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Abstract

Neural networks are becoming increasingly popular in applications, but our math-
ematical understanding of their potential and limitations is still limited. In this
paper, we further this understanding by developing statistical guarantees for sparse
deep learning. In contrast to previous work, we consider different types of sparsity,
such as few active connections, few active nodes, and other norm-based types of
sparsity. Moreover, our theories cover important aspects that previous theories have
neglected, such as multiple outputs, regularization, and £,-loss. The guarantees have
a mild dependence on network widths and depths, which means that they support
the application of sparse but wide and deep networks from a statistical perspective.
Some of the concepts and tools that we use in our derivations are uncommon in deep
learning and, hence, might be of additional interest.

Keywords Sparsity - Regularization - Oracle inequalities - High-dimensionality

1 Introduction

Sparsity reduces network complexities and, consequently, lowers the demands on
memory and computation, reduces overfitting, and improves interpretability (Chang-
pinyo et al. 2017; Han et al. 2016; Kim et al. 2016; Liu et al. 2015; Wen et al. 2016).
Sparsity is at the heart of many current techniques in deep learning, such as drop-
outs (Srivastava et al. 2014), lottery tickets (Frankle and Carbin 2019), augmenting
small networks (Ash 1989; Bello 1992), pruning large networks (Simonyan and Zis-
serman 2015; Han et al. 2016), sparsity constraints (Ledent et al. 2019; Neyshabur
et al. 2015; Schmidt-Hieber 2020), and sparsity regularization (Taheri et al. 2021).
The many empirical observations of the benefits of sparsity have sparked interest
in mathematical support in the form of statistical theories. Two current approaches
are based on Rademacher complexities (Bartlett and Mendelson 2002; Neyshabur
et al. 2015) and ideas from nonparametric statistics (Schmidt-Hieber 2020),
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232 J. Lederer

respectively. While their results provide important support for sparse deep learn-
ing, they still have major limitations: The first approach is restricted to bounded loss
functions (which excludes the £,-loss, for example), is either restricted to a simple
form of sparsity (which we will call “connection sparsity” later) or suffers from an
exponential dependence on the number of layers (which contradicts the current inter-
est in very deep networks), caters to constraints rather than regularization (which is
the predominant implementation in practice), and is limited to a single output node
and ReLU activation. The second approach is restricted to £-constraints (which are
infeasible in practice), assumes bounded weights, and is also limited to a single out-
put node and ReL.U activation. In short, while some progress in the statistical under-
standing of sparse deep learning has been made already, many aspects have not yet
been considered.

The goal of this paper is to establish a statistical theory that accounts for these
missing aspects. For this, we follow a third, very recent approach introduced in
Taheri et al. (2021). This approach is based on ideas from high-dimensional statis-
tics and empirical-process theory (Lederer 2022). The main feature of their results
is that they apply to £,-loss, regularization instead of constraints, and a variety of
activation functions. But they still miss some aspects, such as the inclusion of more
complex notions of sparsity (we will speak of “node sparsity” later) and the restric-
tion to a single output node. Moreover, their estimator involves an additional, argu-
ably unnatural parameter.

In this paper, we remove these limitations from Taheri et al. (2021). We focus on
regression-type settings with layered, feedforward neural networks. The estimators
under consideration consist of a standard least-squares estimator with regularizers
that induce different types of sparsity—without the need for an additional param-
eter. We then derive prediction and generalization guarantees by using techniques
from high-dimensional statistics (Dalalyan et al. 2017) and empirical-process the-
ory (van de Geer 2000). In the case of sub-Gaussian noise, we find the rates

mip(log[mnp])’

and

n

for the connection-sparse and node-sparse estimators (see the following section for
the notions of sparsity), respectively, where [ is the number of hidden layers, m the
number of output nodes, n the number of samples, p the total number of parameters,
and p the maximal width of the network. The rates suggest that sparsity-inducing
approaches can provide accurate prediction even in very wide (with connection
sparsity) and very deep (with either type of sparsity) networks while, at the same
time, ensuring low network complexities. These findings underpin the current trend
toward sparse but wide and especially deep networks from a statistical perspective.
More generally speaking, our paper complements the existing statistical theories for
sparse deep learning with new results, and it refines the techniques that were intro-
duced in (Taheri et al. 2021).

Outline of the paper Section 2 recapitulates the notions of connection and node
sparsity and introduces the corresponding deep learning framework and estimators.
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Statistical guarantees for sparse deep learning 233

Section 3 confirms the empirically observed accuracies of connection- and node-
sparse estimation in theory. Section 4 discusses connections of our theoretical results
and weight initialization. Section 5 summarizes the key features and limitations of our
work. The Appendix contains all proofs.

2 Connection- and node-sparse deep learning

We consider data (y,x,), ..., (y,,x,) € R™ x R that are related via
yi=g.lx]+u; fori e {1,...,n} (1)

for an unknown data-generating function g, : R?Y - R™ and unknown, ran-
dom noise u,, ...,u, € R™. We allow all aspects, namely y;, g, x;, and u;, to be
unbounded. Our goal is to model the data-generating function with a feedforward
neural network of the form

golx] :=Of (e e fl [0%]] forx € R? Q)

indexed by the parameter space M :={@ = (@/,...,0% : © € R”"*’}. The
functions f : R” — R” are called the activation functions (Lederer 2021),
and p° :=d and p"*' := m are called the input and output dimensions, respectively.
The depth of the network is /, the maximal width is p 1= max;c_ ;1) P, and the
total number of parameters is p := Z;:O pip.

In practice, the total number of parameters often rivals or exceeds the number of
samples: p & nor p > n. We then speak of high dimensionality. A common technique
for avoiding overfitting in high-dimensional settings is regularization that induces addi-
tional structures, such as sparsity. Sparsity has the interesting side-effect of reducing
the networks’ complexities, which can facilitate interpretations and reduce demands
on energy and memory. Three common notions of sparsity are connection sparsity,
which means that there is only a small number of nonzero connections between nodes,
node sparsity, which means that there is only a small number of active nodes (Alvarez
and Salzmann 2016; Changpinyo et al. 2017; Feng and Simon 2017; Kim et al. 2016;
Lee et al. 2008; Liu et al. 2015; Nie et al. 2015; Scardapane et al. 2017; Wen et al.
2016), and layer sparsity, which means that there is only a small number of active lay-
ers (Hebiri and Lederer 2020).

