA charts with the smoothing (memory) parameter A = 0.01 provides
the quickest detection for the zero-state average run length, whereas A = 0.1 for the
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Control charts for measurement error models 695

conditional steady-state average run length criterion. These findings are in line with
the results in Morais et al. (2015). Moreover, we provide an empirical illustration by
monitoring daily realized volatility models for the major world indices of financial
stock markets. The timing of signals from both EMWA and CUSUM charts allows
the following economic interpretations: the AR(1) model appears to be more suit-
able for the crisis periods on financial markets with a high speed of information
transfer, where the ARMA(1,1) suits better for the (comparatively) calm periods.

The rest of the paper is organized as follows. In Sect. 2 we introduce a MEM with
AR(1) process in the state equation, and show that it could be equivalently written
as an ARMA(1,1) process. Hence, monitoring for changes in the MEM is equivalent
to monitoring for changes of the MA(1) parameter. We also introduce the control
statistic which is suitable for our monitoring purposes. In Sect. 3 we propose both
CUSUM and EWMA control charts for sequential (online) monitoring of changes
in the MA(1) parameter. The detection performance of the control chart is evaluated
in the Monte Carlo simulation study in Sect. 4. In Sect. 5 we provide an empirical
application of the proposed control charts for monitoring the process of daily log
realized volatility, as well as discuss directions for further research. Section 6 con-
cludes the paper, whereas the proofs are placed in the Appendix.

2 The measurement error model

Assume the following common measurement error model (MEM) representation for
the de-meaned observable variable y,:

Y =5, +u, u, ~ Niiq (0, ‘73)’ 05 >0, (H

St :¢St_1 + 6‘,, €t ~ Nlld (0, O-ez), O'Z > 0, (2)

where the latent state variable s, exhibits an AR(1) dynamics so that we remain
within the class of Markov processes; i, is the Gaussian measurement error, ¢, is the
Gaussian innovation error with u, independent on ¢, for all ¢, s. Eq. (1) is referred to
as the measurement (observation) equation and (2) is known as the state equation.
The MEM stationarity condition is given by |¢| < 1, hereafter we focus on ¢ € (0, 1)
(without loss of generality) which is the case in the majority of applications.

The essential characteristic of this MEM is the variance ratio 05 / 03. In case when
63 / af — 0 the measurement error gets negligible and the system boils down to an
AR(1) equation. In case when 65 is not negligible, one should apply the MEM. For
a given data generating process our research question is whether a MEM is indeed
required for modeling y,-dynamics or the measurement error is negligible so that
a simple AR(1) model could be used? This issue is of much empirical relevance
because AR(1) models are much easier to handle compared to MEMs.

For the purposes of our analysis we re-write the MEM in Eqs. (1)—(2) in the form
of an equivalent ARMA(1,1) representation which parametrization is provided in
the next proposition.
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696 V. Golosnoy et al.

Proposition 1 Let y, follow a MEM, parameterized in (1) and (2) with an AR(1)
parameter ¢ € (0, 1) and Gaussian iid innovations u, and €,, with u, independent on
€, for all t, s. Then the distribution of the MEM process given in (1) and (2) is equiv-
alent to the distribution of an ARMA(1,1) process given by

Vi =¢y_+a,+0a,,, a; ~ Niid o, 62)’ 3)

with the parameters 6 € (—1,0) and 0'2 > 0 which are given as the following func-
tions of the MEM parameters

0'5 =— (bO‘i/G, 4)

2 2 2 2 2 2y712
:_6€+O'u(1+¢) [a€+au(1+d)) L )

2¢c2 2¢0?

Hence, in case ofoﬁ — 0 it holds that 0 — 0 and 0'5 = 0'62, i.e., ARMA(1,1) reduces
to AR(1) model.

As we are interested in monitoring whether the MA(1) part of the MEM is
of relevance, we define the variable x, in an intermediate step by removing the
AR(1) part:

X =y, —¢y,_,=¢€+u—du,_, =a,+0aqa,,. 6)
Since x, is an MA(1) process, its autocovariance function is then given as

Var (x,) =67 + 0-(1 + ¢*) = 62 (1 + 6%),
Cov (x,,x,_y) = —02¢p = 020, (7
Cov (x,,x,_,) =0 for 7 >2.

In order to differentiate between AR(1) and ARMA(1,1) one should monitor for pos-
sible shifts in the MA(1) parameter # which is of pivotal for our study. As we observe
in (7), the MA(1) parameter ¢ influences linearly the covariance Cov (x,,x,_,). For
this reason we introduce another variable v, defined as

XX

Vv, = . (8)

o2
a

Next, by making use of the ideas and the results in Golosnoy et al. (2021) we derive
the moments of v, which is given in the following proposition.

Proposition 2 For the ARMA(1,1) representation of the MEM model given in (3)
with the innovations a, ~ Ny, (0, 0'2), the moments of v, = x,x,_, /62 are given by

E(v,) =0, )
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Control charts for measurement error models 697

Var (v,) =1 +36° + 6*, (10)

Cov (v,,v,_;) =67, and Cov(v,v,_,)=0, for ¢£>2. (11)

As 0 € (—1,0) it holds that Var (v,) € (0,5) and Corr (v,,v,_;) € (0,1/5).

