
Lambrecht, Marco

Working Paper

Skill-Related Differences in Reference-Dependent Stopping

Helsinki GSE Discussion Papers, No. 10

Provided in Cooperation with:
Helsinki Graduate School of Economics

Suggested Citation: Lambrecht, Marco (2025) : Skill-Related Differences in Reference-Dependent
Stopping, Helsinki GSE Discussion Papers, No. 10, ISBN 978-952-7543-09-2, Helsinki Graduate
School of Economics, Helsinki

This Version is available at:
https://hdl.handle.net/10419/307791.2

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/307791.2
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 
 
 
HELSINKI GSE DISCUSSION PAPERS 10 ∙ 2023 

 
Skill-Related Differences in Reference-Dependent 
Stopping 
 
 
 
 
 
Marco Lambrecht 
 
 
 



Helsinki GSE Discussion Papers 
 
 
 
 
Helsinki GSE Discussion Papers 10 ∙ 2023 
 
 
Marco Lambrecht: 
Skill-Related Differences in Reference-Dependent Stopping 
 
ISBN 978-952-7543-09-2 (PDF) 
ISSN 2954-1492 
 
 
 
 
 
 
 
 
Helsinki GSE Discussion Papers: 
https://www.helsinkigse.fi/discussion-papers 
 
Helsinki Graduate School of Economics 
PO BOX 21210 
FI-00076 AALTO 
FINLAND 
 
Helsinki, Revised November 2025 



Skill-Related Differences in Reference-Dependent
Stopping

Marco Lambrecht*

November 10, 2025

Abstract

This paper examines reference-dependent stopping in repeated risky decision-
making and its relation to skill dependence and individual ability. Using field
data from online heads-up poker tournaments, we classify players according
to whether they are more likely to stop when ahead (gain-exit behavior)
or when behind (stop-loss behavior). Skilled players, relative to less skilled
players, are more likely to adopt gain-exit behavior and play more frequently,
yet their performance deteriorates during periods of chasing losses. These
patterns suggest that skilled individuals may pursue implicit income targets,
continuing play until reaching them, which can undermine short-term per-
formance and unintentionally generate left-skewed profit distributions. The
findings raise new questions about how skill and perceived control shape be-
havior in repeated risk-taking, offering insights for other domains such as
trading and performance-based work.
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1 Introduction

Repeated risk-taking is common across many domains of economic life. From finan-
cial trading and speculative investing to professional gaming and sports betting,
individuals frequently make a series of risky decisions where they must determine
not only how much to risk, but also whether to continue. Such environments often
give rise to systematic behavioral patterns, most notably the tendency to chase
losses—i.e., persisting in risk-taking after setbacks in an attempt to recover. In fi-
nancial markets, this behavior has been linked to extreme episodes of rogue trading,
where traders escalate positions after losses with disastrous consequences for their
institutions, as in the cases of Nick Leeson, Kweku Adoboli, and Jérôme Kerviel
(Fraser-Mackenzie et al., 2019). In most real-world contexts—including trading, en-
trepreneurship, and games like poker—outcomes are not governed purely by chance,
but depend jointly on luck and skill. What remains less well understood is how
the skill dependence of an environment, and individuals’ own skill levels, shape the
emergence and persistence of such reference-dependent patterns.

This paper examines how skill influences reference-dependent stopping behav-
ior in repeated risky decision-making. Reference-dependent preferences are well
established in the study of decisions under risk (e.g., Kőszegi and Rabin, 2006),
and two commonly observed tendencies are the house money effect and chasing
behavior. The house money effect describes the tendency to take on greater risk
when ahead of one’s reference point (Thaler and Johnson, 1990), whereas chas-
ing behavior refers to increased risk-taking when behind, motivated by the desire
to “break even” (Lesieur, 1977). From a behavioral perspective, these reference-
dependent patterns in risk-taking have direct analogues in stopping behavior. The
house money effect implies a form of stop-loss strategy, whereby decision makers
tend to continue when ahead and are more inclined to stop after losses. Conversely,
chasing losses resembles a gain-exit strategy, in which individuals are less likely to
stop when behind but more likely to stop after gains.

Although these patterns have been observed in numerous experimental and
field settings, little is known about how they vary across environments that differ
in their dependence on skill or across individuals of differing ability. We address this
question by analyzing decisions of online poker players in a setting that provides a
rare combination of repeated, high-stakes choices and precise measurement of both
luck and skill. Specifically, we exploit data from heads-up “Sit-and-Go” poker
tournaments, a format that isolates stopping decisions while holding strategic and
institutional features largely constant. Because each match ends deterministically
when one player wins all chips and a new match begins against a different opponent,
the choice of whether to continue playing after a gain or loss provides a clean field
measure of reference-dependent stopping.

To quantify the role of skill, we use the methodology of Duersch et al. (2020)
to estimate individual ability levels and the overall skill dependence of each poker
environment. We then classify players according to whether they are more likely
to stop playing when ahead (gain-exit) or when behind (stop-loss), and test how
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these stopping patterns relate to differences in skill, stakes, and game speed. Vari-
ation in game speed allows us to exploit systematic differences in the degree to
which outcomes depend on skill rather than luck, while differences in stakes enable
us to examine whether the observed behavioral patterns are robust across mone-
tary incentive levels. We also analyze how behavioral types differ across several
performance dimensions, including frequency of play, overall profitability, perfor-
mance conditional on being ahead or behind, the skewness of session profits, and
the timing of their next session. This design allows us to connect stopping patterns
to differences in skill and environment, and to explore how these patterns relate
to broader measures of behavior and performance, extending prior work in which
these connections have remained largely unexplored..

An extensive empirical literature documents reference-dependent stopping pat-
terns across economically relevant domains. In financial markets, investors and
traders adjust continuation and risk after gains and losses (e.g., Barberis et al.,
2001; Coval and Shumway, 2005; Zhang and Semmler, 2009; Huang and Chan,
2014). Similar patterns arise in gambling environments, including horse betting
(Suhonen and Saastamoinen, 2018) and online poker (Smith et al., 2009; Eil and
Lien, 2014). To probe the mechanisms behind such behaviors, recent studies distin-
guish between realized and “on paper” outcomes, showing that individuals are more
likely to continue risk-taking after paper losses and unrealized gains (Imas, 2016;
Merkle et al., 2021). When it comes to individual-level determinants, other research
has examined how experience and past success relate to behavioral biases (e.g., List,
2003; Feng and Seasholes, 2005; Locke and Mann, 2005; Fraser-Mackenzie et al.,
2019). Yet no study has systematically investigated how measured individual skill
and the skill dependence of the environment are related to reference-dependent
stopping behavior.

A complementary line of research studies income targeting in dynamic work
and earning decisions. In the classic day-labor setting of New York City taxi
drivers, Camerer et al. (1997) show that drivers are more likely to stop after meeting
daily earnings targets, a result that sparked a rich follow-up literature refining
measurement and modeling of reference points in intertemporal labor supply (e.g.,
Farber, 2008; Crawford and Meng, 2011; Thakral and Tô, 2021). These studies
focus on whether people stop earlier after good outcomes and continue working after
shortfalls. The present paper contributes to this literature by examining stopping
in a strategic, competitive environment where outcomes reflect both luck and skill.
This setting makes it possible to explore whether income-targeting patterns extend
beyond standard labor contexts, and to assess how such stopping rules relate to
actual performance—something that cannot be observed directly in typical labor-
supply environments.

In addition, the analysis contributes to the literature on skewness preferences.
A large body of research shows that individuals value positively skewed outcomes
in betting and investment settings (e.g., Golec and Tamarkin, 1998; Mitton and
Vorkink, 2007; Barberis and Huang, 2008; Ebert, 2015; Dertwinkel-Kalt et al.,
2024). These studies provide direct evidence on preferences for skewness in risky
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choice, whereas the present paper uncovers such preferences indirectly through
stopping behavior. Building on the theoretical link recently formalized by Ebert
and Köster (2024), we show empirically that stopping rules are systematically as-
sociated with the skewness of outcome distributions.

The empirical analysis reveals distinct patterns of reference-dependent stopping
that systematically relate to both individual skill and the skill intensity of the
environment. The patterns are more prevalent in environments where outcomes
depend more heavily on skill, but less common among high-stakes players. Across
all settings, higher-skilled players are more likely to exhibit gain-exit behavior,
whereas lower-skilled players tend to display stop-loss patterns.

