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Abstract

Accurate forecasting of solar PV generation is critical for integrating renewable en-
ergy into power systems. This paper presents a multivariate probabilistic forecast-
ing model that addresses the challenges posed by imbalanced data resulting from
day and night-time periods in solar photovoltaic (PV) generation. The proposed
approach offers a robust and accurate method for predicting solar PV output by
incorporating forecast updates and modeling the temporal interdependencies. The
methodology is applied to a case study in France, demonstrating effectiveness across
different spatial granularities and forecast horizons. The model uses advanced data
handling methods combined with copula models, resulting in improved Energy Scores
and Variogram-based Scores. These improvements underscore the importance of ad-
dressing imbalanced data and utilizing multivariate models with repeated updates to
enhance solar forecasting accuracy. This work contributes to advancing forecasting
techniques essential for integrating renewable energy into power grids, supporting
the global transition to a sustainable energy future.
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1. Introduction

Climate change demands urgent global action, particularly through adopting re-
newable energy technologies. Solar photovoltaic (PV) systems play a critical role in
this transition due to their scalability and potential for reducing carbon emissions
(Fernández et al., 2023). However, the integration of large-scale solar PV presents
significant challenges, primarily due to the variability and uncertainty inherent in
solar PV generation (Sinsel et al., 2020). These challenges impact both grid stabil-
ity and market dynamics, making decision-support instruments essential for energy
systems (Hong et al., 2020). While network operators face challenges in maintaining
grid stability due to the variability of solar PV generation (Ahmadi et al., 2018),
market participants must manage increased price volatility and uncertainty in sup-
ply, requiring advanced trading and balancing strategies (Visser et al., 2024). In
this context, particularly novel forecasting techniques are necessary to cope with the
variability and uncertainty inherent to solar PV generation (Yang et al., 2022).

1.1. Background and motivation

With increasing shares of renewable energy sources (RES) in decarbonized energy
systems (Fernández et al., 2023), accurate and reliable forecasts become a funda-
mental element in the decision-making processes of network operators and market
participants (Sweeney et al., 2020). However, over the past decade, literature on
forecasting focused mainly on wind and load predictions, yielding well-established
methods (Hong et al., 2020). This trend might partly be due to the distinct chal-
lenges that solar PV introduces—particularly in managing periods of low or zero
generation during winter and night-time hours (Yang et al., 2022). Addressing these
issues requires the development of forecasting models capable of capturing the full
range of variability and uncertainty associated with solar PV (Li and Zhang, 2020).

A particular challenge is introduced by forecast updates, regularly causing im-
balances in the entire energy system (see, e.g., Zalzar et al., 2020; Boehnke et al.,
2024), and individual trading portfolios (see, e.g., Riddervold et al., 2021; Visser
et al., 2024). To cope with such repeated forecast updates, the limitations of tra-
ditional point forecasts or realization time series have to be overcome (Kolkmann
et al., 2024). Optimal decisions have to be based on possible stochastic evolutions
of infeed expectations (Glas et al., 2020), as summarized in so-called forecast tra-
jectories, which capture the full uncertainty in renewable infeed (Kolkmann et al.,
2024). These trajectories, however, are rarely subject to research for solar PV gener-
ation as their modeling poses a significant challenge given the intermittency of solar
radiation—particularly when covering both day and night-time periods. Instead,
solar PV forecasts commonly focus on infeed expectations for one given look-ahead
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horizon, either resulting in realization trajectories (see, e.g., Golestaneh et al. (2016))
or individual timeseries data (see, e.g., Schinke-Nendza et al., 2021; Schinke-Nendza
and Weber, 2024).

Therefore, we propose a multivariate probabilistic model to generate solar PV
forecast trajectories based on repeated updates that are capable of coping with
the stochastic evolutions of infeed expectations. We are hence extending forecast
methodologies typically applied to wind power (Kolkmann et al., 2024), to imbal-
anced data of day and night-time forecasts for solar PV. This model generates prob-
abilistic forecasts by providing continuous forecast trajectories, offering consistent
scenarios particularly valuable in intraday markets and real-time decision-making
(Zalzar et al., 2020). A key innovation of this approach is its ability to handle the in-
herent data imbalances caused by day and night cycles, improving both the accuracy
and robustness of solar PV forecasts.

By capturing the complex dependencies and variability in solar generation, this
model enhances the ability of system operators and market participants to manage
the challenges of integrating intermittent renewable energy sources (Yang et al.,
2022). This contributes to more efficient and reliable energy system operations
(Boehnke et al., 2024), ultimately supporting the broader goals of decarbonization
and energy transition (Fernández et al., 2023).

1.2. Contributions and structure of this paper

Decision-making processes in energy systems increasingly rely on accurate fore-
casts. Yet, most available techniques consist of predicting realization time series or
point forecasts rather than forecast trajectories that are consistent with forecast up-
dates. Addressing this gap, Kolkmann et al. (2024) developed a multivariate model
for wind power, treating forecast updates as stochastic processes to generate contin-
uous forecast trajectories. While this method, in general, improves the continuous
decision-support based on energy forecasts (Boehnke et al., 2024), transferring it to
solar PV forecasts presents unique challenges. Specifically, the imbalanced nature
of PV data — caused by the binary distinction between day and night — limits
the availability of forecast updates across all horizons, making stochastic modeling
more complex. Consequently, this paper extends the work of Kolkmann et al. (2024)
by addressing these imbalances in PV forecast trajectories through comprehensive
data handling and algorithmic methods, thus enabling more accurate and consistent
probabilistic forecasting. This drives the contributions of this paper:

1. We develop a dedicated approach for multivariate probabilistic forecasts for
solar PV generation. This approach enables continuous decision support by
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providing forecast trajectories with consistent forecast updates — crucial for
the decision-making of traders and system operators.

2. In this context, we comprehensively address the issue of imbalanced data for
continuous PV forecasts based on various — inter alia copula-based—modeling
techniques for multivariate probabilistic forecasts.

3. Different methodical approaches are introduced on the data and algorithm
levels to handle the data imbalance (i.e., due to nocturnal hours) in the training
and test data. We systematically compare different methodical approaches
using multivariate probabilistic forecast metrics and identify a benchmark for
further investigation.

4. A case study for short-term solar PV forecasts is presented based on real-world
data from the French TSO RTE. A comprehensive assessment of the different
multivariate probabilistic modeling approaches with different underlying data
handling methods is conducted for an electrical region in France. Further-
more, the model performance is assessed in detail for data at different spatial
granularities in France.