Hence, due to E (v,) = 6, monitoring changes in the mean of v, is equivalent to
monitoring changes in the MA(1) parameter §. We exploit this property in the next
section by applying the popular control charts for monitoring {v, }-process in order to
make online detection of changes in its mean.

3 Control charts for MEMs

The majority of papers dealing with the online monitoring of parameter changes in
ARMAC(1,1) models and their extensions are focused on the detection of changes in
the means (cf. Jiang et al. 2000; Bodnar and Schmid 2007; Golosnoy et al. 2012;
Rabyk and Schmid 2016; Lazariv and Schmid 2019; Golosnoy and Seifert 2021).
A prominent exception from this literature stand is the paper of Rosolowski and
Schmid (2006) where several multivariate EWMA control charts are applied for a
quite general task of monitoring changes in both mean and autocovariances of a sta-
tionary and invertable ARMA(1,1) process.

Compared to the general approach of Rosolowski and Schmid (2006), in this
paper we pursue a more specific task of online monitoring for possible changes in
the MA(1) parameter 6. In general, we define the in-control value of the MA(1)
parameter as 6 = 6, whereas the out-of-control value is 8 = 6, with either 8, > 6,
or 6, < 6,. A signal could be used as an indicator to judge whether the MEM should
be re-calibrated. The particular shifts (special cases) we are eager to detect are,
firstly, from AR(1) to ARMA(1,1) which implies a change from 6, = 0 to some
0, € (—1,0); secondly, shifts from ARMA(L,1) to the direction of AR(1) which
implies a change from 6 = §,, for a given 6, € (—1,0) to § = 0, > 6. In our empiri-
cal application we have also to cover the case with the in-control 8 = 6, € (—1,0)
and the alternative § = 0, € (—1,0) such that §; < 6,. Hence, the direction of shifts
is known under the null hypothesis of no change (the in-control state), so that one-
sided control charts are suitable. Next we introduce modified CUSUM- and EWMA-
type control charts (cf. Okhrin and Schmid 2008) for the purpose of monitoring
mean shifts in the (weakly) autocorrelated process {v,} defined in (8).

3.1 CUSUM charts
The CUSUM charts are well-known monitoring procedures which exhibit some

optimality detection properties. The control statistic of the upper-sided CUSUM
control chart for detecting increases in MA(1) parameter 6, is given by
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698 V. Golosnoy et al.

St =max{0,S"  + (v, — 6y) — 5},

whereby the CUSUM parameter 6 is recommended to be selected as the half of the
shift to detect:

1 1
6= 5 |Bu,0) = By =50 = 6l. (12)

The run length of the upper CUSUM control chart is given by
RL* =inf{t € N | S} > R} Vary(v)'/?},

with the in-control variance of v, given as Vary(v,) =1 +39§ +03. The upper
control limit h; is selected such that it provides a pre-defined in-control average
run length (ARL). We use the headstart feature which is also known (cf. Lucas
and Crosier 1982) as the fast initial response (FIR), and set the starting value as
S(J)r = h; Var,(v,)!/? /2.

The lower-sided CUSUM chart for detecting decreases in 6, € (-1, 0) is defined
by analogy via the statistic

ST =min{0,S_, + (v, — 0y) + 6},
with the run length of the lower CUSUM chart given by
RL™ =inf{r € N | ST < h; Vary(v)'/?},

where hg is the lower control limit.

3.2 EWMA charts

The EWMA control charts are very popular in practice because of their simple
design and good detecting properties. The EWMA control statistic Z, for monitoring
mean changes in {v, }-process is given by

t—1
Z,= A0, = 0) + (1= NZ,_, = (1= D'Zy+ 4 3.(1 = Y (v, — ),
j=0

Z():O,ZZI,

with a smoothing parameter A € (0, 1]. The value A =1 leads to the no-memory
Shewhart control chart.
The run lengths of the upper and lower EWMA control charts are given as

RL* =inf{r € N | Z, > h¥ Vary(Z)"/?},
RL™ =inf{t € N | Z, < h; Vary(Z)'/?},

where Var((Z,) is the in-control variance of statistic Z,. Its exact expression is given
by
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Control charts for measurement error models 699

Var(Z,) = ﬁ [(1 =1 =™ 4367+ 07 +2(1 — H(1 — (1 = D)7,
(13)

with the derivation provided in the Appendix. For  — oo, the exact variance con-
verges to the limit value

. A
lim Vary(Z) = 53— [(1+36; +65) +2(1 — 1)6;). (14)

Further in our analysis we use the exact variance of the EWMA statistic given in
(13).

4 Monte Carlo simulations

In this section we evaluate the ability of the CUSUM and EWMA charts to detect
changes in the MA(1) parameter 6. For this purpose we investigate the performance
of the CUSUM and EWMA control schemes in a Monte Carlo simulation study. In
particular, we simulate x, directly as an MA(1) process:

Oga,_; +a,, for t<1 .