These behavioral tendencies are also associated with differences in session out-
comes and profit distributions. Despite being more skilled and active overall, gain-
exit players perform worse during periods of chasing, earning significantly lower
expected profits within sessions when attempting to recover losses. Meanwhile,
stop-loss players generate more right-skewed session-profit distributions, while gain-
exit players display more left-skewed outcomes. Taken together, these patterns may
suggest that highly skilled players pursue poker with implicit income targets, con-
tinuing play until reaching them. However, by doing so, they appear to undermine
their short-term performance and unintentionally induce less favorable, left-skewed
profit distributions.

The remainder of the paper is structured as follows. Section 2 describes the
data. Section 3 outlines the empirical strategy, Section 4 presents the findings, and
Section 5 discusses their broader implications and concluding remarks.

2 Data

Poker has evolved substantially from its early five-card draw origins, with vari-
ants such as Texas Hold’em now dominating both online and live play (Fiedler
and Wilcke, 2011). This study uses tournament-level data purchased from the
commercial provider HHSmithy, collected on the online platform PokerStars be-
tween November 2016 and February 2017. The analysis focuses on the Heads-Up
Sit-and-Go (HUSNG) format of No Limit Texas Hold’em.

In a HUSNG tournament, two players compete in a self-contained match that
begins as soon as both register at the same table. Each player pays an entry fee and
receives an equal number of chips. Play continues until one player loses all their
chips, at which point the other—who now holds all chips—wins the tournament
and receives a prize equal to twice the entry fee.1 Throughout the paper, we refer
to each such tournament as a match, which constitutes the unit of observation in
the analysis.

In Texas Hold’em, each player is dealt two private cards and can use up to five
community cards—revealed sequentially and visible to both players—to form the

1PokerStars deducts a small fee, the rake, from the prize pool, which ranges from roughly 2%
to 6% across game variants.
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strongest possible five-card hand. In the No Limit version, players may bet any
amount of their remaining chips at any time, including going “all-in,” creating a
highly strategic environment characterized by continuous decision-making under
uncertainty. The structure of Hold’em thus provides a rich context for studying
dynamic behavior, as players must continually balance risk, potential reward, and
their current position relative to the opponent.

Variations in starting chip endowments, decision times, and monetary stakes
across match types influence the pace and intensity of play, potentially shaping
players’ incentives to continue or stop. These contrasts provide a useful source of
heterogeneity for studying behavioral patterns across environments. The analysis
therefore draws on three datasets summarized in Table 1.

PokerStars offers two main match formats that differ in speed and structure,
primarily through variation in the initial chip endowment. In standard (STD)
matches, players start with 1,500 chips, while in hyper turbo (HT) matches they
begin with only 500 chips. Both formats share the same blind structure,2 but
the smaller starting stacks in HT matches constrain strategic flexibility and gen-
erally lead to shorter matches. HT matches also impose tighter time limits for
decision-making.3 In addition to these speed variations, PokerStars offers matches
at different stake levels. The present analysis includes both micro-stake (MS) $3.50
matches and high-stake (HS) $60 matches.

Table 1: Poker data included in this study

Micro-stake High-stake
Standard Texas-STD-MS

Hyper turbo Texas-HT-MS Texas-HT-HS

Previous empirical studies of poker behavior have typically relied on data from
cash games, in which each hand is treated as a separate observation. While this ap-
proach provides large samples, it introduces several complications. In cash games,
the optimal strategy in a given hand may depend on the history of previous play,
particularly when opponents remain constant across hands. Moreover, players can
leave or join tables at any time, and such entry and exit decisions may correlate
with prior outcomes. For example, a player might quit after winning all the chips
from a weak opponent who then leaves the table, but continue playing after losses if
that weak opponent remains. These dynamics can induce systematic dependencies
between past outcomes and continuation decisions.

By contrast, the Sit-and-Go format avoids such endogeneity. Players cannot
leave before a match concludes, as doing so would mean forfeiting their remaining

2At the start of each match, the small blind is 10 chips and the big blind 20 chips, increasing
at fixed intervals thereafter.

3STD matches allow 18 seconds per decision, whereas HT matches limit this to 12 seconds. If
a player fails to act within the time limit, the system automatically checks (if possible) or folds.
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chips. Each match ends deterministically when one player wins all chips, eliminat-
ing the possibility of mid-session cashing out. Importantly, when starting a new
match against a different opponent, strategic considerations are reset, rendering
each match independent of prior outcomes. This structure makes Heads-Up Sit-
and-Go data particularly well suited for analyzing reference-dependent stopping
behavior.

3 Methodology

This section introduces notation and definitions, and describes the methods to
derive the main results of this study.

Sample selection and session definition

To identify stopping behavior reliably, it is crucial that players participate fre-
quently enough to observe meaningful patterns in their continuation and stopping
decisions. Moreover, players should make deliberate choices about when to stop,
rather than being constrained by liquidity or external factors. For this reason, the
analysis focuses on the most frequent players in the dataset, who tend to play mul-
tiple matches in close succession. Short intervals between matches make it unlikely
that these players stop because they have exhausted their funds.4 This group likely
includes both professional players, who primarily play for profit, and individuals
with problematic playing habits. As highlighted in previous research (Bjerg, 2010),
these two characteristics are not necessarily mutually exclusive.

We define the sample as consisting of the percentile of players who participated
most frequently during the observation period. This choice involves a trade-off:
increasing the number of included players would introduce more noise, as less active
participants may have played too few matches to infer their behavior reliably or
may have been forced to stop due to limited funds; decreasing the number would
reduce the sample size and the generality of the results. To verify robustness,
we replicate the analysis using the top 200 most frequent players, and the main
findings remain unchanged. Results for alternative thresholds are summarized in
Appendix C.5

A key step in measuring reference-dependent stopping is defining when a player’s
reference point resets. The sequence of play between such resets is considered a
single session. Following Eil and Lien (2014), we define sessions based on the time
interval between consecutive matches. Specifically, consider player i who plays a
match at time t1. If the same player starts another match within one hour after

4Some players may still need to transfer additional funds between matches. The process of
reloading an account on PokerStars is designed to be nearly instantaneous, though the need to
do so may affect players’ willingness to continue playing (Imas, 2016; Merkle et al., 2021). For
further discussion, see Section 5.

5An earlier version of this paper also included the top 100 most frequent players, yielding
consistent results.
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completing the previous one, both matches are considered part of the same session,
denoted si1. If more than one hour elapses before the next match, session si1 is
deemed to have ended, and the next match initiates a new session si2. Hence, a
session comprises consecutive matches separated by breaks of less than one hour,
and a player ends a session when the current match is the last in that sequence.

For robustness, we also implement an alternative two-hour threshold and con-
firm that this adjustment does not substantially change the results (Appendix C).
Table 2 reports summary statistics for sessions across datasets. Standard (STD)
matches generally last about three times longer than hyper turbo (HT) matches,
which partly accounts for the smaller number of matches per session observed in
the STD format.

The approach proposed by Eil and Lien (2014) compared several bracketing in-
tervals and found that shorter thresholds of one to two hours best reflect the time
frame over which players integrate outcomes. Longer periods (such as six hours)
produced more ambiguous classifications, as players may have already psycholog-
ically adjusted to prior results.6 Adopting a one-hour benchmark, and testing
robustness at two hours, therefore aligns with the evidence that players’ reference
points tend to reset over relatively short horizons.

Table 2: Statistics on matches and sessions - most frequent players

Number of
players

Total
sessions

Mean
sessions
per player

Std. dev.
sessions
per player

Mean
matches
per session

Mean
matches
per player

Std. dev.
matches
per player

Texas-STD-MS 148 9,285 62.7 47.1 4.2 262.0 317.4
Texas-HT-MS 383 32,788 85.6 59.2 6.8 585.5 644.0
Texas-HT-HS 92 11,294 122.8 70.5 8.4 1025.4 719.1

Note: The table provides information on matches and sessions of the top percentile of most
frequent players in each data set. Sessions are defined according to bracketing of one hour, i.e.
breaks of at least one hour separate sessions from each other.

Identifying stopping behavior

To examine whether players’ decisions to stop or continue depend systematically
on their current session outcomes, we focus on two distinct strategy patterns: a
gain-exit strategy, where players are more likely to stop when ahead, and a stop-
loss strategy, where players are more likely to stop when behind. These patterns
reflect reference-dependent behavior in which recent outcomes shape continuation
decisions within a session.