The paper is structured as follows, see Figure 1: Section 2 presents the founda-
tions of multivariate probabilistic forecasting, focusing on renewable energy gener-
ation. It emphasizes the modeling of forecast updates as stochastic processes. Ad-
ditionally, this section explores the concept of forecast trajectories, which involves
modeling a sequence of forecasts over different horizons to improve accuracy and
reliability. Section 3 delves into the modeling of temporal interdependencies and
methods for handling imbalanced data. It introduces techniques for capturing de-
pendencies across forecast horizons. Section 4 introduces the evaluation metrics used
to assess the accuracy and reliability of the forecast models. Specifically, it explains
the Energy Score and Variogram-based Score and the statistical significance tests
applied to compare different forecasting approaches. Section 5 applies the proposed
methodology to a real-world case study involving short-term solar PV forecasts in
a region of France. This section evaluates the performance of various models and
data handling techniques, with an extended analysis that examines the impact of
different spatial granularities and forecast horizons. Section 6 concludes the paper
by summarizing the key findings, discussing the implications for both research and
practical applications, and suggesting directions for future work in renewable energy
forecasting.
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Figure 1: General methodology of this paper
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2. Multivariate probabilistic forecasting and data imbalances

This Section explores multivariate probabilistic forecasting in renewable energy,
focusing on refining predictions through forecast updates and handling uncertainties
(cf. Section 2.1). Section 2.2 explains how forecast trajectories can be modeled as
stochastic processes to improve decision-making, especially in energy trading and
risk management. Section 2.3 also addresses challenges posed by imbalanced data in
solar forecasts, proposing data-level and algorithm-level approaches to manage the
day-night imbalance without traditional balancing techniques.

2.1. Overview on multivariate probabilistic forecasting

Over the past decades, numerous methods for forecasting renewable energy gen-
eration have been developed and studied (Sweeney et al., 2020). In this context,
(multivariate) probabilistic forecasting sticks out, focusing on techniques to quantify
the uncertainty in renewable energy generation predictions (Hong et al., 2020). Prob-
abilistic forecasts provide a comprehensive view of uncertainty by offering a range of
potential outcomes, unlike single-point deterministic forecasts (Gneiting and Katz-
fuss, 2014). This enhances decision-making, especially in volatile energy markets,
by allowing for better risk management and reduced balancing costs. Probabilistic
methods are adaptable to real-time updates and can incorporate spatial and temporal
dependencies, improving the accuracy and robustness of predictions (Pinson et al.,
2009). Two main perspectives can be distinguished within this forecasting frame-
work: forecast errors and forecast updates. Forecast errors can be derived as the
difference between deterministic point forecasts and actual observations. Probabilis-
tic models can be trained to handle the resulting uncertainties from these imperfect
forecasts (e.g. Golestaneh et al., 2016; Hong et al., 2020). Related methods help
understand and improve the accuracy of initial predictions (Peña and Toth, 2014).
Forecast updates, in contrast, consider the continuous flow of new information over
time, with such updates corresponding to stochastic processes (Krzysztofowicz, 1987;
Altendorfer and Felberbauer, 2023). Through a probabilistic treatment of forecast
updates, prediction ranges, and multivariate forecast distributions can be continu-
ously refined based on the latest available data, enabling consistent decision-making
(Kolkmann et al., 2024).

For this reason, the remainder of the paper focuses on forecast updates. Un-
derstanding the interdependencies between these updates is crucial for improving
risk assessment and management. As highlighted by Garnier and Madlener (2015),
real-time forecasting updates significantly enhance decision-making processes, par-
ticularly for portfolio managers in power systems. These updates allow for the de-
velopment of more effective trading strategies and better risk management. In intra-
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day markets, rapidly incorporating new information is vital for optimizing trading
positions, adjusting bids dynamically, and managing forecast errors — ultimately re-
ducing costs related to energy imbalances (Koch, 2021). Gürtler and Paulsen (2018)
further explore the influence of renewable energy forecasts on electricity prices in the
German market, demonstrating that wind and solar PV generation typically lowers
prices.

2.2. Modeling forecast updates and trajectories

In general, we consider forecast trajectories of solar generation, defined as a se-
quence of forecasts pt,T that are issued at different forecast times t (time of infor-
mation update) for the same delivery time T (Kolkmann et al., 2024). The forecast
horizon k can be defined as k = T − t. Forecast trajectories for two different T
are shown in Figure 2 together with the updates resulting from advancing t. The
forecast errors are also shown for clarification and differentiation.

Figure 2: Forecast trajectories for two delivery times T . The updates are marked in red, and the
errors are in grey arrows. The focus is on the correlation between updates across different forecast
horizons k.

To obtain (normalized) forecast updates, we normalize the data using the clear
sky production pCS, i.e., the estimated maximum potential power output of the PV
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system under ideal weather conditions without any atmospheric obstructions. There-
upon, we consider a matrix p̂̂p̂p|T |,|K| = (p̂t,t+k)t∈T ,k∈K of these normalized forecasts with
elements p̂t,t+k ∈ [0, 1]. The forecast updates can be calculated as follows

δt,t+k = p̂t,t+k − p̂t−1,t+k, ∀t ∈ Ttrain, k ∈ K, (1)

with δt,t+k ∈ [−1, 1]. The forecast trajectories for two different delivery times T and
the corresponding forecast updates and errors are shown in Figure 2. We focus on
the temporal interrelation between forecast trajectories, i.e., the inter-correlation of
forecast trajectories. In contrast, the interrelation within one forecast trajectory,
i.e., the intra-correlation, should be negligible (Samuelson, 1965; Kolkmann et al.,
2024). Structuring the updates in a matrix ∆∆∆|Ttrain|,|K| = (δt,t+k)t∈Ttrain,k∈K analogous
to Figure 3, we thus analyze the interrelation of the columns. In this illustration, the
diagonal movement from the top right to the bottom left corresponds to a trajectory:
For a constant T , the forecasts are updated as t progresses. We also have a vector
p̂̂p̂p|T | = (pT )T∈T of normalized (pseudo-)observations.

