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ON ROBUSTNESS OF AVERAGE INFLATION
TARGETING∗

SEPPO HONKAPOHJA NIGEL MCCLUNG†

February 5, 2023

Abstract

This paper considers average inflation targeting (AIT) policy in a New Keynesian
model with adaptive learning agents. Our analysis raises concerns regarding robust-
ness of AIT when agents have imperfect knowledge. In particular, the target steady
state may not be robustly stable under learning if the length of the averaging window
is not public knowledge. Near the low steady state with interest rates at the zero
lower bound, AIT does not necessarily outperform standard inflation targeting pol-
icy. Policymakers can improve outcomes under AIT by communicating the averaging
window, or using an asymmetric rule that responds more aggressively to below-target
average inflation.

Keywords: Adaptive Learning, Inflation Targeting, Zero Interest Rate Lower
Bound.

JEL codes: E31, E52, E58

1 Introduction

The period from 2008 to 2020 was a very challenging time for macroeconomic policy-making
and in particular for monetary policy.1 In most years since 2008 central banks have had to
keep the policy interest rates at approximately zero level, popularly called the zero lower
bound (ZLB) or the liquidity trap. The usual framework of inflation targeting, which was
the initial monetary policy strategy in the global financial crisis, became largely ineffective
in the ZLB regime. Once policy rates were effectively down to the ZLB level, central

∗We are grateful to Klaus Adam, Markus Haavio, Sebastian Schmidt, and our discussants, Lilia Maliar,
Bruce Preston, and Jacek Suda, conference and seminar participants at the 2021 NBU-NBP Annual Re-
search Conference, 2021 Bank of Israel-CEPR conference, 2021 Bank of Finland-CEPR conference, the
2021 Expectations in Dynamic Macroeconomic Models conference, 24th Central Bank Macroeconomic
Modeling Workshop, and at seminars at ISER Osaka University, Helsinki GSE and Bank of Finland for
helpful comments. First author acknowledges financial support from the Yrjö Jahnsson Foundation. The
views expressed in this paper are not necessarily the views of the Bank of Finland.

†The author for correspondence. Address: Snellmaninaukio, Helsinki, FI 00101. Email:
nigel.mcclung@bof.fi.

1We do not consider the challenges from the Covid 19 pandemic.
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banks had to revert to unconventional monetary policies which took the form of liquidity
operations, credit easing, large scale asset purchases and forward guidance about future
course of policy. A number of empirical studies have shown that these new policies had
qualitatively the right kind of macroeconomic effects, but the estimated magnitudes have
been variable.2

The ZLB regime after the financial crisis inspired discussions among prominent central
bankers and academics about possible reform of the monetary policy framework. Alter-
natives to inflation targeting were explored. Price level targeting (PLT) and the related
concept of nominal GDP targeting were perhaps the most widely discussed suggestions for
a more appropriate monetary policy framework. Evans (2012) and Carney (2012) were
among the first commentators and more recently, for example, Williams (2017), Bernanke
(2017) and Bullard (2018) suggested that PLT and more complex “switching policies”
should be studied further. In 2019 the Federal Reserve initiated a review of its monetary
policy strategy. The review process culminated in August 2020 in the announcement by
the Chairman Powell (2020) that the policy framework of the Fed is to be based on Average
Inflation Targeting (AIT).3

AIT has not been widely studied in the research literature. Nessen and Vestin (2005)
studied a rational expectations (RE) model in which the central bank targets a simple
moving average of inflation rates. Reifschneider and Williams (2000) suggested a book-
keeping device to keep track of deviations between the actual interest rate and a reference
rate based on the Taylor rule. Mertens and Williams (2019) use the interest rate from
the optimal policy under discretion and RE (when the ZLB can be binding) as a reference
rate which is combined with AIT. Budianto, Nakata and Schmidt (2023) study the optimal
policy under discretion when agents are myopic and the central bank loss function incorpo-
rates an exponential moving average of actual inflation rates. Amano, Gnocchi, Leduc and
Wagner (2020) study the optimal averaging window under AIT in a model with rule-of-
thumb price-setters. Jia and Wu (2022) consider the role of ambiguities in communication
with AIT. Andrade, Gali, Le Bihan and Matheron (2021) is a recent applied paper that
focuses on alternative make-up strategies for monetary policy.4

Most of the above mentioned papers assume that agents understand the basic structure
of AIT policy. This assumption is hard to reconcile with recent studies on how expectations
respond to AIT. Coibion, Gorodnichenko, Knotek II and Schoenle (2020) found that the
Fed’s August 2020 announcement of AIT had little effect on household inflation expecta-
tions. This result could suggest that households do not understand the basic structure and
implications of AIT. Salle (2021) examined data from laboratory experiments involving
AIT and finds that agents struggle to understand the lag structure implied by AIT. On the
other hand, Hoffman, Moench, Pavlova and Schultefrankenfeld (2022) find that German
households might understand the implications of an asymmetric AIT strategy.

In this paper we consider the performance of AIT in a standard New Keynesian (NK)
model when private agents have imperfect knowledge of the economy and have to engage
in learning to forecast its dynamics. It is assumed that when forming expectations private
agents statistically estimate the laws of motion for the endogenous variables that they need
to forecast. In this setting private agents make in each period optimal decisions given the

2See Moessner, Jansen and de Haan (2017), Dell’Ariccia, Rabanal and Sandri (2018), Kuttner (2018)
and Bhattarai and Neely (2016) for reviews of the empirical literature on unconventional monetary policy.

3See e.g. Svensson (2020) for a wide-ranging discussion of alternatives that were considered by the Fed.
4There are also related studies by the staff of the Federal Reserve System that were done as part of the

Fed strategy review, such as Hebden, Herbst, Tang, Topa and Winkler (2020).
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current forecasts and the economy evolves as a sequence of temporary equilibria that are
defined by forecasts and private decisions in each period. As time progresses, new data
leads to updating of the forecast functions and new temporary equilibria. This approach is
called adaptive learning, and it relies on a more realistic model of expectations formation
and decision making than rational or boundedly rational decision rules under RE.5

The induced learning behavior influences the actual dynamics of endogenous variables.
In benign circumstances the economy reaches a long-run RE equilibrium, but this depends
on the structure of the economy and in particular the policy rule used by the central bank.
As a starting point, transparency about the averaging window is considered. If the central
bank makes a credible commitment to a transparent averaging window, then convergence to
the target steady state occurs if the model parameters correspond to those used in studies
of the usual Taylor and related rules.6 However, when AIT is practiced under opacity of
its details, which is arguably the current framework of the Fed,7 convergence to long run
equilibrium may not take place, so that the form of monetary policy can play a crucial role
in guaranteeing long-run convergence.

Our analysis raises warning signals as regards robustness of economic performance with
AIT policy in conditions of imperfect knowledge and learning. In the main case it is assumed
that AIT is practiced under opacity of its details. Specifically, we assume agents do not
know the length of the averaging window and other details of a symmetric Taylor-type
policy rule. In this setup the outcome is precarious in that local convergence of learning to
target steady state depends on stickiness of prices. With full price flexibility there is local
instability while with price stickiness the steady state is locally stable but not robustly
so: stability holds only if the speed of learning, i.e. the rate at which agents update
their expectations as new data becomes available, is implausibly slow. Moreover, using
simulations from a non-linear New Keynesian model with a zero lower bound constraint
indicate that even a transparent AIT regime does not necessarily outperform a standard
Taylor rule at the lower bound on interest rates.

Given that transparency may have modest benefits, and requires the central bank to
commit to an averaging window, we next investigate an asymmetric strategy in which the
central bank aims to overshoot the inflation target, but does not aim to undershoot the
target. We find that an asymmetric rule can improve outcomes under conditions of opacity.
Other variations, including weighted average schemes, are also considered, and directions
for future work are discussed.

In the next section we introduce the AIT formulation and illustrate the basic results
using a simple model. The main model is developed in Section 2. Sections 3 through 6
present the main stability results and consider various alterations to the AIT framework.
Proofs of the results and various modelling details are in the several appendices.

1.1 Introductory Example

The basic idea behind average inflation targeting (AIT) is that, when comparing actual
inflation against its long-run target, the measure of actual inflation is an average of past

5For example, IMF World Economic Outlook, October 2022 uses adaptive learning as the baseline
framework for modelling expectations formation. See IMF (2022), pp.63-66 and the Annex to the report.

6Evans and Honkapohja (2003) and Evans and Honkapohja (2006) showed how the form of interest
rate rule for implementing optimal policy can be crucial to ensure convergence to REE. Bullard and Mitra
(2002) studied local convergence conditions when a Taylor rule is applied.

7See e.g. the interview of John Williams in FT Live, November 13, 2020.
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inflation rates. This average inflation rate is the key indicator for policy decisions, so that
policy is tightened vs. loosened if the average of past inflation rates is above vs. below
respectively its target value. There are of course different ways to measure average value and
there is also the issue of length of the data window in its computation. In addition, major
issues about communication of the AIT framework to the private economy are relevant.

A simple example is now used to illustrate that introducing AIT under conditions of
imperfect knowledge can create stability concerns in the resulting economic dynamics.
Consider the following linearized New Keynesian model8

ŷt = ŷet − σ̃(βR̂t − π̂et ), (1)

π̂t = βπ̂et + κŷt, (2)

where ŷ is the output gap, π̂ is inflation, R̂ is the nominal interest rate, π̂et = E∗
t π̂t+1,

ŷet = E∗
t ŷt+1, and σ̃ is proportional to the intertemporal elasticity of substitution. Notation

x̂ = x − x∗ gives the deviation from the target steady state. Note that κ is decreasing in
price rigidity and prices become totally flexible as κ→ ∞.

We assume the central bank sets the nominal interest rate in response to an average of
deviations from the inflation target π∗ in the past L− 1 periods.9

R̂t = ψ
L−1∑
k=0

π̂t−k
π∗ . (3)

Note that the AIT rule (3) is a standard inflation targeting (IT) Taylor rule if L = 1, and
it can be re-written as a Wicksellian price level targeting (PLT) rule as L → ∞. Thus,
the simple AIT rule nests traditional IT and PLT alternatives as limiting cases. For our
purposes, we have an average inflation targeting central bank if L > 1 and L is finite.

We assume there is opacity about the AIT policy rule, (3), which means that agents
do not understand the length of the averaging window, L, or other details of the policy
rule. This is a natural starting point for the analysis, as the world’s only average inflation
targeting central bank, the Federal Reserve, has not communicated an averaging window
since implementing AIT in 2020. If agents do not understand the lag structure of monetary
policy decisions, they may omit the critical L − 1 lags of inflation from their forecasting
models (usually called the perceived law of motion or PLM). Specifically, assume that the
agents might forecast inflation using a simple weighted average of past inflation, called
steady state learning with constant gain, which formally is

π̂et = π̂et−1 + ω(π̂t−1 − π̂et−1), (4)

where ω > 0 is a small constant.10 Importantly, the steady state learning algorithm encodes
agents’ beliefs that lags of inflation do not matter for the current monetary policy stance.
This way of forming inflation expectations would be natural under a standard inflation
targeting regime (i.e. L = 1).

8The results in this paper do not depend on whether we linearize or log-linearize the model around the
target steady state equilibrium.

9The inflation term could be divided by L, but this would not change the result as L can be incorporated
into ψ.

10In the main paper we also consider cases where agents use fewer than L lags in the forecasting.
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For the sake of simplicity, we assume output expectations are based on (2) and given
as11

ŷet =
1− β

κ
π̂et . (5)

If we substitute (5), (2), and (3) into (1) we have

π̂t =
π∗ (κ−1 + σ̃)

π∗κ−1 + βσ̃ψ
π̂et −

βσ̃ψ

π∗κ−1 + βσ̃ψ

L−1∑
k=1

π̂t−k. (6)

By lagging (6) one period and solving for π̂et−1, then substituting this expression for π̂et−1

and resulting (4) into (6) we obtain for any κ

π̂t =
π∗κ−1 − σ̃ω(βψ − π∗)

βσ̃ψ + π∗κ−1
π̂t−1

− ωβσ̃ψ

π∗κ−1 + βσ̃ψ

L−1∑
k=2

π̂t−k +
(1− ω)βσ̃ψ

π∗κ−1 + βσ̃ψ
π̂t−L. (7)

A key question of interest is whether the target steady state (i.e. π̂ = 0) is locally stable
under learning with opacity. In other words, will the process (7) converge for different values
of L and sufficiently small values of the constant gain parameter, ω? We first consider the
case of flexible prices.

Remark 1 Assume the Taylor Principle is satisfied (i.e. ψ > β−1π∗). In the limit κ→ ∞,
the steady state π∗ is locally stable under the system (7) if L ≤ 3 but is explosive if L = 4
and for all higher, finite values of L.

This remark can be proved by computing the characteristic polynomial to see when its
roots are inside the unit circle, see Appendix D.2. We will give detailed proof using a more
general model with flexible prices.

Figure I illustrates the instability with L = 5 and standard numerical values for the
parameters: β = 0.99, ψ = 1.5 and ω = 0.001. The initial conditions are π̂e0 = 0.02,
π̂0 = 0.09, π̂−1 = 0.1, π̂−2 = 0.001, π̂−3 = 0.03 and π̂−4 = 0.05. Divergence is very slow as
the gain parameter ω is very small.12

Figure I HERE

To get an intuition for Remark 1 and the diverging oscillations depicted in Figure I,
notice that (7) becomes the following process as κ→ ∞

π̂t = ω(
π∗

βψ
− 1)π̂t−1 − ω

L−1∑
i=2

π̂t−i + (1− ω)π̂t−L. (8)

Under a simple IT rule (L = 1) equilibrium inflation is a monotonic sequence, πt = (1 +
ω(π∗(βψ)−1 − 1))πt−1, that converges slowly to steady state if β−1π∗ < ψ and ω > 0 is
small. With AIT (L > 1), the sequence of inflation is no longer monotone. For example,

11Alternatively, we could assume that ŷet is based on a steady state learning scheme akin to (4), but this
would not affect the qualitative results in this section.

12Results from a long simulation for 50,000 periods showing divergence in the example of Figure I are
available on request.
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the AIT rule aims for “makeup” inflation (π̂t > 0) after an initial undershooting of the
target (π̂0 < 0). Further, because the policymaker targets a finite moving average of
inflation, the measure of average inflation can overshoot the target during a period of
makeup inflation and this compels the policymaker to aim for a subsequent undershooting
of the target steady state. Thus, the use of a finite moving average of inflation gives rise to
the oscillatory pattern of over- and undershooting depicted in Figure I. With opacity, agents
cannot forecast these temporary oscillations in inflation, and so their long-run inflation
expectations drift and inflation becomes dynamically unstable.

From Remark 1, instability problems arise with finite values of L. We noted ear-
lier that the AIT rule converges to a Wicksellian PLT rule in the limit L → ∞.13 In
this case, the flexible price model becomes an AR(2) process for the price level: p̂t =
(1 + ω(π∗(βψ)−1 − 1)) p̂t−1 − ωπ∗(βψ)−1p̂t−2 + ωp̂0. For small ω, p̂t clearly converges as t
increases, and therefore π̂t → 0 for given p̂0. Thus, unstable dynamics emerge under AIT
with opacity for sufficiently high, finite values of L, but not under IT or PLT. In other
words, Remark 1 poses a unique problem for an average inflation targeting central bank.
Under some conditions of imperfect knowledge, AIT is not an intermediate case between
IT and PLT.

Similar results obtain for other under-parameterized PLMs. For instance, if agents
forecast using a simple AR(1) model of inflation (i.e. πt = a+ bπt−1) which they estimate
recursively using a constant gain learning scheme, then their estimates of the intercept (a)
will not converge for L ≥ 4. To help distinguish between different under-parameterized
PLMs, we use the terminology “full opacity” to describe learning with forecasting models
that exclude all lags of inflation, such as the case of steady state learning with (4), and
“opacity” describes learning with a forecasting model that includes at least one but less
than L− 1 lags of inflation, πt−1.

The instability result in Remark 1, however, does not hold up when prices are sticky
(i.e. κ is small). When prices are very sticky, and ω is very small, then inflation is not
very responsive to lags of inflation and consequently, (7) boils down to π̂t ≈ Aπ̂t−1 with A
slightly smaller than 1.

Remark 2 Assume that ψ > β−1π∗. If κ is small and ω is sufficiently close to zero, then
the steady state π∗ is stable under the system (7) for all L.

Remarks 1 and 2 give contrasting results; AIT yields stability when there is price
stickiness (provided that speed of learning, ω, is low), but is problematic if the economy
has flexible prices. However, Remark 2 assumes ω is very small, and this begs important
questions. In particular, with sticky prices, is the target steady state robustly stable for
empirically plausible calibrations of ω, or do we need ω to be implausibly small? If the
target steady state is not robustly stable, then what can a central bank do in order to
successfully implement AIT? If the target steady is robustly stable, then can AIT succeed
in bringing the economy out of a liquidity trap with binding ZLB? The remainder of the
paper is devoted to these questions and related issues.