6Indeed, we also observe some differences in performance and time until the next session when
comparing session definitions based on one-hour versus two-hour breaks (see Section 4). These
differences may reflect players’ mental adjustments over time.
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We classify stopping behavior by analyzing whether players decide to continue
or end a session conditional on current profits. Specifically, we calculate cumulative
session profits for each player and define a binary variable behind, which takes the
value 1 when cumulative profits are negative and 0 otherwise.7 This specification
implicitly treats zero cumulative profit as the reference point. While reference
points are likely heterogeneous across players (Kőszegi and Rabin, 2006; Buchanan,
2020), zero profits represent a natural and observable break-even threshold : they
mark the transition between gains and losses and provide a salient, comparable
benchmark across players.8

We then relate the variable behind to an indicator of whether the player ended
the session. The variable end session equals 1 if the current match concludes a ses-
sion and 0 otherwise. For each player, we test whether stopping decisions depend
significantly on being ahead or behind using a likelihood-ratio χ2 test of indepen-
dence between end session and behind. This player-level approach accounts for
individual heterogeneity and performs robustly with moderate sample sizes.9 A
player is classified as following a stop-loss strategy if the frequency of session end-
ings is significantly higher when behind (i.e., players are more likely to stop after
losses) and this relationship is significant at the 1% level.10 Conversely, a player is
classified as following a gain-exit strategy if session endings are significantly more
frequent when ahead. Players for whom no significant relationship is detected are
labeled as unclassified.

Finally, note that the analysis assumes players are aware of their current ses-
sion outcomes. While platforms do not display cumulative session profits directly,
players can observe their overall account balance at any time and readily compare
it to the amount they had when starting to play. Entry fees are deducted at the
beginning of each match, and winnings are credited immediately after, allowing
players to track gains or losses relative to their starting balance with minimal cog-
nitive effort. Session profits thus provide a salient and easily inferred reference for
stopping decisions.

Variation of environments and player skill

The data provide a unique opportunity to examine how structural and individual
factors relate to players’ stopping behavior. Specifically, players in our sample
face distinct environments differing in game speed and monetary stakes, and they

7Cumulative profits account for the platform’s fees, so total profits within a session never sum
exactly to zero.

8An alternative approach could consider each player’s average session profit as their individ-
ual reference point. Classifications under this definition are highly correlated with the original
method, and the results of this paper remain virtually identical.

9Simulations confirm that the likelihood-ratio χ2 test performs comparably to a hazard model
in this context and slightly improves classification accuracy for smaller samples. The main results
remain unchanged when using a hazard specification.

10Robustness checks using a 5% significance threshold yield consistent results.
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also vary systematically in skill. To account for these dimensions, we construct
measures of the playing environment and player ability, which are later included
as sources of heterogeneity and as controls in the analysis.

To distinguish between stake levels, we define a binary variable high stakes,
which takes the value 1 for players participating in $60 matches and 0 for those
in $3.50 matches. Differences in monetary stakes are substantial, as there are
multiple intermediate levels between these two tiers. To account for differences in
the relative importance of skill across poker formats, we further define a binary
variable higher skill dependence, which equals 1 for standard (STD) matches and
0 for hyper turbo (HT) matches. The distinction reflects that outcomes in hyper
turbo matches rely more heavily on chance due to shorter match lengths and smaller
chip stacks. Using the best-fit Elo algorithm of Duersch et al. (2020), we quantify
this difference and find that skill differences have a larger effect on outcomes in the
STD format: a one-standard-deviation skill advantage yields a win rate of 53.6%
in STD matches, but less than 51% in HT matches. Levene’s tests confirm that
the variance in winning probabilities is significantly greater in the STD datasets,
supporting the interpretation that these environments are more skill-dependent.

Beyond characterizing environments, the Elo framework also provides an individual-
level measure of player skill. The best-fit Elo model introduced by Duersch et al.
(2020) is designed to adapt to different game formats and summarizes each player’s
expected win probability as a function of past performance against opponents of
known strength, offering an intuitive and transparent proxy for skill.

As an alternative measure, we estimate player skill using a linear probability
model with player fixed effects. In this specification, the binary outcome “won
match” is regressed on player dummies and controls for game characteristics. The
estimated player-specific fixed effects can be interpreted as skill parameters, since
they capture average performance conditional on opponents’ skill and contextual
factors.

While both approaches produce highly correlated skill estimates and consistent
results, we rely on the Elo ratings in the main analysis. The Elo framework is
more conservative when estimating skill for players with relatively few observed
matches, as it incorporates uncertainty directly into the rating update process. This
is particularly important in our setting, where many players appear infrequently
and thus provide limited data for reliable fixed-effect estimation. Because frequent
players also face these less-active opponents, using Elo ratings ensures a more stable
and comparable measure of skill across the full player network. The regression-
based fixed effects are therefore used as robustness checks, confirming that the
main findings are not sensitive to the specific skill measure.

Performance and continuation strategies

A central contribution of this paper is to examine whether the use of different con-
tinuation strategies—specifically, stop-loss and gain-exit behavior—relates to play-
ers’ performance within sessions. The analysis tests whether being behind or ahead
in cumulative session profits affects the probability of winning the next match, and
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whether this relationship differs between players classified by their stopping ten-
dencies. Specifically, we analyze gain-exit players’ performance when behind and
stop-loss players’ performance when ahead, as these conditions correspond to sit-
uations in which each group’s continuation tendency is most relevant—paralleling
the behavioral contrast between chasing and house-money dynamics.

To formalize this, we define the binary variable behind before match, which takes
the value 1 if cumulative session profits up to the current match are negative and 0
otherwise. Analogously, ahead before match equals 1 if cumulative session profits
up to the current match are positive and 0 otherwise.11 The outcome variable woni

j

indicates whether player i won match j (1 = win, 0 = loss). We then estimate sep-
arate mixed-effects logistic regressions for stop-loss and gain-exit players, allowing
for player-specific random effects to account for repeated observations:

logit(Pr(woni
j = 1)) = β0 + β1stop lossi + β2behind before match i

j+

β3(behind before match i
j × stop lossi) + ui,

(1)

logit(Pr(woni
j = 1)) = β0 + β1gain exiti + β2ahead before match i

j+

β3(ahead before match i
j × gain exiti) + ui,

(2)

where ui denotes player-specific random effects. The models account for the
binary nature of the dependent variable and the hierarchical structure of the
data (multiple matches per player). Coefficients on the interaction terms cap-
ture whether being behind or ahead affects performance differently for stop-loss
and gain-exit players.

We complement each model by including control variables for skill dependence
and stake level (as defined in the previous subsection), as well as the current length
of the ongoing session to account for potential fatigue. The models are estimated
separately for the two strategy groups because the first match of each session, by
definition, cannot be classified as ahead or behind, making joint estimation less
meaningful. Robust standard errors are clustered at the player level.

Skewness of session profits

We assess how players’ continuation strategies relate to the distribution of their
session outcomes. For each player, we compute the skewness of session profits
and evaluate how unusual this observed value is relative to simulated benchmark
distributions. The simulations preserve each player’s observed session lengths and
individual win rates, but randomize the sequence of matches and outcomes 99
times. This procedure generates a reference distribution of session-profit skewness
under random stopping, while maintaining players’ empirical characteristics.

11Note that these two variables are perfectly negatively correlated for all matches except the
first match of each session, where cumulative profits are zero and both variables take the value 0.
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We then calculate the percentile rank of the observed skewness within this
simulated distribution, which we refer to as the skewness of session profits. A
value above the 50th percentile indicates more positive skewness than expected
under random stopping, while a value below the median indicates more negative
skewness. This measure provides a standardized comparison across players with
different activity levels and serves as the dependent variable in later analyses linking
individual skill to outcome asymmetries.

Relation between session outcomes and timing of the next session

In addition to continuation decisions within a session, we examine how outcomes
at the session level relate to the timing of subsequent play. Specifically, we test
whether the interval between sessions depends on whether players ended the pre-
vious session with a gain or a loss, and whether this relationship differs between
stop-loss and gain-exit players.