X, = - ’ with a, ~ N...(@0,]1).

! { 0,a,_, +a, fort>1 o~ Nia 0,1)

The in-control value of the MA parameter is denoted by 6,. A change occurs at

¢t = 1 such that the MA parameter shifts to its out-of-control value 6,. We investigate

two out-of-control settings which are mostly relevant for our analysis, namely the
situations:

i 6,=0, 6, =—-1/2,i.e., shift from AR(1) to ARMA(1,1), an upper-side control
chart applicable;

(i) 6,=-1/2, 6, =0, i.e., shift from ARMA(1,1) to AR(1), a lower-side control
chart applicable.

The recommendation for the choice of the CUSUM chart parameter is to select 6
as the half of the shift one is eager to detect. As in our design the absolute size of
shifts in 8 in both directions is 1/2, we select the CUSUM parameter § = 1/4 in the
Monte Carlo simulations. Concerning the choice of the EWMA smoothing param-
eter A we consider different values from the interval [0.01, 1], as it is recommended
by Lazariv et al. (2015) because even smaller A values could lead to numerical insta-
bilities. Note that all these parameter values are common advices from the literature,
the optimal choice of control chart parameters depends on the selected performance
measure, the distribution of the control statistic as well as on the size of the actual
shift which is (typically) unknown in applications.

Unfortunately, the exact distribution of our control statistic is unknown so we
cannot provide theoretical control limits even for the simplest no-memory control
charts. In general, for memory control charts (CUSUM and EWMA) it is not pos-
sible to get exact theoretical control limits, so that numerical methods should be
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700 V. Golosnoy et al.

applied. The path of the process {x,} is simulated B = 10° times, then the process
{v,} is computed as in (8). For a given control chart, we obtain the run lengths
RL® for the repetitions b = 1, ..., B, so the Average Run Length (ARL) is esti-
mated by

B
ARL = (1/B) - > RL®.
b=1

In order to get control limits for the control charts, we first simulate the process
without any change and compute control limits which provide the in-control ARL
equal to ARL, = 100. Afterwards, we evaluate the detecting ability of the charts
under considerations by comparing them with respect to the out-of-control ARLs
denoted by ARL, where the changes in the MA(1) parameter occurs immediately at
t = 1, which is also known as the zero-state ARL (cf. Montgomery 2013). Moreo-
ver, we report the out-of-control conditional steady state (ss) ARL (cf. Knoth 2021)
which is defined as ssARL = E (RL — m + 1|RL > m) for a change at m > 1, i.e., no
false alarms until time point m. In our application we select m = 51; of course, the
choice m = 1 corresponds to the zero-state ARL. The results of the Monte Carlo
simulations are summarized in Table 1.

The speed of detecting changes in the MA(1) parameter is measured by out-
of-control ARLs. The results in Table 1 indicate that the CUSUM chart detects
changes rather slowly compared to the in-control ARL 100, namely the out-of-
control (zero-state) ARL is 12.83 for the shift from ARMA(1,1) to AR(1) and
14.60 for the shift from AR(1) to ARMA(1,1). The no-memory Shewhart control
charts (i.e., the EWMA charts with A = 1) are even worse with the out-of-control
ARLSs 36.96 and 22.39, respectively. Applying the EWMA charts with smaller
A-values leads to substantial decrease in the out-of-control ARLs. The conven-
tional choice A = 0.1 provides the out-of-control ARLs 13.69 and 13.38 which
are comparable with those from the CUSUM charts. However, a further decrease
in A to the value 4 = 0.01 provides 7.06 and 6.77, respectively, which are almost
twice lower than the out-of-control ARLs for the corresponding CUSUM charts.
Hence, the CUSUM monitoring schemes are clearly not optimal for our setting
with respect to the out-of-control ARL criterion. Note that a further reduction of
4 could lead to numerical problems as it is discussed by Lazariv et al. (2015) and
Morais et al. (2015).

Concerning the results for the conditional steady-state ssARL it is worth to note
that sSARL > ARL, for the small values of A, moreover, the smallest ssARL are
achieved for 4 = 0.1 (15.94) for the shift to AR(1) and for 4 = 0.1 (16.02) for the
shift to ARMA(1,1). For 4 = 1 (i.e., the no-memory Shewhart chart) we observe
that ssARL =~ ARL, which also holds for A = 0.7 and 4 = 0.85. Although ssARLs
for the CUSUM are larger than ARL;s, the former get more comparable with the
smallers ssARLs for the EWMA charts. Hence, for the steady-state ARL criterion
the CUSUM chart remains a sound alternative to the EWMA procedures. These
detection results are not surprising as we are focused on the detection of quite small
shifts compared to the in-control variance of the underlying (monitored) process, see
Proposition 2.
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5 The empirical application

We apply the control charts for monitoring changes both from AR(1) to
ARMAC(1,1) and from ARMA(1,1) to AR(1) for the series of daily log realized
volatility measures. The family of nonlinear GARCH models (cf. Tsay 2010) are
typically applied to daily asset returns on financial risky assets in order to assess
conditional heteroskedasticity and volatility clustering phenomenon. Time series
models which exploit realized volatility measures based on intraday (high-fre-
quency) information serve to the same purpose. Such time series models [e.g.,
those of Corsi (2009) and its further modifications] are widely used nowadays as
realized volatilities are believed to be more precise measures of the true volatility
compared to squared daily returns which are exploited in GARCH-type models.