13In the limit L → ∞, we have Rt =
ψ
π∗ (p̂t − p̂0) where p̂t = π̂t + p̂t−1 is the current price level and p̂0

is the given initial price level.
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2 New Keynesian Model

This section develops a standard New Keynesian model of learning. In the model, a con-
tinuum of household-firms produce a differentiated consumption good under monopolistic
competition and price adjustment costs in the spirit of Rotemberg (1982). Agents optimize
over the infinite horizon in accordance with the “anticipated utility” approach formulated
by Kreps (1998) and discussed in Sargent (1999) and Cogley and Sargent (2008).

The utility and production functions are assumed to be identical and agents have ho-
mogenous point expectations, so that there is a representative agent.14 Government uses
monetary policy, buys a fixed amount of output and finances spending by taxes and issues
of public debt. Monetary policy is conducted in terms of an interest rate rule in the cash-
less limit. It should be recalled that the nonlinear model we use has two steady states, the
inflation-target and liquidity trap (or ZLB) steady states, when interest rate setting follows
a suitable nonlinear Taylor rule entailing an active policy response at the target level of
inflation. See e.g. Benhabib, Schmitt-Grohe and Uribe (2001) and Benhabib, Evans and
Honkapohja (2014) for the RE and learning versions of the model.15 The existence of two
steady states is a key feature also with the PLT and AIT interest rate rules.

We note that a classical monetary model with full price flexibility is obtained from our
model in the limit by setting the adjustment costs to zero. In this case the Phillips curve
is replaced by a static first order condition for consumption and labor supply. The cases of
price stickiness and price flexibility are both discussed below as the distinction turns out
to be important for the results. For brevity, formal details of the two versions of the model
are given in Appendix A.16

2.1 Behavioral Rules

The analysis relies on two behavioral rules of private agents: the Phillips curve and the
consumption function. Starting with the former, the Phillips curve takes the form

Qt = K̃(yt, y
e
t+1, y

e
t+2...) ≡

ν

αγ
y
(1+ε)α−1

t − ν − 1

γ

yt
(yt − (ḡ + g̃t))σ

+ (9)

ν

γ

∞∑
j=1

α−1βj
(
yet+j

)(1+ε)α−1

− ν − 1

γ

∞∑
j=1

βj
yet+j

(yet+j − (ḡ + ρj g̃t))σ
,

where
Qt = (πt − 1)πt. (10)

Here yt denotes output and ḡ, g̃t are the mean and random parts of government spending.
ν, α, γ and β are parameters for substitution elasticity, labor input exponent in production,
price adjustment costs and subjective discount rate, respectively. Prices are sticky if γ > 0
and price flexibility obtains in the limit γ → 0. Superscript e indicates expectations while
subscripts indicate the periods t+ j, j = 0, 1, 2, ....

14Point expectations are an assumption of bounded rationality. It means that agents treat the conditional
expectation of a nonlinear function of random variables as equal to the nonlinear function of the conditional
expectations.

15With unchanged policy, there is a third interior steady state if public consumption enhances agents’
utility, see Evans, Honkapohja and Mitra (2020).

16The derivation of model is also given in Benhabib et al. (2014) and Honkapohja and Mitra (2020).
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The form (9) of the Phillips curve is special as expected future inflation does not directly
affect current inflation. (There is an indirect effect via current output in the Phillip’s curve.)
This formulation is based on the assumption of a representative agent and a simplifying
assumption about expectations, see Appendix A.2 for formal details. One could allow for
heterogenous expectations along the learning path. The formulation facilitates the stability
analysis without loss of generality in the results.

To derive the consumption function it is assumed for simplicity that consumers are
Ricardian in the sense that they amalgamate their own intertemporal budget constraint
and that of the government (where the latter is evaluated at price expectations of the
consumer). It can be shown that the consumption function takes the form

ct

∞∑
j=1

βjσ
−1

(De
t,t+j)

(1−σ)σ−1

=
∞∑
j=1

(De
t,t+j)

−1(yet+j − (ḡ + ρj g̃t)), (11)

where ct, πt =
Pt

Pt−1
and Rt denote private consumption, (gross) inflation rate and (gross)

interest rate for loan from period t to t+ 1, respectively. The discount factor is

De
t,t+j =

Rt

πet+1

j∏
i=2

Re
t+i−1

πet+i
. (12)

In practice central banks do not make their policy instrument rules known. This is reflected
in (12) as private agents must form expectations about future interest rates.

The aggregate demand function is obtained by combining the market clearing condition
yt = ct + gt with the consumption function (11)

yt = Y ((yet+j, π
e
t+j, R

e
t+j, ḡ + ρj g̃t)

∞
j=1, Rt, gt). (13)

2.2 Average Inflation Targeting (AIT)

The central bank uses an interest rate rule that depends on average inflation

Rt = 1 +max[R̄− 1 + ψp[
Pt − P̄t,L
P̄t,L

] + ψy[
yt − y∗

y∗
], 0], (14)

P̄t,L = (π∗)LPt−L and (15)

πt =
Pt
Pt−1

. (16)

Here P̄t,L denotes the target price level. It is formulated with a target level for inflation
π∗ and P̄t,L is computed by compounding the actual price level L periods ago using target
inflation rate π∗. Notice that (14) becomes a simple inflation targeting rule when L = 1.
As L → ∞, (14) becomes a Wicksellian PLT rule with inflation target path given by
P̄t,∞ = (π∗)tP0 for all t.

The rule (15) implies that

Pt
P̄t,L

=
Pt
Pt−1

...
Pt−(L−1)

(π∗)LPt−L
= (π∗)−L

L−1∏
i=0

πt−i,
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so the basic AIT rule with the ZLB constraint can be written as

Rt = R(yt, πt, ..., πt+1−L) (17)

≡ 1 + max

[
R̄− 1 + ψp

[
L−1∏
i=0

πt−i

(π∗)L
− 1

]
+ ψy

(
yt
y∗

− 1

)
, 0

]
.

Rule (17) is the starting point of our analysis of average inflation targeting, but other
variants will also be considered. Also note that (17) is a nonlinear version of (3).

2.3 Stability of the Target Steady State Under Learning

We start by considering as a benchmark the case where there is transparency about the
averaging window. The nonlinear model comprised of the Phillips curve (9), the aggregate
demand function (13) and the AIT interest rate rule (17). The model is first linearized
around the target steady state by computing the general form of agents’ linearized infinite-
horizon (IH) decision rules. If agents are identical, the linearized IH Phillips curve obtained
in Appendix A.4 is

π̂t = κŷt + κ
∞∑
j=1

βj ŷet+j, (18)

where x̂ denotes a linearized variable, and κ is the slope of the Phillips curve. In Appendix
A.4 it is shown that the linearized aggregate demand function takes the form

ŷt = − c∗β

σπ∗ R̂t +
∞∑
j=1

βj
(
1− β

β
ŷet+j −

c∗

σ

(
βR̂e

t+j(π
∗)−1 − π̂et+j(βπ

∗)−1
))

. (19)

The linearized expression for the interest rate rule (17) near the target steady state is

R̂t = ψp

L−1∑
k=0

π̂t−k
π∗ + ψy

ŷt
y∗
. (20)

We note that the AIT interest rate rule induces lags of inflation into the otherwise
forward-looking structural model. To model transparency about the averaging window, we
assume that agents know to include L− 1 lags of inflation into their PLM (but otherwise
the parameters of the policy are unknown). Expectations, {πet+j, yet+j, Re

t+j}j≥0, are formed
under adaptive learning.

Following the literature on adaptive learning, it is assumed that each agent has a model
for perceived dynamics of state variables, also called the perceived law of motion (PLM).
In any period the PLM parameters are estimated using available data and the estimated
model is used for forecasting. The PLM parameters are re-estimated when new data
becomes available in the next period. In linearized models, a common formulation is to
postulate that the PLM is a linear regression model where endogenous variables depend
on intercepts, observed exogenous variables and (possibly) lags of endogenous variables.17

The estimation is based on least squares or related methods.18 In each period the estimated

17The assumption of a linear PLM is often used as an approximation also in nonlinear models as the
true nonlinear functional form of the model would involve expectations of complicated nonlinear functions.

18For discussions of adaptive learning, see e.g. Evans and Honkapohja (2001), Sargent (2008) and Evans
and Honkapohja (2009a).
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PLM is substituted into the expectations in the structural model. This yields the temporary
equilibrium for the period, also called the actual law of motion (ALM).

We now formally introduce the general multivariate framework. Adopting the vector
notation X̂t = (ŷt, π̂t, R̂t, )

T and X̃t = (X̂t, ..., X̂t−(L−1)),
T the general framework is a lin-

earized multivariate model in which agents are forward-looking with infinite horizon and
there are L− 1 lags of endogenous variables. Its general form is

X̃t = (Xt, ..., Xt−(L−2))
T

Xt = K +
∑∞

i=1
βiMXe

t,t+i +
∑L−1

j=1
NjXt−j.

Stacking the system into first order form gives the temporary equilibrium system of equation

X̃t = K̃ +
∑∞

i=1
βiM̃X̃e

t,t+i + ÑX̃t−1,

which is written out
Xt

Xt−1
...

Xt−(L−2)

 =


K
0
...
0

+
∑∞

i=1


βiM 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0




Xe
t,t+i

0
...
0



+


N1 N2 · · · NL−1

I 0 · · · 0
...

. . . · · · ...
0 0 I 0




Xt−1

Xt−2
...

Xt−(L−1)

 ,

and so

X̃t =


Xt

Xt−1
...

Xt−(L−2)

 , M̃ =


M 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0



X̃e
t,t+i =


Xe
t,t+i

0
...
0

 , Ñ =


N1 N2 · · · NL−1

I 0 · · · 0
...

. . . · · · ...
0 0 I 0


The PLM is

Xt = A0 +
∑L−1

j=1
AjXt−j

so
X̃t = Ã0 + ÃX̃t−1, (21)

where

Ã =


A1 A2 · · · AL−1

I 0 · · · 0
...

. . . · · · ...
0 0 I 0

 and Ã0 =


A0

0
...
0

 .
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Under learning with transparency, agents’ forecasting model, or (PLM) has the same
V AR(L− 1) form as the linearized economy:19

X̃t = Ã0 + ÃX̃t−1. (22)

We first assume that agents know the structural form of the model, but not its parameter
values.

Definition Agents are learning with transparency if their linear PLM includes all L-1
lags of inflation.

Nevertheless, agents are assumed to have imperfect knowledge about the economy’s struc-
ture, including coefficients of the policy rule such as ψp, so they estimate the coefficients of
their PLM in real-time.

The temporary equilibrium X̂t is given by (18), (19), and (20) given expectations X̂e
t+i.

Using the general formulation developed above, the actual law of motion (ALM) for the
economy is

X̃t = K̃ +
∑∞

i=1
βiM̃X̃e

t,t+i + ÑX̃t−1 (23)

and, after substituting in the PLM (22), the temporary equilibrium mapping PLM →
ALM can be simplified to

Ã →
∑∞

i=1
βiM̃Ãi+1 + Ñ , (24)

Ã0 → K̃ +
∑∞

i=1
βiM̃(I + Ã+ ...+ Ãi)Ã0.

This mapping determines the E-stability conditions which are given in Appendix A.6,
equations (70).20 For brevity, in the MSV setting we only check that these conditions are
satisfied in a calibrated version of the model. For the calibration see Section 3.2.

We have the results:

Result 1: If agents are learning with transparency about the structure of the policy rule,
then the target steady state is E-stable when prices are sticky.

The flexible-price model is discussed in Appendix A.7 and this case is covered in the
following:

Result 2: The case of flexible prices is a limiting case of the NK model when the price
stickiness parameter γ → 0. The target steady state is E-stable when the policy structure
is known to private agents.

3 Imperfect Structural Knowledge and Learning

Recalling that the Federal Reserve has given little information about the details of AIT, we
now start to consider situations where the policy structure, including the averaging length
L is not known to the agents. Under full opacity about the monetary policy framework,
agents must forecast the interest rate as well as output and inflation rate without any

19More precisely, agents’ PLM has the same V AR(L − 1) form as the minimal state variable (MSV)
solution of the linearized model.

20E-stability conditions are usually the key conditions for convergence of adaptive learning in many
macroeconomic models, see Appendix A.5 for more detail and some references.
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knowledge of the variables and lags of inflation in the policy rule (e.g. L). In this situation
agents’ learning is about how to forecast future inflation, output and interest rate and
agents are assumed to exclude lagged endogenous variables from their PLM . Below we
also consider the cases where agents’ PLM incorporates a smaller averaging window than
L. It turns out that the stability properties are the same for these intermediate cases.

Definition Agents are learning with full opacity if they exclude all lagged endogenous
variables (e.g. inflation) from their linear PLM, but possibly include other observables (e.g.
g̃t).

Note that the only lags in the model are lagged inflation rates in the policy rule and
private agents have no knowledge of the form (17). Consequently, it is reasonable to think
they would exclude these variables from their forecasting models. Also note, just as in
section 1.1, that agents’ PLM under full opacity can be the model-consistent PLM in the
model with a simple IT rule (L = 1), and therefore under full opacity agents forecast as if
they are living under a standard IT regime. With AIT under full opacity, the equilibrium
involves an under-parameterized forecasting model and thus the possible long-term outcome
is a restricted perceptions equilibrium.21

Our interest is the stability of the model’s target steady state, which can be validly
assessed under the simplifying assumption that the random part of government spending
g̃t is identically zero.22 This assumption distills the full opacity PLM down to an inter-
cept term (i.e. agents estimate the long-run mean values of state variables). We assume
agents estimate these long-run mean values using a steady state learning scheme which is
formalized as

set+j = set for all j ≥ 1, and set = set−1 + ωt(st−1 − set−1), (25)

where s = y, π, R. It should also be noted that in this notation expectations set refer to
future periods (and not the current one) formed in period t. When forming set the newest
available data point is st−1, i.e. expectations are formed in the beginning of the current
period. ‘Constant gain’ learning is assumed, so that the gain parameter is ωt = ω, for
0 < ω ≤ 1 and assumed to be small.23

3.1 Temporary Equilibrium and Full Opacity

Under steady state learning with full opacity, agents form expectations πet+j = πet , y
e
t+j = yet

and Re
t+j−1 = Re

t for j = 1, 2, ... according to (25) at the beginning of time t. Time-t tem-
porary equilibrium is given by
(i) the infinite horizon Phillips curve,

πt(πt − 1) = K̃(yt, y
e
t ) ≡

ν

αγ
y
(1+ε)α−1

t − ν − 1

γ

yt
(yt − ḡ)σ

+

ν

γ

∞∑
j=1

α−1βj (yet )
(1+ε)α−1

− ν − 1

γ

∞∑
j=1

βj
yet

(yet − ḡ)σ
or

πt = Π(yt, y
e
t ) ≡ Q−1[K̃(yt, y

e
t )], (26)

21See e.g. Evans and Honkapohja (2001) and Branch (2006). The term self-confirming equilibrium is
also used in in the literature, see e.g. Sargent (1999).

22See Appendix A.5 for more details on the learning formulation.
23Note that the in the simple model of section 1.1 agents updated their inflation expectations using a

steady state learning scheme with constant gain (see (4)).
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(ii) the aggregate demand function coupled with market clearing,

yt = Y (yet , π
e
t , Rt, R

e
t ) (27)

≡ ḡ +

[(
βRt

πet

)−σ−1
(
1− βσ

−1

(
Re
t

πet

)(1−σ)σ−1
)]

(yet − ḡ)

(
Re
t

Re
t − πet

)
(iii) and the interest rate rule (17) including the definition of inflation.

The system is compactly written

yt − Y (yet , π
e
t , Rt, R

e
t ) = 0,

πt − Π(yt, y
e
t ) = 0,

Rt −R(yt, πt, ..., πt+1−L) = 0,

or,
F (Xt, X

e
t , Xt−1, ..., Xt−(L−1)) = 0, (28)

where F consists of the aggregate demand function, the Phillips curve and the interest rate
rule. The vector of current state variables is Xt = (yt, πt, Rt)

T while (Xt−1, ..., Xt+1−L)
T

contains the lagged endogenous variables. The rule of steady state learning for the compo-
nents of Xt can be written in vector form as

Xe
t = (1− ω)Xe

t−1 + ωXt−1. (29)

It should be noted that the model has two steady states, (i) the target steady state
(π∗, y∗, R̄), where R̄ = β−1π∗ and π∗ = Π(y∗, y∗) and y∗ = Y (y∗, π∗, R̄, R̄), and (ii)
(πLow, yLow, 1), where πLow = β−1 and yLow = Y (yLow, β

−1, 1, 1).24

3.2 The Case of Full Opacity

This section considers the local stability of the target steady state under learning when
agents have no knowledge of the form of the interest rate rule. We do local stability
analysis, so we linearize the system (28) and (29) around the target steady state:

X̂t = (1− ω)MX̂e
t−1 + (ωM +N1)X̂t−1 +

L−1∑
i=2

NiX̂t−i (30)

X̂e
t = (1− ω)X̂e

t−1 + ωX̂t−1., where (31)

Here X̂t = (ŷt, π̂t, R̂t, )
T with the hat denoting a linearized variable and the matrices M ,

N1, ..., NL−1 are given in the Appendix D. 1. Recall also that Xe
t refers to expected future

values of Xt and not the current one.
First, we focus on “small gain” results, i.e. whether stability obtains for all ω sufficiently

close to zero.

