
Walters, Christopher R.

Working Paper

Empirical Bayes methods in labor economics

RF Berlin - CReAM Discussion Paper Series, No. 22/24

Provided in Cooperation with:
Rockwool Foundation Berlin (RF Berlin)

Suggested Citation: Walters, Christopher R. (2024) : Empirical Bayes methods in labor economics,
RF Berlin - CReAM Discussion Paper Series, No. 22/24, Rockwool Foundation Berlin (RF Berlin) and
Centre for Research & Analysis of Migration (CReAM), Berlin and London

This Version is available at:
https://hdl.handle.net/10419/307679

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/307679
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

ROCKWOOL Foundation Berlin Centre for Research & Analysis of Migration 

www.rfberlin.com www.cream-migration.org 

Empirical Bayes Methods in Labor 
Economics 

Christopher Walters 

OCTOBER 2024  

 

DISCUSSION PAPER SERIES 22/24 

http://www.rfberlin.com/


Empirical Bayes Methods in Labor Economics

Christopher Walters∗

UC Berkeley, NBER, and Amazon

October 25, 2024

Abstract

Labor economists increasingly work in empirical contexts with large numbers of unit-specific
parameters. These settings include a growing number of value-added studies measuring causal
effects of individual units like firms, managers, neighborhoods, teachers, schools, doctors, hos-
pitals, police officers, and judges. Empirical Bayes (EB) methods provide a powerful toolkit
for value-added analysis. The EB approach leverages distributional information from the full
population of units to refine predictions of value-added for each individual, leading to improved
estimators and decision rules. This chapter offers an overview of EB methods in labor economics,
focusing on properties that make EB useful for value-added studies and practical guidance for
EB implementation. Applications to school value-added in Boston and employer-level discrimi-
nation in the US labor market illustrate the EB toolkit in action.
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1 Introduction

Labor economists in a variety of research areas increasingly drill down to study large numbers

of finely-grained, unit-specific parameters. Large-scale administrative data sets and new research

designs have allowed researchers to sharpen the focus of scientific inquiry into economic impacts

of specific institutions and individuals. In the economics of education, for example, a classic topic

is the return to education, traditionally defined as the causal effect of an extra year of schooling

on earnings (Card, 1999). This question has evolved into studies of the effects of attending more

versus less selective colleges (Dale and Krueger, 2002, 2014) and impacts of specific colleges on

labor market success (Mountjoy and Hickman, 2021; Chetty et al., 2023). Building on Krueger and

Summers’ (1988) seminal study of industry-specific wage premia, a large recent literature looks at

the role of individual firms in wage determination (Abowd et al., 1999; Card et al., 2013, 2018;

Bonhomme et al., 2023). More broadly, many areas of applied microeconomics have seen the rise of

value-added studies considering causal effects of individual units such as neighborhoods, teachers,

schools, managers, doctors, health insurance plans, hospitals, nursing homes, police officers, and

judges (Chetty and Hendren, 2018; Chetty et al., 2018, 2014a; Angrist et al., 2017, 2024a; Fenizia,

2022; Chan et al., 2022; Abaluck et al., 2021; Einav et al., 2022; Goncalves and Mello, 2021; Frandsen

et al., 2023).

Empirical Bayes (EB) methods provide a powerful suite of econometric tools for settings with

large numbers of unit-specific parameters. The EB framework, pioneered by Robbins (1951; 1956;

1964), is designed for contexts involving multiple parallel estimation problems for many similar

units. EB leverages this common structure by pooling information on all units to estimate a

distribution of parameters in the population being studied. This estimated distribution is then

used as an empirical prior to construct posterior predictions for each individual unit. On average,

the resulting EB estimators and decision rules often perform better than approaches that consider

each unit separately.

An EB approach can be used to accomplish several key objectives in value-added analyses.

First, the estimated EB prior characterizes the distribution of value-added across units. This

condenses large sets of value-added estimates into interpretable summaries of heterogeneity, such

as the variance of value-added. Second, by “borrowing strength” from other similar units via the

estimated prior (Morris, 1983), EB improves estimates of individual value-added parameters. Third,

EB methods are useful for making decisions. EB is intimately linked to a compound decision problem

in which an analyst faces repeated decisions across many units and seeks to minimize an aggregate

loss function. A clear view of the loss function allows a researcher to convey the information about

each unit’s value-added that is most relevant for the economic objective at hand.

This chapter offers an overview of empirical Bayes methods in labor economics. Many excellent

surveys of EB and related methods are already available (see, e.g., Efron, 2012; Bonhomme and

Denis, 2024; Koenker and Gu, 2024). I do not aim to improve upon the technical elements of these

treatments or break new theoretical ground on the properties of EB. My goal is to provide an
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accessible toolkit for labor economists using EB methods in value-added studies. Along the way I

will touch on practical issues that arise in EB analyses of microeconomic data, offer concrete exam-

ples and guidance on EB implementation, and make connections between EB and other methods

that may be more familiar to labor economists. Applications to school value-added in Boston and

employer-level discrimination in the US labor market will illustrate the EB toolkit in action.