We define the time-to-event variable as the number of hours between the last
match of one session and the first match of the next. An event is recorded
when a player begins a new session following a previous one. The binary vari-
able lost sessioni

t equals 1 if player i ended session t with a negative cumulative
profit and 0 otherwise. To model the timing of the next session, we estimate a Cox
proportional hazards model of the form

hi(t) = h0(t) exp(β1lost session
i
t−1 + β2stop lossi + β3gain exiti+

β4lost session
i
t−1 × stop lossi + β5lost session

i
t−1 × gain exiti),

(3)

where hi(t) denotes the hazard of starting a new session for player i at time t,
and h0(t) is the baseline hazard. The coefficients on the interaction terms capture
whether the association between prior outcomes and the timing of the next session
differs across the two strategy types. A positive coefficient implies a shorter interval
between sessions (i.e., faster re-entry).

We estimate the model both without and with additional control variables for
skill dependence, stake level, and the session length of the preceding session. Robust
standard errors are clustered at the player level.

4 Results

This section presents the empirical findings. We begin by classifying players ac-
cording to the stopping strategies introduced in Section 3—the stop-loss strategy,
where players are more likely to stop when behind, and the gain-exit strategy,
where players are more likely to stop when ahead. We then examine how these
behavioral patterns relate to game environments, individual skill, overall activity,
and profits. Next, we analyze whether the strategies are associated with differences
in within-session performance and the distribution of session outcomes. Finally, we
assess how session results relate to the timing of players’ subsequent sessions.
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Classification of stopping strategies

Table 3 summarizes the distribution of player classifications across the three poker
datasets. Most frequent players are classified as neither stop-loss nor gain-exit,
forming the baseline group. The prevalence of each strategy varies moderately
across formats: gain-exit behavior is somewhat more common in standard-speed
environments, whereas stop-loss patterns are nearly absent at high stakes.

Table 3: Individual classification by poker version

Stop-loss Unclassified Gain-exit

Texas-STD-MS 0.115 0.703 0.182
Texas-HT-MS 0.086 0.812 0.102
Texas-HT-HS 0.011 0.859 0.130

Note: Proportion of players in each behavioral category identified at the 1% significance level
according to the classification procedure in Section 3.

To explore which characteristics predict these strategies, Table 4 reports logis-
tic regressions comparing each type to the unclassified (baseline) group. Stop-loss
behavior is significantly less prevalent in high-stakes matches and more prevalent in
environments with higher skill dependence. Gain-exit behavior shows no system-
atic relationship with either stakes or skill dependence. Individual skill, however,
exhibits a distinct pattern: less skilled players are more likely to follow stop-loss
strategies, whereas higher-skilled players are more likely to exhibit gain-exit be-
havior. These findings are consistent across alternative thresholds and robustness
checks (see Appendix C).

Table 4: Determinants of stopping strategies – Logistic regressions

Stop-loss
vs. Unclassified

Gain-exit
vs. Unclassified

higher skill dependence 0.803** 0.214
(0.314) (0.369)

high stakes -2.037** 0.143
(1.021) (0.360)

individual skill -0.022** 0.018***
(0.010) (0.007)

constant -2.135*** -2.218***
(0.193) (0.176)

Observations 545 572

Note: Logistic regressions with robust standard errors in parentheses. Dependent variable equals
one if the player is classified as stop-loss (left column) or gain-exit (right column), respectively.
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Result 1. (a) Players with lower individual skill are more likely to follow stop-loss
strategies.
(b) Higher-skilled players are more likely to exhibit gain-exit behavior.

Overall activity and earnings

We next examine whether stopping strategies relate to overall engagement and
profitability. Table 5 reports negative binomial regressions explaining the num-
ber of matches played. Gain-exit players participate in significantly more matches
than unclassified players, whereas stop-loss players appear to play somewhat less
frequently, although this difference is not statistically significant in the main spec-
ification. Results are broadly consistent across robustness checks.

Table 5: Frequency of play – Negative binomial regressions

Stop-loss
vs. Unclassified

Gain-exit
vs. Unclassified

stop-loss -0.107
(0.090)

gain-exit 0.752***
(0.148)

higher skill dependence -1.233*** -1.100***
(0.096) (0.113)

high stakes 0.668*** 0.594***
(0.089) (0.091)

individual skill 0.011*** 0.008***
(0.002) (0.002)

constant 6.184*** 6.197***
(0.046) (0.047)

Observations 545 572

Note: Negative binomial regressions with robust standard errors in parentheses. Dependent
variable is the total number of matches played. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Result 2. (a) Gain-exit players engage in matches significantly more frequently.
(b) Stop-loss players tend to play less often, though the effect is not statistically
significant.

Turning to profitability, Table 6 presents OLS regressions explaining total net
profits (log-transformed). Neither stop-loss nor gain-exit players earn significantly
different profits than the unclassified group. This pattern is consistent across all
versions and robustness checks.

Result 3. Neither stop-loss nor gain-exit players earn significantly different profits
than unclassified players.
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Table 6: Net profits – Ordinary least squares regressions

Stop-loss
vs. Unclassified

Gain-exit
vs. Unclassified

stop-loss -0.007
(0.031)

gain-exit -0.028
(0.023)

total matches 0.000 0.000
(0.000) (0.000)

higher skill dependence -0.078* -0.071*
(0.041) (0.039)

high stakes -0.033 -0.001
(0.135) (0.111)

individual skill 0.004** 0.004**
(0.002) (0.002)

constant 8.627*** 8.631***
(0.029) (0.021)

Observations 545 572

Note: Ordinary least squares (OLS) regressions with robust standard errors in parentheses. De-
pendent variable is the natural logarithm of total net profits after a constant shift so that the
smallest profit equals one. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Performance within sessions

We next analyze whether these stopping strategies correspond to differences in
performance within sessions, focusing on gain-exit players’ performance when be-
hind (consistent with chasing behavior) and on stop-loss players’ performance when
ahead (consistent with the house money effect). Tables 7 and 8 report odds ratios
from the mixed-effects logistic regressions described in Section 3. Gain-exit players
generally win more matches overall, but perform significantly worse when behind
within a session. In contrast, stop-loss players show no systematic difference in
performance when ahead compared to others. Accounting for the platform’s en-
try fees, the estimated effect implies that expected profits for gain-exit players
decline by roughly 30–50% when entering a match while behind. The result is ro-
bust across specifications but loses significance under two-hour session bracketing
(Appendix C), suggesting that taking breaks of more than one but less than two
hours may already allow players to reset mentally, mitigating the performance drop
observed when continuing without such pause.

Result 4. Gain-exit players perform significantly worse when behind within a ses-
sion.

Distribution of session profits

We now turn to the distribution of session outcomes. Following the simulation pro-
cedure described in Section 3, we compute each player’s percentile rank of observed
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Table 7: Performance regression – success when behind (gain-exit model)

(1)
without controls

(2)
with controls

behind before match 1.005 1.007
(0.008) (0.008)

gain-exit 1.074*** 1.052***
(0.022) (0.018)

behind before match × gain-exit 0.962** 0.963**
(0.018) (0.018)

higher skill dependence 1.138***
(0.018)

high stakes 1.013
(0.011)

match in session 1.000
(0.000)

constant 1.080 1.063
(0.007) (0.008)

Observations 357,352 357,352

Note: Odds ratios from the mixed-effects logistic regression (1), estimated with and without
additional controls. The first match of each session counts as not being behind. Robust standard
errors in parentheses. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 8: Performance regression – success when ahead (stop-loss model)

(1)
without controls

(2)
with controls

ahead before match 1.000 1.003
(0.007) (0.008)

stop-loss 0.914*** 0.907***
(0.025) (0.024)

ahead before match × stop-loss 0.988 0.989
(0.030) (0.030)

higher skill dependence 1.145***
(0.018)

high stakes 1.005
(0.011)

match in session 1.000*
(0.000)

constant 1.097 1.078
(0.007) (0.007)

Observations 357,352 357,352

Note: Odds ratios from the mixed-effects logistic regression (2), estimated with and without
additional controls. The first match of each session counts as not being ahead. Robust standard
errors in parentheses. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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session-profit skewness relative to a simulated reference distribution under random
stopping. Figure 1 shows a clear negative relationship between individual skill
and the skewness of session profits: higher-skilled players exhibit more left-skewed
outcome distributions. This association is statistically significant (p < 0.001) and
replicates for alternative player subsets (see Appendix C). Consistent with the pre-
dictions of Ebert and Köster (2024), players following a stop-loss strategy display
more right-skewed profit distributions than unclassified players, whereas gain-exit
players show less right-skewed distributions than the other groups. These differ-
ences are confirmed by pairwise Mann–Whitney–U tests (p < 0.001).