Definition The steady state is said to be expectationally stable or (locally) stable
under learning if it is a locally stable fixed point of the system (28) and (29) for all
0 ≤ ω < ω̄ for some ω̄ > 0.

24The multiplicity of steady states in New Keynesian Models is well-known. See Honkapohja and Mitra
(2020) for the cases of IT and PLT. References to the literature about the multiplicity can be found e.g.
in Evans et al. (2020).
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Conditions for this can be directly obtained by analyzing (30)-(31) in a standard way
as a system of linear difference equations.25 Intuitively, local instability means that an
arbitrarily small disturbance to agents’ expectations causes the economy to permanently
diverge away from the steady state. Local instability is therefore a serious warning signal
about the performance of monetary policy.

As in section 1.1, we find there is local stability of constant gain learning with full
opacity if there is price stickiness and the Taylor Principle is satisfied:26

Proposition 1 Assume that there is price stickiness (γ > 0) and ψp > β−1π∗, ν > 1 and
σ ≥ 1. For small ω, the target steady state is locally stable under constant gain learning
with full opacity under the rule (17) for all L.

Also as in section 1.1, we have local instability when there is full price flexibility.

Proposition 2 Assume that there is full price flexibility (γ = 0) and ψp > β−1π∗. For
small ω, the target steady state is locally stable under constant gain learning with full opacity
under the rule (17) for L ≤ 3 but is unstable for higher values of L.

Propositions 1 and 2 raise questions about applicability of the results. As stability is
overturned in the limit γ → 0 to price flexibility, it is imperative to study whether the
AIT rule ensures a stable equilibrium for empirically plausible values of the gain parameter
when there are positive adjustment costs γ > 0.27 There is no agreed upon range for gain
parameters but the range could be something like [0.002, 0.04],28 and so we propose the
following relatively conservative definition of robust stability.

Definition The steady state is said to be robustly stable under learning if it is a locally
stable fixed point of the system (28) and (29) for all 0 < ω ≤ 0.01.

We need to calibrate the system (30) and (31) in order to assess robust stability when
γ > 0. In the literature suggested calibrations for price adjustment costs, γ, vary a great
deal as they depend on estimates of frequency of price adjustment and markup and there are
different estimates for both. For recent discussion see Honkapohja and Mitra (2020) who
use the alternative values γ = 42, 128.21 or 350 for price adjustment cost parameter. For
brevity, only a single standard calibration is adopted for other parameters of our quarterly
framework: π∗ = 1.005, β = 0.99, α = 0.7, ν = 21, σ = ε = 1, and g = 0.2. Policy
parameters for the AIT rule are set at ψp = 1.2, ψy = 1. We choose a low value of ψp and
a high value of ψy because they bias the model in favor of stability (Appendix C.1 shows
that stability outcomes deteriorate when ψp is high or ψy is low).

For the three calibrations of γ we compute the (approximate) least upper bound for
the gain parameter ω0, so that values ω > ω0 lead to instability of the target steady state
in the calibrated model. We repeat this analysis for other values of the price and output
reaction coefficients in the AIT rule (17). The basic result is:

25Alternatively, so-called expectational stability (E-stability) techniques based on an associated differ-
ential equation in virtual time can be applied, e.g. see Evans and Honkapohja (2001).

26Proofs are given in the Appendices D.1 and D.2.
27The idea of using the range of values for gain parameter as a criterion for robustness was first suggested

in Evans and Honkapohja (2009b).
28See e.g. Orphanides and Williams (2005), Branch and Evans (2006), Milani (2007) and Eusepi, Gian-

noni and Preston (2018).
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Remark 3 The calibrated model with sticky prices is not robustly stable for higher values
of L.

Table I demonstrates that while the IT rule is robustly stable, the AIT and PLT rules
are not robustly stable. The latter two are fairly similar in terms of robustness if L is
not too high (e.g. L = 6 is in the range of optimal averaging windows in Amano et al.
(2020)).29 However, for higher values of L such as L = 20 or L = 32, which corresponds
to 5-year and 8-year averages, respectively, we observe instability for values of ω that are
implausibly low.

Table I: Least upper bounds in AIT, IT and PLT

γ 42 128.21 350
ω0 (IT ) 0.02935 0.03679 0.04172
ω0 (PLT ) 0.00805 0.00590 0.00413
ω0 (AIT with L = 6) 0.00404 0.00581 0.00809
ω0 (AIT with L = 20) 0.00039 0.00085 0.00148
ω0 (AIT with L = 32) 0.00015 0.00036 0.00070

Looking at the results so far it is apparent that a fully opaque average inflation targeting
framework can pose serious risks to economic stability. In principle, communication about
the averaging window may mitigate concerns about robust stability, as a transparent AIT
framework does not pose the same stability risks.30

3.3 Opacity AR(1) case

A natural alternative to the full opacity PLM (which excludes all lags of inflation) is the
following PLM:

set+j = as,t + bs,tπ
e
t+j−1, (32)

where s = y, π,R. The PLM (32) is similar to PLMs studied in Hommes and Zhu (2014),
and it encodes agents’ belief that inflation is serially correlated. As noted previously, we
say that agents have “opacity” but not “full opacity” if they include at least one lag of
inflation in their PLM. We start with the AR(1) case and, in the next section, discuss other
underparameterized forecasting models with more than one but less than L− 1 lags.

Definition Agents are learning with opacity if they include at least one but less than
L− 1 lags of inflation in their linear PLM.

As with full opacity, the PLM (32) is under-parameterized relative to the MSV REE law
of motion, and therefore agents cannot learn an REE under opacity. However, agents’ be-
liefs may nonetheless converge to a self-confirming restricted perceptions equilibria (RPE),
(as, bs), where (as, bs) satisfy the following least squares orthogonality restriction:

Eπt−1 (st − as − bsπt−1) = E(πt−1 − as) (st − as − bsπt−1) = 0, (33)

29It may be recalled that according to Honkapohja and Mitra (2020) performance of PLT is much
improved if private agents use more information about the policy framework.

30Appendix C.1 demonstrates that the calibrated model is robustly stable under learning with trans-
parency.
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if such an RPE exists. Hommes and Zhu (2014) uses a similar orthogonality restriction to
identify self-confirming equilibria of univariate models with AR(1) PLMs. Intuitively, (33)
ensures that agents’ have self-confirming beliefs about the mean and the 1st auto-correlation
in the data, and hence cannot easily detect the fact that their PLM is misspecified.

We now consider stability of learning in the AR(1) case of opacity. To illustrate stability
in a parsimonious fashion, we assume bs,t = bs where bs satisfies (33), and that agents
estimate as,t using the following constant-gain learning algorithm:31

as,t = as,t−1 + ω(st−1 − bsπt−2 − as,t−1) (34)

Expectations, set+j, are formed by substituting (34) and bs,t = bs into (32), and temporary
equilibrium is given by (18), (19), and (20). In this setting, we say that the target steady
state is stable under learning with opacity if agents learn an RPE near the target (i.e. an
RPE for which as = 0 for s = ŷ, π̂, R̂). As it turns out, the target steady state is stable
under learning if prices are sufficiently sticky, but is unstable under learning if prices are
flexible.

Proposition 3 (i) Assume that there is price stickiness (γ > 0) and ψp > β−1π∗, ν > 1
and σ ≥ 1. For small ω and high γ, the target steady state is locally stable under constant
gain learning with AR(1) PLM (32) under the interest rate rule (17) for all L.
(ii) Assume that there is full price flexibility (γ = 0) and ψp > β−1π∗. For small ω, the
target steady state is locally stable under constant gain learning with AR(1) PLM (32)
under the rule (17) for L ≤ 3 but is unstable for many higher values of L.

Comparing Proposition 1 (Proposition 2) to Proposition 3(i) (Proposition 3(ii)) it is
evident that AIT poses similar risks to stability under both opacity and full opacity. Badly
under-parameterized PLMs, which could arise due to a lack of transparency about the
policy framework, or because households do not systematically condition their inflation
expectations on a large number of lags of the quarterly inflation rate, can undermine the
efficacy of AIT.

Of course there are many other under-parameterized PLMs one may consider, particu-
larly if L is large. In the next section we provide results for these cases.

3.4 Other Underparameterized Lag Structures

It is now assumed that the lag structure in the PLM has N − 1 lags on inflation , where
3 ≤ N < L − 1.32 Temporary equilibrium is as before, see (23) and Appendix A.6. In

this setup the PLM is a V AR(N − 1) process while the resulting ALM is V AR(L− 1)̇ and
it is necessary to project the ALM into the subspace of V AR(N − 1) processes to obtain
the best linear predictor in this class. This will give the RPE. The detailed analysis is in
Appendix B.

31Note that we assume that g̃t is a small i.i.d shock to ensure a well-defined bs, and it can be shown that
as = 0 (i.e. the target steady state is a fixed point of the system). Further, we could employ the sample
auto-correlation learning scheme in Hommes and Zhu (2014) to have agents estimate bs,t, but this would
likely lead more stringent stability conditions, and so it suffices for us to demonstrate instability under a
model with intercept learning.

32If the number of lags in the PLM is ≥ L, the PLM is overparameterized. This kind of situation is
discussed in Chapter 9 of Evans and Honkapohja (2001).
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In the sticky price setup it is not possible to obtain analytical results in the cases
1 < N − 1 < L− 1, so we revert to numerical analysis. According to the numerical results,
the stability result of the AR(1) case in Proposition 3 part (i) generalizes in the sticky price
economy:

Remark 4 The result of Proposition 3 (i) continues to hold in the sticky price economy
with underparameterized learning.

Table II illustrates robustness of stability in intercept learning for L = 8, when agents use
the RPE values for AR parameters in the PLM.33 Table II gives (approximate) the least
upper bounds ω0 for instability.

Table II: Least upper bound for stability of the gain parameter in underparameterized
constant gain learning (L = 8).

N − 1 0 (Full Op.) 1 (Op.) 2 3 4 5 6 L− 1
ω0 0.00384 0.00400 0.00471 0.00614 0.00931 0.02382 0.02453 0.02783

In the flexible price case theoretical results can be obtained and the outcome is analogous
to Proposition 3 part (ii), so the RPE is unstable under learning when agents’ PLM is
underparameterized.

Proposition 4 In the flexible price economy with underparameterized learning there is no
stationary learning-stable RPE when N = 3, ...L− 1.

Non-existence of a stationary RPE makes it difficult to numerically compute a good
approximation to the RPE. If the RPE values of the PLM parameters are not known, then
it is hard to find initial conditions for a learning process that are in a small neighborhood
of the RPE. Appendix B contains further discussion. The proof of Proposition 4 is in
Appendix D.

4 Escape From the ZLB Regime With AIT?

One reason for introducing AIT policy has been its potential in providing a framework
that facilitates return from the regime of very low interest rates to a normal regime with
the economy operating near the inflation target equilibrium. From the outset, we note
that AIT under full opacity is not a robust mechanism for escape from the ZLB; even
if the economy escapes the ZLB regime under AIT with full opacity, the instability or
non-robust stability of the target equilibrium implies that inflation never converges to the
target. Further, when the ZLB is binding, the dynamics under AIT with full opacity are
identical to the dynamics under IT, and so the results from earlier analyses which cast
doubt on the efficacy of IT at the ZLB can be applied.34 On the other hand, the target is
robustly stable under learning with transparency. Can a transparent AIT rule bring the
economy back to the target steady state from the ZLB regime?

33Appendix B provides the technical details.
34See Evans, Guse and Honkapohja (2008) and Benhabib et al. (2014).
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We consider the issue of escaping the ZLB under AIT by using a stochastic version of
the nonlinear model (28) with (17) and agents’ PLM taking a form similar to (21)35

X̃t = ÃtX̃t−1 + Ã0,t + B̃tln(g̃t).

For this section, agents are assumed to learn about all parameters in their learning rule.
At the end of each period (t), agents update their estimates, ξt = (Ã0,t, Ãt, B̃t)

T , using all
data available at the end of the period using a standard constant gain learning algorithm:

ξt = ξt−1 + ωR−1
t zt

(
X̃t − ξTt−1zt

)T
,

Rt = Rt−1 + ω(ztz
′
t −Rt−1),

where zt = (1, X̃T
t−1, g̃

T
t )

T .36 Agents make forecasts using Ã0,t, Ãt, B̃t in period t+1. Agents
are assumed to understand that they live in the nonlinear model, and so xet+j = exp(x̂et,t+j),
where x = y,R, π, hatted variables are the logs of variables, and xet+j is the time-t expec-
tation of xt+j.

As a first example consider the case where the economy is initially very near the low
steady state (yLow, πLow) with binding ZLB, such that πe0 = π(0) = π(−1) = . . . = π(−L+
1) ≈ πLow, y

e
0 = y0 ≈ yLow, R0 = Re

0 ≈ 1, where ye0, π
e
0, and R

e
0 denote the initial expected

long-run levels of y, π, and R, respectively.37 We assume Ã0 is a zero matrix and Ã0,0

is set in accordance with Re
0, π

e
0, and y

e
0. Our assumption about Ã0 may be a reasonable

description of beliefs at the beginning of a transition from a standard IT policy regime to
a well-communicated AIT regime. The basic calibration is the same as earlier in Section 3
with γ = 128.21, ω = 0.005, and L = 6.38 The economy escapes the liquidity trap in this
case, as shown by the blue curves in Figure II.

Figure II A-C HERE

AIT with learning under transparency is also compared with the IT policy framework in
Figure II. From the figure, we see that AIT generates makeup inflation and brings inflation
to the level of the target much faster than under IT, though the makeup inflation comes
at the expense of greater output volatility. In both cases, the economy converges to the
target steady state, but this finding is not robust; when we vary L and ω, and repeat the
same simulation from the low steady state, we observe convergence to target under IT for
much higher values of the gain parameter than under a transparent AIT regime (see Table
III). Deflationary spirals take place in simulations that do not converge to the target steady
state.

Table III: Least upper bounds ω0 for instability

L 1 (IT) 4 6 12 20
ω0 0.06495 0.02178 0.01262 0.00582 0.00349

35In these simulations we include a small shock (i.e. g̃t ̸= 0) to avoid multicollinearity issues which arise
when agents jointly estimate the intercept and lagged variable coefficients in the non-stochastic version of
the model. See e.g. Evans and Honkapohja (2001), Chapter 7 for a review of related issues. The basic
results of this section do not depend on the values of the shock.

36In simulations, agents are assumed to know that lags of output and the interest rate do not matter in
equilibrium. Suitable modifications to the learning algorithm are made to impose this assumption.

37In fact to facilitate the numerics we set R0 and R slightly above 1.
38Section 3 and Appendix C.1 analysis indicates that lower values of L may lead to better stability

outcomes than higher values. We choose a value of L that is the range of optimal averaging windows
studied by Amano et al. (2020).
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Whether AIT initiates escape from the liquidity trap depends also on assumptions about
initial expectations and economic conditions. The domain of escape39 from the liquidity
trap for different initial conditions πe0 ≈ π(0) = π(−1) = . . . = π(−L + 1), ye0 ≈ y0, and
R0 = Re

0 ≈ 1, with L = 6 and low gain parameter, ω = .002, is shown below in Figure III.

Figure III HERE

It is seen that there is a domain of escape from the liquidity trap, but it covers only a small
area around the low steady state. In particular, if ye0 is below yLow and πe0 is approximately
at level πLow, the economy does not escape from the liquidity trap.40 By this measure both
AIT and IT are less robust than PLT under similar information settings (see Honkapohja
and Mitra (2020) for the corresponding results under PLT, and Appendix C for the domain
of escape under IT).

We did not find the basic results in this section to be sensitive to initial values of the
lag coefficients of the PLM parameters. Figure A.2 in the appendix presents the domain of
escape when agents’ initial beliefs about the lag coefficients, Ã, coincide with the coefficients
of the unique, stable MSV solution of the linearized model (i.e. we impose Ã0 = Ā, where Ā
is from the model linearized around the target steady state). Under this assumption about
initial beliefs, agents understand that the policymaker aims for makeup inflation following
a ZLB event, and yet still the performance of AIT is not significantly improved.41

Our analysis shows that the performance of AIT policy in the nonlinear model with
the ZLB is sensitive to the speed of learning, just as the success of AIT near the target
steady state hinges on the magnitude of the gain parameter. Further, AIT does not clearly
outperform IT when expectations are near the low steady state.

5 Asymmetric AIT

The previous sections focus on rules that respond symmetrically to positive and negative
deviations of average inflation from the target. It was shown that the central bank may
have to commit to a credible, transparent averaging window or risk losing control of in-
flation under a symmetric rule. Such commitment may be undesirable to the policymaker
depending on their preferences. However, alternative asymmetric rules have been proposed
in the literature.42

It is beyond the scope of this paper to study asymmetric makeup strategies in great
detail, but we briefly consider performance of an asymmetric AIT rule of the form

Rt = 1 +max[R̄− 1 + ψp[Pt − 1] + ψy[
yt − y∗

y∗
], 0], where (35)

Pt =

{ L−1∏
i=0

πt−i

π∗ if
L∏
i=1

πt−i < (π)L,

πt
π∗ if

L∏
i=1

πt−i ≥ (π)L,

(36)

39Domain of escape from the liquidity trap is the set of initial conditions near the low steady state that
lead to convergence to target steady state. It is part of domain of attraction of (π∗, y∗).