2.3. Imbalanced data in solar forecast trajectories

In this paper, we address the challenges posed by imbalanced data in multivariate
probabilistic forecasts of PV generation, focusing on predicting consistent forecast
trajectories. The following distinctions are pertinent: Imbalanced data refers to
any dataset with an unequal distribution of observations over classes, with some
classes having significantly more instances than others (see, e.g. He and Garcia,
2009; Haixiang et al., 2017). This disparity can bias machine learning algorithms,
leading them to favor most classes during training. Unbalanced data refers to a
distribution over classes that is not balanced due to incomplete data or changes in
the statistical population (see, e.g. Baltagi and Song, 2006; Baltagi and Liu, 2020).
Unlike imbalanced data, which are inherently unequally distributed, unbalanced data
imply a certain degree of incompleteness or correctable class distribution. Meanwhile,
missing data occurs when some observations or entries are absent due to reasons such
as errors in data collection, data loss, or non-responses in surveys. Proper handling
of missing data is crucial, as it can lead to biased estimates and reduce the statistical
power of analyses if not addressed appropriately (see, e.g. Little and Rubin, 2019;
Tawn et al., 2020). The primary distinction between imbalanced, unbalanced, and
missing data lies in their impact on dataset integrity: imbalanced data refer to an
inherently unequal representation of classes, affecting classification (Haixiang et al.,
2017), whereas unbalanced and missing data involve the absence of values, potentially
compromising the accuracy and reliability of data analysis (see Baltagi and Liu, 2020;
Tawn et al., 2020).
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In the case of PV, there are two classes of observations: periods (hours) during
daytime and periods during nighttime. The considered normalized forecast updates
δt,t+k are limited to the domain [−1, 1] during day-time and become zero during
nighttime. In this context, Figure 3 illustrates the twofold structure of imbalanced
training data. This imbalanced data serves as a basis for creating multi-variate
probabilistic PV forecasts (i.e., scenarios of forecast trajectories) by considering the
correlation across multiple forecast horizons. The training data is structured as
follows: First, the row-wise consideration per forecast time t defines a forecast issued
at time t for k forecast horizons. Each issued forecast possibly covers multiple day-
time and night-time periods—or may exclusively consist of day-time and night-time
periods. Hence, the imbalance ratio, measuring this disparity, varies significantly,
depending on the forecast time t, the season (sunrise and sunset), and the number
of forecast horizons k. Second, the column-wise consideration per forecast horizon
k yields the distributions of the two classes. In the case of night-time periods, the
forecast updates become zero per definition. During daytimes δt,t+k ∈ [−1, 1] holds.

Figure 3: Twofold structure of imbalanced data due to daytimes and nighttimes: Imbalance per
forecast issuing time t and per forecast horizon k.

Consequently, handling imbalanced data is crucial, especially when modeling con-
sistent forecast trajectories. Simply eliminating issued forecasts with imbalances from
the dataset will at least cause a loss of information. This loss may be significant, or it
may not be that important — depending on whether the maximum forecast horizon
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K is larger than the number of consecutive daytime periods. A common approach is
to limit investigations of (multivariate) probabilistic PV forecasts to specific trajec-
tories (e.g. Golestaneh et al., 2016), or timeseries data (e.g. Schinke-Nendza et al.,
2021; Schinke-Nendza and Weber, 2024), that exclude nocturnal hours—thus avoid-
ing the issue of data imbalances. However, these approaches lack the capability
to provide continuous and consistent forecast trajectories that are pivotal for the
decision-support of traders and system operators. A joint consideration of night and
day periods would heavily distort column-wise distributions in these approaches.
Consequently, this necessitates adequate techniques for dealing with the previously
raised issue of imbalanced datasets.

However, in contrast to the common viewpoint on imbalanced data, cf. He and
Garcia (2009), we are not interested in balancing data, e.g., by oversampling or
undersampling, but in obtaining unary-classified data (i.e., of daytime periods) ex-
clusively. Similar to the techniques of treating imbalanced data, cf. He and Garcia
(2009), two approaches can be distinguished:

• First, addressing imbalances at the data level. Night-time instances in the
forecast are replaced to create a unary-classified (daytime) dataset. Similar
to oversampling techniques for imbalanced data (He and Garcia, 2009), this
generates synthetic data, potentially leading to over-fitting. Nevertheless, this
data-level adjustment facilitates the application of standard methods for train-
ing multivariate probabilistic forecasting models.

• Second, addressing imbalances at the algorithm level. Existing training meth-
ods for multivariate probabilistic forecasting are tailored to handle imbalanced
data directly—allowing the usage of imbalanced data. This approach ensures
that the models are adapted to reflect inherent data imbalances during training
and sampling, i.e., Monte Carlo simulations.

Therefore, this paper aims to explore the extent to which data-based and algorithm-
based techniques improve the quality of multivariate probabilistic forecasts across
various models, with a particular focus on achieving consistent forecast trajectories,
following Kolkmann et al. (2024).

3. Modeling temporal interdependencies for imbalanced data

This Section outlines the methodology for developing multivariate probabilistic
forecasts for solar PV power, focusing on data preprocessing, modeling temporal
interdependencies, and handling imbalanced data. In Subsection 3.1, methods for
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modeling temporal interdependencies are introduced, including separating training
and test datasets and modeling marginal distributions of forecast updates. Addi-
tionally, techniques to address data imbalances at both the algorithmic and data
levels are discussed. In Subsection 3.2, the generation of forecast trajectories using
probabilistic models and Monte Carlo simulations is covered, ensuring consistent and
accurate forecasts over time.

3.1. Modeling interdependencies

For modeling temporal interdependencies, we can separate both matrices, i.e.,
forecast updates and observed forecast trajectories, into two sets Ttrain and Ttest.
Here, Ttrain is the training dataset that serves as a basis for training probabilistic
models introduced below. Thereupon, multivariate probabilistic forecasts can be
obtained, e.g., using a Monte Carlo simulation, and the performance of different
models can then be tested for the test dataset Ttest.

3.1.1. Marginal distributions

The marginal distribution of forecast updates δt,t+k can be modeled using empiri-
cal cumulative distribution functions (CDF), see McNeil et al. (2015). The marginal
distribution Fk for k ∈ K can then be approximated by the empirical CDF as

Fk (δk) ≈ F̃k (δk) =
1

|Ttrain|+ 1

∑
τ∈Ttrain

I{δ̃k,τ≤δk} (2)

where I{δ̃k,τ≤δk} is the indicator1 and
(
δ̃k,τ

)
k∈K,τ∈Ttrain

describes the training dataset.2

Furthermore, uk = Fk (δk) describes the probability of δk for k ∈ K.
In extreme value theory, these empirical CDFs are known to be poor estimators

of the underlying distribution in the tails (McNeil et al., 2015). However, for our
applications, where forecast updates are strictly limited to a given interval, i.e.,
δt,t+k ∈ [−1, 1], the boundedness of the distribution may justify the use of empirical
CDFs.

