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Monitoring Breaks in Fractional Cointegration

Maik Dierkes, Krischan Fitter∗and Philipp Sibbertsen

November 7, 2024

Abstract

We extend the monitoring of structural breaks in classic cointegration proposed by Wagner
and Wied (2017) to explicitly allow for fractional cointegration and breaks in these fractional
relations with possible deterministic trends. To estimate the parameters we use a fully
modified OLS estimator and we estimate the integration order by the exact local whittle.
In order to build the test statistic we establish a CUSUM test for a break in parameters
or a break in the order of integration and derive the limiting distribution of the cumulative
sum of the modified OLS residuals by using representations by Davidson and Hashimzade
(2009) and Fox and Taqqu (1987). Using these limiting results we propose a detector and its
limiting distribution as a function of fractional Brownian motions and prove the consistency
of our procedure against fixed and local alternatives. The critical values for the monitoring
are derived by bootstrap. In a Monte-Carlo study we show the finite sample behavior of our
test and compare it to the one by Wagner and Wied (2017) in different scenarios of fractional
cointegration. To conclude we show the applicability of the test by presenting the results of
applying the test in the context of momentum investing.

Keywords: long-memory time series; fractional cointegration; structural change; moni-
toring

JEL Classification: C32; C12; C52

1 Introduction

This paper presents a modified residual based approach to monitor fractional cointegration re-
lationships between fractionally integrated time series and hereby extends the monitoring pro-
cedure presented by Wagner and Wied (2017) to a more general framework. Similar to them
we propose a fractional cointegration regression, which allows for deterministic trends. By doing
so we can distinguish two distinct types of structural breaks. First, there may be changes in
the fractional cointegration relationship. This could mean that the reduction of the order of
integration changes or even vanishes so that the relation turns spurious. Second, there may be a
break in the deterministic components, which induces a change in trend or a break in the linear
coefficients of the regression.
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Monitoring is a type of sequential test for detecting structural breaks in time series and regressions
that can be used repeatedly and consistently every time new data is available. The need for
monitoring procedures in comparison to usual structural break tests that are applied to a given
historical data set is pointed out e.g. by Chu et al. (1996). They show in a simulation study that
if one applies a structural break test repeatedly after a few new data points are available, the
test will reject the null of stability with probability converging to one even in case of stability.
In applied work it is often the case that one faces new data at some frequency. One example
could be daily financial time series where a new data point is available each trading day. In
theses cases monitoring methods show their high value in terms of governing structural breaks
on a daily basis.

The most general principles of monitoring procedures are presented by Chu et al. (1996). Here,
the calculation of the parameters in the regression happens in a so-called calibration period at
the beginning of the sample, rather than estimating the parameters based on the whole available
sample. The calibration period is assumed to be free of structural breaks. This needs to hold
true to obtain a set of parameters and residuals as a starting input for the detector. The detector
can then either be based on a CUSUM-type test statistic, that monitors the cumulative sum of
residuals or on a fluctuation-type test statistic, that monitors the fluctuations in re-estimating
the parameters of the regression with new data. Our procedure is based on a CUSUM-type
detector as presented in the sections to come.

Our contribution to the literature therefore consists of a consistent monitoring procedure for
structural breaks in fractional cointegration regressions. It is stated by Wagner and Wied (2017)
that their proposed method for monitoring classical cointegration also is consistent against frac-
tional alternatives. For this reason a comparison between the two methods for fractional alter-
natives is also presented in this paper to analyze if our method is better suited for the fractional
cointegration framework it is derived for. We find that our detector has substantially better size
properties for fractional cointegration than their method. Also, we present an application of
our detector in the context of momentum investing and locate a structural break in a fractional
cointegration regression during the momentum crash in April 2009.

The rest of the paper is organized as follows: Section 2 briefly discusses the basic theory and
idea behind the concept of monitoring structural change. Based on that Section 3 presents
our Detector for monitoring structural breaks in fractional cointegration, derives the limiting
distribution and shows the behavior under fixed and local alternatives. The corresponding proofs
are gathered in the appendix. In chapter 4 we present the results of the Monte-Carlo simulation
and compare the size and power properties of our detector with the detector of Wagner and Wied
(2017). Chapter 5 shows the results of the application of our detector in momentum investment.
Finally, section 6 concludes the paper.

2 Monitoring Stationarity and Principles

This section provides the theoretical base for monitoring methods with focus on the monitoring
procedure provided in the working paper by Wagner and Wied (2015) that can be used to monitor
stationarity of a time series and thus also to monitor cointegration in its classical sense. The
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principle behind this kind of monitoring dates back to Chu et al. (1996) and their proposals for
monitoring structural breaks in linear regressions. For this consider the cointegration regression

Yt = D
′
tθD +X

′
tθX + ut, t = 1, ..., T (1)

where Xt is I(1) and ut is I(0). Now assume we estimated this regression using e.g. the FM-
OLS technique by Phillips and Hansen (1990) on the calibration period of length [mT ], with
0 < m < 1 to get our set of parameters and we want to monitor for stationarity of ut for the
remaining sample [mT + 1], ..., T . Usually the null of stability, so in this case stationarity, and
the alternative of a structural break are considered. This means under the alternative there is
some point in the sample [rT ] from which the process (1) behaves like a random walk, with per
assumption 0 < m < r < 1.