Realized volatilities are consistent estimators of the true daily integrated
volatilities under fairly general regularity conditions (cf. Barndorff-Nielsen and
Shephard 2002). Hence, realized volatility measures would converge in probabil-
ity to the true daily integrated volatilities when the number of intraday observa-
tions is very large. Empirically, however, measurement errors appear be present
in realized volatility series as the number of observations per day is finite. The
daily volatility model with measurement errors in realized volatilities is discussed
e.g., by Bollerslev et al. (2016) in their Section 2.2. In particular, they argue “The
consistency of realized volatility for integrated volatility estimation, coupled with
the fact that the measurement error is serially uncorrelated under general condi-
tions, motivate the use of reduced form time series models for the observable
realized volatility as a simple way to forecast the latent integrated volatility of
interest.” It is much related to our setting, in particular, the AR(1) dynamics of
the state variables corresponds to Eq. (6) in Bollerslev et al. (2016) and origi-
nates—to the best of our knowledge—from the stochastic volatility literature (cf.
Jacquir et al. 1994).

The log transformation of realized volatilities is a commonly applied procedure
for their time series modeling as it provides a distribution which is more sym-
metric and closer to normality (cf. Andersen et al. 2001). Hence, we extend the
online monitoring approach of Golosnoy et al. (2012) where the aim is to detect
changes in the mean of an ARMA(1,1) model for daily log realized volatilities.

We consider daily realized volatility time series of three important stock mar-
ket indices S&P500 (SPX), DAX 30 (GDAXI), and Nikkei 225 (N225) which are
obtained from the Oxford-Man Institute’s realized library (cf. Heber et al. 2009). The
data covers the period 2002-2019. For estimation purposes we consider the observa-
tions in 2002-2006 as the in-sample period which is a (comparatively) ‘calm’ time
period on financial markets before the start of the financial crisis in 2007, whereas
the remaining years 2007-2019 form the out-of-sample period. Hence, our sample
ends before the outbreak of Covid-19 pandemic situation which has dramatically
influenced the financial markets world-wide at the beginning of 2020.

We represent daily log realized volatilities denoted by RV, by means of a mul-
tiplicative volatility component model (cf. Engle and Sokalska 2012) which has a
convenient property to be additive in logs:
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Control charts for measurement error models 703

RV, =RV, +y, (15)

where RV , is the long-term (possibly non-stationary) component and Yy, is the
remaining short-memory part which is of our interest. Next, we filter out the long-
term component RV, by the exponential smoothing

RV,=yRV,_, +(1 —y)RV,_,, with  y = 0.05, (16)

in order to extract the short-term component y,. The value y = 0.05 reflects the
impact of new information and is the empirically recommended value for the expo-
nential smoothing approach (cf. Golosnoy et al., 2019). For the initialization, we set
RV equal to the long-run average of RV,, so the mean of y, is zero.

For the extracted process {y,} we estimate by the maximum likelihood approach
both AR(1) or ARMA(1,1) models based on the in-sample period 2002-2006, as
well as based on the full sample. We report the estimates in Table 2 together with
the AIC and BIC goodness-of-fit measures. Note that all series are clearly station-
ary. Based on the AIC/BIC criteria, the ARMAC(1,1) is preferred over AR(1) for all
three time series which indicates on the presence of measurement errors, in line with
the findings of Bollerslev et al. (2016). The parameter estimates from the in-sample
period are very similar to those obtained from the full sample which is an indicator
that the in-sample period provides a good representation of the complete sample.

Then we compute x, and v, series as discussed in Sect. 2 for either AR(1) or
ARMAC(1,1) model estimates both in sample and out of sample. Based on the pro-
cess {v,}, we apply the CUSUM and EWMA control charts presented in Sect. 3.
The normality assumption used in the Monte Carlo simulations is usually rejected

Table 2 Parameter estimates for AR(1) and ARMA(1,1) models for y,-processes

~

Index, model b ) 62 AICN0? BIC/10?

a

In sample parameter estimates, 2002-2006

S&P500, AR(1) 0.556 - 0.420 6.441 6.454
S&P500, ARMA(1,1) 0.818 —-0.401 0.398 6.271 6.289
DAX30, AR(1) 0.485 - 0.297 5.358 5.370
DAX30, ARMA(1,1) 0.827 —-0.479 0.281 5.175 5.194
Nikkei225, AR(1) 0.510 - 0.334 5.542 5.554
Nikkei225, ARMAC(L,1) 0.795 —0.405 0.320 5.406 5.424