40The figure also includes a line indicating the boundary of the ZLB region.
41Additional sensitivity analysis is available on request.
42See the introduction for papers that explore “switching” rules at the ZLB. The asymmetric rule we

study here responds to an accumulated shortfall of inflation (over a finite horizon), and therefore resembles
features of the temporary price level targeting rules and threshold rules studied in, e.g., Bernanke, Kiley
and Roberts (2019).
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which targets average inflation (i.e. the product of gross inflation over the last L periods)
when average inflation is less than (π)L and targets current inflation otherwise. Note that
under the asymmetric rule the policymaker aims to overshoot the target, but does not aim
to undershoot the target.

If π < π∗, then the asymmetric rule is a simple IT rule when average inflation is
sufficiently near the level of the target. Earlier analysis shows that the target is robustly
stable under a simple IT Taylor rule, which leads to the following remark.

Remark 5 If π < π∗ with π is sufficiently low and ψp > β−1π∗ then the target steady state
of the model (26) and (27), paired with asymmetric rule (35)-(36) is robustly stable under
learning with full opacity for all L and γ ≥ 0.

On the other hand, the asymmetric rule coincides with the symmetric rule (17) near
the target steady state if π > π∗, which implies greater possibility of instability near the
target equilibrium.

Remark 5 predicts that a fully opaque asymmetric rule will do a better job of bringing
the economy out of the ZLB regime and back to the target steady state than a fully
opaque symmetric rule. We test this prediction in the full non-linear model (26) and (27),
assuming agents update beliefs using (29). As before, we assume the economy is initially
near the deflation steady state (i.e. πe0 ≈ π0 = π−1 = ... = π−L+1 ≈ πLow, y

e
0 ≈ y0 ≈ yLow,

Re
0 ≈ R0 ≈ 1), and we set L = 6, ω = 0.015, and πLow < π = .995 < π∗. All other

calibration details are the same as before, and later we discuss robustness.

Figure IV A-C HERE

Figure IV displays results for the asymmetric rule under full opacity (blue lines). For
comparison the results under a symmetric IT rule (red lines) and the benchmark symmetric
AIT rule (17) under full opacity (orange lines) are also shown in the figure. Under both the
asymmetric and symmetric AIT rules, makeup inflation with overshooting is observed after
an initial period of low inflation, but dynamics under the rules differ especially when the
downward adjustment starts. Under asymmetric AIT, overshooting of makeup inflation is
very moderate and inflation does not undershoot the inflation target and, together with the
interest rate, inflation gradually falls back to the target steady state. With the symmetric
rule average inflation strongly overshoots the target and the policymaker abruptly raises the
interest rate which makes both inflation and the interest rate undershoot the target. Since
the imperfectly informed agents do not understand enough about the structure of policy to
forecast this pattern of over- and undershooting, their long-run inflation expectations fall
during the subsequent undershooting until deflationary spirals take hold in a second, final
ZLB event.

Table IV confirms that the asymmetric rule with π < π∗ outperforms the symmetric
rule (as well as the asymmetric rule with π > π∗) in a deep liquidity trap across a range
of ω and L calibrations and for values of π near π∗. In Table IV, ω0 is the largest value of
ω for which we observe convergence to target steady state in simulations of the nonlinear
model where the economy is initially near the low steady state. If π < π∗ then ω0 is high
and similar across the IT and asymmetric AIT specifications, whereas ω0 is low and similar
across the asymmetric and symmetric AIT specifications when π > π∗.

Table IV: Least upper bounds ω0 for instability
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L 1 (IT) 4 6 12 20
ω0 (π = 1.004) 0.06495 0.06495 0.06495 0.06495 0.06495
ω0 (π = 1.075) 0.06495 0.01804 0.00950 0.00312 0.00129

These results suggest that full opacity is no longer a concern if the policymaker uses an
asymmetric rule of the form (35)-(36) that aims for overshooting, but not for undershooting
of the target. Thus, while Hoffman et al. (2022) find that German households understand
the implications of an asymmetric AIT strategy, our results suggest that asymmetric strate-
gies can still perform well if expectations are not responsive to announcements about AIT,
as Coibion et al. (2020) find in the case of U.S. households. Our findings should encourage
additional research on the performance of asymmetric makeup policy rules under adaptive
learning.

6 Variations on a Theme: Weighted Averages

We now consider whether the use of weighted measures of average inflation that discount
past inflation relative to current inflation in computing AIT can improve stability properties
of AIT policy. We consider two natural deviations from the finite, simple moving averaging
schemes studied above.

6.1 Exponentially Declining Weights

First, we introduce exponentially declining weights over the finite past horizon when com-
puting average inflation for the interest rate rule. Thus the rule (17) is adjusted to

Rt ≡ 1 + max[R̄− 1 + ψp

[
L−1∑
i=0

µi(
πt−i
π∗ − 1)

]
+ ψy[

yt
y∗

− 1], 0], (37)

where 0 < µ < 1. The length of the past horizon is L − 1 as before.43 The framework
is otherwise unchanged: the aggregate demand function (27), the Phillips curve (26) and
learning with full opacity. The economy is stable under learning with full opacity and the
rule (37) even when there is full price flexibility.

Proposition 5 (i) Assume that there is full price flexibility (γ = 0) and ψp > β−1π∗ and
0 < µ < 1. For all sufficiently small ω, the target steady state is locally stable under
constant gain learning under the rule (37) for all L.
(ii) Assume that there is price stickiness (γ > 0) and ψp > β−1π∗, ν > 1, σ ≥ 1, and
0 < µ < 1. For small ω, the target steady state is locally stable under constant gain
learning under the rule (37) for all L.

Robustness of stability in Proposition 5 (ii) is examined using the calibrated model
discussed in Section 3. Table V repeats the analysis in Table I for different values of the
discount parameter µ and under the assumption that L = 6.

43Note that weights will sum to 1 if we replace ψp with ψp
1−µ
1−µL . As before, we absorb the averaging

constant, 1−µ
1−µL , into the inflation reaction coefficient, ψp.
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Table V: Least upper bounds ω0 for instability

γ 42 128.21 350
ω0 (µ = 1) 0.00404 0.00581 0.00809
ω0 (µ = .9) 0.00629 0.00758 0.01059
ω0 (µ = .7) 0.01209 0.01380 0.02154
ω0 (µ = .5) 0.02312 0.02928 0.04007

It is seen that discounting old data in the AIT rule contributes robustness of stability
but a significant degree of discounting is needed. We conclude that this specification only
modestly improves stability outcomes.

6.2 Exponential Moving Average Rule

A different way to discount old data is to assume that an exponential moving average
specification is used in the interest rate rule. Consider an interest rate rule that responds
to an exponential moving average of inflation:44

Rt = 1 +max[R̄− 1 + ψp

(
πwc
t (πcbt )

1−wc

π∗ − 1

)
, 0] (38)

πcbt = πwc
t−1(π

cb
t−1)

1−wc (39)

where 0 < wc < 1. The framework is otherwise unchanged: the aggregate demand function
(27), the Phillips curve (26) and steady state learning.

The dynamic model is now given by

F (Xt, X
e
t , π

cb
t ) = 0, (40)

where F consists of the Phillips curve, the aggregate demand function and interest rate
rule (38). The vector of current state variables is Xt = (yt, πt, Rt)

T . The law of motion
for Xe

t is the same as before, and the law of motion for πcbt is given by (39). Linearizing
around the target steady state we obtain the system

X̂t = (−DFX)−1(DFXeX̂e
t +DFcbπ̂

cb
t ) (41)

≡ MX̂e
t +Nπ̂cbt (42)

where M and N are given in the appendix, and X̂ again collects linearized y, π,R. In a
model with sticky prices and an exponential moving average rule, the Taylor Principle is
now sufficient for stability under constant gain learning:

Proposition 6 (i) Assume that there is price stickiness (γ > 0) and ψp > β−1π∗, 0 <
wc < 1, ν > 1, σ ≥ 1. For small ω, the target steady state is locally stable under constant
gain learning under the rule (38).

(ii) Assume full price flexibility (γ = 0) and ψp > max[
π∗( ω

wc
)(1−wc)

(1−β)β , β−1π∗]. For small ω,

the target steady state is locally stable under constant gain learning under the rule (38).

44Budianto et al. (2023) study AIT with exponential MA in a model with bounded rationality.
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When there is full price flexibility, however, the stability conditions depend on wc and
the ratio of ω to wc, and the situation can ultimately be more stringent than the preceding
proposition indicates. If ω and wc are both relatively small (i.e. the averaging window is
relatively long) and ω ≈ wc, then the condition for stability is far more demanding than the
Taylor Principle. Eusepi and Preston (2018), section 4 study a related model that assumes
ω = wc and obtain similar results.

The fact that stability may depend on the private sector gain parameter suggests that
the exponential moving average formulation of average inflation targeting can be a risky
alternative to the weighted average formulation discussed in Section 6, and future work
should examine the implications of these risks.

7 Conclusion

Recent monetary policy challenges sparked interest in alternative policy frameworks, in-
cluding AIT. The Federal Reserve adopted an AIT framework in 2020, but it did not
communicate details about the structure of the policy, including the averaging window for
the policy. This paper explored some implications of imperfect knowledge in an average
inflation targeting regime with significant history dependence.

Our results suggest that policymakers should be cautious when implementing AIT. An
AIT policy practiced under opacity of its details can fail to anchor expectations around the
target steady state if prices are flexible or the speed of learning is anything but very slow.
Moreover, an AIT policy practiced under opacity will typically fail to instigate an escape
from a liquidity trap.

AIT is, however, more robust if agents know that the current policy stance depends
on a specific number of lags of the inflation rate. If agents incorporate this information
about the history-dependence of policy into learning, then the target steady state is fairly
robustly stable, and AIT can even succeed in guiding the economy out of a liquidity trap.
Furthermore, asymmetric strategies that aim for overshooting of the inflation target but
not undershooting of the target, can stabilize expectations under learning with opacity
about the policy rule and averaging window.

There is plenty of room for future research. As a starting point for our analysis, we
assume AIT is either conducted under full or partial opacity, or in an environment in which
agents fully incorporate knowledge of the structure of policy into learning. Future work
should examine whether AIT can ensure a locally stable target steady state, or initiate an
escape from the liquidity trap, when communication from the central bank is imperfectly
credible.

This paper’s findings also suggest that performance of asymmetric rules, including
switching rules, under imperfect knowledge is an area worth further exploring. In this vein,
future work should study the properties of rules proposed in Reifschneider and Williams
(2000), Mertens and Williams (2019), Bernanke (2017), Bianchi, Melosi and Rottner (2021)
among other papers. We focused on simple policy rules as a natural point of departure, but
one could further study models with interest rate smoothing. Imperfect knowledge with
learning may also have implications for optimal policy that have not yet been explored.
Additionally, our analysis sheds light on the effects of an unanticipated implementation of
AIT, and we have not studied anticipated transitions to AIT under conditions of imperfect
knowledge.

Finally, it was shown that whether AIT succeeds in stabilizing expectations depends
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on price adjustment costs in the economy. For brevity, we abstracted from alternative
models of price stickiness, such as the well-known Calvo (1983) model of infrequent price-
setting. Future work could explore whether infrequent price-setting à la Calvo (1983) versus
quadratic price adjustment costs in the spirit of Rotemberg (1982) matter for the stability
of equilibrium under learning.

AALTO UNIVERSITY SCHOOL OF BUSINESS
BANK OF FINLAND

Appendices

A The NK Model

The objective for agent s is to maximize expected, discounted isoelastic cum quadratic
utility subject to a standard flow budget constraint (in real terms) over the infinite horizon.
The utility function for each period is standard except there is disutility from changing
prices:

Ut,s =
c1−σ1t,s

1− σ1
+

χ

1− σ2

(
Mt−1,s

Pt

)1−σ2
−
h1+εt,s

1 + ε
− γ

2

(
Pt,s
Pt−1,s

− 1

)2

(43)

and the flow budget constraint is

st. ct,s +mt,s + bt,s +Υt,s = mt−1,sπ
−1
t +Rt−1π

−1
t bt−1,s +

Pt,s
Pt

yt,s. (44)

The final term in the utility function parameterizes the cost of adjusting prices in the
spirit of Rotemberg (1982). The Rotemberg formulation is used rather than the Calvo
(1983) model of price stickiness because it enables us to study global dynamics in the
nonlinear system. The household decision problem is also subject to the usual “no Ponzi
game” (NPG) condition. In (43) the expectations E0,s(.) are in general subjective and may
not be rational.

Production function for good s is standard

yt,s = hαt,s, where 0 < α < 1. (45)

There is no capital. Output is differentiated and firms operate under monopolistic compe-
tition. Each firm faces a downward-sloping demand curve

Pt,s =

(
yt,s
yt

)−1/ν

Pt. (46)

Here Pt,s is the profit maximizing price set by firm s consistent with its production yt,s.
The parameter ν is the elasticity of substitution between two goods and is assumed to be
greater than one. yt is aggregate output, which is exogenous to the firm.

The market clearing condition is

ct + gt = yt.

The government consumes amount gt of the aggregate good, collects the real lump-sum
tax Υt from each consumer and issues bonds bt to cover financing needs. Fiscal policy is
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assumed to follow a linear tax rule for lump-sum taxes Υt = κ0+κbt−1, where β
−1−1 < κ <

1, so fiscal policy is “passive” using terminology of Leeper (1991). Government purchases
gt are taken to be stochastic, so that gt = ḡ+ g̃t, where the random part g̃t is an observable
exogenous AR process

g̃t = ρg̃t−1 + vt (47)

with zero mean.45

A.1 Private sector optimization

Using the utility function of household-producer s (43) and the budget constraint (44)
and production function (45), one computes the derivatives with respect to (t − 1)-dated
variables

∂Ut,s
∂mt−1,s

= c−σ1t,s π
−1
t + χ(mt−1,sπ

−1
t )−σ2 ,

∂Ut,s
∂bt−1,s

= c−σ1t,s Rt−1π
−1
t ,

and with respect to t-dated variables

∂Ut,s
∂mt,s

=
∂Ut,s
∂bt,s

= −c−σ1t,s ,

∂Ut,s
∂Pt,s

= c−σ1t,s Yt(1− υ)

(
Pt,s
Pt

)−υ
1

Pt
+
υ

α
h1+εt,s

1

Pt,s
.

The Euler equations are

∂Ut,s
∂mt,s

+ βEt,s
∂Ut+1,s

∂mt,s

= 0,

∂Ut,s
∂bt,s

+ βEt,s
∂Ut+1,s

∂bt,s
= 0,

∂Ut,s
∂Pt,s

+ βEt,s
∂Ut+1,s

∂Pt,s
= 0.

The second equation is just the consumption Euler equation, while combining the first and
second equations yields the money demand function. The third equation is the condition
for optimal price setting .

Applying the above conditions, in period t each household s is assumed to maximize
its anticipated utility under given expectations. As in Evans et al. (2008), the first-order
conditions for an optimum yield

0 = −hεt,s +
αγ

ν
(πt,s − 1)πt,s

1

ht,s
(48)

+α

(
1− 1

ν

)
y
1/ν
t

y
(1−1/ν)
t,s

ht,s
c−σt,s − αγβ

ν

1

ht,s
Et,s(πt+1,s − 1)πt+1,s,

c−σt,s = βRtEt,s
(
π−1
t+1c

−σ
t+1,s

)
, (49)

45For simplicity, it is assumed ρ is known (if not it could be estimated during learning). Only one shock
is introduced to have a simple exposition.
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where πt+1,s = Pt+1,s/Pt,s and Et,s(.) denotes the (not necessarily rational) expectations of
agents s formed in period t.

Equation (48) is one form of the nonlinear New Keynesian Phillips curve describing
the optimal price-setting by firms. The term (πt,s − 1) πt,s arises from the quadratic form
of the adjustment costs, and this expression is increasing in πt,s over the allowable range
πt,s ≥ 1/2. Equation (49) is the standard Euler equation giving the intertemporal first-order
condition for the consumption path.

We now write the decision rules for consumption and inflation so that they depend on
forecasts of key variables over the infinite horizon (IH).

A.2 The Infinite-Horizon Phillips Curve

Starting with (48), let
Qt,s = (πt,s − 1) πt,s. (50)

The appropriate root for given Q is π ≥ 1
2
and so Q ≥ −1

4
must be imposed to have a

meaningful model. Using the production function ht,s = y
1/α
t,s one can rewrite (48) as

Qt,s =
ν

αγ
y
(1+ε)/α
t,s − ν − 1

γ
y
1/ν
t y

(ν−1)/ν
t,s c−σt,s + βEt,sQt+1,s, (51)

and using the demand curve yt,s/yt = (Pt,s/Pt)
−ν gives

Qt,s =
ν

αγ
(Pt,s/Pt)

−(1+ε)ν/αy
(1+ε)/α
t − ν − 1

γ
yt(Pt,s/Pt)

−(ν−1)c−σt,s + βEt,sQt+1,s.