3.1.2. Handling data imbalances

As discussed in Section 2.3, we need to develop adequate techniques to deal with
imbalanced data before capturing the temporal dependencies between the updates of

1Returns 1 if the condition in the subscript {·} holds and 0 if not.
2Note that the denominator |Ttrain|+ 1 in Eq. (2) ensures that the data strictly lies within the

unit cube.
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the different forecast horizons in Section 3.1.3. At the algorithmic level, we introduce
the new pairwise methodological approach PRW. It is characterized by the pairwise
handling of relationships between forecast horizons, which can be modeled using
various approaches. For each pair of forecast horizons i and j within uk, the PRW
method models the joint behavior of ui = Fi (δi) and uj = Fj (δj). For each pair
of horizons, the relevant parameters — depending on the chosen temporal depen-
dence structure (cf. Section 3.1.3) — are estimated using the available data. After
estimating the pairwise relationships for all horizon pairs, these are combined into a
complete k × k matrix, encapsulating the dependencies across all horizons. It is a
flexible and advanced technique designed to manage datasets imbalances, preserving
the day-time data’s integrity.

For comparison purposes, we also implement the methods on the data level given
in Table 1. Each method addresses the issue of missing or incomplete night-time
data differently, impacting the overall analysis of temporal dependencies in solar PV
forecasting.
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Method Description
CLMN For the column-wise mean method (CLMN), every night-hour

value is replaced with the mean of the whole period. This
approach simplifies the dataset but may introduce bias by
artificially inflating night-hour values.

CLMD The column-wise median method (CLMD) is similar to
CLMN, but instead of the mean, the median value of the
entire period is used for night-hour entries. This offers more
robustness against outliers compared to the mean-based ap-
proach.

RED The reduced approach (RED) retains only rows with day-time
entries in every column, eliminating rows with missing data
for night hours. However, as the forecast horizon increases,
the data available for calculating temporal dependencies de-
creases, potentially reducing model accuracy.

REG A regression-based imputation (REG) is applied to fill in noc-
turnal data, using existing day-time data to predict missing
values. This method enhances the completeness of the data
matrix, enabling a more accurate analysis of temporal depen-
dencies. The model is trained using neighboring columns with
day-time data, and predicted values are inserted back into the
dataset.

ZER This method sets all values for night hours to zero (ZER), of-
fering a straightforward and intuitive approach. While simple,
it is a useful benchmark for comparing more complex impu-
tation techniques.

PRW New methodological approach with pairwise (PRW) estima-
tion of relationships between all pairs of forecast horizons (cf.
3.1.2).

Table 1: Overview of methods for handling imbalanced data at the data and algorithmic level

3.1.3. Temporal dependence structure

The distribution and temporal interdependence of forecast updates δt,t+k can be
described using various statistical models. Among these, the multivariate normal
MVN and uncorrelated multivariate normal UMVN distributions rely on standard
statistical assumptions, thus serving as benchmarks.

In the MVN framework, the forecast updates δt,t+k are assumed to follow a normal
distribution with a mean vector µµµ and a covariance matrix ΣΣΣ. The joint density
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function is given by

f(δδδ) =
1

(2π)K/2|ΣΣΣ|1/2
exp

(
−1

2
(δδδ − µµµ)⊤ΣΣΣ−1(δδδ − µµµ)

)
, (3)

where K is the number of forecast horizons, and δδδ is the vector of forecast updates.
In the UMVN approach, the forecast updates are assumed to be uncorrelated,

meaning the covariance matrix ΣΣΣ is diagonal. The joint density function simplifies
to

f(δδδ) =
K∏
k=1

1√
2πσ2

k

exp

(
−1

2

(δk − µk)
2

σ2
k

)
, (4)

where µk and σ2
k are the mean and variance of the forecast update for horizon k,

respectively.
By employing these methods, the temporal interdependence of forecast updates

and errors may be captured based on an established and robust framework for mul-
tivariate modeling. However, more sophisticated approaches such as copulas are
commonly used in forecasting applications to capture better the dependence struc-
ture of multiple forecasts (see, e.g. Golestaneh et al., 2016). Copulas can describe the
temporal interdependence of forecast updates δt,t+k. Recalling that δk for k ∈ K de-
notes the random variable of updates, the multivariate distribution F (with marginal
distributions Fk for k ∈ K) can be represented by the copula C as

F
(
δ1, . . . , δ|K|

)
= C

(
F1 (δ1) , . . . , F|K|

(
δ|K|
))

, (5)

based on the theorem of Sklar (1959).
Although multiple copulas are defined for bivariate distributions, only the Gaus-

sian copula GC and the t-copula TC may be directly generalized to higher dimen-
sional multivariate cases. Gaussian copulas are commonly used in forecasting appli-
cations. The stochastic dependence structure of uuu – the probabilities of forecasting
deviations – is thereby modeled using a copula CG based on the multivariate normal
distribution according to

CG (uuu|RRRG) =
1√

detRRRG

exp

(
−
xxx⊤ (RRR−1

G − III
)
xxx

2

)
, (6)

whereRRRG is the Gaussian copula’s correlation matrix, xxx =
(
Φ−1 (u1) , . . . ,Φ

−1
(
u|N |

))⊤
is the vector of inverse cumulative standard normal distribution and I the identity
matrix (McNeil et al., 2015; Bouyé et al., 2000).
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Despite being used frequently in forecasting applications, Gaussian copulas can-
not describe the tail-dependence of continuous marginal distributions, i.e., the prob-
ability of co-occurrence of relatively rare events (McNeil et al., 2015). Therefore,
we propose a t-copula to model the temporal interrelation of forecasting updates for
multiple forecast horizons. In this context, the density of the t-copula is given by

Ct (uuu|RRRT , ν) =
Γ
(
ν
2

)|N |−1
Γ
(

ν+|N |
2

)
Γ
(
ν+1
2

)|N | √
detRRRt

·

·
(
1 +

xxx⊤RRR−1
t xxx

ν

)− ν+|N|
2 ∏

n∈N

(
1 +

x2
n

ν

) ν+1
2

,

(7)

with Γ (·) the gamma function, ν the degrees of freedom, and RRRT the correlation
matrix of the t-copula (McNeil et al., 2015; Bouyé et al., 2000).