Full sample parameter estimates, 2002-2019

S&P500, AR(1) 0.522 - 0.378 8.434 8.447
S&P500, ARMA(L,1) 0.824 —0.441 0.357 8.175 8.195
DAX30, AR(1) 0.467 - 0.291 7.328 7.341
DAX30, ARMA(1,1) 0.828 —0.497 0.276 7.089 7.109
Nikkei225, AR(1) 0.500 - 0.302 7.211 7.224
Nikkei225, ARMA(L,1) 0.796 -0.419 0.289 7.031 7.050

All estimates are statistically different from zero at 1% level
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by empirical modeling of log realized volatilities (cf. Golosnoy et al. 2012). This
happens in many situations due to outliers which lead to undesired false signals.
In order to reduce the number of false signals in the empirical study we select the
control limits such that they provide a more conservative in-control ARL value 200
which corresponds to around 16 false signals for the in-control state for the monitor-
ing period 2007-2019 with ca. 3300 daily observations. We apply both upper and
lower control charts for monitoring ARMA(1,1) processes, whereby for monitoring
AR(1) processes we apply only the lower-sided charts. For the EWMA charts we set
the smoothing parameter A = 0.01. For the lower-sided CUSUM for the in-control
AR(1) we set 6 = 1/4 as the half of change from 6, = 0to 8, = —1/2, see (12). For
the CUSUM charts with the in-control ARMA(1,1) we select the parameter 6 in a
data-driven way. In particular, for the estimated ARMA(1,1) parameters ¢ and § we
choose § = —6 /2 for the upper CUSUM charts for detection of changes from AR(1)
to ARMA(1,1) and set 6 = (8 — ¢)/2 for the lower CUSUM charts for detection of
changes in @ to the direction further away from AR(1) to the boundary value —g.
Given AR(1) or ARMAC(1,1) estimates obtained either from in sample or from full
sample, and the pre-selected parameters of the control charts, we compute the con-
trol limits for the in-control state by a Monte Carlo simulation with 109 replications.
Then we apply the control charts by making a re-start after each obtained signal.

In Table 3 we provide the number of empirical reject signals for monitoring both
AR(1) and ARMA(1,1) models. Concerning monitoring validity of the AR(1) model
in Table 3 (the upper block), the number of signals from the EWMA charts is much
higher than from the CUSUM charts for all three financial markets, as it is also
expected from our Monte Carlo results. The obtained number of signals for S&P500
index is much higher than for DAX 30 and Nikkei 225. Remarkably, there is no
much difference for the number of signals for the in sample and full sample param-
eter estimates. Note that our results based on the full-sample estimate provide a kind
of Phase I analysis for the period 2007-2019. In general, the number of obtained
signals from the CUSUM charts is at least three times higher than it can be expected
in control. This indicates on the evidence that the simple AR(1) approach is not suf-
ficient for the modeling purposes of the short-run component of realized volatility
and the addition of the MA(1) component could be useful.

The number of signals by monitoring validity of the ARMA(1,1) models in
Table 3 (the lower block) is more balanced for the CUSUM and EWMA charts. The
rejects of ARMA(1,1) by the upper control charts are the support for a change in
the direction of AR(1) alternative, whereas the rejects of ARMA(1,1) by the lower
charts are in favor of a more pronounced MA(1) component. As it is to expect, the
number of signals from the lower charts for monitoring ARMA(1,1) is in all cases
smaller than from the lower charts for AR(1) monitoring. Concerning the upper
control charts, there are about twice more signals than expected for S&P500 and
DAX30, whereas the number of signals for Nikkei225 roughly corresponds to the
in-control expectations. This points on the evidence that ARMA(1,1) provides a fair
time series modeling for Nikkei225 during the considered period of time.

To illustrate the signal timings we provide in Figs. 1, 2, and 3 the dates of the
control charts alarms for S&P500, DAX 30, and Nikkei 225, respectively. EWMA
signals are depicted as red points, whereas CUSUM signals as blue points. The
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Fig. 1 Signals for S&P500: EWMA (red), CUSUM (blue) with charts based on in sample (left) and full
sample (right) parameter estimates (colour figure online)

GDAXI: AR(1), lower CC GDAXI: AR(1), lower CC

2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020

GDAXI

ARMA(1,1), upper CC

GDAXI: ARMA(1,1), upper CC

2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020
GDAXI: ARMA(1,1), lower CC GDAXI: ARMA(1,1), lower CC

2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020

Fig.2 Signals for DAX 30: EWMA (red), CUSUM (blue) with charts based on in sample (left) and full
sample (right) parameter estimates (colour figure online)

upper plots show the signals for in-control AR(1) and out-of-control ARMA(I,1),
the middle plots for the in-control ARMA(1,1) and out-of-control changes in AR(1)
direction, whereas the lower plots the in-control ARMA(1,1) and out-of-control
in the direction of a more pronounced ARMA(1,1) model with an MA(1) param-
eter closer than in control to the boundary value —¢. Hence, in the upper plots we
confront the rejects of AR(1) whereas in the middle and lower plots the rejects of
ARMA(1,1) models.