In the following, we focus on connection- and node sparsity. Our first sparse estima-
tor is

@con € arg min@eMl { 2 ”yz _g(')[xi]”; + rcon”l@l”ll} (3)

i=1

for a tuning parameter r,

con € [0, 00), a nonempty set of parameters

Mlc{@e/\/t © max |||®/|||151},
je{0,...d—1}

and the £ |-norm
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234 J. Lederer

p/+l . .
e, ==y, Z (@), forj € {0,....1}, & e R

i=1 k=1

This estimator is an analog of the lasso estimator in linear regression (Tibshirani
1996). It induces sparsity on the level of connections: the larger the tuning param-
eter r,,, the fewer connections among the nodes.

Deep learning with £ -regularization has become common in theory and prac-
tice (Kim et al. 2016; Taheri et al. 2021). Our estimator (3) specifies one way to
formulate this type of regularization. The estimator is indeed a regularized estima-
tor (rather than a constraint estimator), because the complexity is regulated entirely
through the tuning parameter ., in the objective function (rather than through a
tuning parameter in the set over which the objective function is optimized). But £,
-regularization could also be formulated slightly differently. For example, one could
consider the estimators

n l
®con € arg min @M { Z ||y[ _g@[xi]”i + Teon H "I@Il"l } (4)

i=1 =0
or

[

n
@con € argmin@e./\/l{z ||yz _gé)[xi]"; + Tcon Z ”l@IIlIl} . (5)

i=1 =0

The differences among the estimators (3)—(5) are small: for example, our theory can
be adjusted for (4) with almost no changes of the derivations. The differences among
the estimators mainly concern the normalizations of the parameters; we illustrate
this in the following proposition.

Proposition 1 (Scaling of Norms) Assume that the all-zeros parameter

(0,105 -5 0,150) € M is neither a solution of (3) nor of (5), that Teon > 0, and

that the activation functions are nonnegative homogenous: f'lab] = af’[b] for all

je{l,....1},a€[0,00),and b € R”. Then, |||(@Con)0|||1, . |||(@COH)I ", = 1(con-

cerns the inner layers) for all solutions of (3), while "|(® Pl = - = |||(C:) R
con con

(concerns all layers) for at least one solution of (5).

In brief, the goal of our paper is not to promote a new way of implementing spar-
sity in practice but to reproduce practical implementations as accurately as possible
in theory.

Another way to formulate £ -regularization was proposed in Taheri et al. (2021):
they reparametrize the networks through a scale parameter and a constraint version
of M and then to focus the regularization on the scale parameter only. Our above-
stated estimator (3) is more elegant in that it avoids the reparametrization and the
additional parameter.

The factor [|@'||, in the regularization term of (3) measures the complexity of the
network over the set M, and the factor r, regulates the complexity of the resulting
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Statistical guarantees for sparse deep learning 235

estimator. This provides a convenient lever for data-adaptive complexity regulari-
zation through well-established calibration schemes for the tuning parameter, such
as cross-validation. This practical aspect is an advantage of regularized formu-
lations like ours as compared to constraint estimation over sets with a predefined
complexity.

The constraints in the set M, of the estimator (3) can also retain the expres-
siveness of the full parameterization that corresponds to the set M: for example,
assuming again nonnegative-homogeneous activation, one can check that for
every L € M, there is a I' e (@ e M : maXc(o -1 l®l, <1} such that
gr = 8r——cf. (Taheri et al. 2021, Proposition 1). In contrast, existing theories on
neural networks often require the parameter space to be bounded, which limits the
expressiveness of the networks.

Our regularization approach is, therefore, closer to practical setups than con-
straint approaches. The price is that to develop prediction theories, we have to use
different tools than those typically used in theoretical deep learning. For example,
we cannot use established risk bounds such as (Bartlett and Mendelson 2002, Theo-
rem 8) (because Rademacher complexities over classes of unbounded functions are
unbounded) or (Lederer 2020a, Theorem 1) (because our loss function is not Lip-
schitz continuous) or established concentration bounds such as McDiarmid’s ine-
quality in (McDiarmid 1989, Lemma (3.3)) (because that would require a bounded
loss). We instead invoke ideas from high-dimensional statistics, prove Lipschitz
properties for neural networks, and use empirical-process theory, specifically con-
centration inequalities that are based on chaining (see the Appendix).

Our second estimator is

n
@node € arg min M, { Z ||yl _g(-)[xi] ||§ + rnode|"®l|”2,l } (6)
i=1

for a tuning parameter r,

ode € [0, 00), a nonempty set of parameters

CiOEM : o <1},
My c{@eM : _mx IO, <

and the £, /¢ ,-norm

pi+]

P
Nl = D | D 1@y
k=1 i=1

fOI'jE {0,...,[— l}, @1 (= RPHIX’)".

This estimator is an analog of the group-lasso estimator in linear regression (Bakin
1999). Again, to avoid ambiguities in the regularization, our formulation is slightly
different from the standard formulations in the literature, but the fact that group-
lasso regularizers leads to node-sparse networks has been discussed extensively
before (Alvarez and Salzmann 2016; Liu et al. 2015; Scardapane et al. 2017): the

larger the tuning parameter r, 4., the fewer active nodes in the network.
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236 J. Lederer

The above-stated comments about the specific form of the connection-sparse estima-
tor also apply to the node-sparse estimator.

An illustration of connection and node sparsity is given in Fig. 1. Connection-sparse
networks have only a small number of active connections between nodes (left panel
of Fig. 1); node-sparse networks have inactive nodes, that is, completely unconnected
nodes (right panel of Fig. 1). The two notions of sparsity are connected: for example,
connection sparsity can render entire nodes inactive “by accident” (see the layer that
follows the input layer in the left panel of the figure). In general, node sparsity is the
weaker assumption, because it allows for highly connected nodes; this observation is
reflected in the theoretical guarantees in the following section.

The optimal network architecture for given data (such as the optimal width) is hardly
known beforehand in a data analysis. A main feature of sparsity-inducing regularization
is, therefore, that it adjusts parts of the network architecture to the data. In other words,
sparsity-inducing regularization is a data-driven approach to adapting the complexity of
the network.

While versions of the estimators (3) and (6) are popular in deep learning, statistical
analyses, especially of node-sparse deep learning, are scarce. Such a statistical analysis
is, therefore, the goal of the following section.

