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Abstract
In modern manufacturing the ability of retracing produced components is crucial for quality management and process opti-
mization. Tracking is essential, especially for analyzing the influence of the production parameters on the final quality of the
castings. In the iron foundry industry, common marking methods, such as a datamatrix code, cannot be used due to harsh
environmental conditions and the rough surface of the cast parts. This work presents a new coding and reading system that
guarantees unique marking in the casting process.The coding is built up over several beveled pins and is read out using an
optical 2D handheld scanner. With a deep convolutional neural network approach of object detection and classification, a
stable image processing algorithm is presented. With a first prototype a reading accuracy of 99.86% for each pin was achieved
with an average scanning time of 0.43 s. The presented code is compatible with existing foundry processes, while the handheld
scanner is intuitive and reliable. This allows immediate benefits for process optimization.

Keywords Cast part tracking · Digitalization · Deep convolutional neural network · Deep learning · Cast iron · Labeling ·
handheld Scanner · Code reading

Introduction

The capability of tracing produced parts is a key aspect in
modern manufacturing. For a reliable quality control and
process optimization, it is necessary to be able to identify
individually labelled components to get information about
their respective production parameters at any time. This task
is accomplished for most industries with standard processes
using data matrix codes, bar codes or other established cod-
ifications (Ustundag & Cevikcan, 2017).

Tracing produced parts in a foundry is a key aspect aswell,
but the implementation is much more demanding. Especially
for iron sand casting the requirements for a traceable coding
unit are very different due to harsh environmental conditions.
High temperatures, the mechanical impact on the compo-
nents when removing the sand, as well as the rough surface
itself lead to a challenging task to label every individual cast
part.
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Typically, the process of removing the sand in a foundry
(e.g. vibrating conveyor belts, rotary drums) destroys the
order in which the parts were produced: all parts from one
production batch get mixed, and the relation to their respec-
tive casting time stamp is lost. Therefore, it is required to
place the label directly during the casting process itself to
ensure correct time stamping. Hence, the geometry of the
label needs to be formed inside the casting sand mold.

Several solutions for individual labeling of cast parts have
been proposed in the literature, but none of them could be
widely applicable to iron sand casting. The reason is that
there is a wide spectrum on demands that such a system has
to fulfill: the sandmould is brittle and the transfer between fil-
igree structures and the metal is limited, mechanical impacts
during sand removal can be significant, the placement has to
be quick due to cycle times, the casting process should not
be modified, safety precautions should not be disproportion-
ally high, and the code should be automatically readable in an
easy and reliableway.Beyond that the costs for the placement
system and the scanner system need to be economically jus-
tifiable. After consulting with an iron foundry company, any
codification and the reading system has to work preferably
with a handheld scanner: the requirement of being able to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-01970-9&domain=pdf
http://orcid.org/0000-0002-7132-0605


2120 Journal of Intelligent Manufacturing (2022) 33:2119–2128

scan components of different sizes and at different locations
can only be accomplished with such a mobile scanner.

We suggest a novel codification and reading method that
satisfies all these requirements. This paper presents a solu-
tion with a directly castable codification based on rotational
pins and a 2D scanner system which reads the code with
the help of deep convolutional neural networks (CNN). The
codification consists of multiple beveled pins with a sloped
plane (Sandt et al., 2020). The placement of the code into the
sand mold can be realized with a stamp unit either inside the
model plate or with an external robot for pressing the stamp
from the outside into the sand mould. For the reading sys-
tem a standard 2D camera including an LED light is used.
For identification of the code number the image processing
algorithm makes use of two different neural networks. The
first network is responsible for detecting all pins inside the
image. The second network is a classifier to identify the angu-
lar position of each pin.

The conceptual and geometric simplicity of the code
allow for simple process integration into existing produc-
tion lines, while the robust reading procedure with handheld
mobile scanners is intuitive and does not require signifi-
cant investments. Once an individual part tracking possibility
is established, quality issues can be directly traced back to
production parameters, allowing for effective and sustained
process optimization in foundries.