We observe for all panels that the timing of signals from the CUSUM and
EWMA charts coincide to much extent which is an indicator that both charts do
react on possible shifts in the MA(1) part. Moreover, it is clearly observable that sig-
nals from all charts are clustered in time. In particular, signals from the upper charts
(the middle panel) for a less pronounced MA(1) component are mostly located
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N225: AR(1), lower CC N225: AR(1), lower CC

T T T T T T T T T T T T T T
2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020

N225: ARMA(1,1), upper CC N225: ARMA(1,1), upper CC

@oo 0o o o 0o 6o o o o ®ooo

2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020

N225: ARMA(1,1), lower CC N225: ARMA(1,1), lower CC

T T T T T T T T T T T T T T
2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020

Fig.3 Signals for Nikkei 225: EWMA (red), CUSUM (blue) with charts based on in sample (left) and
full sample (right) parameter estimates (colour figure online)

during the subprime mortgage crisis in 2007-2009. This is not surprising, as it is
well-known that the speed of information transfer (related to the number of news
per day) increases substantially during crisis periods, so that the MA(1) compo-
nent gets superfluous in such situations. On the contrary, the lower charts for a more
pronounced MA(1) component provide signals mostly in the (comparatively) calm
post-crises period starting from 2011. Since the speed of information transfer usu-
ally decreases during the calm time, this finding also appears to be rather plausible.

In general, it is not always an easy task to differentiate between correct and false
(i.e., driven by outliers) signals. Although standing alone outliers could trigger false
signals by control charts, note that for our statistic (8) based on the product x,x,_;
their impact would be mitigated compared with (for example) a statistic based on
the square xtz. In our case an outlier x, would influence both x,x,_; and x,,,x,, so
that in the empirical application we could then expect some separately standing
back-to-back (pairs of) signals depicted as strongly overlapping circles. We indeed
observe some of such alone-standing pairs for all considered markets, however, the
majority of signals are not alone-standing but clustered in time indicating on struc-
tural changes. For this reason we suppose that the outlier problem is not pronounced
much in our application.

Finally, we would like to discuss some possible directions for future research. The
first possibility is to exploit more fully the available high-frequency information by
monitoring the MEM model estimated based (say) on hourly data. In this setting,
however, one should take into account the stylized facts which are typical for intra-
day asset returns, for example the intraday periodicity issue (cf. Dette et al. 2022a,
b) and the related problems. The second possible direction for further research is
related to the economic interpretation of signals and transferring them into financial
decisions. To this extent note that in general signals from control charts in financial
applications are more a supplementary decision-making tool which indicates on the
necessity of the further in-depth analysis. This is much different from situations in
macroeconomic applications as e.g., by sequential monitoring of the business cycle
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(cf. Golosnoy and Hogrefe 2013) or monitoring changes in the inflation expectation
process (cf. Golosnoy and Roestel 2019) where—based on publicly available infor-
mation—the majority of signals could be (although often with some time delay)
either interpreted as reasonable ones or classified as outliers. On the contrary, inter-
preting dates of financial signals is not an easy task, as it would require gathering
much more external information which appears to be a costly process. For this rea-
son, this would go beyond the illustration of our methodology in the current paper
but could be an interesting topic for future investigations. Finally, the monitoring of
MEM models could be extended for monitoring MEMs in multivariate settings (cf.
Golosnoy and Rossen 2018) or for the purpose of monitoring for changes in various
types of networks (cf. Kliippelberg and Seifert 2019, 2020; Chen et al. 2022).

6 Summary

We consider a measurement error model (MEM) where the state variable follows
AR(1) dynamics. Such a MEM could be equivalently written as an ARMA(1,1)
model, however, when the measurement error gets negligible the MEM reduces to
a simple AR(1) representation. We focus on the task of sequential monitoring of the
MEM which is equivalent to monitoring the MA(1) parameter with the aim to detect
possible changes in the MA(1) part as soon as they occur. For this purpose we elab-
orate both CUSUM and EWMA control charts for online detection of changes from
AR(1) to ARMA(1,1) and vice versa. The control statistic for these charts is based
on the testing approach elaborated by Golosnoy et al. (2021). In the Monte Carlo
simulation study we show that these changes (which are numerically rather small
compared to the process variance) could be detected not immediately but only with
some detection delay. The empirical illustration is based on monitoring of AR(1)
and ARMA(1,1) models for the short-run component of daily log realized volatility
series of the leading stock market indices. The obtained signals support the evidence
that the AR(1) models are more suitable during crisis periods, whereas the MEM,
i.e., the ARMA(1,1) representation, for no-crisis periods in financial markets.

Appendix
Proof of Proposition 1

We provide the expressions for 6 and 03 of the ARMA(1,1) model as the functions
of the MEM parameters ¢, o2 and 67 in order to show that MEM and ARMA(1,1)
model are equivalent in distributions. Consider x, =y, — ¢y,_, for both formulations:

MEM © vy, =y, =& +u,— du,_,,
ARMA(L,1):  y,—¢y,_, =a,+0a,_,.