Figure 1: Relation between individual skill and skewness of session profits (top
percentile)
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Note: The figure shows the relationship between individual skill and the skewness of session profits
for the most frequent players in each poker version. Skewness is measured as the percentile rank
of observed session-profit skewness relative to simulated distributions under random stopping.
The negative relationship is statistically significant (p < 0.001).

Result 5. (a) Higher-skilled players exhibit more left-skewed distributions of ses-
sion profits.
(b) Stop-loss players show more right-skewed profit distributions, whereas gain-exit
players exhibit less right-skewed distributions relative to unclassified players.

Continuation across sessions

Finally, we examine whether session outcomes influence the timing of players’ next
sessions. Table 9 reports estimates from Cox proportional hazards models. Losing
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a session significantly delays the start of the next one on average. For stop-loss
players, this delay is larger than for the unclassified group, while gain-exit players
tend to resume play more quickly. In fact, the net effect of a lost session for gain-
exit players is statistically indistinguishable from zero (Wald test, p > 0.4). These
results remain consistent when including controls for skill dependence, stakes, and
session length, and across alternative model specifications, but they are sensitive to
the definition of session bracketing (Appendix C). Under a two-hour threshold, the
earlier return of gain-exit players after losses is no longer statistically significant.12

Result 6. (a) Gain-exit players’ timing of return is largely unaffected by previous
session outcomes.
(b) Stop-loss players take shorter breaks after wins and longer breaks after losses.

Table 9: Timing of next session – Cox proportional hazards model

(1)
without controls

(2)
with controls

lost session -0.105*** -0.104***
(0.012) (0.012)

stop-loss -0.045 -0.000
(0.058) (0.057)

gain-exit 0.017 0.059
(0.042) (0.044)

lost session × stop-loss -0.079** -0.089***
(0.034) (0.034)

lost session × gain-exit 0.097*** 0.085***
(0.029) (0.030)

higher skill dependence -0.158***
(0.037)

high stakes 0.126***
(0.037)

session length -0.002**
(0.001)

Observations 52,225 52,225

Note: Results from Cox proportional hazards models according to specification (3). Coefficients
represent log hazard ratios, with positive values indicating shorter time until the next session and
negative values indicating longer delays. Robust standard errors clustered at the player level.
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

12A likely explanation is mechanical: a substantial share of “quick returns” by gain-exit players
occurs after breaks longer than one hour but shorter than two hours. When the one-hour rule
counts these breaks as new sessions, gain-exit players appear to re-enter quickly; when the two-
hour rule treats them as part of the same session, that apparent early return disappears.
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5 Discussion

This paper provides new evidence on reference-dependent stopping in an environ-
ment where outcomes depend on both skill and chance. We find that stopping
patterns are systematically related to individual skill and the skill intensity of the
environment. Highly skilled players are more likely to stop when ahead (gain-exit
behavior)—a pattern often associated with dynamic inconsistency in implementing
stopping rules (Heimer et al., 2025)—whereas less skilled players are more likely
to stop when behind (stop-loss behavior). Although gain-exit players typically win
more often than they lose, their performance deteriorates during periods of chasing.
This contrast indicates that reference-dependent stopping is a behavioral regularity
that interacts with skill in complex ways and can, under certain conditions, impair
performance.

A first interpretation draws on research on perceived control and overconfidence
in skill-based domains. Gervais and Odean (2001) model learning under uncertainty
about one’s own ability, showing that successful individuals may become overcon-
fident in environments combining skill and chance. Similarly, Bjerg (2010) argues
that greater skill increases the cognitive complexity of evaluating control. In our
context, skilled players may interpret losses as temporary deviations that can be
reversed through superior play, reinforcing the tendency to continue after setbacks.

Furthermore, a dynamic mechanism may sustain such behavior once it emerges.
In the Experience-Weighted Attraction (EWA) framework of Camerer and Hua Ho
(1999), actions yielding higher payoffs become more attractive and are more likely
to be repeated. Consistent with this idea, Campbell-Meiklejohn et al. (2008) find
that unsuccessful chasers are less likely to chase in the future. For skilled players,
frequent successful chases may therefore strengthen rather than discourage such
behavior, consolidating the habit of continued play after losses.13

An additional mechanism that may underlie gain-exit behavior relates to mo-
tivated beliefs (Bénabou and Tirole, 2016). According to this theory, individuals
derive utility not only from outcomes but also from maintaining self-enhancing
views about their own ability. In this context, skilled players may prefer to pre-
serve the belief that they are capable of playing profitably. Stopping after losses
would conflict with that self-perception, while continued play allows them to reaf-
firm control and competence. Such belief maintenance may therefore reinforce
gain-exit behavior.

Besides mechanisms that help explain why skilled players continue when behind,
there are also potential explanations for why they may stop early when ahead. The
pattern resonates with the literature on income targeting in dynamic labor supply.
Camerer et al. (1997) first showed that New York City taxi drivers often stop once
reaching a daily earnings goal, and subsequent work developed models of reference-

13Consistent with this interpretation, high-skilled players are substantially more likely to chase
successfully. As shown in simulations (see Figure 5 in Appendix C), they are roughly three times
more likely to chase successfully than an average player and about six times more likely than
those in the bottom 5%.
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dependent labor supply (e.g., Farber, 2008; Crawford and Meng, 2011; Thakral
and Tô, 2021). In our data, gain-exit players—who are more active and typically
winning players—appear to pursue similar implicit income targets, continuing play
until they are ahead and then choosing to stop.

At the lower end of the profitability distribution, players are less likely to con-
tinue playing when behind, displaying stop-loss tendencies. A possible explanation
relates to liquidity frictions: although these players are frequent participants and
typically return to play after short intervals—making true constraints unlikely—
their lower overall profitability compared to higher-skilled players may leave them
with less money readily available on the platform. Continuing to play would then
require transferring funds from external accounts—a step that transforms “paper”
losses into realized ones. This mechanism resonates with the findings of Imas (2016)
and Merkle et al. (2021), who show that realized losses increase risk aversion and
reduce subsequent risk-taking.

The deterioration in performance during chasing episodes suggests that con-
tinuation after losses is accompanied by changes in play quality. Previous studies
offer potential explanations for such behavioral shifts. Smith et al. (2009) and
Suhonen and Saastamoinen (2018) document that individuals modify their strate-
gies after losses, which could stem from shifts in risk attitudes or less disciplined
decision-making following setbacks. A related experimental study by Grosshans
et al. (2022) finds that trading decisions become less profitable after paper losses,
driven by greater optimism and reduced belief sensitivity. A similar mechanism
may operate here: poker players chasing their losses may attribute setbacks to
bad luck and expect outcomes to revert in their favor (e.g., Tversky and Kahne-
man, 1971; Croson and Sundali, 2005), leading to more optimistic beliefs, riskier
strategies, and ultimately lower expected profits.

Finally, the results contribute to research on how stopping rules shape the dis-
tribution of outcomes. A large body of work documents that individuals tend to
prefer positively skewed payoffs in risky activities such as betting and investing
(e.g., Golec and Tamarkin, 1998; Mitton and Vorkink, 2007; Barberis and Huang,
2008; Ebert, 2015; Dertwinkel-Kalt et al., 2024). In a related theoretical contri-
bution, Ebert and Köster (2024) show that stopping behavior itself can system-
atically alter the skewness of returns: stop-loss behavior increases right-skewness,
while gain-exit behavior induces more left-skewed outcomes. Consistent with this
prediction, we find that players displaying stop-loss behavior have more positively
skewed session profits, whereas gain-exit players exhibit more left-skewed outcomes.
Given that higher-skilled players are more likely to adopt gain-exit patterns, they
effectively generate less favorable payoff distributions.

Taken together, the findings raise the question of whether skilled individuals,
who generally perform well, are more likely to adopt stopping patterns that inad-
vertently reduce short-term performance and generate less favorable profit distri-
butions. More broadly, the results complement the findings of Heimer et al. (2025)
on the welfare costs of dynamic inconsistency and excessive gain-exit behavior,
highlighting how behavioral regularities can interact with skill to produce system-
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atic and sometimes costly patterns of decision-making in dynamic environments.
Future research could examine whether similar dynamics arise in other domains
of repeated risk-taking—such as trading, entrepreneurship, or performance-based
work—where outcomes are partly skill-driven yet shaped by feedback, beliefs, and
self-perception.
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A Measuring skill and chance

This appendix details how skill and chance are quantified across the different
datasets. These measures provide the basis for comparing environments in terms
of higher skill dependence and for deriving individual skill levels used in the main
analysis. Table 10 summarizes the basic statistics of the datasets, restricted to
regulars, defined as players who have participated in at least 25 matches.