Related work

Part-specific traceability is the key for modern quality man-
agement (Kopper & Apelian, 2022) and thus intelligent
manufacturing. There is a vast body of literature on tracing
problems in general; for the special application of tracing
cast parts, a very recent overview by Deng et al. (2021)
compares different marking methods. Their review arti-
cle presents a good overview and discussion of published
marking methods, which they classify into three categories
“simple marking methods”, “innovative marking methods”,
and “advanced marking methods”, according to their com-
plexity of application.

However, for the sake of metal sand mould casting, a clas-
sification with respect to the production step in which the
component is labeled seems useful: the label is placed either
immediately during the casting process, or added afterwards
(“post-casting”).

Post-casting marking techniques like laser marking (Bähr
et al., 2004; Landry et al., 2018), pin punching (Atzli, 2008;
Bähr et al., 2004), scratch marking (Atzli, 2008; Bähr et al.,
2004), or even water jet cutting (Moser, 2012) are prevailing
in aluminum high pressure die casting or permanent mold
casting. In these processes, the controlled part extraction after
the casting ensures a unique relationwith the production time

stamp. However, these methods are not suitable for iron sand
casting, because due to the shake-out process the ordering
of the parts gets destroyed and an unambiguous relation to
production time is not guaranteed (Bähr et al., 2004).

With the traditional cast clock (Bähr et al., 2004; Meißner
& Brahmann, 2009) it is possible to label iron cast parts
during casting. Unfortunately the time resolution is very low,
since the clock has to be modified manually and is used to
statically label all parts of one shift; therefore, the traceability
is only down to one work shift.

For individual marking during the casting process, sev-
eral different techniques can be found in the literature. It is
possible to use pin punching or a laser to write a number into
the sand mold before casting (Knoth, 2009). But because of
time issues (cycle time) and the possibility of damaging the
sandmold this method is not practical. Also, it is a cost inten-
sive investment and high safety precautions are needed when
strong lasers are involved.

The “new cast clock” (Meißner & König, 2011) was
invented for permanent mould casting and imprints a data
matrix code on the surface of the cast part. An adjustable
negative geometry of the code is placed inside the mold
and hence the component is labelled during the casting pro-
cess. The structures of the data matrix code are small (pins
with 1.5mm diameter and height of 1mm, total code size
24mm×24mm). Such small structures would not form on
iron sand casts, because the transfer of features between
sand mould and metal surface is much worse in that case.
Furthermore, the delicate structures would not survive the
mechanical impact during shot blasting.The “newcast clock”
offers a range of unique serial numbers of more than 16 Mil-
lion, which is more than required in the case of iron sand
casting. Here, only a few thousand parts have to be distin-
guished in one batch. Reading the code of the “new cast
clock” requires a special 3D camera.

Freytag et al. (2013) presented a method for high pressure
die casting. A small magnetic plate, that had been treated
by a laser in order to show a spatial magnetic flux distribu-
tion reminiscent of a data matrix code, was positioned right
below the surface of the component during casting. The code
could be read afterwards with a magnetic field sensor. A sim-
ilar approach is the insertion of an RFID chip inside a metal
part (Battini et al., 2009; Ranasinghe et al., 2004). A proof
of concept was reported for aluminum high pressure casting
by Fraunhofer IFAM (Institute for manufacturing technol-
ogy and advanced materials) (Pille & Rahn, 2017), where
the chip was specially protected against the high tempera-
ture during the casting process. Both these techniquesmodify
the mechanical properties of the cast part by introducing a
foreign material, which could be undesirable in certain situa-
tions. Furthermore, the insertion of additional parts requires
a special tool-technology and an adaptation of the casting

123



Journal of Intelligent Manufacturing (2022) 33:2119–2128 2121

process, and the relatively high costs for each cast part limit
the wide spread application.

In summary, most practical solutions have been developed
for aluminum high pressure die casting or permanent mold
casting and not for the case of iron sand mold casting. Thus
it appears crucial to investigate a newmethod for traceability
of iron sand mold casting.