Defining

xt,s ≡
ν

αγ
(Pt,s/Pt)

−(1+ε)ν/αY
(1+ε)/α
t − ν − 1

γ
yt(Pt,s/Pt)

−(ν−1)c−σt,s (52)

and iterating the Euler equation46 yields

Qt,s = xt,s +
∞∑
j=1

βjEt,sxt+j,s, (53)

provided that the transversality condition

βjEt,sxt+j,s → 0 as j → ∞ (54)

holds. It can be shown that (54) is an implication of the necessary transversality condition
for optimal price setting. For further details see Benhabib et al. (2014).

The variable xt+j,s is a mixture of aggregate variables and the agent’s own future deci-
sions. Thus it provides only a “conditional decision rule”.47 This equation for Qt,s can be
the basis for decision-making as follows. So far only the agents’ price-setting Euler equation
and the above limiting condition (54) have been used. Some further assumptions are now
made.

Agents are assumed to have point expectations, so that their decisions depend only on
the mean of their subjective forecasts. The model stipulates that all agents have the same

46It is assumed that expectations satisfy the law of iterated expectations.
47Conditional demand and supply functions are well known concepts in microeconomic theory.
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utility and production functions. Initial money and debt holdings, and prices are assumed
to be identical.

The assumption of representative agents includes private agents’ forecasting, so that the
agents have homogenous forecasts of the relevant variables. Thus all agents make the same
decisions at each point in time. It is also assumed that from the past agents have learned
the market clearing relation in temporary equilibrium, i.e. ct,s = yt−gt in per capita terms
and thus agents impose in their forecasts that cet+j = yet,t+j − get,t+j, where g

e
t,t+j = ḡ + ρj g̃t.

In the case of constant fiscal policy this becomes cet+j = yet+j − ḡ.
The assumption of representative agents implies that Pt,s = Pt,s′ = Pt for all agents s

and s′ in temporary equilibrium for all periods including the current one, see p. 224 in
Benhabib et al. (2014). In that paper it was additionally assumed that agents’ expectations
also satisfy P e

t+j,s = P e
t+j for future periods j = 1, 2, ... This assumption is not necessary

and is adopted here purely as a simplification.48

A.3 The Consumption Function

To derive the consumption function from (49), use the flow budget constraint and the NPG
condition to obtain an intertemporal budget constraint. Cashless limit is now assumed.
First, define the asset wealth

at = bt

as the holdings of real bonds and write the flow budget constraint as

at + ct = yt −Υt + rtat−1, (55)

where rt = Rt−1/πt. Note that (Pjt/Pt)yjt = yt is assumed, i.e. the representative agent
assumption is invoked. Iterating (55) forward and imposing

lim
j→∞

(De
t,t+j)

−1aet+j = 0, (56)

where

De
t,t+j =

Rt

πet+1

j∏
i=2

Re
t+i−1

πet+i

with ret+i = Re
t+i−1/π

e
t+i, one obtains the life-time budget constraint of the household

0 = rtat−1 + Φt +
∞∑
j=1

(De
t,t+j)

−1Φe
t+j (57)

= rtat−1 + ϕt − ct +
∞∑
j=1

(De
t,t+j)

−1(ϕet+j − cet+j), (58)

where

Φe
t+j = yet+j −Υe

t+j − cet+j, (59)

ϕet+j = Φe
t+j + cet+j = yet+j −Υe

t+j.

Here all expectations are formed in period t, which is indicated in the notation for De
t,t+j

but is omitted from the other expectational variables.

48More extensive discussion of the generalization is available in Evans et al. (2020).
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Invoking the relations
cet+j = (βjDe

t,t+j)
1/σct, (60)

which are an implication of the consumption Euler equation (49), yields

ct(1− β)−1 = rtat−1 + yt −Υt +
∞∑
j=1

(De
t,t+j)

−1ϕet+j −
∞∑
j=1

(De
t,t+j)

−1(βjDe
t,t+j)

1/σct. (61)

As we have ϕet+j = yet+j −Υe
t+j, it follows that

ct =

(
1 +

∞∑
j=1

βj/σ(De
t,t+j)

(1−σ)/σ

)−1(
rtbt−1 +

∞∑
j=0

(De
t,t+j)

−1ϕet+j

)
.

So far it is not assumed that households act in a Ricardian way, i.e. they have not
imposed the intertemporal budget constraint (IBC) of the government. To simplify the
analysis, it is now assumed that consumers are Ricardian, which allows to modify the
consumption function as in Evans and Honkapohja (2010). See Evans, Honkapohja and
Mitra (2012) for discussion of the assumptions under which Ricardian Equivalence holds
along a path of temporary equilibria with learning if agents have an infinite decision horizon.

The government flow constraint is

bt +Υt = ḡ + g̃t + rtbt−1 or bt = ∆t + rtbt−1 where ∆t = ḡ + g̃t −Υt.

By forward substitution, and assuming

lim
T→∞

Dt,t+T = 0, (62)

one gets

0 = rtbt−1 +∆t +
∞∑
j=1

D−1
t,t+j∆t+j. (63)

Note that ∆t+j is the primary government deficit in t+j, measured as government purchases
less lump-sum taxes. Under the Ricardian assumption, agents at each time t expect this
constraint to be satisfied, i.e.

0 = rtbt−1 +∆t +
∞∑
j=1

(De
t,t+j)

−1∆e
t+j, where

∆e
t+j = ḡ + ρj g̃t −Υe

t+j for j = 1, 2, 3, . . . .

A Ricardian consumer assumes that (62) holds. His flow budget constraint (55) can
then be written as:

bt = rtbt−1 + ψt, where ψt = yt −Υt − ct.

The relevant transversality condition is now (62). Iterating forward and using (60) together
with (62) yields the consumption function (11) in the main text.

The aggregate demand function takes the form

yt = gt +

(
∞∑
j=1

βj/σ(De
t,t+j)

(1−σ)/σ

)−1 ∞∑
j=1

(De
t,t+j)

−1(yet+j − (ḡ + ρj g̃t)), (64)

where the discount factor is given by (12).
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A.4 Linearized IH Behavioral Rules

Linearizing (9) and (53) around the intended steady state and rearranging gives the fol-
lowing linearized expression for the Phillips curve:

π̂t = κŷt + κ
∞∑
j=1

βj ŷet+j

where x̂ denotes a linearized variable, and κ is a complicated function of deep structural
parameters.

The consumption function (11) is linearized as follows. For the sake of brevity, assume
g̃t = 0. The discount factor De

t,t+j has the linearization

D̂e
t,t+j = β1−j

j∑
i=1

(
R̂e
t+i−1/π

∗ − π̂et+i/(βπ
∗)
)
.

Linearizing the left-hand-side of (11) gives

β

1− β
ĉt + c∗

1− σ

σ

∑
j≥1

βj/σ
(
β−j)(1−σ)/σ−1

D̂e
t,t+j

=
β

1− β
ĉt + c∗

1− σ

σ

∑
j≥1

β2jD̂e
t,t+j

=
β

1− β
ĉt + c∗

1− σ

σ

∑
j≥1

βj+1

j∑
i=1

(
R̂e
t+i−1/π

∗ − π̂et+i/(βπ
∗)
)
.

Linearizing the right-hand-side of (11) gives∑
j≥1

βj ŷet+j − c∗
∑
j≥1

β2jD̂e
t,t+j

=
∑
j≥1

βj ŷet+j − c∗
∑
j≥1

βj+1

j∑
i=1

(
R̂e
t+i−1/π

∗ − π̂et+i/(βπ
∗)
)
.

Equating the two sides of (11) and rearranging gives

ŷt = − c∗β

σπ∗ R̂t +
∞∑
j=1

βj
(
1− β

β
ŷet+j −

c∗

σ

(
βR̂e

t+j/π
∗ − π̂et+j/(βπ

∗)
))

. (65)

The third equation is the linearized AIT interest rate rule (20).

A.5 Formulation of Learning

The basic model apart from the AIT rule is purely forward-looking while the observable
exogenous shock g̃t is an AR(1) process. Assuming full opacity about AIT rule, then
the appropriate PLM is a linear projection of (yt+1, πt+1, Rt+1) onto an intercept and the
exogenous shock and agents estimate the regressions

su = as + bsg̃u−1 + εs,u, (66)
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where s = y, π, R by using a version of least squares and data for periods u = 1, ..., t− 1.
The latter is a common timing assumption in the learning literature; at the end of period
t− 1 the parameters of (66) are estimated using data through to period t− 1. Usually, the
estimation is done using recursive least squares. This gives estimates ay,t−1, by,t−1, aπ,t−1,
bπ,t−1, aR,t−1, bR,t−1 and using these estimates and data at time t the forecasts are given by

set+j = as,t−1 + bs,t−1ρ
j g̃t,

for future periods t+ j. These forecasts are then substituted into the system to determine
a temporary equilibrium (also called the actual law of motion (ALM) of the economy in
period t. With the new data point the estimates are updated and the process continues.

Denoting the PLM parameters by θt = (ay,t−1, by,t−1, aπ,t−1, bπ,t−1, aR,t−1, bR,t−1), the
parameters are mapped into new values, so there is a mapping θt → T ( θt), the ALM
parameters. The system consisting of temporary equilibrium and estimation equations is
formally a stochastic recursive algorithm (SRA) and its convergence to equilibrium depends
on the properties of T (θ). It should be noted that the SRA may be written in term of
decreasing or constant gain. The sense of probabilistic convergence is different in these
latter two setups. Numerical analysis of this setup is done by simulating the SRA. It
is possible to obtain analytical conditions for the stochastic convergence of the SRA to a
fixed point θ∗. It turns out that conditions for convergence can be studied by examining the
map θ → T (θ) and stability conditions of the ordinary differential equation dθ/dτ = T (θ)
in virtual time τ yield convergence conditions for the real-time SRA. For example, see
Evans and Honkapohja (2001) or Evans and Honkapohja (2009a) the theory and many
applications.

It turns out that the technical analysis of convergence and computation of domains of
attraction can be carried out using a simplification. Apart from the unknown policy rule
the model is purely forward-looking while g̃t is an AR(1) process. Under full opacity the
PLM is a linear projection of the state variables (yt+1, πt+1, Rt+1) onto an intercept and the
exogenous shock and in this case convergence of learning to a fixed point is fully governed
by the dynamics of intercepts.

Thus, stability of a steady state can be validly assessed using the simplifying assumption
that g̃t is identically zero. The agents are thought to estimate the long-run mean values of
state variables, called “steady state learning”. The latter is used here as a technical tool.
In simulations of the stochastic model agents are assumed to do least squares learning.

A.6 E-Stability for Linear Multivariate IH Models

Recall the system in first vector form

X̃t = K̃ +
∑∞

i=1
βiM̃X̃e

t,t+i + ÑX̃t−1. (67)

Consider first the MSV case where N = L and the PLM is (21).The mapping PLM →
ALM is (24). Assuming that the eigenvalues of Ã and βÃ are inside the unit circle, the
mapping PLM → ALM simplifies to

Ã → βM̃Ã2
(
I − βÃ

)−1

+ Ñ (68)

Ã0 → K̃ + βM̃
(
I − Ã

)−1
(
(1− β)−1I − Ã2

(
I − βÃ

)−1
)
Ã0. (69)
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In this case it is straight-forward to obtain the E-stability conditions.
E-stability Conditions: Let (Ã, Ã0) = (Ā, Ā0) denote a rational expectations equi-

librium. The REE, (Ā, Ā0), is E-stable if the real parts of the eigenvalues of

DT (Ã) =
((
I − βĀ

)−1
βĀ2

)T
⊗
(
M̃
(
I − βĀ

)−1
β
)
+

I ⊗
(
M̃
(
I − βĀ

)−1
βĀ
)
+ ĀT ⊗

(
M̃
(
I − βĀ

)−1
β
)

(70)

DT (Ã0) = βM̃
(
I − Ã

)−1
(
(1− β)−1I − Ã2

(
I − βÃ

)−1
)

are less than one.

A.7 Model with Flexible Prices

In the special case of the NK model with flexible prices there is no Phillips curve and the
first order condition (48) is replaced by the static condition

∂Ut,s
∂Pt,s

= c−σ1t,s Yt(1− υ)

(
Pt,s
Pt

)−υ
1

Pt
+
υ

α
h1+εt,s

1

Pt,s
= 0.

Under symmetry it yields

c−σ1t α
1− υ

υ
+ h1+ε−αt = 0, (71)

Steady-state learning with point expectations is formalized as before in Section 3. The
temporary equilibrium equations with steady state learning are as follows.

1. With Ricardian consumers the market clearing equation is yt = gt + ct and yields

yt = ḡ + (1− β)

[
yt − ḡ + (yet − ḡ)

(
πet
Rt

)(
Re
t

Re
t − πet

)]
(72)

as the aggregate demand relation.

2. The static labor-consumption optimality condition (71) can be combined with market
clearing to obtain

yt =

(
α
υ − 1

υ
(yt − gt)

−σ1
)α/(1+ε−α)

. (73)

Looking at (73) it is evident that output in temporary equilibrium is exogenous.49

3. Interest rate rule (14) as discussed in the text.

If one substitutes the interest rate rule (14) and also an exogenous value of output into
(72), the model effectively says that the nominal interest rate Rt (and πt via the policy
rule) is the variable that establishes equality of aggregate demand and supply in temporary
equilibrium. Using the interest rate rule (14) then yields the temporary equilibrium value
for inflation πt.

The system has three expectational variables: output yet , inflation π
e
t , and interest rate

Re
t . The evolution of expectations is in accordance with steady state learning. Proposition

2 gives the instability result.

49Exogeneity of output holds in the classical monetary model, see e.g. Gali (2008), chapter 1.

31



B The ALM When There is Underparameterization

B.1 General setup

The model (67) is now modified to include an underparameterized PLM

X̃1,t = A0 + ÃNX̃1,t−1, where (74)

X̃1,t =

 X̂t
...

X̂t−(N−2)

 and X̃t =

(
X̃1,t

X̃2,t

)
,

ÃN =


A1 · · · AN−2 AN−1

I · · · 0 0
...

. . .
...

...
0 · · · I 0

 and Ã0 =


A0

0
...
0

 .

The vector X̃1,t is 3(N − 1) dimensional and it consists of the current and first N − 2
lagged endogenous variables. Thus the first block of X̃1,t is

X̂t = A0 +
N−1
i=1 AiX̂t−i, (75)

while the other blocks express identities. Here ÃN is a square matrix with dimensions
3(N − 1), where N − 1 is the number of lags in the PLM of agents. Matrices Ai are 3× 3,
while Ã0 and A0 are 3(N − 1) and 3 dimensional column vectors, respectively.

Iterating the PLM, we get

X̃e
1,t,t+i = (I + ÃN + ...+ ÃiN)Ã0 + Ãi+1

N X̃1,t−1

and the unprojected ALM is(
X̃1,t

X̃2,t

)
=

([
K̃ + M̄11

∑∞
i=1 β

i[(I + ÃN + ...+ ÃiN)Ã0 + Ãi+1
N X̃1,t−1]

0

]
+

N̂ N̂ · · · N̂
I 0 · · · 0
...

. . . · · · ...
0 0 I 0




X̂t−1

X̂t−2
...

X̂t−(L−1)


 ,

where M̄11 is the submatrix of M̃ formed from the first 3(N − 1) rows and columns of M̃
in (23). It is seen that the ALM is not in the same space as the PLM as there are further
lags of X̂t in the ALM. The map of the intercept term is

A0 → K̃ + M̄11

∑∞

i=1
βi(I + ÃN + ...+ ÃiN)Ã0 (76)

= K̃ + M̄11

(∑∞

i=1
βi(I − ÃN)

−1(I − Ãi+1
N

)
)Ã0

= K̃ + M̄11(I − ÃN)
−1[

β

1− β
I − βÃ2

N(I − βÃN)
−1]Ã0,

if the eigenvalues of ÃN and βÃN are inside the unit circle.
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Noting that

M̄11βÃ
2
N

∑∞

i=0
βiÃiN = [M̄11βÃ

2
N(I − βÃN)

−1],

the autoregressive term of the unprojected ALM can be written

(
X̃1,t

X̃2,t

)
=

(
M̄11βÃ

2
N(I − βÃN)

−1 0
0 0

)(
X̃1,t−1

X̃2,t−1

)
+


N̂(X̂t−1 + ...,+X̂t−(L−1))

X̂t−2
...

X̂t−(L−1)

+Zt.