Table 10: Statistics on matches, players, and regulars across poker datasets

#Matches #Players #Regulars
Max Matches
(Regulars)

Mean Matches
(Regulars)

Median Matches
(Regulars)

Texas-STD-MS 46,453 14,835 491 2,579 108.0 48
Texas-HT-MS 325,318 38,349 4,575 7,114 110.0 54
Texas-HT-HS 87,322 9,264 782 4,477 175.6 48

The best-fit Elo model

To measure skill heterogeneity and the role of chance, we employ the best-fit Elo
model introduced by Duersch et al. (2020). The method estimates expected win
probabilities based on past performance and calibrates a dataset-specific sensitivity
parameter k, ensuring optimal predictive accuracy. For any match between players
i and j at time t, the expected winning probability of player i is

Et
ij =

1

1 + 10−(Rt
i−Rt

j)/400
,

where Rt
i denotes player i’s current rating. After each match, ratings are up-

dated according to
Rt+1

i = Rt
i + k · (St

ij − Et
ij),

with St
ij = 1 if player i wins and 0 otherwise. The optimal adjustment factor k∗

minimizes prediction errors across all matches:

k∗ = argmin
k

1

T

∑
t∈T

(St
ij − Et

ij(k))
2.

Following Duersch et al. (2020), we restrict the analysis to players with at least
25 matches. Figure 2 shows that rating variability stabilizes beyond this threshold,
suggesting that player ratings are well-calibrated from that point onward.

Interpreting Elo distributions

Once calibrated, Elo ratings summarize each player’s relative skill within a dataset.
The wider the rating distribution, the greater the predictability of outcomes, and
thus the greater the role of skill relative to chance. Conversely, narrow distribu-
tions imply that outcomes depend more on luck. Figure 3 shows the unimodal
distributions of Elo ratings for regular players, centered at zero for comparability.
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Figure 2: Standard deviation of rating distributions by minimum matches per
player
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Note: The vertical dotted line marks the 25-match threshold used to define regular players.

Skill heterogeneity across environments

Table 11 summarizes the dispersion of Elo ratings across datasets. The standard
deviation of ratings translates directly into differences in expected winning proba-
bilities. A one–standard deviation skill advantage yields a 53.6% win probability in
Texas-STD-MS, compared to only about 51% in the hyper-turbo formats. Levene’s
tests (Table 12) confirm that rating variances differ significantly between standard
and hyper-turbo games.

Consistent with the main analysis, these results show that standard-speed
matches are markedly more skill-dependent than hyper-turbo games. Differences
between micro- and high-stake hyper-turbo formats are negligible, implying that
higher stakes do not necessarily increase heterogeneity in play styles. This pattern
is consistent with Siler (2010), who shows that high-stakes players tend to converge
toward more optimal strategies, reducing variation and thus increasing the relative
role of chance.

Complementary player fixed effects

For robustness, the main analysis complements Elo-based skill measures with player
fixed effects estimated from a linear probability model that controls for opponent
and game characteristics. Specifically, separate regressions are estimated for each
poker version according to

wonij = αi + γj + εij,

23



Figure 3: Rating distributions across poker formats
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Note: Ratings are centered around zero by design. Only regulars (players with at least 25 matches)
are included.

where wonij is a binary indicator equal to one if player i wins match j, αi

represents player-specific fixed effects interpreted as individual skill, and γj captures
game fixed effects. Standard errors are clustered at the player level.

The resulting player fixed effects are highly correlated with Elo ratings across
all datasets (Pearson r = 0.723 in Texas-STD-MS, r = 0.844 in Texas-HT-MS, and
r = 0.811 in Texas-HT-HS; all p < 0.001).

B Bias identification simulations

This section presents simulation results evaluating the classification procedure de-
scribed in Section 3. The objective of this exercise is twofold. First, the simulations
verify that the identification method correctly detects behavioral tendencies consis-
tent with stop-loss and gain-exit patterns. Second, they test whether heterogeneity
in players’ underlying win rates could bias this classification, potentially generating
mechanical associations between skill and stopping behavior. The results confirm
that the procedure performs accurately and remains robust to moderate differences
in success rates.

The identification strategy aims to distinguish individuals whose continuation
decisions depend systematically on session outcomes. A gain-exit pattern corre-
sponds to a higher probability of continuing play when behind—consistent with
chasing losses—whereas a stop-loss pattern implies a higher probability of contin-
uing when ahead, consistent with playing with house money. To assess whether
the statistical tests used in Section 3 can recover these probabilistic patterns, we
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Table 11: Summary statistics of Elo rating distributions

Std Dev Min 1% 99% Max psd p991 Rep99
1 Repsd

Texas-STD-MS 25.3 -49.6 -44.5 91.9 107.4 53.6 68.7 3 89
Texas-HT-MS 5.3 -29.6 -11.0 18.9 54.6 50.8 54.3 61 1,777
Texas-HT-HS 5.6 -21.2 -9.1 23.2 32.5 50.8 54.6 55 1,777

Note: The table reports the standard deviation, minimum, 1st percentile, 99th percentile, and
maximum of the rating distributions, which are centered at zero. Only regular players (those with
at least 25 matches) are included. The table also translates ratings into directly interpretable
quantities: psd denotes the winning probability of a player exactly one standard deviation better
than their opponent; p991 denotes the winning probability of a 99th percentile player versus a 1st
percentile player; Rep991 captures the number of matches required for the 99th percentile player to
win more than half of the matches against the 1st percentile player with at least 75% probability;
and Repsd reports the analogous number for a player who is exactly one standard deviation better
than their opponent.

Table 12: Equality of rating variances (Levene’s test)

M0 M50 M10

Texas-STD-MS vs. Texas-HT-MS 0.000 0.000 0.000
Texas-STD-MS vs. Texas-HT-HS 0.000 0.000 0.000
Texas-HT-MS vs. Texas-HT-HS 0.677 0.319 0.342

Note: Reported values are p-values of Levene’s test centered at the mean (M0), median (M50),
and 10% trimmed mean (M10). Tests are applied to Elo rating distributions.

simulate data for artificial players who follow stochastic continuation rules rather
than deterministic stopping points.

After each match, a simulated player’s decision to continue is determined by
a probability that depends on whether their cumulative profits are positive or
negative relative to the start of the session. The probability of continuing when
ahead is denoted pa, and the probability of continuing when behind is denoted pb.
These parameters vary across simulated behavioral types:

(pa, pb) ∈ {(0.85, 0.65), (0.8, 0.7), (0.75, 0.75), (0.7, 0.8), (0.65, 0.85)}.

A player with pa > pb exhibits a stop-loss tendency, whereas pa < pb indicates a
gain-exit tendency. When pa = pb, continuation decisions do not depend on prior
outcomes. To examine the effect of individual success rates, players’ match win
probabilities vary across pw ∈ {0.45, 0.525, 0.6}, corresponding approximately to
the 5th, 50th, and 95th percentiles of observed win rates in the real data. Cumula-
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tive session profits, including platform fees, are updated after each match. Session
continuation is determined probabilistically given pa and pb, with a maximum of
40 matches per session and 100 sessions per simulated player. Each simulation
includes 10,000 players.

The generated data are then analyzed using the same identification procedure as
applied to the empirical data. Specifically, we compute for each player the binary
variable behind, indicating negative cumulative session profits, and end session,
which equals one if the player stops playing. Likelihood-ratio χ2 tests are per-
formed individually to evaluate the association between end session and behind.
Players who continue more often when behind (pa < pb) and whose relationship is
significant at the 1% level are classified as displaying gain-exit tendencies; those
who continue more when ahead (pa > pb) are classified as displaying stop-loss
tendencies; and all others are treated as unclassified.

Tables 13 and 14 summarize the classification outcomes. A 10-percentage-point
difference between pa and pb suffices to correctly identify roughly one-third of play-
ers at the 1% level and nearly two-thirds at the 5% level, with false classifications
being extremely rare. When the difference increases to 20 percentage points, almost
all players are correctly classified. As expected, when pa = pb, the misclassification
rate aligns with the chosen significance threshold (about 1% and 5%, respectively).