Methods

In the following sections all the essential techniques to ensure
a solid and reliable reading system are explained in detail.
First, we elaborate on the code design (“Code design and
readingprinciple” section),which ismotivated by the specific
boundary conditions of metal sand casting.

Optical code reading requires first the detection of the pins
on the surface and, as a second step, determination of the ori-
entation of the individual pins. Classical image processing
with a shape-from-shading illumination approach was tested
for this goal, but was found not to be robust enough in the
industrial setting. A solution based on 3D point clouds of the
surface was successfully implemented and tested (Sandt et
al., 2020), but required a significant invest in a 3D scanning
device. Based on our experience, we built a hand scan-
ner (“Handheld scanner design” section) and developed a
code reading algorithm with convolutional neural networks
(CNN),which canbe deployedon lowcost handheld devices.
This approach is described in “Pin detection and code orien-
tation” and “Classification network” sections.

Code design and reading principle

Based on the special conditions in the foundry field and in
particular in the iron sand casting, the coding unit must meet
certain boundary conditions. The code must be easily mold-
able, robust against mechanical influences, visually readable
and, in addition, have a sufficiently high data density. Tomeet
these requirements, the cast part code is built-up by a set of
individually orientated pins. Each pin is cylindrical in shape
with a partially sloped cylinder cover as shown in Fig. 1a. In
a first prototype each pin has a diameter of 6mm, a height of
1.1mm and a sloped plane with an angle of 20◦. Depending
on the casting quality and the component size, the geometries
can be selected accordingly.Due to the very simple geometry,
which does not have any filigree structures, robustness and
moldability is guaranteed. In addition, the structure allows
both a 3D (Sandt et al., 2020) and a 2D scanning procedure
with a high data density. For the 2D optical readout pro-
cess the structure enables two different contrast-rich features
when using a coaxial top illumination. The features are a
shadow, in the shape of a dark semicircle, and the top side of
the pin which is divided into a lighter and a darker area due

(a) (b)

(c) (d)

Fig. 1 Pin layout for a code with 3 pins

to the sloped plane. These features are used to identify the
orientation of the pins.

The basic principle is based on the idea of coding the
component number via different orientations of the pins. The
pin direction is defined with the normal vector of the pin
sloped plane which is projected into the base plane (see Fig.
1c). For reference, an orientation vector Vor based on the
entire pin arrangement is determined. As a consequence, a
non-symmetrical layout needs to be provided. In our case
it was an L-shaped layout where the rotational symmetry is
only at 360◦. By overcoming this constraint other layouts
are possible and can for example be adjusted for different
part geometries. Another example of a longer shaped code is
shown in Fig. 1b. Additionally, an example of a real code on
an iron cast part is show in Fig. 1d.

For a first prototype, the angular differentiation was
defined with an angle of 22.5◦ which leads to 16 possible
rotational positions for each pin. With a total number of 3
pins 4096 (163) individual part numbers (N ) can be gener-
ated. This number rises exponentially with an increase of the
number of pins.With a code of 4 pins it is possible to generate
65,536 (164) individual combinations.

For calculating a final part number N it is necessary to
make an explicit pin number definition. In the example of
the L-shape the pin numbering is shown in Fig. 1c. Based on
that configuration the part number could be calculated with
Eq. 1, where on is the orientation position of the appropriate
pin as specified in Table 1.

N = o1 · 160 + o2 · 161 + o3 · 162 (1)

123



2122 Journal of Intelligent Manufacturing (2022) 33:2119–2128

Table 1 Angle values for pin positions

Angle [◦] Orientation position [ ]

0 ± 11.25 0

22.5 ± 11.25 1

45 ± 11.25 2

... ...