(77)
where Zt is a white noise disturbance term. Define

F (ÃN) = [M̄11βÃ
2
N(I − βÃN)

−1]

is 3(N − 1) × 3(N − 1) while the dimension of the whole system is 3(L − 1) × 3(L − 1).
Note also the form of M̄11, which is zero except for top-left 3×3 corner. The (unprojected)
ALM is V AR(L− 1) in the vector X̂t while the PLM is a V AR(N − 1) process, and it is
necessary to map the unprojected ALM into the space of V AR(N − 1) processes. Then
compute

F (ÃN) =


βM(A2

1 + A2) · · · βM(A1AN−2 + AN−1) βMA1AN−1

0 · · · 0 0
...

...
... 0

0 · · · 0 0

 (78)

×

I − β


A1 A2 · · · AN−2 AN−1

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0




−1

Looking at this form of F (ÃN), we note that in the first matrix all except the first row
blocks of 3× 3 matrices are zero. This allows writing F (ÃN) in the form

F (ÃN) =


M1 M2 · · · MN−1

0 0 · · · 0
...

...
...

...
0 0 · · · 0

 (79)

and the unprojected ALM is

X̂ALM
t = (M1+N̂)X̂t−1 + ...+ (MN−1+N̂)X̂t−(N−1) + N̂X̂t−N + ...+ N̂X̂t−(L−1) + Zt.

Next, denote the projected ALM as

X̂PR
t =

N−1∑
i=1

BiX̂t−i + εt.
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Then the mean forecast error is ES = E[X̂ALM
t − X̂PR

t ] or

ES =
N−1∑
i=1

(Mi + N̂ −Bi)X̂t−i + N̂(X̂t−N + ...+ X̂t−(L−1)).

Minimizing the square of the mean forecast error yields the orthogonality conditions:

0 = E[(ES)X̂T
t−j] =

N−1∑
i=1

E[(Mi+N̂−Bi)X̂t−iX̂
T
t−j+N̂(X̂t−N+...+X̂t−(L−1))X̂

T
t−j], for j = 1, ...N−1.

Now let X̂t−i =
(
ŷt−i, R̂t−i, π̂t−i

)T
and define50

EX̂t−iX̂
T
t−j =

 E(ŷt−iŷt−j) E(ŷt−iR̂t−j) E(ŷt−iπ̂t−j)

E(ŷt−jR̂t−i) E(R̂t−iR̂t−j) E(Rt−iπ̂t−j)
E(π̂t−jπ̂t−i) E(Rt−jπ̂t−i) E(π̂t−iπ̂t−j)

 = Ωi.j, (80)

Then

0 = E[(ES)X̂T
t−j] =

N−1∑
i=1

(Mi + N̂ −Bi)Ωi,j + N̂
L−1∑
k=N

Ωk,j, for j = 1, ...N − 1. (81)

We also need to use the Yule-Walker equations to compute Ωk,j(m,n) for k, j = 1, ..., L−
1 and m,n = 1, 2, 3.51 Let Ωkj denote the 3× 3 matrix with elements Ωk,j(m,n). Then use
(79) and define

Fext(ÃN) =



M1 + N̂ M2+N̂ · · · MN−1 + N̂ N̂ · · · N̂ N̂
I 0 · · · 0 0 · · · 0 0
0 I · · · 0 0 · · · 0 0
...

...
. . . · · · · · · · · · ...

...
0 0 · · · I · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 · · · 0 · · · I 0 0
0 0 · · · 0 · · · 0 I 0


which is 3(L− 1)× 3(L− 1) matrix. Consider its eigenvalues from the system

det[Fext(ÃN)− λI] = 0.

Then define
A = Fext(ÃN)⊗ Fext(ÃN)

and obtain the matrix of second moments of the V AR(L− 1) process (77). in vector form

vec(Σ) = (I − A)−1vec(QZ),

50This standard procedure presumes that X̂t−i is covariance stationary. However, the algebraic operation
can be done even if stationarity is not presupposed.

51The method is explained well in Section 10.2 of Hamilton (1994).
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where Σ = (ωij) = E(X̂ALM
t (X̂ALM

t )T ) and QZ is the covariance matrix of the augmented
form of the error term Zt. Alternatively, one can use the linear equation system

Σ = Fext(ÃN)ΣFext(ÃN)
T +QZ .

Introducing the notation

Σ =


Γ0 Γ1 · · · ΓL−2

ΓT1 Γ0 · · · ΓL−3
...

... · · · ...
ΓTL−2 ΓTL−3 · · · Γ0

 ,

we have Γi = E(X̂ALM
t (X̂ALM

t−i )T ) for i = 1, ..., L−2. The i′th autocovariance matrix of the
original process (77) is then

Γi = (M1 + N̂)Γi−1 + ...+ (MN−1 + N̂)Γi−(N−1) + N̂Γi−N + ...+ N̂Γi−(L−1)

for i = L− 1, L, ... from which the required covariances Ωkj(m,n) for k, j = 1, ..., L− 1 and

m,n = 1, 2 are obtained and substituted into (80). As Ωij = EX̂t−iX̂
T
t−j we have

Γj−i = Ωij =

{
Γj−i for j ≥ i
ΓTj−i for j < i.

.

These equations are used in the numerical analysis reported in Table II and in Appendix
B.3.

B.2 Stability in the sticky price case

We begin with the technical details for Remark 4 in the case of PLM lag length, N − 1,
where 1 < N ≤ L− 1. For simplicity, we assume that exogenous shocks are mean-zero and
i.i.d, and that agents have the following PLM

X̃t = ÃNX̃t−1 + Ã0,t−1

Ã0,t = ω(X̃t − ÃNX̃t−1 − Ã0,t−1) + Ã0,t−1.

ÃN contains the RPE coefficients (or the correct ALM coefficients in the case N = L),
imposes zeros on lags of X̂ exceeding N − 1, and is fixed over time (i.e. agents only
estimate the intercept term recursively). The actual law of motion for X̃t can be expressed
as

X̃t = BX̃t−1 +DTaÃ0,t−1 + shocks

where B and DTa are functions of ÃN and the model’s structural parameters. This implies
the following law of motion for Wt = (X̃ ′

t, Ã
′
0,t)

′

Wt =

(
B DTa

ω(B − ÃN) ωDTa + (1− ω)I

)
Wt−1 + shocks

= DT ∗Wt−1 + shocks

We solve for largest gain parameter, ω0, that ensures that the roots of DT are inside the
unit circle. Robust stability obtains if ω0 > 0.01, i.e. we have stability under constant gain
learning for all ω < 0.01. The numerical results are given in Table II in the main text.
For those calculations, we use the calibration reported in section 3 with γ = 128.21. For
simplicity, the shock is assumed to be i.i.d.52

52Mathematica routine available on request.
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B.3 Flexible price case

Consider the linearized IH model studied above:(
Rt

πt

)
=

∞∑
j=1

βj
(

−1 β−2

−π∗

ψp
β−2 π∗

ψp

)(
Re
t+j

πet+j

)
+

L−1∑
i=1

(
0 0
0 −1

)(
Rt−i
πt−i

)
+

(
ϵt
π∗

ψp
ϵt

)
.

(82)
This model can be put in the form (77) where the 2 × 2 matrices of the model take the
form

M = (mij), N̂ =

(
0 0
0 −1

)
and Ai ≡ Mi+N̂ =

(
0 ai12
0 ai22

)
for i = 1, . . . , N−1, (83)

where m11 = −1, m12 = β−2, m21 = −π∗/ψp, m22 = β−2π∗/ψp. Postulating the PLM with
matricesAi, i = 1, N−1, it is possible in principle to compute the unprojected and projected
ALMs. For example, we can show that both ALMs yield non-stationary processes for any
set of PLM parameters when the model is calibrated with β = 0.99, ψp = 1.2, π∗ = 1.005,

L = 4 and N = L− 1. With these parameter values and augmenting the ALM with N̂ to
V AR(3) process it is seen that the projected ALM process is non-stationary.

Proposition 4 in Section 3.4 establishes non-stationarity under more general assumptions
about the flexible price model. The proposition covers the general case N < L − 1. The
proof of the proposition is in Appendix D.

C Domain of Escape for Inflation Targeting and AIT

Figure A.1 shows the domain of escape under IT. The basic parameter settings are as given
earlier.

Figure A.1 HERE

It should be noted that the result about escape from low steady state πLow, yLow differs
from that in Figure I of Honkapohja and Mitra (2020). There are some differences in
parameter values and most importantly in initial conditions for R0 and Re

0. In computing
conditional domain of attraction it is natural to assume that R0 and R

e
0 are approximately

equal to the steady state value R∗, whereas computation of domain of escape Figure A.1
assumes that R0 and Re

0 are approximately 1.
Figure A.2 shows the domain of escape under AIT when Ã0 = Ā where Ā is the rational

expectations equilibrium coefficients corresponding to the unique dynamically stable MSV
solution of the linearized model (i.e. the model linearized around the target steady state).

Figure A.2 HERE

C.1 Robust Stability: Monetary Policy Parameters and Trans-
parency

Tables C.1 and C.2 show how Table I results (full opacity) change if either ψy = 0.125 or
ψp = 2. Table C.3 reports robust stability results for the case of learning with transparency.
The approach outlined in Appendix B.2 with N = L and Ãn containing the correct MSV
coefficients was taken to produce the results reported in Table C.3. All other parameters
are reported in section 3.
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Table C.1: Least upper bounds for ψy = 0.125

γ 42 128.21 350
ω0 (IT ) 0.03434 0.08630 0.10540
ω0 (PLT ) 0.00743 0.00478 0.00274
ω0 (AIT with L = 6) 0.00299 0.00437 0.00528
ω0 (AIT with L = 20) 0.00024 0.00053 0.00097
ω0 (AIT with L = 32) 0.00009 0.00021 0.00044

Table C.2: Least upper bounds for ψp = 2

γ 42 128.21 350
ω0 (IT ) 0.03569 0.04656 0.04816
ω0 (PLT ) 0.01283 0.00928 0.00650
ω0 (AIT with L = 6) 0.00355 0.00517 0.00691
ω0 (AIT with L = 20) 0.00032 0.00065 0.00117
ω0 (AIT with L = 32) 0.00012 0.00027 0.00053

Table C.3: Least upper bounds under learning with transparency.

γ 42 128.21 350
ω0 (L = 6) 0.02351 0.02797 0.03586
ω0 (L = 20) 0.02343 0.02783 0.03508
ω0 (L = 32) 0.02343 0.02783 0.03508
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D Proofs

D.1 Proof of Proposition 1

In the linearization (30)-(31) we get

DFx =

 1 0 β(y∗−g)
π∗σ

−κ 1 0

−ψy

y∗
−ψp

π∗ 1



DFxe =

 −1 −(g−y∗)
π∗σ(β−1)

β2(g−y∗)
π∗σ(β−1)

β
β−1

κ 0 0

0 0 0


DFxi =

 0 0 0
0 0 0
0 −ψp/π∗ 0

 , i = 1, ..., L− 1.

where

κ =

ν

(
(ν−1)σy∗(y∗−ḡ)−σ−1

ν
− (ν−1)(y∗−ḡ)−σ

ν
+ (ϵ+1)y∗

ϵ+1
α −1

α2

)
γ(2π∗ − 1)

≥ 0

if σ > (y∗ − ḡ)/y∗. It follows that

M = −(DFx)
−1DFxe =

y∗(β2κψp(y∗−ḡ)+(β−1)π∗2σ)
⅁

π∗y∗(ḡ−y∗)
⅁

β2π∗y∗(y∗−ḡ)
⅁

κ(−π∗)(β2ψy(y∗−ḡ)+π∗σy∗)
⅁

κπ∗y∗(ḡ−y∗)
⅁

β2κπ∗y∗(y∗−ḡ)
⅁

π∗σ((β−1)π∗ψy−κψpy∗)
⅁

(ḡ−y∗)(π∗ψy+κψpy∗)
⅁

β2(y∗−ḡ)(π∗ψy+κψpy∗)
⅁

 ,

Ni = −(DFx)
−1DFxi = 0 βψpy∗(ḡ−y∗)

βπ∗ψy(y∗−ḡ)+βκψpy∗(y∗−ḡ)+(π∗)2σy∗
0

0 βκψpy∗(ḡ−y∗)
βπ∗ψy(y∗−ḡ)+βκψpy∗(y∗−ḡ)+(π∗)2σy∗

0

0 π∗σψpy∗

βπ∗ψy(y∗−ḡ)+βκψpy∗(y∗−ḡ)+(π∗)2σy∗
0

 , i = 1, ..., L− 1.

where
⅁ = (β − 1)

(
βπ∗ψy(y

∗ − ḡ) + βκψpy
∗(y∗ − ḡ) + (π∗)2σy∗

)
< 0.

Introduce the notation xt = (yt, πt, Rt) etc. Modifying the system (30), (31)

Zt = QZt−1, where (84)

Zt = ( xet xt xt−1 xt−2 · · · xt−(L−2) )T

Q =



(1− ω)I3 ωI3 0 · · · 0 0
(1− ω)M ωM +N1 N2 · · · NL−2 NL−1

0 I3 0 · · · 0 0
0 0 I3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I3 0


.
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For stability, the roots of P (λ) = Det[Q − λI3L] must be inside the unit circle. One can
show that

P (λ) = λ2L−2(1 + ω − λ)P̃ (λ)

Thus, the roots of P (λ) are inside the unit circle if and only if the roots of P̃ (λ) are inside
the unit circle. In the limit ω → 0, we have

P̃ (λ) = (1− λ)2(λL−1 + h
L−2∑
k=0

λk)

where

h =
βκψpy

∗(y∗ − ḡ)

βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗
∈ (0, 1)

if γ > 0. Using the stability criterion in Jury (1961), the roots of (λL−1 + h
∑L−2

k=0 λ
k) are

inside the unit circle if and only if53

1− kh2

1 + (k − 1)h
> 0, k = 1, . . . , L,

which is satisfied for all L. Therefore, the roots of P (λ) are inside the unit circle if ∂λ/∂ω <
0 evaluated at ω = 0 and λ = 1. To evaluate the derivative, we consider the Taylor series
expansion of P̃ (λ) up to second order at point (λ0, ω0). Let (dλ, dω) = (λ, ω) − (λ0, ω0).
Then

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λ(λ0, ω0)dλ+ P̃ω(λ0, ω0)dω +

P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
+Q,

where subscripts denote partial derivatives and Q is a remainder.
Now

P̃ω(λ0, ω0) = 0

P̃λ(λ0, ω0) = 0

so we get the approximation

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
.

Now impose
P̃ (λ, ω)− P̃ (λ0, ω0) = 0

to compute the derivative of the implicit function. So we have

P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)
dω2

2
+ P̃λλ(λ0, ω0)

dλ2

2
= 0

or
dλ

dω
=

−1

2

(
P̃ωω(λ0, ω0)

P̃λω(λ0, ω0)
+
P̃λλ(λ0, ω0)

P̃λω(λ0, ω0)

(
dλ

dω

)2
)

53Proof in Mathematica available on request.
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Evaluating the partial derivatives at (λ0, ω0) = (1, 0) we have

P̃ωω(1, 0) = (−1)L
2(y∗ − ḡ)((1− β)βπ∗ψy + κy∗(Lβψp − π∗))

(β − 1)2 (βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗)

P̃λλ(1, 0) = (−1)L
2 (βπ∗ψy(y

∗ − ḡ) + Lβκψpy
∗(y∗ − ḡ) + (π∗)2σy∗)

βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗

P̃λω(1, 0) = (−1)L
κy∗(y∗ − ḡ)(π∗ − 2Lβψp) + (2− β)βπ∗ψy(ḡ − y∗)− (1− β)(π∗)2σy∗

(β − 1) (βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗)

One can show that Pωω(1, 0) > 0, Pλλ(1, 0) > 0, Pλω(1, 0) > 0 if L is even and Pωω(1, 0) < 0,
Pλλ(1, 0) < 0, Pλω(1, 0) < 0 if L is odd. Therefore, ∂λ/∂ω < 0 and we have stability for
small ω and κ > 0.

D.2 Proof of Proposition 2

In the case γ = 0 the dynamics of output expectations do not depend on the rest of the
system and can be shown to be locally convergent. Introducing the notation x̃t = (πt, Rt)

T ,
the linearization (30)-(31) becomes

M̃ ≡ −(DF̃x)
−1DF̃xe =

(
π∗

ψpβ(1−β) − βπ∗

ψp(1−β)
1

β(1−β) − β
(1−β)

)
and

Ñi ≡ −(DF̃x)
−1DF̃xi . =

(
−1 0
0 0

)
, i = 1, ..., L− 1.

The system becomes
Z̃t = Q̃Z̃t−1, where (85)

Z̃t = ( x̃et x̃t x̃t−1 x̃t−2 · · · x̃t−(L−2) )T

Q̃ =



(1− ω)I2 ωI2 0 · · · 0 0

(1− ω)M̃ ωM̃ + Ñ1 Ñ2 · · · ÑL−2 ÑL−1

0 I2 0 · · · 0 0
0 0 I2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I2 0


.

Note that in Q̃ we have Ñi = Ñ for all i and Ñ is zero except for element ñ11. In the
determinant eliminate the second column from each block ≥ 3 and also corresponding row.
We get

det[Q̃− λI2L] = (−λ)L−2 det[K̃L+2], (86)

where

K̃L+2 =



(1− ω)I2 − λI2 ωI2 0 0 · · · 0 0

(1− ω)M̃ ωM̃ + Ñ1 − λI2 N1 N1 · · · N1 N1
0 (1, 0) −λ 0 · · · 0 0
0 0 1 −λ · · · 0 0
...