Table 13: Simulations for stopping behavior identification at the 1% level

Winning %
Continuation %

ahead
Continuation %

behind
Stop-loss

(%)
Unclassified (%)

Gain-exit
(%)

45.0 85.0 65.0 96.55 3.45 0.00
45.0 80.0 70.0 35.48 64.52 0.00
45.0 75.0 75.0 0.58 98.85 0.57
45.0 70.0 80.0 0.00 64.89 35.11
45.0 65.0 85.0 0.00 1.95 98.05

52.5 85.0 65.0 98.32 1.68 0.00
52.5 80.0 70.0 38.77 61.23 0.01
52.5 75.0 75.0 0.49 98.94 0.57
52.5 70.0 80.0 0.00 59.41 40.59
52.5 65.0 85.0 0.00 1.09 98.91

60.0 85.0 65.0 98.76 1.24 0.00
60.0 80.0 70.0 39.41 60.59 0.00
60.0 75.0 75.0 0.47 99.00 0.53
60.0 70.0 80.0 0.00 61.30 38.70
60.0 65.0 85.0 0.00 1.77 98.23

Note: Simulations include 10,000 players, each completing 100 sessions of up to 40 matches.
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Table 14: Simulations for stopping behavior identification at the 5% level

Winning %
Continuation %

ahead
Continuation %

behind
Stop-loss

(%)
Unclassified (%)

Gain-exit
(%)

45.0 85.0 65.0 99.14 0.86 0.00
45.0 80.0 70.0 58.74 41.26 0.00
45.0 75.0 75.0 2.52 94.88 2.60
45.0 70.0 80.0 0.00 40.26 59.74
45.0 65.0 85.0 0.00 0.29 99.71

52.5 85.0 65.0 99.65 0.35 0.00
52.5 80.0 70.0 62.88 37.11 0.01
52.5 75.0 75.0 2.33 94.96 2.71
52.5 70.0 80.0 0.00 34.99 65.01
52.5 65.0 85.0 0.00 0.16 99.84

60.0 85.0 65.0 99.80 0.20 0.00
60.0 80.0 70.0 63.34 36.66 0.00
60.0 75.0 75.0 2.32 95.23 2.45
60.0 70.0 80.0 0.00 37.03 62.97
60.0 65.0 85.0 0.00 0.34 99.66

Note: Simulations include 10,000 players, each completing 100 sessions of up to 40 matches.

C Additional analysis & Robustness

This section provides robustness checks for individual classification according to
the identification strategy laid out in Section 3. In particular, we provide results
for sessions being defined to allow for gaps of up to two hours between subsequent
matches. We also include results for the top 200 most frequent players, as well
as identification at the 5% level. Finally, for analysis that involves individual skill
estimates, we complement Elo ratings from the main specification with estimates
from fixed effect regressions for robustness (see Appendix A.) Table 15 summarizes
statistics on sessions and matches for the different parameters. Table 16 provides
the classifications for different parameter sets of the top percentile and the 200
most frequent players, respectively. Table 17 reports robustness checks for the
logistic regressions estimating the effects of environments and individual skill on
classification. Tables 18 and 19 provide robustness checks for results on frequency of
play and net profits. Tables 20 and 21 present performance regressions for varying
parameter settings. Figure 4 demonstrates the relation between individual skill and
the skewness of session profits for the 200 most frequent players. Table 22 reports
regressions on the time until the next session. Finally, Figure 5 depicts simulation
results that corroborate the discussion of the main paper by providing evidence on
the likelihood to chase unsuccessfully.
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Table 15: Statistics on matches and sessions – most frequent players

Number of
players

Total
sessions

Mean
sessions
per player

Std. dev.
sessions
per player

Mean
matches
per session

Mean
matches
per player

Std. dev.
matches
per player

Texas-STD-MS 200 10,739 53.7 43.8 3.9 211.4 285.9
Texas-HT-MS 200 20,768 103.8 68.0 8.1 845.2 808.1
Texas-HT-HS 200 15,230 76.2 66.4 7.3 557.5 652.6

Texas-STD-MS 148 7,153 48.3 32.3 6.9 262.0 317.4
Texas-HT-MS 383 25,169 65.7 42.6 11.1 585.5 644.0
Texas-HT-HS 92 7,931 86.2 46.1 13.5 1025.4 719.1

Note: The table provides information on sessions and matches under different parameters. The
top section refers to the top 200 most frequent players, with sessions defined using one-hour
bracketing. The bottom section refers to the top percentile of most frequent players, with sessions
defined using two-hour bracketing.

Table 16: Individual classification by poker version

Stop-loss Unclassified Gain-exit

Texas-STD-MS 0.110 0.745 0.145
Texas-HT-MS 0.065 0.785 0.150
Texas-HT-HS 0.090 0.845 0.065

Texas-STD-MS 0.176 0.601 0.223
Texas-HT-MS 0.141 0.697 0.162
Texas-HT-HS 0.033 0.728 0.239

Texas-STD-MS 0.101 0.750 0.149
Texas-HT-MS 0.081 0.843 0.076
Texas-HT-HS 0.000 0.891 0.109

Note: The table reports player classifications for the top percentile of the most frequent players,
according to the identification strategy in Section 3. The top panel refers to the top 200 most
frequent players, identification at 1%, and one-hour bracketing. The middle panel uses the 5%
level with one-hour bracketing. The bottom panel applies the 1% level with two-hour bracketing.
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Table 17: Individual classification robustness – Logistic regressions

Stop-loss
vs. Unclassified

Gain-exit
vs. Unclassified

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

higher skill dependence 0.731** 0.718** 0.747** 0.469 -0.490 0.047 -0.066 0.668**
(0.362) (0.288) (0.337) (0.330) (0.347) (0.320) (0.489) (0.276)

high stakes 0.204 -1.432** - -2.144** -0.806** 0.306 0.240 0.227
(0.379) (0.607) - (1.012) (0.352) (0.288) (0.396) (0.354)

individual skill -0.014* -0.020** -0.025*** -4.569** 0.023*** 0.015** 0.027*** 2.626*
(0.008) (0.008) (0.008) (2.185) (0.006) (0.006) (0.008) (1.508)

constant -2.381*** -1.495*** -2.224*** -2.169*** -1.908*** -1.575*** -2.632*** -2.161***
(0.299) (0.156) (0.196) (0.186) (0.212) (0.150) (0.201) (0.179)

Observations 528 506 480 545 547 540 577 572

Note: Logistic regressions with robust standard errors in parentheses. The dependent variable
is being classified as stop-loss (columns i–iv) or gain-exit (columns v–viii). ∗p < 0.1, ∗∗p <
0.05, ∗∗∗p < 0.01.

Table 18: Frequency of play robustness – Negative binomial regressions

Stop-loss
vs. Unclassified

Gain-exit
vs. Unclassified

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

stop-loss -0.306*** -0.138* -0.149 -0.180*
(0.101) (0.081) (0.106) (0.093)

gain-exit 0.811*** 0.538*** 0.802*** 0.756***
(0.161) (0.123) (0.171) (0.138)

higher skill dependence -1.779*** -1.250*** -1.252*** -0.997*** -1.638*** -1.025*** -1.098*** -0.922***
(0.090) (0.100) (0.094) (0.089) (0.105) (0.130) (0.108) (0.095)

high stakes -0.323*** 0.634*** 0.643*** 0.709*** -0.242** 0.551*** 0.581*** 0.628***
(0.099) (0.095) (0.089) (0.091) (0.101) (0.094) (0.092) (0.093)

individual skill 0.014*** 0.011*** 0.010*** 0.567 0.011*** 0.008*** 0.008*** 0.821*
(0.002) (0.002) (0.002) (0.382) (0.002) (0.002) (0.002) (0.434)

constant 6.510*** 6.200*** 6.215*** 6.253*** 6.473*** 6.203*** 6.222*** 6.245***
(0.058) (0.051) (0.046) (0.051) (0.060) (0.052) (0.047) (0.052)