The remainder of the chapter is organized in two broad sections. Section 2 provides a basic

introduction to the empirical Bayes approach. I start with a simple three-step EB recipe: (1)

estimate a parameter and associated standard error for each unit; (2) pool the estimates and

standard errors to estimate the prior distribution (a procedure known as deconvolution); and (3) use

the estimated prior to generate posterior predictions for each unit (also known as empirical Bayes

shrinkage). Applying this recipe with a normal prior distribution gives rise to linear shrinkage

estimators of the sort considered by James and Stein (1961). While linear shrinkage is nominally

based on a normality assumption, the James/Stein Theorem establishes that this method improves

aggregate mean squared error (MSE) even if the normal model is wrong. Thus, we can view

parametric empirical Bayes as a device for motivating procedures that perform well for a broader

class of data generating processes.

After covering the basics of linear shrinkage I consider several variations on the theme. These

extensions include the use of shrinkage in a regression context, posteriors that incorporate observed

unit characteristics, and scenarios with multiple parameters per unit or multiple research designs

for estimating the same parameter. I also discuss EB decision rules for objectives other than mean

squared error, outline approaches to incorporating dependence between effect sizes and standard

errors, and make connections between EB shrinkage and commonly-used machine learning algo-

rithms. Section 2 ends with an EB analysis of middle school value-added in Boston based on data

from Angrist et al. (2017).

Section 3 introduces non-parametric empirical Bayes methods that relax the normality and

independence assumptions maintained earlier in the chapter. Here I link the EB framework with

recent approaches to bias-corrected variance component estimation (e.g., Kline et al., 2020), which

may be used to estimate the variance of value-added under weak assumptions. I then consider non-

parametric methods for estimating the full prior distribution, including non-parametric maximum

likelihood (NPMLE; Robbins 1950; Kiefer and Wolfowitz 1956) and flexible smooth deconvolution

estimators (Efron, 2016). These non-parametric prior estimation procedures give rise to corre-

sponding non-parametric EB posteriors, which generalize James/Stein-style shrinkage to account

for features of the value-added distribution beyond the mean and variance.

The second half of Section 3 covers variants of non-parametric EB that are relevant for empirical

practice. These include cases with partial identification of priors and posteriors, EB approaches

to multiple testing, and ranking problems. I connect ideas from throughout the chapter in a non-

parametric version of the compound decision framework, and contrast EB decision rules motivated

by different economic objectives. Revisiting a labor market correspondence experiment studied by

Kline, Rose and Walters (2022; 2024), I apply non-parametric EB methods to flexibly estimate
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distributions of race and gender discrimination across large US employers.1 The chapter concludes

in Section 4 with thoughts on directions for future applications of empirical Bayes methods in labor

economics.

2 Empirical Bayes Basics

2.1 An Empirical Bayes Recipe

Consider a hierarchical data structure with individuals nested within groups. We observe data

Yi on N individuals indexed by i, each associated with one of J groups (I refer to the groups

interchangeably as units). Let Di ∈ {1, ...., J} denote the group for individual i. A group-specific

parameter θj determines the distribution of Yi for individuals with Di = j. For example, Yi might

represent test scores for students nested within schools, with θj the causal effect of school j on

student achievement; or Yi might measure log earnings for workers nested within firms, with θj a

pay premium associated with working at firm j. I next outline a three-step empirical Bayes recipe

for estimating the unit-specific θj parameters, characterizing the distribution of these parameters

across units, and using this distributional information to refine the estimate for each unit.

Step 1: Estimation

The first step of an EB analysis uses the data for group j to form an estimate θ̂j of the parameter θj

along with a corresponding standard error sj . In much of what follows I will assume these estimates

are unbiased, normally distributed, and mutually independent, with sampling variances equal to

their squared standard errors:

θ̂j |θj , sj ∼ N (θj , s
2
j ). (1)

The conditioning on (θj , sj) in this expression is to emphasize that at this stage these quantities are

treated as fixed parameters rather than random variables. Normality of θ̂j may be justified either

by a parametric model for the microdata Yi or by an asymptotic approximation with a growing

number of individuals in each group. In the latter case a central limit theorem is typically invoked

to argue that θ̂j is asymptotically normal with limiting variance s2j . I later discuss scenarios where

such asymptotic approximations break down.

Two examples of the estimation step will help fix ideas as I develop the EB recipe.