3.2. Obtaining forecast trajectories

We are interested in forecast trajectories, which involve simulating the evolution
of forecasts over the intraday market period based on a sequence of forecast updates.
To generate these trajectories, we fit multivariate probabilistic models to the data
of forecast updates δδδ ∈ R|Ttrain|×|K|. Thereupon, we can draw samples from the mul-
tivariate probabilistic distributions, with s ∈ S scenarios to generate a multivariate
probabilistic forecast. We simulate forward from the first known forecast for T , con-
structing anteceding consistent forecasts by adding all subsequent updates from the
sample.

Combining the sample δ
(s)
t,t+k of forecast updates with the normalized forecasts of

the test dataset p̂̂p̂p|Ttest|,|K| we can derive a probabilistic forecast as follows

p̃
(s)
t,t+k = p̃

(s)
t−1,t+k + δ

(s)
t,t+k, ∀s ∈ S, t ∈ Ttest, k ∈ K, (8)

and
p̃
(s)
t−1,t+k = p̃

(s)
t−2,t+k + δ

(s)
t−1,t+k, ∀s ∈ S, t ∈ Ttest, k ∈ K, (9)

thus

p̃
(s)
t,t+k = p̂t+k−|K|,t+k +

|K|−k−1∑
κ=0

δ
(s)
t−κ,t+k, ∀s ∈ S, t ∈ Ttest, k ∈ K, (10)

where s ∈ S defines the forecast trajectories (scenarios).
Reversing the normalization ensures that energy-based metrics like the Energy

and Variogram-based Score accurately reflect actual power values. This process
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involves multiplying the normalized forecast values by the clear sky production and
dividing by the installed capacity. This step is crucial for the correct interpretation
and meaningful comparison of forecast performance in real-world terms.

4. Evaluation metrics

To assess and compare the forecast performance of the different approaches and
models for handling imbalanced data, we use two standard evaluation metrics, the
Energy Score (Section 4.1) and the Variogram-based Score (Section 4.2).

4.1. Energy Score

The Energy Score (ES) is, according to Gneiting et al. (2007), defined as

ESt =
1

|S|
∑
s∈S

∥∥∥p̂t̂pt̂pt − p̃̃p̃p
(s)
t

∥∥∥
2

− 1

2 |S|2
∑

s1,s2∈S

∥∥∥p̃̃p̃p(s1)t − p̃̃p̃p
(s2)
t

∥∥∥
2
,

(11)

where p̃̃p̃p
(s)
t =

(
p̃
(s)
t,t+k

)
k∈K

=
(
p̃
(s)
t,t+1, . . . , p̃

(s)
t,t+|K|

)⊤
is the vector of forecasts in scenario

s issued at time-step t and p̂̂p̂pt the vector of the observed forecasts at the same time-
step. Here, p̃̃p̃p

(s)
t can be obtained from the forecast update process via Eq. (10).

Following Pinson and Girard (2012), we can approximate the Energy Score as

ESt =
1

|S|
∑
s∈S

∥∥∥p̂t̂pt̂pt − p̃̃p̃p
(s)
t

∥∥∥
2

− 1

2 (|S| − 1)

∑
s∈S\{|S|}

∥∥∥p̃̃p̃p(s)t − p̃̃p̃p
(s+1)
t

∥∥∥
2
,

(12)

The Energy Score is frequently used to evaluate probabilistic forecasts (Bjerreg̊ard
et al., 2021), but Scheuerer and Hamill (2015) showed that the ES lacks sensitivity to
incorrectly specified correlations in multivariate forecasts. While it effectively detects
mean-biased forecasts, it is unreliable when it comes to identifying incorrect depen-
dency structures or inaccurate variance predictions. That is why the Variogram-
based Score (VS) is employed as an additional proper scoring rule to evaluate the
temporal dependence structure of multivariate probabilistic forecasts.
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4.2. Variogram-based Score

Given the explanations in Section 3.2, we construct forecast trajectories by sim-
ulating from the first known forecast for a fixed delivery time T. These forecasts are
compared to each other for all horizons k ∈ K and the Variogram-based Score (VS)
follows as

V St =
∑

k1,k2∈K

wk1,k2

(
1

|S|
∑
s∈S

∣∣∣p̃(s)T−k1,T
− p̃

(s)
T−k2,T

∣∣∣γ
− |p̂T−k1,T − p̂T−k2,T |

γ

)2

,

(13)

where γ is the order of the VS (whereby Scheuerer and Hamill (2015) propose 0.5
for accurate results) and wk1,k2 is a weighting factor. Like the ES, this scoring rule
is also negatively oriented: lower values indicate a higher forecasting accuracy.

4.3. Statistical significance test

To evaluate the comparative performance of the two models, we employ the
Diebold-Mariano (DM) test, following Gneiting and Katzfuss (2014). It is designed
to test the null hypothesis that the predictive accuracy of the models is statistically
indistinguishable. The test statistic is calculated based on the mean differences of
the performance scores ES and VS. For a given significance level, the DM test statis-
tic can indicate which model shows superior predictive performance (Gneiting and
Katzfuss, 2014). This approach ensures a robust assessment of model efficacy in
probabilistic forecasting contexts.

5. Application

In this section, we apply the methodology to a case study in France, evaluating the
models’ performance across different spatial scales and forecast horizons to validate
the approach using real-world forecast data. In this context, Section 5.1 describes
the dataset that serves as a case study in this work. Thereupon, in Section 5.2 the
results are analyzed—assessing the probabilistic forecast approaches as outlined in
Section 3.2 based on the scoring methods detailed in Section 4.

5.1. Case study

The case study used in this work is based on a forecasting dataset provided by
RTE, the electricity transmission system operator of France. In this context, data
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is available on three different levels of spatial granularity: 1) substation level, 2)
regional level, and 3) country level. On the substation level, the dataset includes
aggregated data from five substations in the Centre-Val de Loire region. On the
regional level, the dataset includes seven electrical areas R1 to R7, which do not
necessarily correspond to geographical regions, with regional dispatching in the cities
of Lille, Nancy, Lyon, Marseille, Toulouse, Nantes, and St Quentin. On the country
level, the data covers the entirety of France. Figure 4 depicts the substations and
regions.

Figure 4: Overview of regions and selected substations in France

Our evaluation process involves generating 1,000 Monte Carlo simulations for
various imputation methods, based on a month-wise train-test split of the entire
dataset of 2021, i.e., separately using each month as test data, while the remainder
of the data serves as training data for the model.

We structure our analysis of the results twofold: First, in Section 5.2.1, insights
for the different probabilistic forecasting approaches are given on a regional level—
using one exemplary region, with a long forecast horizon of 12 hours, i.e., where data
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is highly imbalanced. Second, in Section 5.2.2 follows with an in-depth analysis for
different levels of spatial granularity and forecast horizons.