To find the point [rT ] Wagner and Wied (2015) use an idealized scenario of a dataset of length
T and a known long-run variance ω to show the intuition of using a detector for monitoring. For
this define Si =

∑i
t=1 ut. Then the detector, which is based on the KPSS test for stationarity

proposed by Kwiatkowski et al. (1992), for stationarity of ut is given by

Hm(s) :=
1

ω2

(
1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Si)

2 − 1

T

[mT ]∑
i=1

(
1√
T
Si)

2

)
. (2)

Here, the first sum displays the sum of the error terms over the monitoring period, while the
second sum represents the cumulative sum of errors in the calibration period up until observation
[mT]. So, the test statistic is based on a comparison of cumulative sums, which becomes larger
under the alternative of a non-stationary process.

However, such a detector can not be applied directly on the set of time series. The goal is to use
this detector in a way such that it finds potential structural breaks as fast as possible while also
having minimal size distortions. To address this problem define the detection time τm(Hm, g, c),
which depends on the chosen detector function Hm, a weighting function g() and the chosen
critical value c, which also depends on the function g. The detection time is given by the first
point in time, for which the null is rejected if τm is finite and has the form

τm := min
s:[mT ]+1≤[sT ]≤T

{∣∣∣∣Hm(s)

g(s)

∣∣∣∣ > c

}
.

This means that the null is rejected once the weighted detector exceeds some critical value for
the first time in absolute value. So, in order to use the detector proposed by Wagner and
Wied (2017) or the one proposed in this article one also needs to choose a weighting function to
standardize the detector. Determining this function g() is the result of a trade-off between the
aforementioned minimal detection delay and minimal size distortions, as both properties can not
be achieved simultaneously in an analytically tractable way.

If
∣∣∣∣Hm(s)

g(s)

∣∣∣∣ < c for all t the rejection time is interpreted as ∞ meaning that the null is not rejected

at any point in the monitoring period. Similar to classical testing methods we want to set some
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significance level to the monitoring procedures. This translates in this case to

lim
T→∞

P (τm < ∞) = lim
T→∞

P

(
min

s:[mT ]+1≤[sT ]≤T

{∣∣∣∣Hm(s)

g(s)

∣∣∣∣ > c

}
< ∞

)
= lim

T→∞
P

(
sup

s:[mT ]+1≤[sT ]≤T

{∣∣∣∣Hm(s)

g(s)

∣∣∣∣ > c

}
= P

(
sup

m≤s≤1

∣∣∣∣Hm(s)

g(s)

∣∣∣∣ > c

)
= α,

(3)

so that we reject the null with probability α, which is our chosen significance level. In our case
of fractional cointegration the weighting function is

g(s) = s2dx+1,

which is the generalized form of the weighting function used by Wagner and Wied (2017) in
the case of no trend term allowing for more flexibility in the degree of integration. In the
case of classical cointegration dx = 1 and the weighting becomes s3 as in Wagner and Wied
(2017). A heuristic explanation for the weighting function g(s) in general is given by Trapani
and Whitehouse (2020). The detector function should grow in absence of breaks, however, it
grows slower than g(s) such that after a break occurs the residuals are substantially larger and
H(s) grows faster than g(s).

3 Monitoring Fractional Cointegration

We consider monitoring breaks in a fractional cointegration regression allowing for possible de-
terministic trends which can also be subject to breaks. Our model is given as

Yt = D
′
tθD +X

′
tθX + ut, (4)

Xt =
t∑

s=1

vs (5)

The following set of assumptions has to hold for equations (4) and (5):

Assumption 1. For the process Xt =
∑t

s=1 vs, vs is I(dv) and thus Xt is I(1 + dv).

Assumption 2. The trend component follows Dt = (1, t, t2, . . . , tp−1) with normalization
GD = diag(T 1/2, T 3/2, . . . , T p−1/2).

Assumption 3. The residuals ut are I(du = dx − b) with du < dx. Together with assumption 1
this results in two possible scenarios: 1: dx + du > 1 and 2: dx + du ≤ 1. In both cases it must
hold that 0 < dx + du.

Assumption 4. It holds that

T 2du−1/2

[sT ]∑
t=1

ut

vt

 ⇒ Ω1/2Bd(s),
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where Bd is a vector fractional Brownian motion with memory parameter du and dx and Ω1/2 is
defined as in (8).

The parameter of interest is θ = (θD‘, θX ‘) in combination with the integration order du resulting
in our hypotheses:

H0 :

θ1 = θ, t = 1, . . . , T

ut ∼ I(dX − b), b ≥ 0, t = 1, . . . , T

(6)

versus

H1 :


θ1 ̸= θ for some m ≤ r < 1 or

ut ∼ I(dX − b), b ≥ 0, t = 1, . . . , [rT ] and

ut ∼ I(dX − b), b = 0, t = [rT ] + 1, . . . , T.

(7)

As an estimator θ̂D and θ̂X for the parameters θD and θX we use the fully modified OLS as in
Phillips and Hansen (1990).

Denote by Ω̂ a long-run variance estimator such as the HAC by Andrews (1991) for the matrix

Ω =

Ωuu Ωuv

Ωuv Ωvv


with u referring to the residuals from equation (4) and v to the residuals from equation (5). It
should be kept in mind that a MAC-estimator such as the one proposed by Robinson (2005) or
Abadir et al. (2009), which are designed to deal with fractionally integrated processes, might
also be applicable in special cases like purely stationary cointegration to get estimates for the
long-run variance. However, in general they do not allow for non-stationary series. This means
they are not applicable for the general fractional cointegration case, which usually presents a
combination of non-stationary time series to obtain a stationary set of residuals. Further define

Ω1/2 =

ωu·v λuv

0 Ω
1/2
vv

 . (8)

where ω2
u·v = Ωuu−ΩuvΩ

−1
vv Ωvu and λuv = Ωuv(Ω

1/2
vv )−1 analogously to Wagner and Wied (2017).