...
...

. . . . . .
...

...

0 0 0 0
. . . −λ 0

0 0 0 0 · · · 1 −λ


(L+2)x(L+2)
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and N1 = (−1, 0)T .
Consider first the case L = 1, so there are no lags. We can focus on the learning

dynamics of πt and Rt, i.e. the matrix(
(1− ω)I ωI

(1− ω)M̃ ωM̃

)
, where M̃ =

(
−π∗

(β−1)βψp

βπ∗

(β−1)ψp
−1

(β−1)β
β
β−1

)
.

Assume ψp > β−1π∗ = R̄. When L = 1 the system is four dimensional and two of the
eigenvalues are those of M̃ . Clearly tr(M̃ − I) < 0 and det(M̃ − I) > 0. The other two
eigenvalues are a repeated root equal to 1− ω < 1 for all small ω. So E-stability holds in
this case.

In the case of general L, the characteristic polynomial of KL+2 has the following struc-
ture:54

det[KL+2] = λ(λ− 1 + ω)P (n, ω, λ)

where n = L and

P (n, ω, z) = zn + b̃zn−1 + c̃zn−2 + ...+ c̃z + an, where (87)

b̃ =
ω

1− β
b1 with b1 = (1− π∗

βψP
),

c̃ =
ω

1− β
and an = c̃− 1.

Here b1, β, ω ∈ (0, 1). To apply the Schur-Cohn conditions the polynomial (87) is written
in a general form

A(λ) = λn + a1λ
n−1 + ...+ an−1λ+ an

so
a1 = b̃, a2 = c̃, . . . , an−1 = c̃ and an = c̃− 1. (88)

Then define the matrices55

D±
n−1 =


1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
. . . . . .

...
an−2 an−3 · · · a1 1

±


0 0 · · · 0 an
0 0 · · · an an−1
...

...
. . .

...
...

0 an · · · a4 a3
an an−1 · · · a3 a2

 .

The roots of A(λ) are inside the unit circle if and only if the following conditions hold: (a)
A(1) > 0 and (b) (−1)nA(−1) > 0, and (c) the matrices D±

n−1 are positive innerwise, i.e.,∣∣D±
1

∣∣ > 0,
∣∣D±

3

∣∣ > 0, ...,
∣∣D±

n−1

∣∣ > 0 when n is even and
∣∣D±

2

∣∣ > 0,
∣∣D±

4

∣∣ > 0, ...,
∣∣D±

n−1

∣∣ > 0
when n is odd, where D±

i > 0 denote the inners of D±
n−1 > 0 as defined in Elaydi (2005).

Now

A(1) = 1 + b̃+ (n− 2)c̃+ c̃− 1 =
ω

1− β
(b1 + n− 1) > 0 if n ≥ 1.

(−1)nA(−1) = 1− b̃+ c̃− 1 = c̃− b̃ =
ω

1− β
(1− b1) > 0 if n is even and

(−1)nA(−1) = (−1)(−1 + b̃− c̃+ c̃− 1) = 2− b̃ > 0 if n is odd,

54The Mathematica routine is available on request.
55This form of the Schur-Cohn conditions is given in Elaydi (2005), p.247.
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so conditions (a) and (b) hold. Substituting in the relations (88) we get

D±
n−1 =


1 0 0 · · · 0

b̃ 1 0 · · · 0
...

...
. . . · · · ...

c̃ c̃ · · · 1 0

c̃ c̃ · · · b̃ 1

±


0 0 · · · 0 c̃− 1
0 0 · · · c̃− 1 c̃
...

...
. . .

...
...

0 c̃− 1 · · · c̃ c̃
c̃− 1 c̃ · · · c̃ c̃

 ,

where n ≥ 2. Assume first that n is even and consider the inners D±
1 , D

±
3 , ..., D

±
n−1. we

get ∣∣D±
1

∣∣ = 1± (c̃− 1) = c̃ or 2− c̃ which are > 0 if c̃ < 2

and ∣∣D±
3

∣∣ =
∣∣∣∣∣∣
 1 0 0

b̃ 1 0

c̃ b̃ 1

±

 0 0 an
0 an c̃
an c̃ c̃

∣∣∣∣∣∣
yielding

∣∣D−
3

∣∣ = (b̃ − c̃)(c̃ + b̃ − b̃c̃) < 0 as 0 < b̃ < c̃, which implies instability for n ≥ 4
even, but stability for n = 2.

Next assume that n is odd. One computes

∣∣D±
2

∣∣ = ∣∣∣∣( 1 ±an
b̃± an 1± c̃

)∣∣∣∣
so
∣∣D+

2

∣∣ = 3c̃ − bc̃ + b̃ − c̃2 > 0 and
∣∣D−

2

∣∣ = (c̃ − b̃)(1 − c̃) > 0 for sufficiently small c̃ > 0,
which implies stability for n = 3. Next consider

D±
4 =


1 0 0 0

b̃ 1 0 0

c̃ b̃ 1 0

c̃ c̃ b̃ 1

±


0 0 0 c̃− 1
0 0 c̃− 1 c̃
0 c̃− 1 c̃ c̃

c̃− 1 c̃ c̃ c̃

 .

One computes

D−
4 =


1 0 0 1− c̃

b̃ 1 1− c̃ −c̃
c̃ 1 + b̃− c̃ 1− c̃ −c̃
1 0 b̃− c̃ 1− c̃

 ,

so
∣∣D−

4

∣∣ = (b̃− c̃)2(b̃c̃− b̃− 1) < 0 implying instability for n odd.
So overall there is instability for n ≥ 4 and stability for n ≤ 3.
Proof of the Remark in Section 1.1: Recalling (8), its characteristic polynomial is

P (n, ω, z) = zn + (1−M)ωzn−1 + ωzn−2 + ...+ ωz + (ω − 1),

where n = L. This polynomial has same form as (87) except that the coefficients are now
b̃ = ω(1−M) and c̃ = ω. The rest of the argument follows the preceding proof.
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D.3 Proof of Proposition 3

First consider (i). The model (18)-(20) with i.i.d. government spending shock can be
written as

yt = cRRt +
∞∑
j=1

βj
(
cππ

e
t+j + cyy

e
t+j + cRR

e
t+j

)
+ ˆ̃gt

πt = κyt + κ
∞∑
j=1

βjyet+j +
(1− ν)y∗σ

γ(y∗ − ḡ)σ+1
ˆ̃gt

Rt =
ψp
π∗

L−1∑
i=0

πt−i + ψy
yt
y∗

where ˆ̃gt is an i.i.d shock, cR = −c∗β(σπ∗)−1, cπ = −cRβ−2, cy = β−1(1− β), and κ = κ(γ)
with ∂κ

∂γ
< 0 and limγ→∞ κ = 0. Suppose the following PLM:

πt = aπ + bππt−1 (89)

Rt = aR + bRπt−1 (90)

yt = ay + byπt−1 (91)

which implies

πet+j = (1− bj+1
π )aπ/(1− bπ) + bj+1

π πt−1

set+j = as + bs(1− bjπ)aπ/(1− bπ) + bsb
j
ππt−1

where s = y,R. Under this PLM, a restricted perceptions equilibrium (RPE) of (18)-(20)
is given by coefficients (aπ, aR, ay, bπ, bR, by) which satisfy the least-squares orthogonality
restriction

Eπt−1 (st − as − bsπt−1) = E(πt−1 − as) (st − as − bsπt−1) = 0

for s = π, y, R, where |bπ| < 1, bπ ̸= 0, and E denotes the unconditional expectations
operator. This restriction implies: as = 0.56

Suppose an RPE exists and that agents update their estimates of (ay, aR, aπ) according
to (34) with bπ, bR, by fixed to their RPE values. Substituting expectations into the system
(18)-(20) gives the first-order system:

Zt = QZt−1 + ϵ̃t. (92)

where Zt = (πt, Rt, yt, aπ,t, aR,t, ay,t, πt−1, . . . , πt−L+2). For stability, the roots of P (λ) =
Det[Q − λIL+4] must be inside the unit circle. One can show that for sufficiently large γ

(i.e. in the limit κ → 0), P (λ) = (1− c∗ωβψy

(1−β)(y∗π∗σ+c∗βψy)
− λ)λL+1(λ− (1− ω)). Hence, we

have stability for small κ and small ω if ψy > 0. To show stability for small κ and small ω
when ψy = 0, we compute the total differential of P (λ):

∂P

∂λ
dλ+

∂P

∂κ
dκ = 0

=⇒ dλ

dκ
= −∂P

∂κ
/
∂P

∂λ
.

56Mathematica routine available on request.
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Evaluated at λ = 1 and κ = ψy = 0 we have

=⇒ dλ

dκ
=
c∗ω(π∗ − Lβψp)

(β − 1)2(π∗)2σ
< 0

Therefore, an RPE is stable under constant gain learning about the intercept term, assum-
ing an RPE exists and κ sufficiently small.

Now consider (ii). In the limit γ → 0, yt = gy ˆ̃gt where gy is a complicated function of
deep structural parameters (see Appendix A.6) and therefore (18)-(20) reduces to:57

Rt =
∞∑
j=1

βj
(
β−2πet+j −Re

t+j

)
+ ϵt, (93)

Rt =
ψp
π∗

L−1∑
i=0

πt−i, (94)

where ϵt is proportional to the i.i.d government spending shock g̃t, and ψy = 0 is assumed
for simplicity. Suppose the PLM:

πt = aπ + bππt−1, (95)

Rt = aR + bRπt−1, (96)

which implies

πet+j = (1− bj+1
π )aπ/(1− bπ) + bj+1

π πt−1,

Re
t+j = aR + bR(1− bjπ)aπ/(1− bπ) + bRb

j
ππt−1.

Under the PLM, (95)-(96), a restricted perceptions equilibrium (RPE) of (93)-(94) is given
by coefficients (aπ, aR, bπ, bR) which satisfy the least-squares orthogonality restriction

Eπt−1 (πt − aπ − bππt−1) = E(πt−1 − aπ) (πt − aπ − bππt−1) = 0,

Eπt−1 (Rt − aR − bRπt−1) = E(πt−1 − aR) (Rt − aR − bRπt−1) = 0,

where |bπ| < 1, bπ ̸= 0, and E denotes the unconditional expectations operator. This

restriction implies: aR = aπ = 0, bR = b2π
β
.58

Suppose an RPE exists and that agents update their estimates of (aR, aπ) according to
(34) with bπ and bR fixed to their RPE values. Substituting expectations (34) and (94)
into (93) yields:

πt = dπaπ,t + dRaR,t + eππt−1 −
L−1∑
i=2

πt−i + ϵ̃t

= (eπ + dπω)πt−1 + (−dπbπω − dRbRω − 1)πt−2

+ dRωRt−1 + dπ(1− ω)aπ,t−1 + dR(1− ω)aR,t−1 −
L−1∑
i=3

πt−i + ϵ̃t, (97)

57Here, as with other flexible price results, we assume agents learn the exogenous process for output, i.e.
yt = gy ˆ̃gt which implies yet+j = 0 for all j ≥ 1.

58Mathematica routine available on request. Given aR = aπ = 0, we can show that Rt = B(bR)πt−1+rϵt
where r is a scalar, B(bR) =

ψp

π∗ (eπ+1) and eπ is defined in (97). Therefore, E(Rtπt−1)
E(πtπt)

= B(bR) = bR since

aR = 0. Solving B(bR) = bR for bR gives bR =
b2π
β .
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where

eπ =
π∗bπ(bπβ

−1 − bRβ)

ψp(1− βbπ)
− 1,

dπ =
π∗

ψp(1− bπ)

(
β−1 − βbR

1− β
− bπ (β

−1bπ − βbR)

1− βbπ

)
,

dR = − π∗β

ψp(1− β)
.

Introduce the notation Zt = (πt, Rt, aπ,t, aR,t, πt−1, . . . , πt−L+2). Modifying the system
gives

Zt = QZt−1 + ϵ̂t. (98)

For stability, the roots of P (λ) = Det[Q − λIL+2] must be inside the unit circle. One can
show that in the limit ω → 0

P (λ) = −(1− λ)2λP̃ (λ)

Thus, some roots of P (λ) are outside of the unit circle if any root of P̃ (λ) is outside the
unit circle where

P̃ (λ) = λL−1 +

(
1− π∗b2π

βψp

)
λL−2 +

L−3∑
k=0

λk (99)

where 0 < π∗b2π
βψp

< 1 under the Taylor Principle with π∗ ≥ 1. The preceding equation has

the following form

Q(λ) = λn + (1− c)λn +
n−2∑
k=0

λk

where c ∈ (0, 1) and n = L−1. We can assess stability following the Schur-Cohn conditions
presented in section C.2.

If n is even. Then

∣∣D±
3

∣∣ =

∣∣∣∣∣∣
 1 0 0

1− c 1 0
1 1− c 1

±

 0 0 1
0 1 1
1 1 1

∣∣∣∣∣∣
−2c+ c2 or − c2

so
∣∣D+

3

∣∣ < 0 and
∣∣D−

3

∣∣ < 0, which implies instability.
Then consider the case n is odd.∣∣D±

2

∣∣ = ∣∣∣∣( 1 ±1
1− c± 1 1± 1

)∣∣∣∣ = (1± 1)∓ (1− c± 1) = c or − c.

So there is instability as
∣∣D−

2

∣∣ < 0. So overall there is instability for L ≥ 4.
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D.4 Proof of Proposition 4

It is seen that only lags of inflation appear in structural model (82). Its coefficient matrices
Ai take the form given in (83), and the resulting temporary equilibrium is V AR(L − 1).
Let yt = (Rt, πt)

T . The temporary equilibrium system (unprojected ALM) takes the form

yt = A1yt−1 + ...+AN−1yt−(N−1) + N̂yt−N + ...+ N̂yt−(L−1) + zt. (100)

The relevant characteristic polynomial is H̃(λ) = λL−1H(λ), where

H(λ) = λL−1 −
N−1∑
i=1

ai22λ
L−1−i +

L−1∑
i=N

λL−1−i,

The temporary equilibrium system is stationary if the roots of H(λ) are inside the unit
circle. The Schur-Cohn conditions are the relevant stability conditions. According to
Proposition 5.1 in Elaydi (2005), condition (iii) is necessary for H(λ) to have all of its
roots inside the unit circle. This condition is stated in terms of the inners of the following
matrices

B±
L−2 =


1 0 0 · · · 0

−a122 1 0 · · · 0
−a222 −a122 1 · · · 0

...
...

. . . . . .
...

bL−3 bL−4 · · · −a122 1

±


0 0 · · · 0 1
0 0 · · · 1 bL−2
...

...
...

...
0 1 · · · b4 b3
1 bL−2 · · · b3 −a222

 .

where bk = −ak22 if N > k or where b = 1 if N ≤ k. The smallest inner of B±
L−2 is either∣∣B±

1

∣∣ = 1± 1 = 2 or 0

if L is odd or∣∣B±
2

∣∣ =

∣∣∣∣( 1 0
−a122 1

)
±
(

0 1
1 bL−2

)∣∣∣∣
=

∣∣∣∣( 1 1
1− a122 1 + bL−2

)
or

(
1 −1

−a122 − 1 1− bL−2

)∣∣∣∣
= bL−2 + a122 or − (bL−2 + a122).

where b = −a(L−2)22 or −1 if L is even. So there is always a zero inner, which implies that
not all roots are inside the unit circle.

D.5 Proof of Proposition 5

The dynamic model is given by a linearized system of the form (30) and (31) where the
interest rate is now (37). In this proof, we set ψp = ψp/(

∑L−1
i=0 µ

i) (i.e. we write the
averaging constant explicitly in the interest rate rule, but this detail is not essential for
the results). Again in the limit γ → 0 the first equation is independent from the rest of
the system and output expectations yet are convergent. Separating the equation for yet , the
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state variables are x̃t = (πt, Rt)
T and the linearized system is of the form (85) but the

coefficient matrices M̃ and Ñi change to

M̃ = −(DF̃x)
−1DF̃xe =

(
π∗(

∑L−1
i=0 µi)

ψpβ(1−β) −βπ∗(
∑L−1

i=0 µi)
ψp(1−β)

−1
(β−1)β

β
β−1

)
,

Ñi = −(DF̃x)
−1DF̃xi =

(
−µi 0
0 0

)
, i = 1, ..., L− 1.

and the system is now
Z̃t = Q̃2Z̃t−1, (101)

where Z̃t is defined in the proof of Proposition 2, but Q̃2 incorporates the new forms of M̃
and Ñi in Q̃. Consider the characteristic polynomial of Q̃2 of (101)

det[Q̃2 − λI2L] = 0. (102)

Given that the second columns of Ñi are zero vectors, the determinant in (102) has L− 2
roots equal to zero. Then analyzing the remaining (L+2) dimensional determinant, again
it turns out that there is one more zero root and one root equal to 1 − ω. Factoring out
these, we are left with a polynomial of degree L. Introducing more familiar notation n = L,
the polynomial is

P2(n, ω, λ) = λn + b(ω)λn−1 + a(ω)[µλn−2...+ µn−2λ] + (a(ω)µn−1 − µn), (103)

where µ is the weight parameter in (37),

a(ω) =
ω

1− β
+ µ− 1, b(ω) = a(ω)− ω

1− β
b1 with b1 =

π∗ (∑n−1
i=0 µ

i
)

βψp

and where π∗ < βψP and n ≥ 2 are assumed. We again consider how any root varies
as ω varies from 0 to small values dω > 0 and require that in this variation the root is
continuously a root of the characteristic polynomial. If ω → 0we have a(ω) → µ − 1 and
b(ω) → µ− 1, so the characteristic equation becomes

(1− λ)(λn−1 + µλn−2 + µ2λn−3 + ...+ µn−2λ+ µn−1). (104)

There is one root of unity. For the other roots one can apply a generalization of the classic
Enerstrom-Kakeya theorem in Gardner and Govil (2014), Theorem 3.6, stating that the
other roots of the polynomial in (104) satisfy |λ| < µ < 1.