337.5 ± 11.25 15

Handheld scanner design

In Fig. 2 a first prototype with a 3D printed chassis is shown.
The scanner system includes a 2D camera as well as a blue
LED light. The camera is an IDSUI313xCP-Mmonochrome
camera with a resolution of 800 by 600 pixel. The lens has a
focal length of 16 mm and is used with a blue filter. Together
with a powerful 700 mA blue LED the system is not affected
by ambient light. Additionally, a trigger button was added
for activating the scanning process and to switch on the LED
light. This first prototype was connected to a laptop through
cables, which processed the images and displayed the live
image and the results. All cables were guided through the
handle bar to the back of the scanner. The design was kept
as simple as possible, with the 3D printing process in mind.

Pin detection and code orientation

For locating every pin inside the image, an object detection
algorithm was needed. This goal was achieved with the use
of the programming language Python, OpenCV and the Ten-
sorflow object detection API (TODA) (Huang et al., 2018).
TODAis a commonly usedopen source high levelAPI frame-
work which is built on top of tensorflow. It already comes
with a bundle of pretrained models for object detection with
different detection methods such as faster R-CNN (Ren et
al., 2015) or a single shot multibox detector (SSD) (Liu et
al., 2016). These pretrained models can be used for transfer
learning. For reasons of performance (Shanmugamani, 2018)
an SSD model (ssd_mobilenet_v1_coco_11_06_2017) was
used which was originally trained on the COCO dataset (Lin

Fig. 2 CAD model of the handheld scanner

et al., 2014). COCO stands for “common objects in con-
text” and consists of labelled images of complex everyday
scenes containing objects like cars, animals or people. To
identify pins instead of these objects inside the images a stack
of 250 labelled pin images was created by manually draw-
ing quadratic bounding boxes around the pins using an open
source software called “labelImg” (Tzutalin, 2015). With the
information of the bounding boxes and the use of TODA, the
model could be retrained to recognize iron cast pins. We
determined the general mean average precision (mAP) of
the trained model to be 47.32 for 50 test images. Although
there were many false positive detections, we could filter out
the irrelevant detections by keeping only the three bound-
ing boxes with the highest confidence level. With this prior
knowledge as well as knowledge about the approximate dis-
tance of the pins, we never observed any misdetections in the
test data and later in the experiments. In Fig. 3a an example
of detected pins and their bounding boxes is shown.

For the following steps it was important to assign each pin
to its explicit pin number as well as identifying the orienta-
tion vector Vor of the code as described in “Code design and
reading principle” section. Based on the center point coordi-
nates of all pin bounding boxes Pn the center of mass Pc of
the ensemble can be calculated (see Fig. 3b). By computing
the distances between Pn and Pc pin number 1 (P1) could
be uniquely identified by its smallest distance. Finally the
angles between vector

−−→
P1Pc and

−−−→
P1Pn (α, β) were calcu-

lated. Sorting the angles according to size, it was possible to
assign pin number 2 (P2) and 3 (P3). The most convenient
way for identifying the orientation vector is the use of the
vector between the center point of pin 1 and 2. In case of
an inaccurate pin detection an exact orientation vector is not
ensured. For a more precise identification a perfect L-shape
was fitted into the coordinates of all midpoints (see Fig. 3a—
red L-arrow). Hence the total error is compensated for in case
of inaccurate detection.

To recognize the rotational position of each pin with the
classification CNN, it was necessary to rotate the image to

(a) (b)

Fig. 3 Pin detection and numbering
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Fig. 4 Pin rotation to target vector

a reference position with the offset angle γ (Eq. 2). The
definition of that target vector Vtar is (0,1)T , which means
that it is a vector in a vertical direction. In Fig. 4 an example
of the rotating process is shown.

γ = arccos

(
Vor ◦ Vtar

| Vor | · | Vtar |
)

(2)

The offset angle γ is approximately 75◦ in the example
shown. The image is rotated according to the offset angle
and the center points of the bounding boxes are transformed
accordingly. Due to the circled geometry each pin can be
cropped with its original bounding box size in the rotated
image. As a result, the final pin images are produced which
are independent from any prior code orientation. These three
images needed to be classified individually for their rotational
position with the classification CNN network.