5.2. Results

In the following, the results of different probabilistic forecasting approaches are
assessed to provide insights into the effectiveness of different data handling methods
and temporal dependence structures, as well as their impact on forecast accuracy.
By systematically comparing these methods, we aim to identify the most robust
approach for capturing temporal correlations of PV forecast updates.

5.2.1. Regional-level with a 12 hour forecast horizon

For our first analyses, we exemplarily consider region R6 around Nantes, see
Figure 4, which corresponds to the regions Bretagne, Pays de Loire, Centre-Val de
Loire and the former region Poitou-Charentes, and a forecast horizon of 12 hours.
A visualization for the simulations using PRW and TC is given in Figure 5 as a
quantile plot of simulations and observations. They all start at the same point,

Figure 5: Quantile plot of 1000 PRW-TC simulations for T = 2nd July 2021 10:00 am with k = 12
in R6 region
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which is the first available forecast, and then deviate since they use different samples
for the forecast trajectories. Table 2 depicts – as an example – the results of the ES
for different distribution models as monthly means, given the data handling method
PRW. The same does Table 3 for the VS.

Table 2: Energy Scores of probabilistic forecast update models based on different distribution
assumptions and the PRW data handling method for the forecast horizon k = 12 in Region R6

Month UMVN MVN GC TC

1 0.0396 0.0396 0.0395 0.0397
2 0.0525 0.0523 0.0526 0.0529
3 0.0488 0.0488 0.0483 0.0485
4 0.0493 0.0493 0.0481 0.0481
5 0.0569 0.0569 0.0564 0.0566
6 0.0565 0.0566 0.0563 0.0563
7 0.0535 0.0537 0.0534 0.0532
8 0.0612 0.0612 0.0609 0.0611
9 0.0482 0.0484 0.0480 0.0480
10 0.0452 0.0450 0.0450 0.0448
11 0.0466 0.0464 0.0467 0.0468
12 0.0478 0.0479 0.0481 0.0481

Ranking: 1st, 2nd, 3rd

Building on the discussions from Section 4, it is essential to reiterate that the
ES and the VS differ in their structural approaches. The ES primarily evaluates
the probability distribution for a given combination of forecast time and horizon,
making it suitable for assessing overall distributional similarity. In contrast, the VS
is more specific as it focuses on reproducing differences for updates across various
forecast horizons, which is crucial for accurately capturing the temporal dynamics.
For our application, a preferred model should perform well regarding the Energy
Score, positioning itself as a strong aspirant. However, the main evaluation comes
through the Variogram-based Score, where the best model should outperform others
by effectively capturing the temporal correlations and differences in forecast updates.

An analysis of the ranking of the scores suggests that the copula models exhibit
the best performance for the PRW data handling method. For the ES (cf. Table 2),
copula models perform best in most cases. In terms of the VS (cf. Table 3), TC,
and GC consistently rank first and second best. We employ the Diebold-Mariano
test to determine the statistical significance of the observed differences in scores (see
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Table 3: Variogram-based Scores of probabilistic forecast update models based on different distri-
bution assumptions and the PRW data handling method for the forecast horizon k = 12 in Region
R6

Month UMVN MVN GC TC

1 0.4354 0.4338 0.4020 0.4037
2 0.5750 0.5737 0.5426 0.5460
3 0.5880 0.5858 0.5018 0.5037
4 0.7564 0.7582 0.6240 0.6236
5 0.6617 0.6613 0.5675 0.5678
6 0.5744 0.5751 0.4991 0.4984
7 0.6477 0.6497 0.5486 0.5490
8 0.7329 0.7347 0.6451 0.6433
9 0.5243 0.5242 0.4437 0.4440
10 0.4921 0.4909 0.4251 0.4241
11 0.4599 0.4591 0.4518 0.4498
12 0.7229 0.7230 0.7062 0.7075

Ranking: 1st, 2nd, 3rd

Section 4.3) at a 5 percent significance level. This test enables pairwise comparisons
across all model variants, and the overall results collected in Table 4 for the Energy
Score and Table 5 for the Variogram-based Score facilitate the selection of the most
suitable model configuration. The DM test is applied to the underlying hourly time
series, with the results aggregated into scores: each model listed in a row earns
one point per month when it outperforms the model specified in the columns. The
last column provides the total number of ”beats” each model achieved. The last
row gives information about how often, in terms of months, the model is beaten by
another one. Consequently, a well-performing model should exhibit high row entries
and achieve a high sum in the last column. Additionally, the selected model variant
should have as many zero entries as possible in the corresponding column, indicating
that it is not outperformed by any other model variant in any month.

For the ES (Table 4), the models RED-TC with a beat sum of 169, PRW-GC
(166), PRW-TC (164), and RED-GC (164) stand out, having also the lowest numbers
of defeats in the column sums. In the decisive VS (Table 5), the PRW method
emerges as the favorite option with 214 beats and 5 losses with TC and 212 beats
and 2 losses with GC. Both RED-TC and RED-GC reach 211 beats and 3 or 4 losses.
Overall, it can be observed that PRW and RED, combined with copulas, perform
best and are most suitable for simulating update-based forecast trajectories. Both
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models differ only slightly in performance. RED is a consistent method for large and
complete datasets and limited forecast horizons. As described in Section 3.1.2, using
RED with large forecast horizons could remove too much data due to the twofold
data structure in the case of PV. However, in specific applications, this approach
may still be sufficient. The new methodological approach PRW includes more of the
real-world dataset, making it slightly more accurate, although computationally more
demanding.