3 Statistical prediction guarantees

We now develop statistical guarantees for the sparse estimators described above. The
guarantees are formulated in terms of the squared average (in-sample) prediction error

err[@] : = % 2 g x:] — golx;] ||§ for @ € M,
i=1

which is a measure for how well the network gg fits the unknown function g, (which
does not need to be a neural network) on the data at hand, and in terms of the predic-
tion risk (or generalization error) for a new sample (y, x) that has the same distribu-
tion as the original data

risk[@] :=E, ,[ly — golx] ||§ for® e M,
which measures how well the network gg can predict a new sample. We first study
the prediction error, because it is agnostic to the distribution of the input data; in the

end, we then translate the bounds for the prediction error into bounds for the gener-
alization error.

Estimator (3) Estimator (6)

input & output y input = output y

Fig. 1 exemplary networks produced by the connection-sparse estimator (3) and the node-sparse estima-
tor (6)

@ Springer



Statistical guarantees for sparse deep learning 237

We first observe that the networks in (2) can be somewhat “linearized:” For
every parameter @ € M, there is a parameter

OeM:={06=0"",..,0% : @ecr”™, max [||0 <1}
JE(0,..1-1)
such that for every x € R¢

golx] = O'gglx]

with galt] := £[® - fI[0 x]] e R” @
This additional notation allows us to disentangle the outermost layer (which is regu-
larized directly) from the other layers (which are regularized indirectly). More gen-
erally speaking, the additional notation makes a connection to linear regression,
where the above holds trivially with gglx] = x.

We also define

i, ={0=® ,...8):0 R,  max [0, <1}
’ j€l0,....-1) :
accordingly.

In high-dimensional linear regression, the quantity central to prediction guar-
antees is the effective noise (Lederer and Vogt 2020). The effective noise is in our
notation (with / = 0 and m = 1 to describe linear regression) 2|| Z?:I ux;|| . The
above linearization allows us to generalize the effective noise to our general deep
learning framework:

re i= 2 sup 111 Y @l e
YeM, i=1
] ®)
Froge 1=2Vm sup |11 Y @5l ) Moo,
Ye,, =l

. mxp'
where [|A|l .—max(i’j) el ....myx{1,....p") |A;| for A € R™7. The effec-

tive noises, as we will see below, are the optimal tuning parameters in our theories;
at the same time, the effective noises depend on the noise random varia-
bles u,,...,u,, which are unknown in practice. Accordingly, we call the quanti-
tiesr; andr; . the oracle tuning parameters.

We take a moment to compare the effective noises in (8) to Rademacher com-
plexities (Koltchinskii 2001; Koltchinskii and Panchenko 2002). Rademacher
complexities are the basis of a line of other statistical theories for deep learn-
ing (Bartlett and Mendelson 2002; Golowich et al. 2018; Lederer 2020a;
Neyshabur et al. 2015). In our framework, the Rademacher complexities in the
case m = 1 are (Lederer 2020a, Definition 1)
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238 J. Lederer

Ee o xph... [sup Zk,g@[x ‘]

GM] i=1

and E su kgelx;] ]
c Xk [96/\/11)2] ; 80 )

for i.i.d. Rademacher random variables &, ..., k,. The effective noises might look
like (rescaled) empirical versions of these quantities at first sight, but this is not the
case. Two immediate differences are that (8) apply to general m and circumvent the
outermost layers of the networks. But more importantly, Rademacher complexities
involve external i.i.d. Rademacher random variables that are not connected with
the statistical model at hand, while the effective noises involve the noise variables,
which are completely specified by the model and, therefore, can have any distribu-
tion (see our sub-Gaussian example further below). Hence, there are no general
techniques to relate Rademacher complexities and effective noises.

Not only are the two concepts distinct, but also they are used in very different
ways. For example, existing theories use Rademacher complexities to measure
the size of the function class at hand, while we use effective noises to measure
the maximal impact of the stochastic noise on the estimators. (Our proofs also
require a measure of the size of the function class, but this measure is entropy—
cf. Lemma 1.) In general, our proof techniques are very different from those in
the context of Rademacher complexities.

We can now state a general prediction guarantee.

Theorem 1 (General Prediction Guarantees) If r.,, > >, it holds that

con —
P < i Tcon 1 }
err[@,,] < @g}\f/tl{err[@] +—lel,

Similarly, if r, , it holds that

ode =

~ . d
err[ @] < inf {err[®]+ noe|II®'III21}

2,1

Each bound contains an approximation error err[®] that captures how well the
class of networks can approximate the true data-generating function g, and a sta-
tistical error proportional to r,,,/n and r,.../n, respectively, that captures how
well the estimator can select within the class of networks at hand. In other words,
Theorem 1 ensures that the estimators (3) and (6) predict—up to the statistical
error described by r,,,/n and r, .. /n, respectively—as well as the best connec-
tion- and node-sparse network. This observation can be illustrated further:

Corollary 1 (Parametric Setting) If additionally g, = gg for a @ € M, it holds
that
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Statistical guarantees for sparse deep learning 239

2o .
err[O,,] < :l" O, .

Ifinstead g, = gg for a ®" € M, ,, it holds that
A 2rn0de PN
err[Opoqe] < — = MO )l -

Hence, if the underlying data-generating function is a sparse network itself, the

prediction errors of the estimators are essentially bounded by the statistical errors
Feon/n and r, 4. /1. In high-dimensional statistics, bounds similar to those in Theo-

rem 1 and Corollary 1 are called oracle inequalities (Lederer et al. 2019; Lederer
2022).

The above-stated results also identify the oracle tuning parameters r7  and r;
as optimal tuning parameters: they give the best prediction guarantees in Theorem 1.
But since the oracle tuning parameters are unknown in practice, the guarantees
implicitly presume a calibration scheme that satisfies ., & r> in practice. A natu-
ral candidate is cross-validation, but there are no guarantees that cross-validation
provides such tuning parameters. This is a limitation that our theories share with all
other theories in the field.

Rather than dealing with the practical calibration of the tuning parameters, we
exemplify the oracle tuning parameters in a specific setting. This analysis will illus-
trate the rates of convergences that we can expect from Theorem 1, and it will allow
us to compare our theories with other theories in the literature. Assume that the acti-
vation functions satisfy f [0,]1 =0, and are 1-Lipschitz continuous with respect to
the Euclidean norms on the functlons input and output spaces R”. A popular exam-
ple is ReLLU activation, but the conditions are met by many other functions as well.
Also, assume that the noise vectors u,...,u, are independent and centered and
have uniformly sub-Gaussian entries (van de Geer 2000, Display (8.2) on Page 126).
Keep the input vectors fixed and capture their normalizations by

n

WA

- X5 -

WA
i=1

Then, we obtain the following bounds for the effective noises.