Classification network

To identify the rotational position of each pin, a customCNN
was constructed. Figure 5 shows a prototypical layout; the
hyperparameters of the network are optimized in “Identifying
the best hyper-parameters” section. In contrast to the object
detection network (see “Pin detection and code orientation”
section), the classification network was not based on a pre-
trained network. Therefore, no transfer learning was used.
The network was built from scratch with python based on
tensorflow and keras as a backend.

Generating training and test data

Due to 16 possible orientations of the pin, the network
needed to be trained on 16 classes. In order to generate train-
ing as well as test data, 41 test plates—each containing 16
codes—were cast under realistic environmental conditions.
We observed no detrimental mechanical deformation on any
of the codes coming from the “shot blasting” procedure. The
plates were separated into 31 training plates and 10 test-
ing plates. In order to create the data sets for training and
testing, the codes were located and oriented using the pin
detection algorithm (“Pin detection and code orientation”
section). With an image of a three-pin-code, the rotational
information and the corresponding bounding boxes, every

Fig. 5 Prototypical CNN for classification of the individual pins: start-
ing with an input image of size 100×100, there are three convolutional
layers with two max pooling layers in between. The number of feature
maps is 32 after the first convolutional layer, increases to 64 after the
second convolutional layer, and is kept to 64 after the third convolu-
tional layer. Once the feature maps are flattened, two fully connected
layers (64,16) complete the classification network. Hyper parameters
like number of convolutional layers, number of feature maps, and size
of dense layers are optimized in “Identifying the best hyper-parameters”
section

Fig. 6 Example of pin classes training image

pin could be rotated back to its zero position. Based on that
fundamental image all 16 rotational positions could be cre-
ated (data augmentation). Since the individual pin images
were cropped from a larger image after rotation, we avoided
the problem of undefined gray values in the corners of the pin
images, which would typically occur when rotating images.
Furthermore, it was possible to create even more data by
mirroring the zero positioned pin image and repeating the
rotation procedure for the 16 positions. Hence, with a single
code consisting of three pins it was possible to produce 6
images per class and thus 3 × 2 × 16 = 96 images in total.
In Fig. 6 an example of a rotated pin for different classes is
shown. All shown pin images are based on a single pin from
a code image.

With 31 training plates (npl), 16 codes for each plate (nc),
3 pins per code (np) and the mirroring factor of 2 (m) it was
possible to generate 2976 individual pin images for each class
(see Eq. 3). For reasons of variation, multiple images of the
same code were taken, but the orientation of the code varied
and therefore the light reflection changed. The camera angle
was set to 0◦ (View direction 1) (see Fig. 7). Based on the

fact that the scanner is handheld the acquisition angle of
the camera needs variation as well. For that reason, images
with an acquisition angle of 5◦ (View direction 2) and 10◦
(View direction 3) were added. Altogether a total number
of 12900 training images per class were available, of which
each viewdirection consisted of 4300 images.With 10 testing
plates it was possible to create 960 individual test images
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Fig. 7 Different viewing angles of the camera

per class. Furthermore, test images were created for all view
directions as well, which led to a total number of 2880 testing
images per class. The test images constituted 22.33% of the
training data.

nimg = (npl · nc · np) · m (3)

Total reading process

To improve the accuracy of the reading system, it runs with a
real time image stream while multiple confidence thresholds
are implemented. The reading process can be compared to
reading aQR-Code. The system automatically stops the read-
ing process when all quality requirements are accomplished.
Figure 8 gives an overview of the total reading process and
Fig. 9 shows the handheld scanner and GUI for displaying
the live image.

The first confidence threshold is applied right after the
pin detection. If the confidence level is lower than 50% for
every pin and if there are not exactly three pins detected
the evaluation stops and the next frame will be grabbed. If all
requirements are achieved the pins are numbered specifically
and cropped as described in “Methods” section. The final pin
images are individually classified with the second CNN. The
categorization of the network is only accepted if the confi-
dence level is above a specific value. The required confidence
level can be individually adjusted to either improve speed or
accuracy performance. If all 3 pin orientations are classified
with the required confidence value, the final code number
can be calculated like described in “Code design and reading
principle” section. For increased reliability it is possible to
set a minimum count for consistent repetitive classification.