Based on this we obtain the adjusted FM-OLS residuals

û+t,m =y+t −Dt‘θD,m −Xt‘θ̂x,m

ut − v
′
tΩ̂

−1
vv Ω̂

−1
uv −D

′
t(θ̂D,m − θD)−X

′
t(θ̂X,m − θX), (9)

where the subscript m denotes that the corresponding estimate is based on the calibration period
and y+t = yt −∆Xt‘Ω̂

−1
vv,mΩ̂uv,m.

Before deriving the limiting distribution of the residuals we need to define the process
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ΞQu =
1

Γ(du)

∫ 1

0
(1− s)du−1

∫ s

0
QdWds,

based on the work by Davidson and Hashimzade (2009). Where W denotes a standard Brownian
motion and Q is a fractional Brownian motion with parameter 1− dx. For the case dx + du > 1,
which is the situation given in Davidson and Hashimzade (2009), we obtain the limiting result

T dx−du

T∑
t=1

xtut
d→ ΞQu.

For dx + du ≤ 1 we have

T 2dx−1
T∑
t=1

xtut
d→ ΞQu.

The convergence rate for the case dx + du ≤ 1 can be found in Leschinski (2017). Following
the previous assumptions we obtain Lemma 1 concerning the limiting behavior of the adjusted
residuals:

Lemma 1. a) Let there be a fractional cointegration model as equations (4) and (5) with as-
sumptions 1 to 3 in place. Then the adjusted FM-OLS residuals have the limiting distribution
for m ≤ s ≤ 1 if dx + du > 1:

T du−dx

[sT ]∑
t=1

û+t,m ⇒ ω̂u·v

(
Bdu(s)−

∫ s

0
J(z)

′
dz

(∫ m

0
J(z)J(z)

′
dz

)−1 ∫ m

0
J(z)dΞuv(z)

)
(10)

=: ω̂u·vWdu(s),

where Bd denotes fractional Brownian motion with parameter d and J(s) = (D(s)
′
, BdX (s)

′
)
′.

Alternatively, if dx + du ≤ 1 and 0.5 < dx the rate of convergence changes to:

T 2dx−1

[sT ]∑
t=1

û+t,m ⇒ ω̂u·v

(
Bdu(s)−

∫ s

0
J(z)

′
dz

(∫ m

0
J(z)J(z)

′
dz

)−1 ∫ m

0
J(z)dΞuv(z)

)
(11)

=: ω̂u·vWdu(s).

Yet the limiting distribution remains equal.

b) In the stationary case 0 < dx < 1/2 and 0 ≤ du < dx we obtain for the adjusted FM-OLS
residuals the limiting distribution for m ≤ s ≤ 1:

T 1− dx+du
2

[sT ]∑
t=1

û+t,m ⇒ ω̂u·v

(
Bdu(s)−

∫ s

0
J(z)

′
dz

(∫ m

0
J(z)J(z)

′
dz

)−1 ∫ m

0
J(z)dZ(z)

)
(12)

=: ω̂u·vWdu(s),

where Z(t) = σxσu√
a1a2

∫
R2

∫ t
0

[∏2
i=1(s − xi)

− di+1

2 1(xi<s)

]
dsdB1(x1)dB2(x2) with B1, B2 Brownian

motions, a1 = A(d1, d1), a2 = A(d2, d2), A(d1, d2) =
∫∞
0 x−

d1+1
2 (x + 1)−

d2+1
2 and σ1 and σ2 are

real numbers.
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Again Bd denotes fractional Brownian motion with parameter d and Ξuv and J(s) are defined
as before.

Now define as a crucial part of our test statistic the cumulative sum Ŝi :=
∑i

t=1 û
+
t,m. The test

statistic is given as

Ĥm(s) =
1

ω̂2
u·v,m

T 2du−1

[sT ]∑
i=[mT ]+1

(T du−1/2Ŝi)
2

 . (13)

This test statistic can then be used in equation (3) in order to get an α-level monitoring proce-
dure for breaks in fractional cointegration. It can be seen that the test statistic is based on the
test statistic proposed by Shin (1994) and Kwiatkowski et al. (1992) for the null of cointegration
(stationarity) against an alternative of no cointegration (generalized to allow for fractional coin-
tegration). Other forms for the test statistic could also be possibly based on the different forms
presented in the context of polynomial cointegration regressions by Knorre et al. (2021). These
include a self-normalized version of the test statistic, a moving-window approach and a version
based on the difference between the partial sums in the calibration and monitoring period. These
statistics might also be generalized into the fractional cointegration framework, however, we will
only focus on the one given in equation (13).

For our test statistic we get the limiting distribution

Ĥm(s) ⇒
∫ s

m
W 2

du(z)dz (14)

in the cases described in part a) of Lemma 1. For stationary fractional cointegration as described
in part b) of Lemma 1 we obtain the limiting distribution

Ĥm(s) ⇒
∫ s

m
W2

du(z)dz, (15)

with W2
du

as in (12).

In a next step we establish consistency for our detector under fixed and local alternatives.

Proposition 1. Let the data be generated by (4) and (5) and consider the fixed alternative. For
this ut is assumed to be I(du = dx − b) up to [rT ] and from that on b becomes zero, resulting in
no fractional cointegration between X and Y as ut is then I(dx). Alternatively, let θ1 ̸= θ from
[rT ] on. Then for any 0 < c < ∞ and continuous g() for which 0 < g() < ∞ it holds that:

lim
T→∞

P (τm(Ĥm, g, c(α, g) < ∞) = 1,

meaning that the monitoring procedure is consistent.