Observations 528 506 562 545 547 540 577 572

Note: Negative binomial regressions on total matches, with robust standard errors in parentheses.
Columns (i) and (v) refer to the top 200 most frequent players, identification at 1% and one-hour
bracketing. Columns (ii) and (vi) refer to the top percentile, identification at 5% and one-hour
bracketing. Columns (iii) and (vii) refer to the top percentile, identification at 1% and two-hour
bracketing. Columns (iv) and (viii) refer to the top percentile, identification at 1% and one-hour
bracketing, with skill from fixed effects. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 19: Net profits robustness – OLS regressions

Stop-loss
vs. Unclassified

Gain-exit
vs. Unclassified

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

stop-loss -0.035 0.003 0.028 -0.010
(0.035) (0.026) (0.018) (0.031)

gain-exit -0.037 -0.006 -0.037* -0.019
(0.025) (0.023) (0.022) (0.022)

total matches 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

higher skill dependence -0.030 -0.085* -0.079* 0.011 -0.030 -0.078* -0.078** 0.007
(0.040) (0.045) (0.041) (0.015) (0.031) (0.042) (0.039) (0.013)

high stakes -0.005 -0.053 -0.035 -0.020 0.010 0.000 -0.016 0.016
(0.052) (0.150) (0.131) (0.130) (0.052) (0.114) (0.111) (0.104)

individual skill 0.004*** 0.005** 0.005** 0.894** 0.004*** 0.004** 0.004** 0.939**
(0.002) (0.002) (0.002) (0.433) (0.001) (0.002) (0.002) (0.439)

constant 8.612*** 8.625*** 8.617*** 8.621*** 8.613*** 8.630*** 8.628*** 8.624***
(0.028) (0.033) (0.029) (0.033) (0.021) (0.022) (0.020) (0.024)

Observations 528 506 562 545 547 540 577 572

Note: OLS regressions on the natural logarithm of total net profits after a constant shift so that
the smallest profit equals one; robust standard errors in parentheses. Columns (i) and (v) refer
to the top 200 most frequent players, identification at 1% and one-hour bracketing. Columns (ii)
and (vi) refer to the top percentile, identification at 5% and one-hour bracketing. Columns (iii)
and (vii) refer to the top percentile, identification at 1% and two-hour bracketing. Columns (iv)
and (viii) refer to the top percentile, identification at 1% and one-hour bracketing, with skill from
fixed effects. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 20: Performance regression robustness – success when behind (gain-exit spec-
ification)

(i) (ii) (iii) (iv) (v) (vi)

behind before match 1.012 1.015* 1.008 1.010 0.003 0.005
(0.008) (0.008) (0.008) (0.008) (0.007) (0.007)

gain-exit 1.084*** 1.063*** 1.053*** 1.039*** 0.089*** 0.064***
(0.024) (0.020) (0.017) (0.015) (0.023) (0.019)

behind before match × gain-exit 0.958** 0.959** 0.962** 0.963** 0.963 0.965
(0.019) (0.018) (0.016) (0.015) (0.023) (0.022)

higher skill dependence 1.105*** 1.141*** 0.127***
(0.018) (0.018) (0.016)

high stakes 0.978* 1.011 0.012
(0.011) (0.011) (0.011)

match in session 1.000** 1.000 -0.000
(0.000) (0.000) (0.000)

constant 1.077*** 1.071*** 1.079*** 1.062*** 1.080*** 1.063***
(0.07) (0.009) (0.007) (0.008) (0.007) (0.008)

Observations 322,800 322,800 357,352 357,352 357,352 357,352

Note: Mixed-effects logistic regressions reporting odds ratios for specification (1); robust standard
errors in parentheses. Columns (i) and (ii) refer to the top 200 most frequent players, identification
at 1% and one-hour bracketing. Columns (iii) and (iv) refer to the top percentile, identification
at 5% and one-hour bracketing. Columns (v) and (vi) refer to the top percentile, identification
at 1% and two-hour bracketing.
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Table 21: Performance regression robustness – success when ahead (stop-loss spec-
ification)

(i) (ii) (iii) (iv) (v) (vi)

ahead before match 0.997 1.000 0.998 1.001 0.999 1.002
(0.008) (0.008) (0.008) (0.008) (0.007) (0.008)

stop-loss 0.917*** 0.905*** 0.928*** 0.924*** 0.915*** 0.912***
(0.026) (0.025) (0.020) (0.020) (0.026) (0.026)

ahead before match × stop-loss 1.004 1.006 1.014 1.016 1.009 1.012
(0.031) (0.031) (0.025) (0.025) (0.032) (0.032)

higher skill dependence 1.111*** 1.143*** 1.143***
(0.018) (0.018) (0.018)

high stakes 0.973** 1.005 1.006
(0.011) (0.011) (0.011)

match in session 1.000** 1.000* 1.000*
(0.000) (0.000) (0.000)

constant 1.100*** 1.093*** 1.100*** 1.081*** 1.096*** 1.077***
(0.007) (0.009) (0.007) (0.008) (0.007) (0.007)

Observations 322,800 322,800 357,352 357,352 357,352 357,352

Note: Mixed-effects logistic regressions reporting odds ratios for specification (2); robust standard
errors in parentheses. Columns (i) and (ii) refer to the top 200 most frequent players, identification
at 1% and one-hour bracketing. Columns (iii) and (iv) refer to the top percentile, identification
at 5% and one-hour bracketing. Columns (v) and (vi) refer to the top percentile, identification
at 1% and two-hour bracketing.
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Figure 4: Relation between individual skill and skewness of session profits (200
most frequent players)
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Note: The graph illustrates the relationship between individual skill and skewness of session profits
for the 200 most frequent players in each poker version. To enable direct comparisons, players are
represented using different symbols based on their strategy classifications. Skewness of session
profits is determined through simulations in which session lengths and win rates remain fixed for
each player, while match sequences and outcomes are randomly shuffled 99 times. We calculate the
percentile rank of the observed skewness relative to the simulated reference distribution and refer
to this measure as the skewness of session profits. The analysis reveals a statistically significant
negative relationship (p < 0.001).
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Table 22: Hazard model – time until next session (robustness)

(i) (ii) (iii) (iv) (v) (vi)

lost session -0.107*** -0.110*** -0.103*** -0.102*** -0.096*** -0.096***
(0.013) (0.013) (0.013) (0.013) (0.014) (0.014)

gain-exit 0.037 0.068 0.026 0.051 0.086* 0.129***
(0.045) (0.046) (0.038) (0.038) (0.046) (0.048)

stop-loss -0.023 0.011 -0.022 0.013 -0.009 0.022
(0.073) (0.065) (0.046) (0.044) (0.061) (0.060)

lost session × gain-exit 0.116*** 0.103*** 0.093*** 0.080*** 0.037 0.018
(0.029) (0.029) (0.026) (0.026) (0.039) (0.039)

lost session × stop-loss -0.143*** -0.151*** -0.093*** -0.099*** -0.074* -0.076*
(0.042) (0.044) (0.029) (0.029) (0.042) (0.043)

higher skill dependence -0.300*** -0.156*** -0.198***
(0.039) (0.037) (0.033)

high stakes -0.080** 0.118*** 0.057
(0.038) (0.037) (0.042)

session length -0.002** -0.002** -0.000
(0.001) (0.001) (0.001)

Observations 45,671 45,671 52,225 52,225 38,894 38,894

Note: Cox proportional hazards models per specification (3); coefficients are log hazard ratios
(positive = shorter time to next session; negative = longer). Columns (i) and (ii) refer to the
top 200 most frequent players, identification at 1% and one-hour bracketing. Columns (iii) and
(iv) refer to the top percentile, identification at 5% and one-hour bracketing. Columns (v) and
(vi) refer to the top percentile, identification at 1% and two-hour bracketing. Standard errors
clustered at the player level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Figure 5: Probability to chase unsuccessfully depending on maximum session length
by individual success rate

0
.2

.4
.6

.8
1

Pr
ob

ab
ilit

y 
to

 c
ha

se
 u

ns
uc

ce
ss

fu
lly

0 5 10 15 20 25
Maximum session length

45% win rate 52.5% win rate
60% win rate

Note: The graph depicts the relationship between maximum session length and the probability to
chase unsuccessfully depending on different levels of individual success rates, i.e., the probability
to win a match pw ∈ {0.45, 0.525, 0.6}. These correspond to the winning probabilities of the 5th,
50th, and 95th percentile players in the observed data. Results are based on simulations assuming
that individuals play until they win one more match than they lost in the session (a successful
chase) or reach the maximum session length without doing so (an unsuccessful chase).
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