For an example of a code number calculation, consider the
code image from Fig. 4. After the code has been rotated to
normal position and the individual pins have been extracted
(rightmost column), the orientation of each pin has to be
classified according to the angular ranges defined in Table 1.
The projection of the normal vector of the inclined ramp of
pin number one points horizontally to the left, correspond-
ing to an angle of 180◦ or class number 8, respectively. The
same vector for pin number two points horizontally to the
right, corresponding to an angle of 0◦ or class number 0.
The angular orientation of pin number three is 22.5◦ or class

Fig. 8 Flow chart of total reading process

number 1. The resulting code number for this image would
be, according to Eq. 1, 8 · 160 + 0 · 161 + 1 · 162 = 264.

Experiments and results

In this section the focus was on the optimization of the classi-
fication network. In the first step, the impact of training data
variationwas analyzed,whereas in the second step the impact
of the network structure was reviewed. Furthermore, the total

123



Journal of Intelligent Manufacturing (2022) 33:2119–2128 2125

Fig. 9 Handheld scanner with GUI

reading process with the handheld scanner was validated on
all testing plates.

Identifying the best combination of training data

In the first step we used a simple network structure (see Fig.
5) and analyzed the impact of the mixing ratio between the
different view directions for the training process. With 4300
images per class for each view direction, all mixing ratios
were analyzed with a step width of 5%, which refers to the
image number. For comparability, each mixing ratio had a
total of 4300 images. This lead to 231 mixing ratio combi-
nations. In Table 2 a few examples are shown for different
ratios and the appropriate image number. The network was
trained with all different ratio combinations and was tested
on the full test dataset (see “Generating training and test data”
section). The result of all trained models is visualized in Fig.
10. The x- and y-axes show view direction 2 and 3 ratios,
whereas the view direction 1 ratio is indicated inside the plot
with contour lines. The color plot is linearly interpolated
between measured points. With a ratio combination of 25%
view direction 1, 5% view direction 2 and 70% view direc-
tion 3 (25/5/70) training images, the highest score of 98.3%
was accomplished. The lowest score was 92.34%with a ratio
of 80/20/0 images. It is apparent that a high quantity (greater
60%) of view direction 1 and a low quantity (smaller 20%)
of view direction 3 images have a negative impact on the
validation accuracy. There is also a slight tendency toward
improved scores with a ratio greater than 50% of view direc-
tion 3 images.

Identifying the best hyper-parameters

With the information of the best mixing ratio combination
the impact of the hyper-parameters could be analyzed. Due
to a high possible quantity of parameters this test focused
particularly on the convolution and dense layer structure (i.e.

Table 2 Examples of mixing ratio between view direction 1, 2 and 3
images (The number of images refers to one class)

View dir. 1 View dir. 2 View dir. 3 Sum

Ratio 0% 5% 95% 100%

Images 0 215 4085 4300

Ratio 0% 50% 50% 100%

Images 0 2150 2150 4300

Ratio 80% 10% 10% 100%

Images 3440 430 430 4300

Fig. 10 Validation result of all ratio combinations

number of hidden layers and neurons). Furthermore the dif-
ferent structures were tested with a 3 by 3 and a 9 by 9
convolution kernel. Every model had a max-pooling layer
with a kernel size of 2 by 2 pixels between each convolu-
tional layer. All different model structures were trained with
the “Adam” optimizer, a maximum of 40 epochs, a batch size
of 256 and a learning rate of 0.001. Additionally there was an
early stop implemented, which stopped the training if the val-
idation accuracy did not change anymore (patience=6). Due
to the fact that the accuracy values vary with repeated train-
ing under the same conditions, the training was performed
five times for each architecture. All different model struc-
tures and their average validation accuracy values with the
appropriate distributions are shown inTable 3. The tolerances
are based on the T-distribution and a confidence interval of
95%. In addition, the results of the table are shown visually
in Fig. 11, where the y-axes displays the accuracy and the x-
axes the index number of the network structure (see Table 3).
The graph illustrates an explicit improvement of the accuracy
level with increasing the network structure’s depth, even con-
sidering the variance. It must be added that the most complex
model was not trainable with the 9 by 9 kernel.