Proposition 2. Let the data be generated by (4) and (5) and consider the local alternative.
Here ut is assumed to be I(du = dx − b) up to [rT ] again and from that on ut = u0t +

T dx−1/2δ
∑t

i=[rT ]+1 ξi, where u0t ∼ I(du) and independent of this ξt ∼ I(dX) and δ > 0. Then it
holds that

lim
T→∞

P (τm(Ĥm, g, c(α, g) < ∞) ≥ 1− ϵ,

with 0 < ϵ < 1− α meaning that the detector has non-trivial local power.
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The proofs of the previous results are gathered in appendix A.

4 Finite Sample Performance

In this section we investigate the performance of our proposed monitoring test statistic in finite
samples. We estimate the critical values by simulation for the 5% significance level using the
previously defined weighting function. We analyze the properties of the monitoring procedure
for a fixed sample size of 1000 observations and different starting points of the monitoring period
m = (0.25, 0.5, 0.75). The monitoring method by Wagner and Wied (2017) is also consistent
against breaks in the degree of integration, if the break means that the residual ut was stationary
before and then is non-stationary fractionally integrated after the break. As this is also the main
field of application for our proposal a comparison of detection times and rates seems appropriate.
The critical values for the application of our detector are derived by bootstrap. They depend on
a combination of three parameters m, dx and du. A brief introduction on how the critical values
behave with respect to changes in the three parameters can be seen in Figure 1:

Figure 1: Changes in Critical Values

The different colors in the plots refer to different values of du in the left panel and different
values of dx on the right panel. On the left the critical values for dx = 0.8 and du = 0.1, 0.2

in increments of 0.01 are displayed and a large dispersion depending on the value of du can be
seen especially for smaller values of m. On the right the critical values for the combinations of
du = 0.1 and dx = 0.8, 0.9 in 0.01 increments can be seen. Here, the changes are not that large,
however, for smaller m they could influence the test decision.

Now we analyze how the detector for fractional cointegration breaks behaves in finite samples
by using the following model:

yt = µ+ γt+ xtβ + ut (16)

xt =

t∑
s=1

vs (17)

where ut is I(du) with du < 0.5 and xt is I(dx) with 0.5 < dx < 1 and vt is fractionally
integrated white noise. Here, we focus on the simple case, where µ = 3 and γ = 0 without a loss
of generality. For estimation we use FM-OLS to get parameters and the Bartlett kernel with
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automatic bandwidth selection by Andrews (1991) for long-run variance estimation. Note that
size and power properties change slightly, if for example the quadratic spectral and/or bandwidth
selection by Newey and West (1994) are used but they remain at the same order.

To analyze the detection times we set a break at the 850th observation, where ut becomes I(dx)
for the remainder of the sample. This means that the break is in comparison to the simulation
study by Wagner and Wied (2017) not in the beginning of the monitoring period but in the
middle of it. Due to this there is the possibility for the detector to detect the break too early.

Table 1: Size for m=0.75 with adjustment, α = 0.05

d Our Detector Wagner and Wied (2017)

du = 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

dx = 1 0.054 0.043 0.040 0.035 0.035 0.038 0.048 0.197 0.383 0.503 0.585 0.609
dx = 0.9 0.054 0.048 0.040 0.037 0.039 0.039 0.054 0.216 0.392 0.529 0.614 0.638
dx = 0.8 0.055 0.050 0.047 0.037 0.038 0.036 0.061 0.225 0.414 0.551 0.636 0.666
dx = 0.7 0.058 0.046 0.039 0.038 0.036 0.035 0.070 0.240 0.439 0.584 0.656 0.689
dx = 0.6 0.056 0.049 0.046 0.037 0.035 0.032 0.078 0.250 0.458 0.604 0.689 0.716
dx = 0.4 0.062 0.052 0.044 0.036 0.095 0.278 0.495 0.655

Table 2: Size for m = 0.5 with adjustment, α = 0.05

d Our Detector Wagner and Wied (2017)

du = 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

dx = 1 0.056 0.049 0.045 0.043 0.039 0.042 0.053 0.132 0.239 0.348 0.415 0.454
dx = 0.9 0.053 0.051 0.046 0.043 0.042 0.040 0.035 0.106 0.211 0.311 0.395 0.442
dx = 0.8 0.058 0.052 0.046 0.045 0.040 0.041 0.023 0.080 0.187 0.295 0.375 0.413
dx = 0.7 0.063 0.060 0.048 0.044 0.043 0.039 0.015 0.059 0.159 0.274 0.359 0.399
dx = 0.6 0.065 0.060 0.054 0.045 0.039 0.035 0.007 0.040 0.141 0.267 0.349 0.390
dx = 0.4 0.067 0.064 0.054 0.044 0.002 0.029 0.012 0.253

The size of the fractional cointegration monitoring approach and the detector proposed by Wag-
ner and Wied (2017) can be seen in Tables 1 to 3 for different settings of m. For the cases in which
dx+du ≤ 1 resulting in a different convergence rate the results are displayed in italics. However,
the detector behaves similarly in these cases and the size is only increased non-substantially.
The degrees of memory du and dx are estimated by the exact local whittle by Shimotsu and
Phillips (2005) with a bandwidth of T δ. As the estimate is reliant on the bandwidth to a certain
degree there might be changes in the size and power if one chooses a different bandwidth for
parameter estimation. In general, we found that bandwidths with δ ∈ [0.6 : 0.8] ensure good size
properties, while lower bandwidths may lead to substantial size distortions. The size values seen
in the tables are calculated for the value δ = 0.7. The critical values are derived by bootstrap
for the given parameter setting of d and m with 10000 repetitions. To cover the uncertainty in
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Table 3: Size for m = 0.25 with adjustment, α = 0.05