Proposition 2 (Sub-Gaussian Noise) There is a constant ¢ € (0, c0) that depends
only on the sub-Gaussian parameters of the noise such that

P{r;"on <covg, nl(log[Zmnﬁ])3} >1- %

and

P{r:(’de < CVZ\/mnlg(log[zmnﬁ])3} S1- %
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240 J. Lederer

Broadly speaking, this result combined with Theorem 1 illustrates that accurate
prediction with connection- and node-sparse estimators is possible even when using
very wide and deep networks. Let us analyze the factors one by one and compare
them to the factors in the bounds of Taheri et al. (2021) and Neyshabur et al. (2015),
which are the two most related papers. The connection-sparse case compares to
the results in Taheri et al. (2021), and it compares to the results in Neyshabur et al.
(2015) when setting the parameters in that paper to p = g = 1 (which gives a set-
ting that is slightly more restrictive than ours) or p = 1;g = oo (which gives a set-
ting that is slightly less restrictive than ours), and it compares to (Golowich et al.
2018, Theorem 2). The node-sparse case compares to Neyshabur et al. (2015) with
p = 2;q = oo (which gives a setting that is more restrictive than ours, though). Our
setup is also more general than the one in Neyshabur et al. (2015) in the sense that it
allows for activation other than ReL.U.

The dependence on n is, as usual, 1/ \/ﬁ up to logarithmic factors.

In the connection-sparse case, our bounds involve v = 4/ z:':l llx;112, /n rather
,,,,, ay 1%l of Golowich et al. (2018) and Neyshabur

et al. (2015) or the factor v, = \/Z?:l [lx; ||§/n of Taheri et al. (2021). In principle,

the improvements of v, over v, and v, can be up to a factor \/Z and up to a fac-
tor \/;ZI? respectively; in practice, the improvements depend on the specifics on the
data. For example, on the training data of MNIST (LeCun et al. 1998) and Fash-
1on-MNIST (Xiao et al. 2017) (\/_ ~ 250;\/(_1 = 28 in both data sets), it holds that
Vo RV ®V,/9 and v, = v = V,/12, respectively. In the node-sparse case, our
bounds involve Vv, which is again somewhat smaller than the fac-
tor v, 1= max,(; ., [Ix;]l, in Neyshabur et al. (2015).

The main difference between the bounds for the connection-sparse and node-
sparse estimators is their dependencies on the networks’ maximal width p. The
bound for the connection-sparse estimator (3) depends on the width p only logarith-
mically (through p), while the bound for the node-sparse estimator (6) depends on p
sublinearly. The dependence in the connection-sparse case is the same as in Taheri
et al. (2021), while Neyshabur et al. (2015) can avoid even that logarithmic depend-
ence (and, therefore, allow for networks with infinite widths). The node-sparse case
in Neyshabur et al. (2015) does not involve our linear dependence on the width, but
this difference stems from the fact that they use a more restrictive version of the
grouping—we take the maximum over each layer, while they take the maximum
over each node— and our results can be readily adjusted to their notion of group
sparsity. These observations indicate that node sparsity as formulated above is suit-
able for slim networks (p < n) but should be strengthened or complemented with
other notions of sparsity otherwise. To give a numeric example, the training data
in MNIST (LeCun et al. 1998) and Fashion-MNIST (Xiao et al. 2017) comprise
n = 60000 samples, which means that the width should be considerably smaller
than 60 000 when using node sparsity alone. (Note that the input layer does not take
part in p, which means that d could be larger.)

For unconstraint estimation, one can expect a linear dependence of the error on
the total number of parameters (Anthony and Bartlett 1999). Our bounds for the

than the factor v, := max;c(,
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Statistical guarantees for sparse deep learning 241

sparse estimators, in contrast, only have a log[p] dependence on the total number
of parameters. This difference illustrates the virtue of regularization in general,
and the virtue of sparsity in particular.

Both of our bounds have a mild \/2 dependence on the depth. These dependen-
cies align with the results in (Golowich et al. 2018, Theorem 2) but considerably
improve on the exponentially increasing dependencies on the depth in Neyshabur
et al. (2015) and, therefore, are particularly suited to describe deep network archi-
tectures. Replacing the conditions max; Il®]l, <1 and max; |||G)f|||2,1 <1 in the
definitions of the connection-sparse and node-sparse estimators by the stricter
conditions Zj &I, < 1and Zj |||G')f|||2,1 < 1, respectively (cf. Taheri et al. (2021)
and our discussion in Section 2), the dependence on the depth can be improved
further from v/ to (2/1)1\/2 (this only requires a simple adjustment of the last
display in the proof of Proposition 4), which is exponentially decreasing in the
depth.

Our connection-sparse bounds have a mild log[m] dependence on the number of
output nodes; the node-sparse bound involve an additional factor \/171 The case of
multiple outputs has not been considered in statistical prediction bounds before.

Proposition 2 also highlights another advantage of our regularization approach
over theories such as Golowich et al. (2018) and Neyshabur et al. (2015) that
apply to constraint estimators. The theories for constraint estimators require
bounding the sparsity levels directly, but in practice, suitable values for these
bounds are rarely known. In our framework, in contrast, the sparsity is controlled
via tuning parameters indirectly, and Proposition 2—although not providing a
complete practical calibration scheme—gives insights into how these tuning
parameters should scale with n, d, [, and so forth.

We also note that the bounds in Theorem 1 can be generalized readily to every
estimator of the form

n
egen € arg min OEM,, { 2 "y[ - g@)[xz]ui + rgenm@l”l } ’

i=1

where 7, € [0, 00) is a tuning parameter, M,., any nonempty subset of M, and
I - Il any norm. The bound for such an estimator is then

Bpl < inf {eri®]+ oy}
err{ @y, ] < inf qerr "

gen

for rye, > Foen® where Foen 15 38 Tooy but based on the dual norm of ||| - ||| instead of the
dual norm of ||| - |||;. For example, one could impose connection sparsity on some

layers and node sparsity on others, or one could impose different regularizations
altogether. We omit the details to avoid digression.