Model number 6 achieved the greatest average validation
accuracy score with 99.07% and a low variance with 0.10%.
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Table 3 Comparison of different network structure and their validation
accuracy for the complete test data

Nr. Parameter Value

1 CNN Feature maps 2, 8

CNN Kernel size 3 × 3

Dense layers 128

Average score 96.50 ± 0.57%

Ranking 10

2 CNN feature maps 2, 16

CNN kernel size 3 × 3

Dense layers 128

Score 96.43 ± 0.52%

Ranking 11

3 CNN feature maps 32, 64

CNN kernel size 3 × 3

Dense layers 256

Score 97.67 ± 0.21%

Ranking 7

4 CNN feature maps 32, 64, 128

CNN kernel size 3 × 3

Dense layers 256, 128, 64

Score 98.70 ± 0.09%

Ranking 4

5 CNN feature maps 32, 64, 128, 256

CNN kernel size 3 × 3

Dense layers 1024, 526, 128, 64

Score 99.04 ± 0.18%

Ranking 2

6 CNN feature maps 32, 64, 128, 256, 512

CNN kernel size 3 × 3

Dense layers 2049, 1024, 526, 128, 64

Score 99.07 ± 0.10%

Ranking 1

7 CNN feature maps 2, 8

CNN kernel size 9 x 9

Dense layers 128

Score 97.12 ± 0.35%

Ranking 9

8 CNN feature maps 2, 16

CNN kernel size 9 x 9

Dense layers 128

Score 97.43 ± 0.30%

Ranking 8

9 CNN feature maps 32, 64

CNN kernel size 9 x 9

Dense layers 256

Score 98.07 ± 0.30%

Ranking 6

10 CNN feature maps 32, 64, 128

Table 3 continued

Nr. Parameter Value

CNN kernel size 9 x 9

Dense layers 256, 128, 64

Score 98.70 ± 0.24%

Ranking 5

11 CNN feature maps 32, 64, 128, 256

CNN kernel size 9 x 9

Dense layers 1024, 256, 128, 64

Score 99.00 ± 0.20%

Ranking 3

Fig. 11 Errorbar plot of different model structures based on T-
distribution

This model structure will be considered for further investi-
gations.

For identifying the impact of best ratio combination (see
“Identifying the best combination of training data” section)
it was necessary to have all combinations at the same image
quantity (4300 images per class in total) to ensure compara-
bility. Having the best ratio combination and the best network
structure, it is possible to retrain the network with the highest
number of training images, but keeping the same ratio. The
new combination includes 1535 of view direction 1 images,
307 of view direction 2 images and 4300 of view direction
3 images for each class, which adds up to a total number of
6142 images per class.With the new training images a model
with a validation score of 99.28% was accomplished.

Analysis of confidence threshold

For a more reliable reading system a confidence threshold
was implemented as described in “Total readingprocess” sec-
tion. With the best trained model (see “Identifying the best
hyper-parameters”’ section) the impact of such a threshold
value was analyzed. With the increasing confidence thresh-

123



Journal of Intelligent Manufacturing (2022) 33:2119–2128 2127

Fig. 12 Correlation between data efficiency, accuracy and confidence
threshold

old, the likelihood of a correct classification also increased,
meanwhile the data efficiency declined, because not all
images provided the necessary confidence level. Conse-
quently, with an increasing confidence value, the scanning
time possibly rises, because the user needs to move the
camera to get a satisfying image. The correlation between
accuracy and data efficiency is shown in Fig. 12. This graph
is based on the test dataset including all view directions. The
y-axes on the left side represents the data efficiency for each
confidence thresholdwhereas the y-axes on the right side rep-
resents the accuracy score. Apparently the lowest efficiency
level is over 90%, which is why a confidence threshold of
99% for the total reading process is acceptable.