Table 4: Energy Score: Diebold-Mariano test beats

CLMN CLMD PRW REG RED ZER
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V
N

G
C
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C
L
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N

UMVN - 0 12 12 5 5 8 9 1 1 0 0 0 0 0 0 1 1 0 0 6 6 9 8 84
MVN 2 - 12 12 6 5 9 9 1 1 0 0 0 0 0 0 1 1 0 0 6 6 9 8 88
GC 0 0 - 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 4 4 6 5 27
TC 0 0 0 - 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 4 4 6 5 27

C
L
M

D

UMVN 4 3 11 11 - 1 11 11 1 1 0 0 0 1 2 3 0 1 0 0 6 7 10 10 94
MVN 4 4 11 11 2 - 11 11 0 1 0 0 0 1 3 3 1 1 1 0 6 6 10 10 97
GC 0 0 4 4 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 6 6 22
TC 0 0 5 4 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 1 1 6 6 23

P
R
W

UMVN 6 8 11 11 8 8 8 8 - 1 1 2 5 5 6 6 1 0 1 2 8 8 8 8 130
MVN 6 7 11 11 7 8 8 8 0 - 3 3 5 5 5 6 0 2 2 3 8 8 8 8 132
GC 10 9 11 11 8 8 9 9 3 6 - 4 7 7 8 8 5 5 2 1 9 9 9 8 166
TC 11 10 11 11 8 8 9 9 5 4 1 - 6 6 8 9 5 6 1 1 9 9 9 8 164

R
E
G

UMVN 11 11 12 12 9 8 12 11 2 2 0 0 - 1 10 11 1 3 0 0 7 7 10 10 150
MVN 11 11 12 12 8 8 10 10 1 1 0 0 2 - 9 9 1 2 0 0 7 8 10 10 142
GC 8 9 12 12 6 7 10 10 1 1 0 0 1 1 - 0 1 1 1 1 6 7 9 8 112
TC 9 8 12 12 6 6 10 10 1 1 0 0 1 1 0 - 1 1 1 1 6 6 9 8 110

R
E
D

UMVN 6 6 11 11 8 8 8 8 0 1 3 3 5 5 6 6 - 0 2 3 8 8 8 8 132
MVN 6 6 11 11 8 8 8 8 2 3 3 4 5 4 6 6 2 - 2 4 8 8 8 8 139
GC 10 10 11 11 8 8 9 9 5 5 1 1 8 6 8 8 6 4 - 1 9 9 9 8 164
TC 11 10 11 11 8 8 9 9 4 7 1 1 7 7 9 9 5 6 2 - 9 9 8 8 169

Z
E
R

UMVN 3 3 6 6 2 2 8 8 2 2 2 2 2 2 3 3 2 2 2 2 - 2 11 11 88
MVN 3 3 6 6 2 2 8 8 2 2 2 2 2 2 2 3 2 2 2 2 3 - 11 11 88
GC 2 2 3 4 0 0 3 2 0 0 0 0 0 0 1 2 0 1 0 0 0 0 - 1 21
TC 2 2 4 4 1 1 3 3 1 1 1 0 1 1 1 2 1 1 1 0 0 0 4 - 35

Beaten by 125 122 210 210 110 109 179 178 32 41 18 22 57 55 87 94 36 40 20 21 131 133 193 181
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Table 5: Variogram-based Score: Diebold-Mariano test beats

CLMN CLMD PRW REG RED ZER
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UMVN - 2 11 11 9 8 11 11 4 4 0 0 1 1 0 0 4 4 0 0 9 9 11 11 121
MVN 1 - 10 10 9 8 11 11 4 4 0 0 1 1 0 0 4 4 0 0 9 9 11 11 118
GC 1 1 - 1 1 1 12 12 1 1 0 0 1 1 0 0 1 1 0 0 1 1 12 12 61
TC 1 1 2 - 1 1 12 12 1 1 0 0 1 1 0 0 1 1 0 0 1 1 12 12 62

C
L
M

D

UMVN 0 0 9 9 - 1 11 11 4 4 0 0 1 1 0 0 4 4 0 0 8 8 11 11 97
MVN 0 0 9 9 2 - 11 11 4 4 0 0 1 1 0 0 4 4 0 0 9 9 11 11 100
GC 0 0 0 0 0 0 - 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 12 12 30
TC 0 0 0 0 0 0 1 - 1 1 0 0 1 1 0 0 1 1 0 0 0 0 12 12 31

P
R
W

UMVN 5 5 5 5 5 5 8 8 - 1 0 0 3 3 4 3 0 1 0 0 5 5 8 8 87
MVN 5 5 5 5 5 5 7 7 0 - 0 0 3 3 4 4 1 2 0 0 5 5 8 8 87
GC 10 10 11 11 10 10 11 11 11 11 - 1 12 12 8 8 11 11 0 1 10 10 11 11 212
TC 10 10 11 11 10 11 11 11 11 11 0 - 12 12 8 8 11 11 2 0 10 10 11 11 214

R
E
G

UMVN 8 8 8 8 8 8 11 11 7 7 0 0 - 0 4 4 7 7 0 0 8 8 11 11 144
MVN 8 8 8 8 8 8 11 11 7 7 0 0 2 - 4 4 7 7 0 0 8 8 11 11 146
GC 11 11 11 11 11 11 12 12 7 7 1 1 7 7 - 1 7 7 1 1 12 12 12 12 185
TC 11 11 11 11 11 11 12 12 7 7 1 1 7 7 0 - 7 7 1 1 12 12 12 12 184

R
E
D

UMVN 5 5 5 5 5 5 7 8 0 0 0 0 3 3 4 4 - 0 0 0 5 5 8 8 85
MVN 5 5 5 5 5 5 8 8 2 2 0 0 3 3 4 4 0 - 0 0 5 5 8 8 90
GC 10 10 11 11 10 10 11 11 11 11 0 1 12 12 8 8 11 11 - 0 10 10 11 11 211
TC 10 10 11 11 10 10 11 11 11 11 0 1 12 12 8 8 11 11 0 - 10 10 11 11 211

Z
E
R

UMVN 0 0 7 7 0 0 11 11 4 4 0 0 1 1 0 0 4 4 0 0 - 1 11 11 77
MVN 0 0 7 8 0 0 11 11 4 4 0 0 1 1 0 0 4 4 0 0 0 - 11 11 77
GC 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 - 0 4
TC 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 2 - 6

Beaten by 101 103 157 157 120 118 211 211 104 105 2 5 86 84 56 56 103 105 4 3 137 138 238 236
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5.2.2. Extended analysis using different granularities and horizons

We now compare the results obtained across different forecast horizons and vari-
ous levels of spatial granularity. As highlighted in Section 5.1, the dataset includes
three different levels of spatial granularity: 1) substation level, 2) regional level, and
3) country level.

The values from the respective spatial granularity levels are averaged to provide
a comprehensive summary. Tables 6 and 7 depict the results of Energy Score and
Variogram-based Score for different probabilistic forecast approaches with different
spatial granularity and two forecast horizons (i.e., 6 and 12 hours). The results show-
case the mean scores and the deviations of various data handling methods relative
to the PRW method—as it achieves the lowest scores in most cases for the decisive
Variogram-based score.

Table 6: Benchmark of mean Energy Scores and deviations for different spatial granularit and
forecast horizons.