The above oracle inequalities bound the prediction error, a standard measure of
accuracy in statistics. Broadly speaking, this measure captures “how well the esti-
mator describes the data-generating process.” So our comparison with Neyshabur
et al. (2015) and Golowich et al. (2018) might seem questionable, because
they instead bound the generalization error, a measure that is more common in
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machine learning and captures “how well the estimator describes new samples.”
But we can derive such bounds as well. For simplicity, we consider a parametric
setting and sub-Gaussian noise again. We then find the following bounds:

Proposition 3 (Generalization Guarantees) Assume that the inputs x,x, ... ,Xx, are
i.i.d. random vectors, that the noise vectors u,, ... ,u, are independent and centered
and have uniformly sub-Gaussian entries, and that re,, =715 Thoge = Tnoge = 0
as n — oo. Consider an arbitrary positive constant b € (0, 0). If g, = g¢g for a
O* € M,, it holds with probability at least 1 — 1 /n that

I(log[2mnp])’

risk[@,,,] < (1 + b)risk[®*] + ¢V, MCRYE

COI‘I]
for a constant ¢ € (0, 00) that depends only on b and the sub-Gaussian parameters
of the noise. Similarly, if g, = g for a ®* € M, |, it holds with probability at least
1 — 1/n that

\/mlg(log[Zmnﬁ])S
n

risk[®,,,] < (1 + b)risk[®*] + ¢V, CRY

con
for a constant ¢ € (0, 00) that depends only on b and the sub-Gaussian parameters
of the noise.

Hence, the generalization errors are bounded by the same terms as the prediction
errors.

4 Outlook: Initialization

Our theoretical results also suggest further research on a practical problem in deep
learning: weight initialization (Glorot and Bengio 2010; He et al. 2015; Mishkin and
Matas 2015). To highlight the connection between our work and weight initializa-
tion, we consider once more our guarantees’ dependence on the depth /. Proposi-
tion 3, for example, comprises a sublinear dependence through the factor \ﬁ and a
logarithmic dependence through the total number of parameters p inside the loga-
rithm—we have discussed these dependencies in detail. But there is another poten-
tial source of dependence on /: the factor [[|(@*)'|||,. Naively thinking, one could sus-
pect that this factor scales exponentially in /: the argument would be that the weight
matrices of each of the / — 1 inner layers needs to be rescaled to fit into M or M, |,
which means that the weight matrix of the outer layer needs to be rescaled by a
product of these [ — 1 factors.

The argument is intuitive, but it is wrong: the problem with it is that the opti-
mal weight matrices (®*)' change with the depth of the network, while the
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data-generating process remains unaffected by what function we use to approximate
it. In other words, we cannot expect a simple relationship between (@*)! and (@*)"!,
but we can expect the overall “scales” of the corresponding networks to be similar,
that is, [|(@)|ll, ~ [[(®*)!|||,. Hence, we can assume that the factor [|(®*)"]|, in
our bounds to be approximately independent of /.

One can also argue that the recent results on approximation properties of sparse
neural networks, such as Beknazaryan (2021); Schmidt-Hieber (2020), suggest that
sparse networks with parameters in M, or M, and fixed [|(@)|l; or [[(®*)|l,,
norms, respectively, can indeed approximate large classes of functions.

In any case, we can draw two conclusions: First, our bounds indeed depend on
the network depth as advertised. Second, our results hint at the fact that initializa-
tion schemes should take network depths into account, and it might be favorable to
use sparse initialization schemes rather than distributing weights “uniformly” across
the entire network. More generally, we conclude that the connection between sparse
networks and weight initializations might be an interesting topic for further research.

5 Discussion

We have developed guarantees for sparse deep learning both in terms of the pre-
diction error (Theorems 1 and Corollary 1 together with Proposition 2), a standard
measure of accuracy in statistics, and in terms of the generalization error (Proposi-
tion 3), a standard measure of accuracy in machine learning. These results extend
and complement existing guarantees in the literature—see Table 1 below.

Even though many deep learning applications fall into the framework of classifi-
cation, we have focussed on regression with least-squares loss. The reason is that the
regression setting is much more challenging: since the loss is unbounded, many of
the techniques regularly used in classification (like McDiarmid’s inequality (McDi-
armid 1989, Lemma (3.3))) are not applicable. In this sense, our derivations are
more general, and we expect that our approach will provide very similar classifi-
cations bounds in the future as well (see Appendix 1 for possible extensions more
generally).

Evidence for the benefits of deep networks has been established in prac-
tice (LeCun et al. 2015; Schmidhuber 2015), approximation theory (Liang and
Srikant 2016; Telgarsky 2016; Yarotsky 2017), and statistics (Taheri et al. 2021;
Kohler et al. 2019). Since our guarantees scale at most sublinearly in the number of
layers (or even improve with increasing depth—see our comment on Page 5), our
paper complements these lines of research and shows that sparsity-inducing regu-
larization is an effective approach to coping with the complexity of deep and very
deep networks.

While previous theories mostly considered connection sparsity (small number of
active connections between nodes), we also include node sparsity (small number of
active nodes). Moreover, as discussed on Page 5, Theorem 1 can be readily extended
to any norm-based regularization. Hence, it is straightforward to adjust our results to
granularities between connection and node sparsity—cf. Mao et al. (2017). On the
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other hand, our techniques do not seem appropriate for “hard-coded” types of spar-
sity, such as 2:4 (“two-to-four”) sparsity (Mishra et al. 2021).

Connection sparsity limits the number of nonzero entries in each parameter matrix,
while node sparsity only limits the total number of nonzero rows. Hence, the number of
columns in a parameter matrix, that is, the width of the preceding layer, is regularized
only in the case of connection sparsity. Our theoretical results reflect this insight in that
the bounds for the connection- and node-sparse estimators depend on the networks’
width logarithmically and sublinearly, respectively. Practically speaking, our results
indicate that connection sparsity is suitable to handle wide networks, but node sparsity
is suitable for wide networks only when complemented by connection sparsity or other
strategies.

The mild logarithmic dependence of our connection-sparse bounds on the number
of output nodes illustrates that networks with many outputs can be learned in practice.
Our prediction theory is the first one to consider multiple output nodes; a classification
theory with a logarithmic dependence on the output nodes has been established very
recently in Ledent et al. (2019).