d Our Detector Wagner and Wied (2017)

du = 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

dx = 1 0.061 0.059 0.054 0.052 0.054 0.057 0.055 0.099 0.159 0.219 0.286 0.347
dx = 0.9 0.063 0.063 0.059 0.056 0.056 0.062 0.030 0.064 0.107 0.166 0.227 0.299
dx = 0.8 0.073 0.071 0.065 0.062 0.061 0.058 0.014 0.031 0.068 0.120 0.182 0.249
dx = 0.7 0.076 0.077 0.070 0.070 0.059 0.057 0.005 0.014 0.036 0.080 0.143 0.208
dx = 0.6 0.081 0.080 0.076 0.065 0.061 0.052 0.001 0.004 0.019 0.058 0.115 0.185
dx = 0.4 0.097 0.086 0.079 0.065 0.000 0.000 0.006 0.038

the estimates of du and dx for the different calibration period lengths we use the corresponding
estimate of d plus one standard deviation.

It can be seen that the size behaves decently for all kinds of values for fractional cointegration
and for the different lengths of the monitoring period. For smaller m the size generally increases
for our detector which is to be expected as a smaller calibration period means a longer monitoring
period, a shorter calibration period with more uncertainty in the estimates and thus also a higher
chance to reject the null hypothesis. The highest size can be found for m = 0.25, dx = 0.6 and
du = 0 at 0.081. For greater values of m the size only varies a bit around the targeted 5% with
the lowest values being around 3.5% for fractional cointegration regressions with a rather low
amount of integration reduction like the combinations of dx = 0.7 or dx = 0.6 and du = 0.4.
On the other side the size of the detector proposed by Wagner and Wied (2017) is severely
affected by fractional degrees of integration. For m = 0.75 their detector‘s size increases by
a large margin up to over 60% for any combination with du ≥ 0.4. For m = 0.5 the size
distortions follows the general trend of increasing for "more fractional" cointegration regressions,
however, the distortions here are not that severe. The maximum size is reached with around
45%. For m = 0.25 their detector shows decreasing size in dx such that for dx = 0.6 and du = 0

the size becomes almost zero and increasing size in du resulting in oversized behavior in many
situations again. All in all our detector ensures a more adequate size for fractional cointegration
in comparison to the one proposed by Wagner and Wied (2017), which suffers from substantial
size distortions in both directions.

Tables 4 to 6 show the power properties of both detectors for different settings. As noted
before the break happens during the monitoring period allowing for the possibility of a detected
break before the break actually occurred. In the tables displayed here we have included the
too early breaks into the power, as else the power is lower than the before calculated size in
some situations. As shown in Wagner and Wied (2015) the monitoring procedure by Wagner
and Wied (2017) is also consistent against breaks in integration of u from stationary into near-
integrated and fractional integration of. This can also be seen in most of our results as the
power stays at an adequate level for stationary settings of du with m ≥ 0.5. However, these
power results are inflated due to the high size distortions. To adjust for these size distortions we
set the significance level of the benchmark detector to 1%, which however still leads to severe
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Table 4: Power for a break in Integration to I(dx) m = 0.75 all breaks, α = 0.05, α = 0.01 for
Wagner and Wied (2017)

d Our Detector Wagner and Wied (2017)

du = 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

dx = 1 0.951 0.908 0.821 0.704 0.550 0.379 0.963 0.949 0.931 0.892 0.819 0.716
dx = 0.9 0.914 0.846 0.736 0.584 0.415 0.248 0.913 0.895 0.862 0.810 0.733 0.614
dx = 0.8 0.865 0.767 0.616 0.447 0.275 0.139 0.823 0.808 0.765 0.710 0.636 0.521
dx = 0.7 0.784 0.656 0.491 0.313 0.158 0.073 0.695 0.662 0.632 0.595 0.537 0.476
dx = 0.6 0.688 0.529 0.346 0.191 0.085 0.041 0.524 0.500 0.499 0.483 0.485 0.464
dx = 0.4 0.414 0.253 0.126 0.059 0.136 0.178 0.299 0.419

Table 5: Power for a break in Integration to I(dx) m = 0.5 all breaks, α = 0.05, α = 0.1 for
Wagner and Wied (2017)

d Our Detector Wagner and Wied (2017)

du = 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

dx = 1 0.764 0.644 0.519 0.378 0.245 0.138 0.769 0.750 0.697 0.611 0.511 0.387
dx = 0.9 0.688 0.567 0.428 0.281 0.168 0.096 0.626 0.597 0.534 0.438 0.341 0.273
dx = 0.8 0.601 0.477 0.331 0.205 0.109 0.070 0.434 0.414 0.340 0.263 0.206 0.186
dx = 0.7 0.514 0.367 0.249 0.136 0.070 0.048 0.242 0.207 0.167 0.137 0.126 0.140
dx = 0.6 0.416 0.286 0.173 0.093 0.056 0.003 0.077 0.061 0.056 0.066 0.095 0.113
dx = 0.4 0.227 0.138 0.085 0.059 0.001 0.001 0.008 0.029