Then consider the root of 1. Assume now a small perturbation ω > 0. By continuity
of eigenvalues the n − 1 roots that are approximate to the roots of the latter polynomial
in (104) remain inside the unit circle. To determine whether the unit root contributes to
stability we compute the partial derivatives

∂P2

∂λ
= nλn−1 + (n− 1)b(ω)λn−2 + a(ω)[µ(n− 2)λn−3...+ µn−2],

∂P2

∂ω
= +b′(ω)λn−1 + a′(ω)[µλn−2 + ...+ µn−2λ] + a′(ω)µn−1.
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At ω = 0 and λ = 1 we have

∂P2

∂λ
=

1− µn

1− µ
> 0,

∂P2

∂ω
=

1

1− β

(
1− π∗∑n−1

k=0 µ
k

βψp
+ µ

1− µn−1

1− µ

)
> 0,

since a′(0) = (1− β)−1 and b′(0) = (1− β)−1(1− b1). Then taking the differential of (103)
and requiring

∂P2

∂ω
dω +

∂P2

∂λ
dλ = 0 =⇒ ∂λ

∂ω
< 0.

So for small ω > 0 the real root corresponding to limit 1 is inside the unit circle.
Next consider part (ii) of the proposition. In the linearization we get

DFx =

 1 0 β(y∗−g)
π∗σ

−κ 1 0

−ψy

y∗
− ψp

π∗(
∑L−1

i=0 µi)
1



DFxe =

 −1 −(g−y∗)
π∗σ(β−1)

β2(g−y∗)
π∗σ(β−1)

β
β−1

κ 0 0

0 0 0



DFx−i
=

 0 0 0
0 0 0

0 − µiψp

π∗(
∑L−1

i=0 µi)
0

 , i = 1, ..., L− 1,

where

κ =

ν

(
(ν−1)σy∗(y∗−ḡ)−σ−1

ν
− (ν−1)(y∗−ḡ)−σ

ν
+ (ϵ+1)y∗

ϵ+1
α −1

α2

)
γ(2π∗ − 1)

≥ 0.

It follows that

M = −(DFx)
−1DFxe =

y∗(β2κψp(y∗−ḡ)/(
∑L−1

i=0 µi)+(β−1)(π∗)2σ)
⅁2

π∗y∗(ḡ−y∗)
⅁2

β2π∗y∗(y∗−ḡ)
⅁2

κ(−π∗)(β2ψy(y∗−ḡ)+π∗σy∗)
⅁2

κπ∗y∗(ḡ−y∗)
⅁2

β2κπ∗y∗(y∗−ḡ)
⅁2

π∗σ((β−1)π∗ψy−κψpy∗/(
∑L−1

i=0 µi))
⅁2

(ḡ−y∗)(π∗ψy+κψpy∗)
⅁2

β2(y∗−ḡ)(π∗ψy+κψpy∗)
⅁2

 ,

Ni = −(DFx)
−1DFxi =

0 µiβψpy∗(ḡ−y∗)(β−1)

(
∑L−1

i=0 µi)a
0

0 µiβκψpy∗(ḡ−y∗)(β−1)

(
∑L−1

i=0 µi)a
0

0 µiπ∗σψpy∗(β−1)

(
∑L−1

i=0 µi)a
0

 , i = 1, ..., L− 1.

where

⅁2 = (β − 1)
(
π∗(βψy(y

∗ − ḡ) + π∗σy∗) + βκψpy
∗(y∗ − ḡ)/

(∑L−1

i=0
µi
))

< 0.
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The system is now like (84)
Zt = Q2Zt−1, (105)

where Zt is as before in Proposition 1, but Q2 incorporates the new forms of M and Ni.
Introduce the notation xt = (yt, πt, Rt) etc. Modifying the system yields

Zt = ( xet xt xt−1 xt−2 · · · xt−(L−2) )T

Q2 =



(1− ω)I3 ωI3 0 · · · 0 0
(1− ω)M ωM +N1 N2 · · · NL−2 NL−1

0 I3 0 · · · 0 0
0 0 I3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I3 0


.

For stability, the roots of P (λ) = Det[Q2 − λI3L] must be inside the unit circle. One can
show that

P (λ) = λ2L−2(1 + ω − λ)P̃ (λ)

Thus, the roots of P (λ) are inside the unit circle if and only if the roots of P̃ (λ) are inside
the unit circle. In the limit ω → 0, we have

P̃ (λ) = (1− λ)2(λL−1 + hµ
L−2∑
k=0

µL−2−kλk)

where

h =
βκψpy

∗(y∗ − ḡ)

βκψpy∗(y∗ − ḡ) + (βπ∗ψy(y∗ − ḡ) + (π∗)2σy∗)
(∑L−1

i=0 µ
i
) ∈ (0, 1)

The polynomial has two unit roots. For the other roots one can apply a generalization of
the classic Enerstrom-Kakeya theorem in Gardner and Govil (2014), Theorem 3.6, stating
that the roots of the second polynomial in P̃ (λ) satisfy |λ| < µ < 1.

Therefore, the roots of P (λ) are inside the unit circle if ∂λ/∂ω < 0 evaluated at ω = 0
and λ = 1. To evaluate the derivative, we consider the Taylor series expansion of P̃ (λ) up
to second order at point (λ0, ω0). Let (dλ, dω) = (λ, ω)− (λ0, ω0). Then

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λ(λ0, ω0)dλ+ P̃ω(λ0, ω0)dω +

P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
+Q,

where subscripts denote partial derivatives and Q is a remainder.
Now

P̃ω(λ0, ω0) = 0

P̃λ(λ0, ω0) = 0

so we get the approximation

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
.
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Now impose
P̃ (λ, ω)− P̃ (λ0, ω0) = 0

to compute the derivative of the implicit function. So we have

P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)
dω2

2
+ P̃λλ(λ0, ω0)

dλ2

2
= 0

or
dλ

dω
=

−1

2

(
P̃ωω(λ0, ω0)

P̃λω(λ0, ω0)
+
P̃λλ(λ0, ω0)

P̃λω(λ0, ω0)

(
dλ

dω

)2
)

Evaluating the partial derivatives at (λ0, ω0) = (1, 0) we have

P̃ωω(1, 0) = (−1)L
2(y∗ − ḡ)((1− β)βπ∗ψy + κy∗(βψp − π∗))

(β − 1)2
(
βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ)/

(∑L−1
k=0 µ

i
)
+ (π∗)2σy∗

)
P̃λλ(1, 0) = (−1)L

2 (βπ∗ψy(y
∗ − ḡ) + βκψpy

∗(y∗ − ḡ) + (π∗)2σy∗)

βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ)/
(∑L−1

k=0 µ
i
)
+ (π∗)2σy∗

P̃λω(1, 0) = (−1)L
κy∗(y∗ − ḡ)(π∗ − 2βψp) + (2− β)βπ∗ψy(ḡ − y∗)− (1− β)(π∗)2σy∗

(β − 1)
(
βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ)/

(∑L−1
k=0 µ

i
)
+ (π∗)2σy∗

)
One can show that P̃ωω(1, 0) > 0, P̃λλ(1, 0) > 0, P̃λω(1, 0) > 0 if L is even and P̃ωω(1, 0) < 0,
P̃λλ(1, 0) < 0, P̃λω(1, 0) < 0 if L is odd. Therefore, ∂λ/∂ω < 0 and we have stability for
κ ≥ 0 and small ω.

D.6 Proof of Proposition 6

In the linearization (41) we get

DFx =

 1 0 β(y∗−g)
π∗σ

−κ 1 0

−ψy

y∗
−wcψp

π∗ 1



DFxe =

 −1 −(g−y∗)
π∗σ(β−1)

β2(g−y∗)
π∗σ(β−1)

βκ
β−1

0 0

0 0 0


DFcb =

 0 0 0
0 0 0
0 −(1− wc)ψp/π

∗ 0


where

κ =

ν

(
(ν−1)σy∗(y∗−ḡ)−σ−1

ν
− (ν−1)(y∗−ḡ)−σ

ν
+ (ϵ+1)y∗

ϵ+1
α −1

α2

)
γ(2π∗ − 1)

≥ 0
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if σ > (y∗ − ḡ)/y∗. It follows that

M = −(DFx)
−1DFxe =

y∗(wcβ2κψp(y∗−ḡ)+(β−1)π∗2σ)
⅁3

π∗y∗(ḡ−y∗)
⅁3

β2π∗y∗(y∗−ḡ)
⅁3

κ(−π∗)(β2ψy(y∗−ḡ)+π∗σy∗)
⅁3

κπ∗y∗(ḡ−y∗)
⅁3

β2κπ∗y∗(y∗−ḡ)
⅁3

π∗σ((β−1)π∗ψy−wcκψpy∗)
⅁3

(ḡ−y∗)(π∗ψy+wcκψpy∗)
⅁3

β2(y∗−ḡ)(π∗ψy+wcκψpy∗)
⅁3

 ,

N = −(DFx)
−1DFcb = 0 (wc−1)βψpy∗(ḡ−y∗)

(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)
0

0 (wc−1)βκψpy∗(ḡ−y∗)
(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)

0

0 (wc−1)π∗σψpy∗

(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)
0


Ncb = 

(wc−1)βψpy∗(ḡ−y∗)
(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)

(wc−1)βκψpy∗(ḡ−y∗)
(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)

(wc−1)π∗σψpy∗

(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)


where ⅁3 = (β − 1) (βπ∗ψy(y

∗ − ḡ) + wcβκψpy
∗(y∗ − ḡ) + (π∗)2σy∗) < 0.

Introduce the notation xt = (yt, πt, Rt) etc. Modifying the system (31), (41), and the
linearization of (39) yields yields

Zt = QZt−1, where (106)

Zt = ( xt xet πcbt )T

Q =

 ωM + wcN (1− ω)M (1− wc)Ncb

ωI3 (1− ω)I3 03×1

0 wc 0 · · · 1− wc

 .

For stability, the roots of P (λ) = Det[Q − λI7] must be inside the unit circle. One can
show that

P (λ) = λ3(1 + ω − λ)P̃ (λ).

Thus, the roots of P (λ) are inside the unit circle if and only if the roots of P̃ (λ) are inside
the unit circle. In the limit ω → 0, we have

P̃ (λ) = (1− λ)2(λ− µ)

where µ =
(1−wc)(βπ∗ψy(y∗−ḡ)+(π∗)2σy∗)

(y∗−ḡ)(βπ∗ψy+βκwcψpy∗)+(π∗)2σy∗
<

(βπ∗ψy(y∗−ḡ)+(π∗)2σy∗)
(y∗−ḡ)(βπ∗ψy)+(π∗)2σy∗

= 1. Therefore, the roots

of P (λ) are inside the unit circle if ∂λ/∂ω < 0 evaluated at ω = 0 and λ = 1. To evaluate
the derivative, we consider the Taylor series expansion of P̃ (λ) up to second order at point
(λ0, ω0). Let (dλ, dω) = (λ, ω)− (λ0, ω0). Then

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λ(λ0, ω0)dλ+ P̃ω(λ0, ω0)dω +

P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
+Q,

where subscripts denote partial derivatives and Q is a remainder.
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Evaluating the partial derivatives at (λ0, ω0) = (1, 0) we have

P̃ω(1, 0) = 0,

P̃λ(1, 0) = 0,

and imposing
P̃ (λ, ω)− P̃ (λ0, ω0) = 0,

we get the approximation

P̃λω(1, 0)dλdw + P̃ωω(1, 0)
dω2

2
+ P̃λλ(1, 0)

dλ2

2
= 0

or
dλ

dω
=

−1

2

(
P̃ωω(1, 0)

P̃λω(1, 0)
+
P̃λλ(1, 0)

P̃λω(1, 0)

(
dλ

dω

)2
)

Further, we have

P̃ωω(1, 0) =
2wc(y

∗ − ḡ)((β − 1)βπ∗ψy + κπ∗y∗ − βκψpy
∗)

(1− β)−1 (βπ∗ψy(y∗ − ḡ) + βκwcψpy∗(y∗ − ḡ) + (π∗)2σy∗)

P̃λλ(1, 0) = −2wc (βπ
∗ψy(y

∗ − ḡ) + βκψpy
∗(y∗ − ḡ) + (π∗)2σy∗)

(βπ∗ψy(y∗ − ḡ) + βκwcψpy∗(y∗ − ḡ) + (π∗)2σy∗)

P̃λω(1, 0) =
wcy

∗ ((β − 1)(π∗)2σ + (β − 2)βπ∗ψy + κπ∗y∗ − 2βκψpy
∗)

(1− β) (βπ∗ψy(y∗ − ḡ) + βκwcψpy∗(y∗ − ḡ) + (π∗)2σy∗)

− ḡwc((β − 2)βπ∗ψy + κπ∗y∗ − 2βκψpy
∗)

(1− β) (βπ∗ψy(y∗ − ḡ) + βκwcψpy∗(y∗ − ḡ) + (π∗)2σy∗)

One can show that P̃ωω(1, 0) < 0, P̃λλ(1, 0) < 0, P̃λω(1, 0) < 0 if βψp > π∗. Therefore,
∂λ/∂ω < 0 and we have stability for small w and κ > 0.

In part (ii) with γ = 0 the dynamics of output expectations do not depend on the rest
of the system and can be shown to be locally convergent. The linearization (41) becomes

M̃ ≡ −(DF̃x)
−1DF̃xe =

(
π∗

wcψpβ(1−β) − βπ∗

wcψp(1−β)
1

β(1−β) − β
(1−β)

)
and

Ñ ≡ −(DF̃x)
−1DF̃xi . =

(
wc−1
wc

0

0 0

)
and

Ñcb ≡ −(DF̃x)
−1DF̃xi . =

(
wc−1
wc

0

)
, i = 1, ..., L− 1.

Introduce the notation x̃t = (πt, Rt) etc. Modifying the system (31), (41) and the
linearization of (39) yields

Z̃t = Q̃Z̃t−1, where (107)

Z̃t = ( xt xet πcbt )T

Q̃ =

 ωM̃ + wcÑ (1− ω)M̃ (1− wc)Ñcb

ωI2 (1− ω)I2 02×1

wc 0 · · · 1− wc

 .
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For stability, the roots of P (λ) = Det[Q̃ − λI5] must be inside the unit circle. One can
show that

P (λ) = λ2(1 + ω − λ)P̃ (λ),

where

P̃ (λ) = λ2 +
βwcψp(β + ω − 1)− π∗ω

(1− β)βwcψp
λ+

π∗ω(1− wc)

(1− β)βwcψp
.

Thus, the roots of P (λ) are inside the unit circle if and only if the roots of P̃ (λ) are inside
the unit circle.

Let a0 = π∗ω(1−wc)
(1−β)βwcψp

and a1 = βwcψp(β+ω−1)−π∗ω
(1−β)βwcψp

. The roots of P̃ (λ) are inside the unit

circle if and only if the Schur-Cohn condition, |a1| < 1+a0 < 2, is satisfied. The Schur-Cohn

condition is satisfied if ψp > max[π
∗(ω/wc)(1−wc)

(1−β)β , R̄] and ω < (1−β)βwcψp

βwcψp−π∗ if ψp > π∗/(βwc) or

ω > 0 otherwise.
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Figure I: Unstable dynamics with AIT in Fisher model

58



Out[ ]=

50 100 150 200 250 300
k

0.995

1.000

1.005

π

Out[ ]=

50 100 150 200 250 300
k

0.942

0.944

0.946

0.948

0.950

y

Out[ ]=

50 100 150 200 250 300
k

1.000

1.005

1.010

1.015

R

Figure II: Escape of inflation, output and interest rate from liquidity trap under AIT with
gs (blue) and IT (red)
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Figure III: Domain of escape to target steady state
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Figure IV: Escape of inflation, output and interest rate from liquidity trap under asym-
metric AIT (blue), IT (red) and symmetric AIT (yellow)
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Figure A.1: Domain of escape for IT
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Figure A.2: Domain of escape for AIT with MSV Beliefs
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