Validation of the complete system

For a final validation all available test casting plates were
measured with the handheld scanner. The confidence thresh-
old was set to 99% (see “Analysis of confidence threshold”
section) and theminimumcount for consistent repetitive clas-
sification to a value of 2. Because the code can be built with
multiple pin numbers, the validation accuracy is referenced
to every single pin. Hence for every pin quantity nPin a read-
ing probability PTotal can be calculated with Eq. 4 based on
the resulting Pinscore PPin. For validation every single code
on the 10 test casting plates was scanned three times. More-
over the validation process was executed with two different
test persons. The first test person (Tp1) had used the hand-
held scanner a number of times before the test, whereas the
second test person (Tp2) was a first time user. Table 4 shows
the result for both test persons. It is noteworthy that the Pin-
score for Tp1 with 99.86% was only by 0.69% higher than
the Pinscore of Tp2 with 98.96%. This indicates a stable
reading process based on minimal difference. Additionally,
the minimum and maximum position difference for an incor-
rectly detected pin for both is only 1. The average scanning
time for Tp1 was 0.43 s, whereas 90.21% of all scanning
times were lower than 0.5 s. For Tp2 the average scanning

Table 4 Validation of complete system by experienced person (T p1)
and a first time user (T p2)

Parameter Tp1 Tp2

Pinscore (PPin) 99.86% 99.17%

Score 3 pins (PTotal) 99.58% 98.13%

Min. position difference 1 1

Max. position difference 1 1

Av. scanning time 0.43 s 0.93 s

Perc. of scans under 0.5 s 90.21% 70.00%

time was higher with 0.93 s and the fraction under 0.5 s was
70.00%.

PTotal = (PPin)
nPin (4)

Conclusion

A simple to use and reliable handheld reading system for a
custom developed cast part marking system, which allows
for identifying individual components after casting, was
presented. The design of the pins inside the code ensures
robustness against mechanical impact and allows integration
inside the casting process.

Based on deep convolutional networks and the implemen-
tation of the confidence threshold, a high accuracy of pin
classification with 99.86% (Tp1)/99.17% (Tp2) for the test
plates was accomplished. The complete system, including
pin detection and classification, works stably. Scanning is
intuitive and in most cases (90.21% for an experienced test
person Tp1 and 70.00% for a first time user Tp2, respectively)
takes less than half a second. Due to the automatic stop the
user cannot make any mistakes. In our experiments, a person
withmore scanning experience accomplishes faster scanning
times, due to the fact that, in our test-setup, the screenwith the
camera image was not attached to the scanner itself, which
made the scanning in the beginning a little challenging.

While working reliably in our testing environment, dif-
ferent conditions in the industrial environment could have
an influence on the reading outcome. For example, dif-
ferent material compositions would result in changes of
surface topologies, which would require a fine tuning of the
object detection and classification algorithm. By extending
the training data set with images from different materials,
the object detector as well as the classifier could take these
varying conditions into account. The same holds true if the
surface of the parts needs to be painted afterwards, or requires
further processing. However, in practice, the presented code
could even be replaced with a more convenient post-casting
marking technique (e.g. laser applied data matrix code) in a
subsequent processing step. The advantage of the presented
code is that it could bridge the gap between pouring and post
processing of the cast parts.
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Compared with any other solution for retracing iron sand
cast parts, it is now possible to label every single component
and to have a very mobile and cheap reading system. With a
housing for the camera and the LED light, the scanner can
be protected from the harsh and dirty environment inside a
foundry. The reading software could be transferred from a
tethered to a completely self-sufficient, low power system on
a module (e.g. NVIDIA�’s Jetson Nano).

Future research will be directed towards the application of
the mobile scanner in industrial settings, including a proto-
col to tune the algorithm to variations in surface topologies.
We would like to include the marking and scanning system
in a prototype application for data driven process optimiza-
tion, where extensive production parameters can be related
to quality parameters of the cast parts. Correlating quality
parameters with production parameters could pave the way
for a widespread application of artificial intelligence in iron
foundries.
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