Table 6: Power for a break in Integration to I(dx) m = 0.25 all breaks, α = 0.05, α = 0.01 for
Wagner and Wied (2017)

d Our Detector Wagner and Wied (2017)

du = 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

dx = 1 0.374 0.298 0.222 0.152 0.107 0.085 0.214 0.199 0.185 0.157 0.143 0.152
dx = 0.9 0.335 0.259 0.187 0.326 0.092 0.077 0.065 0.063 0.063 0.068 0.081 0.098
dx = 0.8 0.298 0.213 0.159 0.119 0.086 0.066 0.007 0.012 0.016 0.027 0.039 0.061
dx = 0.7 0.250 0.189 0.137 0.097 0.075 0.060 0.001 0.001 0.003 0.008 0.020 0.039
dx = 0.6 0.210 0.155 0.112 0.078 0.064 0.051 0.000 0.000 0.001 0.002 0.017 0.027
dx = 0.4 0.152 0.112 0.089 0.066 0.000 0.000 0.000 0.000

size distortions. In general it can be seen that for both detectors the power decreases for "more
fractional" integration orders, as this also decreases the size of the structural break. Also, the
choice of m drastically affects the power properties of both detectors. The general monitoring
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principle that m should be as large as possible while the monitoring period should be as short as
possible seems to play a crucial role for the monitoring of fractional cointegration. This might
be due to the need to estimate the degrees of integration of both x and u, where the exact
local whittle estimator is used. This estimator needs adequately large time series in order to get
proper estimates. For smaller calibration periods the series might not be long enough resulting
in more variation and thus reducing the power.

Our detector has a comparable or higher power for most combinations with du ≤ 0.1. Increases in
du and thus smaller breaks decrease the power as expected. Noticeably the decreases are rather
small for m = 0.75 with the detector by Wagner and Wied (2017). This might be, however, a
relic of the still increased size in these settings. A majority of the breaks found there, are located
before the break actually happened, meaning that the detector rejected the null too early due to
the size distortions. This can be seen exemplarily in Figure 2, where the estimated break dates
of the power analysis are displayed for the setting dx = 0.9, m = 0.75 and varying du. If no
break was found the graph displays the break date as 1000 and the share of early detections is
displayed on the left of the corresponding graph for each parameter setting. For both estimators
it is visible that the estimated break dates increase with increasing du meaning that both face
more problems finding the break in time. Yet, it seems clear that due to the higher size a larger
fraction of the break points found by Wagner and Wied (2017)‘s detector is located before the
break in observation 850, indicated by the black vertical line, for higher du. This can also be
seen in the share of early detections, as with an increase in du the portion rises from ca. 1%
to over 30% for their detector. For an increasing du the share of early detections also increases,
if one uses our detector, however it stays at a rather small level. These findings also generalize
to other settings of dx and m. For lower values of du our detector has an equivalent or faster
detection time but also includes some more early detections. For decreasing m our detector has
substantially higher power properties again for lower levels of du and dx. Yet, the power in most
of these situations is still relatively low especially for m = 0.25.

A conclusion that can be drawn from this simulation study is that the fractional cointegration
monitoring approach should be used in settings, where the calibration period is rather long
and consists of enough data to ensure proper estimation of the different integration levels. The
power properties of our detector deteriorate for smaller m, while the size stays at a reasonable
level. This fixed size is the main improvement of our proposed method in comparison to the
cointegration monitoring by Wagner and Wied (2017) used in this context.

5 Application

To show the applicability of our method we apply it in the context of momentum investing. As
shown by Jegadeesh and Titman (1993) the momentum investment strategy, that follows the
simple rule to buy previous "winners" and short previous "losers" in the financial market, yields
unreasonably high returns. A downside of this strategy, however, is that as explained by Daniel
and Moskowitz (2013) the returns have a high negative skewness resulting in a relatively large risk
exposure. This means they experience high negative returns in some periods, eating up previous
profits especially in times of economic distress like the global financial crisis and shortly thereafter.
They frame these periods "momentum crashes". Barroso and Santa-Clara (2015) argue that this
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Figure 2: Detection Times for dx = 0.9 and m = 0.75

skewness makes the strategy in itself unappealing to investors as these periods of high negative
returns are too risky. Yet, it is proposed by Daniel and Moskowitz (2013) and Barroso and Santa-
Clara (2015) that this risk is manageable as these crashes are somewhat predictable. Using this
proposal Barroso and Santa-Clara (2015) present a risk-adjusted strategy based on volatility
forecasts that are used to predict the crashes and adjust the amount of money invested in times
of predicted crashes increasing the Sharpe ratio compared to pure momentum investment. The
great variability of the standard strategy can be seen in figure 3. These momentum crashes are
especially prominent in the time period between the years 2000 and 2010 covering the global
financial crisis and the crash following the dotcom bubble resulting in losses of more than 40% in
one month respectively. Predicting and or locating these crashes and thus preventing substantial
losses is therefore of great interest for risk management of financial actors.

In this context we propose a fractional cointegration relationship that is used to approximate
underlying relationships in the market that are driving the momentum returns in the long run,
an approach that has not been discussed in the literature yet. This could fuel the literature on
theoretical model building in the context of the momentum strategy. If there is a break in this
fractional cointegration model, we can conclude that some of these long term market forces might
be out of order inducing a momentum crash. Our approach is to create a model that relates
the momentum strategy to the general state of the market. To do so we use squared monthly
returns of the S&P500 to proxy the market and relate this to the squared monthly returns of the
momentum strategy. The market data is obtained from Yahoo! Finance and the monthly data
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Figure 3: Momentum returns

for the momentum strategy is available in the online library provided by Fama and French. We
cover the years from January 1950 to May 2020.