The mathematical underpinnings of our theory are very different from those of most
other papers in theoretical deep learning. The proof of the main theorem shares simi-
larities with proofs in high-dimensional statistics, such as the concept of the effective
noise (Lederer 2022). The treatments of the relevant empirical-processes use metric
entropy, chaining, and Lipschitz properties of neural networks. These concepts and
tools are not standard in deep learning and, therefore, might be of more general interest
(see again Appendix 1 for further ideas).

Our theory has three limitations: First, the bounds apply only to global optima of the
optimization landscapes rather than local optima or other points in which certain algo-
rithms might be trapped. However, there is evidence that global optimization can be
feasible at least in wide and deep networks (Lederer 2020b). Second, the theory does
not entail a practical scheme for the calibration of the tuning parameters. However, the
inclusion of regularization (rather than constraints) is already a step forward, because it
reveals how the tuning parameters should scale with the problem dimensions (see our
Proposition 2). Third, the network architecture is limited to fully connected feedforward
layers, which excludes some aspects of modern pipelines (such as convolutions, drop-
out, and so forth). In any case, all three limitations are open problems in the literature;
in particular, the mentioned limitations are shared by most theories on the topic.

We can summarize what this paper contributes—and what it does not—as follows:
From a practical perspective, it is well established that sparsity can benefit deep learn-
ing, and there are several methods to generate sparsity in practice. Thus, this paper does
not provide new practical insights or methods. Instead, our paper (i) backs up these
practical observations with statistical theories that are more general and closer to prac-
tice than previous theories, and it (ii) establishes refined concepts and techniques for
the statistical analysis of deep learning more generally.

@ Springer



246 J. Lederer

Appendix
The Appendix consists of two auxiliary results and the proofs of Theorem 1 and
Propositions 1 and 2. Our approach combines techniques from high-dimensional sta-

tistics and empirical-process theory that are very different from the techniques used
in most other approaches in the literature.

A Lipschitz property

In this section, we prove a Lipschitz property that we use in the proof of
Proposition 2.

Proposition 4 (Lipschitz Property) In the framework of Sections 2 and 3, it holds for
all ®,T € M, that

|251x1 - Z5lx]] . < Vil 1® - Tl
and for all 6, Te szl that
1851 — Z2lx1], < VIIxl, 10 - Tl

The Frobenius norm is defined as

-1 . -1 pitt pi X
— i i -
Ol == A| D MO M := ([ DD D 1®)y 2 for® € My, = M; UM,,.
j=0 j=0 i=1 k=1

Proposition 4 generalizes (Taheri et al. 2021, Proposition 2) to vector-valued net-
work outputs and to node sparsity, and it replaces their ||x||, with the smaller ||x| ., in
the connection-sparse case.

Proof of Proposition 4 This proof generalizes and sharpens the proof of Taheri
et al. (2021), and it simplifies some arguments of that proof. We define the “inner
subnetworks” of a network gg with ® € M, , as the vector-valued functions

S8 @ RY > RV
_ —0
x — Sigplx] :=0 x
and
Sgs 1 RY » R

x > Sglx] 1= @ F[- f'[® x]
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for j € {1,...,1—1}. Similarly, we define the “outer subnetworks” of gg as the
real-valued functions

Sg5 : R - R
_ —1
z - Sgplzl := f|©

! ...ff[z]]
for je {1,...,[—1}and
S5 © R” > R”
z — S'gglzl := flzl.

The initial network can be split into an inner and an outer network along every
layer j € {1,...,l}:

Zolx] = Y855, 1851x]] forx € RY.

We call this our splitting argument.

To exploit the splitting argument, we derive a contraction result for the inner sub-
networks and a Lipschitz result for the outer subnetworks. We denote the £,-operator
norm of a matrix A, that is, the largest singular value of A, by [|A[|,,. Using then the
assumptions —t]il—alt the @Bivatiﬂ functions are 1-Lipschitz and f[0,] = 0,,, we get for
every ®=(© ,...,0)€ M, and x € R that

— —j=2 j— -
IS—28alxlll, = 18 /7 [sZslx1]]
<10 Mo |25 s251x1] [,
—j-2 —
O llopIS;-5851x1[)»

IA

IA

IA

j-2
—k —0
(H e |||op> 10 xl,
k=

1

Jj2
—k
< (H e |||op>||x||z
=

0

—k —k —k - —
forall j € {2,...,1}. Now, since[|© [l,, < [I1© Iz < [I© [l,;and ® € M, ;, we can
deduce from the display that

j-2
— —k
IS, &gl < <| & |||2,1) lxll, .
k=0

This inequality is our contraction property. _
By similar arguments, we get for every z,,z, € R” that
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9851211 - Tgglz21],

= |F[® - Frz] - f[0 - Flz],
<@ [f e fied -@ [ Fil]],
<18 Mo £ [+ Fli]] = £ [ PRl

< e

-1
—k
< <| I [[S) |||0p>||11 — 20l
k=i

for j € {1,...,1}, where H,Z;]l

-1

—k
1® ., := 1. Hence, similarly as above,
op y

-1
. . —k
|S85lz11 - SEglza1], < <H e |||2,1> Iz =2l -

k=j

This inequality is our Lipschitz property.

We now use the contraction and Lipschitz properties of the subnetworks to derive
a Lipschitz result for the entire network. We _consi_c’gllr two g%twork_s &g and gy with
parameters @ = (@ ,...,0 )e My;andI'=(T ,....I') € ./\/l2’1, respectively.
Our above-derived splitting argument applied with j =1 and j = [, respectively,
yields

lgalx] - grlxl|, = |S'&g[Soalx]] — SEx[Si&plx1], -

. =1
Elementary algebra and the fact that S"lga[S]»_ng[x]] = S’Eg[@l f_l[Sj_zgf[x]]
for j € {2,...,1} then allow us to derive
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lgalx1 - &5lx1],
l . .
= |s'2s[sizsl>1] - Y, <S’é—’5 [S-185lx1] - Sg5[S;-1&rlx]] ) — S'ga[S,&lx] |
j=1

= |s'25[siatx1] - s'galSoErlx]
!
- <S’§6 [S;-18rlx]] — 9 'gg[S;--8rlx]] )
j=

+ 885 [Si18rlx]] - S'gp[Si-1&rlx]] "2

= |s'25[siatx1] - s'galSoErlx1]
! o
= X (oS- Erixl] - 525(8 7 [51arlx1]
=2

+ 885 (Si18rlx]] — S'gp[Si-1&rlx]] "2

< ||S'g5[Sokalx1] — S'gg[Sogrlx1] |,
1

L _ P _
+ 3 1985 ]S Erlx]] - 5850 £ [S,zlx]] |,
Jj=2

+ |55 [Sii&rlx]] — SEr[Siigrlx]] |, -

We bound this further by using the above-derived Lipschitz property of the outer
networks and the observation that S'gg[S,_,grlx1] = S'grlS,_ 1 g5lx]]:

B B SR ) B
lgglx] —gglxl]|, < <H e |||2,1> [So&85lx] — Sogwlx1|,
k=1

l -1

—k _ —j-1 . _
+ (H e |||2,1> IS-iZelx1 =@ f [S,aelx]]
J=2 N k=)

which is by the definition of the inner networks equivalent to

-1

— — —k —0
lgglx] - gglxl|l, < (H [N ) 18 x — T xll,

k=1

1 -1 o i1
+) (1‘[ I8, ) [P [5grtxl] -8 £ [S)aelxl] |, -

J=2 N k=i

Using the properties of the operator norm, we can deduce from this inequality that
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-1

_ _ —k —0 —0
|&5tx1 - Zelxl], < (]‘[ Ie |||2,1)|||® —T Ml lixlly
k=1

l -

1 A o .
" 2; <H |||6"|||2,1> (A M g O [

k=j

Invoking the mentioned conditions on theactivation functions and the contraction
property for the inner subnetworks then yields

lgatx] — &glx1,

—k —k
<
< <ve{5‘??¥§_l} [T max{W® mou il |||2,1}>
ke{o,...,[—1}

k#v
= _
(2 IT —© |||op> Il
j=0

< Vi, ]1® - Tl

The proof for the connection-sparse case is almost the same. The main difference
is that one needs to use the || - || - and || - || ,-norms (rather than the | - ||,- and
Il - llop-norms) and the inequality [|Ab||,, < [|A[l;l|6]l,, (rather than the inequality
4B, < llAlllopllBll,) to establish suitable contraction and Lipschitz properties. O

B Entropy bound

In this section, we establish bounds for the entropies of ﬂ] and ﬂz,r The distance
between two networks gg and gy is defined as distlgg, 851

= \/ Z?:l lgglx;] — gglx1I2,/n. Given this distance function and a radius
t € (0, 00), the metric entropy of a nonempty set A c {© = ® ,...8): 0 erx)
is denoted by H{[z, A]. We then get the following entropy bounds.

Lemma 1 (Entropy Bounds) In the framework of Sections 2 and 3, it holds for a
constant cy € (0, 00) and every t € (0, o) that

v (voo)zl ﬁtz
H[t, M ] < CH[ % —| log[(‘_}w)n +2]

and

—_ (;oo)zll_? 131‘2
H[t,Mz’l] < CH[ tz ] 10g|:(voo)21 + 2] .

@ Springer



Statistical guarantees for sparse deep learning 251

Proof of Lemma 1 The first bound can be derived by combining established deter-
ministic and randomization arguments (Carl 1985);(Lederer 2010, Proof of Theo-
rem 1.1);(Taheri et al. 2021, Proposition 3).

For the second bound, observe that

pf+1 pitl

I J
el = D 1@l < Vit D Al X 1@)l> = VoIl = Bl
k=1 i=1

i=1 k=1

for all j € {0,...,/—1} and ® € R”"*” We used in turn 1. the definition of the
I - ll;-norm on Page 2, 2. the linearity and interchangeability of finite sums and the
inequality [la|, < \/l—)||a||2 for all a € R?, 3. the definition of the || - [ll,,;-norm on
Page ??, and 4. the definition of the width p on Page 2. Hence, M, C \/1_7./\/[1. A
bound for the entropies of HZJ can, therefore, be derived from the first bound by
replacing the radii ¢ on the right-hand side by ¢/ \/ﬁ

C Proof of Theorem 1

In this section, we state a proof for Theorem 1. The proof is inspired by deriva-
tions in high-dimensional statistics—see, for example, (Zhuang and Lederer 2018;
Lederer 2022) and references therein.

Proof of Theorem 1 The main idea of the proof is to contrast the estimators’ objective
functions evaluated at their minima with the estimators’ objective functions at other
points. Our first step is to derive what we call a basic inequality. By the definition of
the estimator in (6), it holds for every @ € M, | that

n

3 i — golxills + Faoaell®lloy < D i = golilll3 + Faoae 1€l -

i=1 i=1
where we use the shorthand ® := @, ,.. We then invoke the model in (1) to rewrite
this inequality as

n

2 el +u; = golxil 3+ raoael®lo <
i=1

i=1

2
g*[xi] tu; _g®[xi] "2 * Tnode |||®l|"2,1 .

Expanding the squared terms and rearranging the inequality then yields
i le.lx] - gglx |5 < Z le.lx] - golx1|>
i=1 i=1
+2 i(g@[x,-])Tu,- -2 Z (80lx:1) "t + Faoae 1O ll21 = 7aoae 18l -
i=1 i=1
This is our basic inequality.
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In the remainder of the proof, we need to bound the first two terms in the last line
of the basic inequality. We call these terms the empirical-process terms. Using the
reformulation of the networks in (7), we can write the empirical-process term of a
general parameter I' € M, | according to

2 Z(gr[xi])T“i =2) (Mgelx) u,
i=1 i=1

withT € Mz,r Using the 1. the properties of transpositions, 2. the definition of the
trace function, 3. the cyclic property of the trace function, and 4. the linearity of the
trace function yields further

2 (griv]) 'u, =2 Y (g5lx,1) ) x,
i=1 i=1
= Zitrace[ (gglx1) (l"l)T ]
i=1
=2 i trace [u (gglx1) (F’)T]
i=1

= 2trace[<z ui(§f[xi])T> (FI)T] .

i=1

Now, 1. denoting the column-vector that corresponds to the kth column of a matrix A
by A.., 2. using Holder’s inequality, 3. using Holder’s inequality again, and 4. again
Holder’s inequality and our definitions of the elementwise £ -and ¢-norms, we find

n P n
2 Y (grlx]) w; =2 <<Z ui(gf[x,-])T> ,<rl>.k>
i=1 k=1 i=1 ok
P
<2y
k=1 =
<2kefrl1ax H(Zu gr[x] )