In order to show the equivalence, we consider the autocovariances for both
representations
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Var (x,) =E () = 02 + 62(1 + ¢*) = 62(1 + %)
A7)
Cov (x.x,_1) =E (1x,_,) = —po> = 052,

From the second equation we get

which implies that  has an opposite sign than ¢. Substituting it into the first equa-
tion yields

0=0c’+0(1+ )+ (" +0)po,
o2 +c2(1+¢?)

s 0=0+
¢o?

Solving this quadratic equation yields two possible solutions

-1 (18)

) o2 +62(1 + ¢?) o2 +02(1 + ¢’
= — =+

12 20?2 20?2

The radicand in (18) is positive, because o+ o2(1 —¢)? >0 implies that

0'3 + 05(1 + ¢?) > 2(]563.
As we focus on ¢ € (0, 1) we get the unique solution:

o2 +62(1 + ¢?) o2 +o2(1+ ¢
e w Ty < v | 1= =b+Vb2-1, (19
2¢0? [ 2¢0? (19

as it guarantees that § € (—1,0) as b > 1 implies that b> — 1 > (b — 1)? and, hence,
0 = —b + \/b? — 1 > —1. Note that the other solution leads to § < —1 in the MA(1)
part of the ARMA(1,1). O

Proof of Proposition 2
From Eq. (17) we get that E (x,x,_;) = 062 which yields E (v,) = 6. We can write
sz, =xx,_; = (a,+ 0a,_)a,_; +0a,_,) =a,a,_; +0a,a,_, + Gatz_l + Qzat_la,_z.

Next we observe that

0'4":2 —alzatz | +0a’ ", 10, 2+9aa +6% at2 o
+0aat lat2+0al t2+02aa a,2+6aat 1“,22
+0aa +0aa at2+924 93?10‘;2
+02a,a2 at2+6ala, la +9a a,2+9421at22
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Then we immediately obtain E(v?) =1+46%+6* and Var(v) =1+ 367+ 6*
because the fourth moment of a, ~ N4 (0,62) is 36 Now consider

4 — 2 2 2 2
oV, =aa;_a,,+0aa;_a,_;+0aa,_ia_,+0aa,_a,_ya_;
2 2 2. 3 32
+0a,a,_ja; , +0°aa,_1a, 54, 5+ 07aa;_,+0%aa_,a,_;5
3 2.3 2.2 2 3 2
t0a ja,, +0%a 0,5+ 0%a_,a,_ ,+0%a_,a,,a 3

22 2 3.2 3 3 4 2
+0°a_a;,+0°a_ja,_,a,_5+6a,_a_,+8%a,_a_,a,;,
which gives that E (v,v,_;) = 262 and Cov (v,,v,_,) = 6. Finally, for # > 2 we obtain

4 _
O VVip = yay_10y_p0y_p_y + 0a,a,_10,_p0,_p_»

2 2
+0a,a,_,a;_,_ +0°a,a,_a,_y_10,_y_,

2 2 2
+0a,a, 50, pa,_ oy +07a,a, 50, pa,_p 5 +0%a,a,,a; ,_,
3
+0°a,a, 50, p_1a,_p_)
2 2

2 22 2 32
+0at_1a,_fa,_f_1 + 6 a;_\a,_pG,_p o+ 0 a_,a_,  + 0 a8 p 10, gy

2 3
+0°a,_ya,,a,_pa,_p_ + 60 a,_ a4, 50, ,a,_p_,

4
+0%a,_ja, 50, 410, 4.

3 2
+0%a,_ya,,a;_,_,

This leads to E (v,v,_,) = 62 and, consequently, to Cov (v,,v,_,) = 0 for £ > 2. O

Acknowledgments We express our gratitude to two anonymous referees whose comments and sugges-
tions have led to substantial improvements of the paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

Andersen, T.G., Bollerslev, T., Diebold, F.X., Ebens, H.: The distribution of realized stock return volatil-
ity. J. Financ. Econ. 61(1), 43-76 (2001)

Barndorft-Nielsen, O., Shephard, N.: Econometric analysis of realized volatility and its use in estimating
stochastic volatility models. J. Roy. Stat. Soc. B 64, 253-280 (2002)

Bodnar, O., Schmid, W.: Surveillance of the mean behaviour of multivariate time series. Stat. Neerl. 61,
383-406 (2007)

Bollerslev, T., Patton, A.J., Quaedvlieg, R.: Exploiting the errors: a simple approach for improved volatil-
ity forecasting. J. Econ. 192, 1-18 (2016)

Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, Berlin (2009)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Control charts for measurement error models 711

Chen, C.Y.-H., Okhrin, Y., Wang, T.: Monitoring network changes in social media. J. Bus. Econ. Stat.
(2022). https://doi.org/10.1080/07350015.2021.2016425

Corsi, F.: A simple approximative long-memory model of realized volatility. J. Financ. Economet. 7,
174-196 (2009)

Dette, H., Golosnoy, V., Kellermann, J.: Correcting intraday periodicity bias in realized volatility meas-
ures. Econ. Stat. 23, 36-52 (2022)

Dette, H., Golosnoy, V., Kellermann, J.: The effect of intraday periodicity on realized volatility measures.
Metrika (2022). https://doi.org/10.1007/s00184-022-00875-0

Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods. Oxford University Press,
Oxford (2009)

Engle, R.F., Sokalska, M.: Forecasting intraday volatility in the US equity market. Multiplicative compo-
nent GARCH. J. Financ. Economet. 10, 54-83 (2012)

Golosnoy, V., Okhrin, I., Schmid, W.: Statistical surveillance of volatility forecasting models. J. Financ.
Economet. 10, 513-543 (2012)

Golosnoy, V., Hogrefe, J.: Signaling NBER turning points: a sequential approach. J. Appl. Stat. 40, 438—
448 (2013)

Golosnoy, V., Gribisch, B., Seifert, M.1.: Exponential smoothing of realized portfolio weights. J. Empir.
Financ. 53, 222-237 (2019)

Golosnoy, V., Roestel, J.: Real time monitoring of the US inflation expectation process. Macroecon. Dyn.
23, 2221-2249 (2019)

Golosnoy, V., Rossen, A.: Modeling dynamics of metal price series via state space approach with two
common factors. Empir. Econ. 54(4), 1477-1501 (2018)

Golosnoy, V., Kohler, S., Schmid, W., Seifert, M.I.: Testing for parameter changes in linear state space
models. Appl. Stoch. Mod. Bus. Ind. 37(6), 1060-1079 (2021)

Golosnoy, V., Seifert, M..I.: Online monitoring of mean changes in high-dimensional persistent linear
time series. Stat.: J. Theor. Appl. Stat. 55(3), 475-488 (2021)

Hamilton, J.D.: State-space models. In Handbook of Ecoonometrics, eds. R.F. Engle and D.L. McFadden,
vol. 4, chapter 50: 3014-3077 (1994a)

Hamilton, J.D.: Time Series Analysis. Princeton University Press, New Jersey (1994b)

Heber, G., Lunde, A., Shephard, N., Sheppard, K.: Oxford—-Man Institute’s realized library (v0.3),
Oxford-Man Institute, University of Oxford (2009)

Jacquier, E., Polson, N.G., Rossi, P.: Bayesian analysis of stochastic volatility models (with discussion). J.
Bus. Econ. Stat. 12, 371-417 (1994)

Jiang, W., Tsui, K.L., Woodall, W.H.: A new SPC monitoring method: the ARMA chart. Technometrics
42, 399410 (2000)

Kim, C.J., Nelson, C.R.: State Space Models with Regime Switching. MIT press, New York (1999)

Knoth, S.: Steady-state average run length(s): methodology, formulas, and numerics. Seq. Anal. 40(3),
405426 (2021)

Kliippelberg, C., Seifert, M.1.: Financial risk measures for a network of individual agents holding portfo-
lios of light-tailed objects. Fin. Stochast. 23(4), 795-826 (2019)

Kliippelberg, C., Seifert, M.I.: Explicit results on conditional distributions of generalized exponential
mixtures. J. Appl. Probab. 57(3), 760-774 (2020)

Lazariv, T., Okhrin, Y., Schmid, W.: Behavior of EWMA type control charts for small smoothing param-
eters. Comput. Stat. Data Anal. 89, 115-125 (2015)

Lazariv, T., Schmid, W.: Surveillance of non-stationary processes. AStA Adv. Stat. Anal. 103, 305-331
(2019)

Lu, C.-W., Reynolds, M.R.: CUSUM charts for monitoring an autocorrelated process. J. Qual. Technol.
33, 316-334 (2001)

Lucas, J.M., Crosier, R.B.: Fast initial response for CUSUM quality control schemes. Technometrics 42,
102-107 (1982)

Montgomery, D.C.: Statistical Quality Control: A Modern Introduction, 7th edn. Wiley, New York (2013)

Morais, M.C., Okhrin, Y., Schmid, W.: Quality surveillance with EWMA control charts based on exact
control limits. Stat. Pap. 56(3), 863-885 (2015)

Okhrin, Y., Schmid, W.: Surveillance of univariate and multivariate linear time series. In: Surveillance,
Financial (ed.) Frisén, M, pp. 115-152. Wiley, Chichester, England (2008)

Rabyk, L., Schmid, W.: EWMA control charts for detecting changes in the mean of a long-memory pro-
cess. Metrika 79, 267-301 (2016)

@ Springer


https://doi.org/10.1080/07350015.2021.2016425
https://doi.org/10.1007/s00184-022-00875-0

712 V. Golosnoy et al.

Rosolowski, M., Schmid, W.: EWMA control charts for monitoring the mean and the autocovariances of
stationary processes. Stat. Pap. 47, 595-630 (2006)

Schmid, W.: CUSUM control schemes for Gaussian processes. Stat. Pap. 38, 191-217 (1997)

Tsay, R.S.: Analysis of Financial Time Series, 3rd edn. New York, Wiley (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Control charts for measurement error models
	Abstract
	1 Introduction
	2 The measurement error model
	3 Control charts for MEMs
	3.1 CUSUM charts
	3.2 EWMA charts

	4 Monte Carlo simulations
	5 The empirical application
	6 Summary
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2

	Acknowledgments 
	References