To test if there exists a fractional cointegration relationship between different variables several
tests haven been proposed. We apply the tests by Wang et al. (2015) (WWC15), that does
not assume a specfic range of d and Robinson (2008) (RO8), which is only applicable for purely
stationary systems. For these tests a proper estimation of the memory parameter of the respective
series is crucial. To ensure this we use the exact local whittle estimator by Shimotsu and Phillips
(2005). This estimator depends on a user-chosen bandwidth parameter, which we specified to
be T 0.75. In general, for a fractional cointegration model to be valid the memory parameters
of the respective series must be statistically equal. Our estimates are dsp = 0.2149 for squared
market returns and dmom = 0.2169 for the squared momentum returns. As these two estimates
are already quite close to each other, this might be the first indicator of an existing cointegration
relation. This presumption is also confirmed by the test for equal memory parameters proposed
by Robinson and Yajima (2002), as the test is unable to reject the null of a common d in the
two series. The calculated p-value using a bandwidth of T 0.75 as before is roughly 49%.

Table 7: Test results

Calibration Period After estimated Break

WWC15 Reject H0 No Rejection
RO8 Reject H0 Reject H0

H0 = No Fractional Cointegration

Both tests reject the null of no fractional cointegration during the calibration period. After our
estimated breakpoint only the test by Robinson (2008) is still able to reject the null, while the
test by Wang et al. (2015) does not reject the null anymore. As these results implicate that
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Figure 4: Squared market and momentum returns

a fractional cointegration model is suitable for the calibration period we establish the simple
regression model:

r2mom = c+ θr2sp,

that presents the squared momentum returns as a function of the squared market returns and
a constant without a trend term. For estimation we use the FM-OLS estimator by Phillips
and Hansen (1990) using the Bartlett kernel and automatic bandwidth selection by Andrews
(1991) to estimate the long-run variance, which is a crucial part of the detector (13). Using
different kernels like the quadratic spectral kernel could influence the detection time of the
break point as discussed later. The squared returns can be seen in figure 4. There does not
seem to be too much movement from 1950 to ca. 2000 and both series seem to vary roughly
by the same amount, with some delays and exceptions. However, it is apparent that in the
years thereafter the momentum strategy experienced significantly greater variations and moves
almost independent from the market returns in the years following the dotcom bubble and the
global financial crisis. This fact also motivates our idea to monitor this fractional cointegration
relationship. If a monitoring procedure is able to detect these times in which the momentum
returns have much larger variations than the market baseline, which also are the periods of
momentum crashes as in Daniel and Moskowitz (2013), it might be helpful in the context of risk-
management of momentum based investments. The parameter estimates for the whole sample,
calibration period and after the estimated break point can be seen in Table 8.

To apply our monitoring procedure we set m = 0.65, which results in a calibration period from
1950 up until September of 1995. Based on this period of time we estimate the model, which is
then used to monitor the remaining data points for structural stability of the model. Here, it
should be noted that a different selection for m also affects the estimated break date. We find in
general, that our detector estimates a break in April 2009 for most m ∈ [0.6; 0.7]. In some cases
the break is detected briefly after or before April 2009, but there unfortunately seems to be no
systematic reason behind these deviations. April 2009 also corresponds to the month with the
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Table 8: Regression Results

Whole Sample Calibration Period After estimated Break

RVsp500 0.7315∗∗∗ 0.0386 1.4890∗∗∗

(0.2173) (0.0805) (0.3581)

Constant 0.0032∗∗∗ 0.0026∗∗∗ 0.0028∗

(0.0008) (0.0003) (0.0011)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 5: Detector

largest loss of the momentum strategy in the sample with a return of roughly −45% in one month.
A predicted break briefly before this large loss would greatly benefit risk-managed momentum
strategies similar to crash indicators proposed e.g. by Dierkes and Krupski (2022). However, as
for most parameter settings the break is found in the month of this loss, this indicated market
discrepancy could not be used for proper risk-management.

Figure 5 shows the detector over the monitoring period: It is clearly visible how the momentum
crash in 2009 affected the detector with a sharp increase. In red one can see the critical value,
which is obtained by bootstrap and passed by a large margin in April 2009 indicating the es-
timated break exactly in that month. It is also noticeable how the detector increases sharply
during the time of the dotcom bubble and thereafter, yet this is not enough of an increase to
indicate a break. Taking a look at the regression results for the period before and after April
2009 in Table 8 it is also visible that the coefficient for the squared market returns changes sub-
stantially after the breakpoint and is multiple standard errors larger than before, which might
be an indicator for a break in parameter. Applying the exact local whittle estimator again with
a bandwidth of T 0.75 on the respective model‘s residuals one also finds differences in the degree
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of integration, however, all residual series stay in the stationary interval of du < 0.5. For the
calibration period the residuals are integrated of order 0.2213, while the residuals after the esti-
mated breakpoint are integrated of order 0.3620 meaning that after the break the residuals are a
bit closer to nonstationary behavior. However, the smaller sample size post break also increases
the uncertainty in the estimate of d. When applying the tests for fractional cointegration on the
sample after the estimated break the test by Robinson (2008) still rejects the null of no cointe-
gration, while the test by Wang et al. (2015) does not reject it. As this does not allow us to draw
a concise conclusion on whether a cointegration model is still suitable in general, the estimated
break is likely a break in the regression parameter. This is also supported by the expanding
window estimator of the regression parameter. Figure 6 displays the series of estimates for an
increasing number of observations in steps of one plus intervals of one standard deviation around
them. It can be seen that for the calibration period the estimates remain stable and then start
to change during the early 2000s. However, the increase in the estimate that is induced by the
dotcom-bubble is not large enough to imply a break, as the detector does only find the break
associated with the increase during 2009.