T

n

’(2 ”i(gf[xi])T> ” 1Tl

i=1

(F)kuz

__[xi])

!
N
(o)

which implies in view of the definition of the effective noise in (8)
n
2 ) (grl]) " < g I, -

This inequality is our bound on the empirical-process terms.
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We can combine the bound on the empirical-process term and the basic inequal-
ity to find

D lg.lx] - gglx i[>
=1

< Z lg.lx] - golxi1]3

Al 1 ; Al
+ 70Oy + 7 g MO + Fraoae O M2t = Tooae 1Ol -

. . 3k
Using then the assumption ry,q. > 17\

yields
Z ”g*[xi] —g@[xi]”; < Z ”g*[xi] —ge[xi]ui + Zrnode”l@Z"lZ,] .
i=1 i=1

Multiplying both sides by 1/n and taking the infimum over ® € M, on the right-
hand side then gives

1 - R 2 . l . _ 2 2rnode !
; ; "g*[xt] _g@[xi]"2 < @GHEM { n ; "g*[xl] g@[xi]||2 + n "I@ "|2,l } .

Invoking the definition of the prediction error on Page 3 gives the desired result.
The proof for the connection-sparse estimator is virtually the same. O

D Proof of Proposition 1
In this section, we give a short proof of Proposition 1.

Proof of Proposition 1 Verify the fact that if the all-zeros parameter is neither a solu-
tion of (3) nor of (5), all solutions @Con and @Con of (3) and (5), respectively, satisfy
(@Con)’ Ocon) # 0,1y for all j € {0, ..., 1}.

It then follows from the assumed nonnegatlve homogeneity, r.,, >0, and the
definition of the estimator in (3) that |||(®Con)0|||1, . |||(®Con)l I, = 1 for all solu-
tions @Con

Given a solution @Con of (5), define a := |||(®C0n)°||| JA+ 1)+ + |||((:)mn)’|||1/(l +1)
a = 1@, /U + 1)+ - + IO ),/ + 1) and verify the fact that ' € M with

_a(@wn)°/|||(®wn)°|||1,r1 = a®,,)' /1Ol ... has the same value in the objective

functlon as @Con. |

E Proof of Proposition 2

In this section, we establish a proof of Proposition 2. The key tools are the Lipschitz
property of Proposition 4 and the entropy bounds of Lemma 1.
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Proof of Proposition 2 The main idea is to rewrite the event under consideration in a
form that is amenable to known tail bounds for suprema of empirical-processes with
sub-Gaussian random variables.

The connection-sparse bound follows from

. _ _\3
P{rzon > CVy nl(log[Zmnp]) }

=P{2 sup mz""@?["f]f”‘ >V, nz(log[zmnﬁ]f}
e w©

wem, Il i=

< mp' max P{2 sup (2 ui(§q[x,~])T> > v/ nl(log[Zmnﬁ]f}
jell,....m} WeM, ! \i=1 Jk
ke{l,..,p'}
<mpt - ——
mnp
< l’
n

where we use in turn 1. the definition of 77 in (8), 2. the union bound, 3. (van de
Geer 2000, Corollary 8.3) and our Proposition 4 and Lemma 1, and 4. the inequal-
ity p! <p= Zj:o pP*1p/ and consolidating the factors. The key concept underlying
(van de Geer 2000, Corollary 8.3 on Page 128) is chaining (van der Vaart and Well-
ner 1996, Page 90).

The same considerations also apply to the node-sparse case, but we get an addi-
tional factor \/E from the definition of the effective noise in (8) and a factor \/17
from the entropy bound in Lemma 1. The differences between the bounds for the
connection- and node-sparse cases in terms of v, vs. v, stem from the different Lip-
schitz constants in Proposition 4. O

F Proof of Proposition 3

Proof of Proposition 3 The proof is based on standard empirical-process theory,
including contraction and symmetrization arguments.
Using basic algebra and measure theory, one can easily show that

~

risk[@,,,] < (1 + b)risk[©®*] + ¢,err[O,,]

con

L3 (Mt

i=1

- g5 %] - Elg.[x]

~ g 1xI5)

+c,
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for a constant ¢, € (0, o0) that depends only on b. The first term in this bound is the
minimal risk as stated in the proposition, and the second term can be bounded by
Corollary 1 and Proposition 2. Hence, it remains to bound the third term.

In view of the law of large numbers, it is reasonable to hope for the third term to
be small. But to make this precise, we have to keep in mind that the estimator itself
depends on the input vectors. We, therefore, need to prepare the third term for the
application of a uniform version of the law of large numbers. Using standard con-
traction arguments—see (Boucheron et al. 2013, Chapter 11.3), for example—and
Holder’s inequality, we can bound the third term by bounding
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which removes the dependence on the estimator @wn up to the leading fac-
tor. To see that we can also neglect that factor, verify (see Proposition 2 and the
proof of Theorem 1) that [|(®.,,)'lIl; < 2[I(®*)!||, with high probability as long as

ri > cvy, y/nl(log[2mnp])® with ¢ large enough. Consequently, we just need to con-
sider the quantity
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in the following.

The last step is to bring this term in a form that is amenable to our earlier
proofs. Using standard symmetrization arguments—see (van der Vaart and Wellner
1996, Chapter 2.3), for example)—we can bound this quantity by bounding
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where ki, ..., k, are i.i.d. Rademacher random variables. But even though k,, ... , k,

are i.i.d. Rademacher random variables, we do not resort to Rademacher complexi-
ties; instead, we use that Rademacher random variables are sub-Gaussian, so that we
can then proceed similarly as in the proof of Proposition 2.

The node-sparse case can be treated along the same lines. O

G Extensions

Our proof approach disentangles the specifics of the objective function (proof of
Theorem 1), of the network structure (proof of Proposition 4), and of the stochastic
terms (proofs of Lemma 1 and Proposition 2). This feature allows one to generalize
and extend the results of this paper in straightforward ways. For example, extensions
to different noise distributions only need a corresponding version of Proposition 2—
with everything else unchanged. One could envision, for example, using concentra-
tion inequalities for heavy-tailed distributions such as in Lederer and van de Geer
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(2014). Extensions to different loss functions, to give another example, can be estab-
lished by adjusting Theorem 1 accordingly. This can be done, for example, by invok-
ing ideas from specialized literature on high-dimensional logistic regression such
as Li and Lederer (2019). We avoid going into further details to avoid digression;
the key message is that the flexibility of the proofs is yet another advantage of our
approach.
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