Scope CLMN CLMD PRW REG RED ZER

Substation 6h
Mean Score 0.0624 0.0628 0.0613 0.0614 0.0613 0.0628
Deviation 1.74% 2.44% - 0.09% -0.04% 2.53%

Substation 12h
Mean Score 0.0772 0.0776 0.0763 0.0765 0.0763 0.0776
Deviation 1.14% 1.63% - 0.25% -0.07% 1.65%

Region 6h
Mean Score 0.0426 0.0429 0.0416 0.0417 0.0416 0.0431
Deviation 2.50% 3.26% - 0.17% -0.03% 3.67%

Region 12h
Mean Score 0.0538 0.0540 0.0528 0.0532 0.0528 0.0542
Deviation 1.83% 2.21% - 0.68% -0.05% 2.64%

France 6h
Mean Score 0.0266 0.0267 0.0256 0.0258 0.0256 0.0272
Deviation 3.90% 4.10% - 0.44% -0.02% 5.92%

France 12h
Mean Score 0.0335 0.0335 0.0327 0.0329 0.0326 0.0339
Deviation 2.63% 2.66% - 0.83% -0.08% 3.79%

The RED method demonstrates very similar performance to PRW, sometimes
even delivering slightly lower scores in specific cases, such as the substation-level
ES for a 6-hour forecast horizon, where RED scores 0.0613 compared to PRW’s
identical score, though RED’s deviation is marginally better at−0.04% versus PRW’s
baseline. This alignment suggests that RED may be a viable alternative under
certain conditions, especially when computational or data handling constraints favor
its application. The distinction between PRW, RED, and the other methods becomes
particularly evident when examining the deviations. Methods like CLMN and CLMD
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Table 7: Benchmark of mean Variogram-based Scores and deviations for different spatial granularit
and forecast horizons.

Scope CLMN CLMD PRW REG RED ZER

Substation 6h
Mean Score 0.2729 0.2746 0.2699 0.2743 0.2697 0.2746
Deviation 1.10% 1.74% - 1.61% -0.07% 1.74%

Substation 12h
Mean Score 1.1209 1.1287 1.0538 1.0913 1.0536 1.1288
Deviation 6.37% 7.10% - 3.55% -0.02% 7.12%

Region 6h
Mean Score 0.1453 0.1479 0.1381 0.1389 0.1382 0.1561
Deviation 5.15% 7.08% - 0.56% 0.02% 12.96%

Region 12h
Mean Score 0.6389 0.6449 0.5741 0.6074 0.5741 0.6475
Deviation 11.30% 12.33% - 5.80% 0.00% 12.80%

France 6h
Mean Score 0.0818 0.0836 0.0737 0.0745 0.0738 0.0868
Deviation 10.97% 13.38% - 1.07% 0.05% 17.74%

France 12h
Mean Score 0.3779 0.3817 0.3256 0.3541 0.3257 0.3888
Deviation 16.08% 17.24% - 8.77% 0.03% 19.43%

consistently show higher scores, with deviations of up to 17.24% for VS at the country
level with a 12-hour horizon, as compared to PRW. This difference underscores the
robust handling of spatial and temporal data by PRW and RED, largely attributable
to their incorporation of t-copula (TC). When comparing the VS with the ES, it is
evident that the relative differences are more pronounced for the VS. For example, at
the regional level with a 12-hour forecast horizon, the deviation for CLMD reaches
12.33% for VS, compared to just 2.21% for ES, highlighting the higher sensitivity
of VS to variations in forecast quality. This trend emphasizes the importance of
selecting the right evaluation metric based on the specific requirements of the forecast
application. Another general trend observable across both scores is the reduction
of scores with coarser spatial granularity. As an example, the VS mean score for
PRW and 12 horizons decreases from 1.0538 at the substation level to 0.3256 at the
country level. This can be explained by the averaging across larger geographic areas,
where localized short-term phenomena, such as variations in cloud coverage, have a
diminished impact. As a result, forecasts at coarser spatial granularity benefit from a
smoothing effect, leading to better overall performance and lower scores. In summary,
PRW and RED consistently rank at the top across all levels of spatial granularity and
forecast horizons, with PRW generally offering a slightly more robust performance
for VS. However, RED’s comparable results and slightly better deviations in some
instances make it a strong alternative, depending on specific operational needs.

26



6. Conclusion

In this paper, we developed a multivariate probabilistic forecasting model for
solar PV generation, addressing the significant challenge of imbalanced data resulting
from day and night-time periods. By leveraging forecast updates and modeling the
complex temporal interdependencies in solar PV generation, our approach offers a
more accurate and consistent method for predicting renewable energy output.

The application of our methodology to real-world data from a region in France
demonstrated its practical effectiveness. The case study results highlighted the differ-
ences in performance of various methods in generating reliable forecast trajectories
across different spatial granularities and forecast horizons. Here, the introduced
pairwise new methodology and reduced methods consistently outperformed other
approaches—specifically when combined with copula models—in terms of both eval-
uation metrics, i.e., the Energy and Variogram-based Score. The results on a regional
level indicate that the proposed methods accurately capture capture key probabilistic
properties of forecast updates, including the distributional properties and temporal
interdependence structures of solar PV generation. Furthermore, the extended case
study showed that with a coarser spatial granularity, the forecast accuracy improves,
highlighting the adaptability of the proposed methodology to varying spatial scales
and its potential for effective application in aggregated forecasting applications. The
pairwise method, in particular, proved to be a reliable option for handling real-
world data, providing consistent performance. Our findings indicate that the reduced
method can deliver competitive performance. Specifically, for the Energy Score —
which has weaknesses compared to the Variogram-based Score in reliably penalizing
incorrect dependency structures — the reduced method occasionally outperforms
the pairwise approach slightly. This suggests that the computationally simpler re-
duced method may be a viable alternative under certain conditions. However, the
limitations of the reduced method must be carefully considered. For higher fore-
cast horizons, the dataset becomes overly constrained, leading to data elimination,
which can compromise prediction quality and render the method infeasible. In such
scenarios, the pairwise approach provides a more robust and reliable framework, en-
suring a sufficient data basis. Consequently, for applications with stringent data
requirements, the pairwise approach remains the preferred method.

Our findings underscore the critical importance of addressing data imbalances in
solar forecasting and demonstrate the advantages of using multivariate models with
repeated updates. These models provide decision-makers with more reliable and
actionable insights, enhancing the integration of renewable energy into power systems
and markets. Our work contributes to developing more sophisticated forecasting tools
for successfully integrating renewable energy sources into the grid, supporting the
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global transition to a sustainable energy future.
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