Figure 6: Expanding Window Estimates of θRVsp

If one uses the quadratic spectral kernel instead of the Bartlett kernel to get an estimate for the
long-run covariance matrix while keeping m = 0.65 and automatic bandwidth selection along
Andrews (1991) the detector is able to detect a break as early as November 2008 briefly after
the collapse of the Lehmann Brothers bank. Using this estimated breakpoint as an indication
for a disequilibrium between market and momentum returns and thus redirecting investments
away from momentum could have helped preventing substantial losses during the crash of April
2009. Yet, this breakpoint is quite early before the actual crash and it might be difficult to draw
a concise implication on the investment strategy and on how long the adjustments away from
the momentum strategy should be implemented.

As a general note on the beforehand application it should be kept in mind that m = 0.65 not
only means that we start monitoring in September 1995 but also that at that point it is the goal
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to monitor the cointegration model until May 2020, the last observation in the data. This is
due to the fact that the procedure is a closed end monitoring method, so that one always has
to specify an end to the monitoring period. As discussed in footnote 7 by Wagner and Wied
(2017) it is to some extend up to a semantic discussion if these procedures are to be considered
online monitoring or structural break testing. They can be used for monitoring as they only
depend on estimates up to a certain time point, however if they are applied in retrospect like
in our application and most of the literature they are closer to classical structural break testing
for a given sample as the influence of different lengths of the monitoring period on the empirical
results is usually not discussed. Especially in financial markets a shorter monitoring period may
be sensible in applications that focus more on the monitoring aspect.

6 Conclusion

We propose a new detector that extends the monitoring of classical cointegration regressions
to also allow for fractional cointegration regressions in its null and alternative. For this we
use the exact local Whittle by Shimotsu and Phillips (2005) to estimate the integration order,
we estimate the regression coefficients by FM-OLS by Phillips and Hansen (1990) and use a
HAC- estimator for the long-run variance. The asymptotic distribution is derived as well as the
behavior under the alternative.

In our Monte- Carlo study we examine the size and power properties of our detector and use
the detector by Wagner and Wied (2017) as a benchmark. While their detector suffers from
substantial size distortions for most cases of fractional cointegration our detector keeps the size
fixed for most cases and also for purely stationary or non-stationary cointegration. The power of
our detector is comparable to their test‘s power even though it is rather low for cases of fractional
cointegration in which the reduction of integration is small.

We apply the test to monitor the fractional cointegration regression between the realized volatility
of the momentum strategy and the realized volatility of the market. In this context we contribute
to the literature on finding and predicting momentum crashes, as our detector is able to find the
momentum crash subsequent to the global financial crisis. The idea of a fractional cointegration
model in this regard fuels the literature on theoretical model building for analyzing momentum
crashes and sheds light on possible market forces, which have not been discussed in the literature
yet. However, one should keep in mind that the monitoring methods in general are designed in a
way to find breaks with some delay. Due to this it might be difficult to implement our monitoring
method to forecast a momentum crash before it actually occurs.
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Sibbertsen gratefully acknowledges financial support by Deutsche Forschungsgemeinschaft under
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A Proofs

Proof of Lemma 1:

The limiting distribution stems from the established asymptotic behavior of the FM-OLS esti-
mator by Phillips and Hansen (1990) in Theorem 3.2 in combination with the convergence rate
and the representation of fractionally integrated processes discussed in Davidson and Hashimzade
(2009) and Leschinski (2017) for case a) and Fox and Taqqu (1987) for case b), consistent long-run
variance estimation and the continuous mapping theorem.

Proof of Proposition 1:

The partial sum process of the residuals can be written analogous to Wagner and Wied (2017)
for m ≤ r < s ≤ 1 as

T du−1/2

[sT ]∑
t=1

û+t,m =T du−1/2

[rT ]∑
t=1

û+t,m + T du−1/2

[sT ]∑
t=[rT ]+1

û+t,m

=T du−1/2

[rT ]∑
t=1

û+t,m + T du−1/2

[sT ]∑
t=[rT ]+1

ut − T du−1/2

[sT ]∑
[rT ]+1

v
′
tΩ̂

−1
vv Ω̂

−1
vu−

−T du−1/2

[sT ]∑
t=[τT ]+1

D
′
t(θ̂D,m − θD)− T du−1/2

[sT ]∑
t=[τT ]+1

X
′
t(θ̂X,m − θX).

The first term converges to ω̂Bdu(s) as before. The second term diverges if b = 0 and thus
ut ∼ I(dX) with dX > du as then the scaling factor T du−1/2 is not appropriate anymore. The
remaining three terms converge in distribution. If there is a break in θX but not in du the last
term diverges and the others converge in distribution.

For a break in parameter consider the representation of the scaled partial sum of the adjusted
residuals:

T du−1/2

[sT ]∑
t=1

û+t,m =T du−1/2

[sT ]∑
t=1

ût − T du−1/2

[sT ]∑
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vt‘Ω
−1
vv,mΩvu − T du−1/2

[sT ]∑
t=1

Dt‘( ˆθD,m − θD)

− T du−1/2

[sT ]∑
t=1

Xt‘(θX,m − θX).

Under the alternative of a parameter break this can be written as:

T du−1/2

[sT ]∑
t=1
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t=[rT ]+1

Xt‘(θX − θX,1)
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The consistency follows from this representation since under a parameter break at least one of
the last two terms diverges while the remaining terms converge in distribution.

Proof of Proposition 2

In this case we obtain

T du−1/2

[sT ]∑
t=1

û+t,m ⇒ ωu·vBdu(s) + T dX−du−1/2δωξ

∫ s

r
(BdX (z)−BdX (r))dz

with a non-vanishing extra term on the right hand side, that can be made sufficiently large by
choosing δ large enough. Similar considerations hold true for a break in θX and not in du.
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