Example 1: Normal means

Suppose the data Yi are normally distributed with a group-specific mean and variance:

Yi|Di = j, θj , σj ∼ N (θj , σ
2
j ). (2)

The natural estimator of θj in this case is the sample mean θ̂j = n−1
j

∑N
i=1DijYi, where Dij =

1{Di = j} indicates that observation i is in group j and nj =
∑N

i=1Dij is the number of observations

in this group. The parametric model in (2) implies θ̂j is normally distributed with mean θj and

1Software for implementing these methods is available in this chapter’s replication package.
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variance s2j = σ2j /nj .

Example 2: School value-added

Consider a causal model of school effectiveness in which potential academic achievement for

student i if she attends school j is given by

Yi(j) = θj + ai. (3)

Here θj represents the causal contribution of school j to student achievement (school j’s value-

added), while ai captures all student-specific factors that influence achievement including family

background, earlier educational investments, and innate ability. I normalize E[ai] = 0 so that

θj = E[Yi(j)] equals the population mean potential outcome for school j. The additive structure

in equation (3) implies school value-added is constant across students – for any student i, θj − θk

is the causal effect of attending school j rather than k. The observed outcome Yi is the potential

outcome associated with the school that i attends: Yi =
∑J

j=1DijYi(j).

School enrollment is not randomly assigned, so uncontrolled comparisons of test scores across

schools are likely to be contaminated by differences in student ability. This motivates an empirical

strategy that adjusts for observed characteristics such as demographics and lagged achievement.

Let Xi represent a vector of these control variables, de-meaned so that E[Xi] = 0. Write the linear

projection of ai on Xi as:

ai = X ′
iγ + ϵi, (4)

where γ = E[XiX
′
i]
−1E[Xiai], and E[ϵi] = E[Xiϵi] = 0 by definition of γ. I can then write the

observed outcome for student i as

Yi =
J∑
j=1

θjDij +X ′
iγ + ϵi. (5)

The residual ϵi is uncorrelated with Xi by construction but need not be uncorrelated with the

school indicators Dij . Studies of such value-added models (VAMs) typically proceed under the

assumption that E[Dijϵi] = 0 ∀j. This is a selection-on-observables restriction requiring addi-

tive controls for Xi to eliminate any relationship between potential outcomes and school atten-

dance. Under this assumption, Ordinary Least Squares (OLS) estimation of (5) using a random

sample of students recovers unbiased estimates θ̂j of the causal value-added parameters θj . The

squared standard errors s2j are the first J diagonal elements of the asymptotic covariance matrix

of the OLS coefficient vector (θ̂1, ..., θ̂J , γ̂
′)′, which may be estimated using the standard White

(1980) heteroskedasticity-robust variance matrix or another appropriate variance estimator. With

a sufficient number of students per school we can treat θ̂j as normally distributed with variance

approximately equal to s2j .
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Step 2: Deconvolution

The second step of the EB recipe is predicated on a model of the group-level parameters as random

draws from a probability distribution. Suppose the θj ’s are generated by independent draws from

a common cumulative distribution function G:

θj ∼ G, j ∈ {1, ..., J}. (6)

The mixing distribution G is central to the empirical Bayes approach. Equations (1) and (6) imply

the estimates θ̂j are a mixture of draws from G and normally-distributed sampling error. In other

words, the marginal distribution of θ̂j is a convolution of G and normal noise with variance s2j .

Though G will play the role of a Bayesian prior in much of what follows, it is worth highlighting

that this distribution represents an objective description of the variation in parameters θj rather

than subjective beliefs about their likely values. In the school value-added context (Example 2), we

might wonder whether there are substantial differences between schools’ contributions to student

learning. The variance of the mixing distribution, given by σ2θ =
∫
(θ − µθ)

2dG(θ) with µθ =∫
θdG(θ), provides a quantitative answer to this question. Likewise, the gap in effectiveness between

the most- and least-effective schools is a feature of G; the difference in value-added between 90th

and 10th-percentile schools is G−1(0.9)−G−1(0.1). The second step of an EB analysis answers such

questions empirically via deconvolution: extract an estimate Ĝ of the mixing distribution G from

the noisy group-specific estimates θ̂j and standard errors sj , and use Ĝ to quantify heterogeneity

in parameters across groups.

While there is nothing subjective about G, a practical empiricist might nonetheless be uncom-

fortable with the random effects model in (6). On a conventional fixed effects view, the parameters

θj are just a list of J unknown numbers, so it may seem unnatural to treat them as random draws

from a probability distribution. In some cases model (6) is justified by a hierarchical sampling

process – perhaps the groups were drawn at random from a larger superpopulation, as in some

multi-site randomized trials (see, e.g., Walters, 2015). In other cases, however, we observe all the

relevant groups, so it is unattractive to appeal to such a superpopulation view. In a school value-

added analysis for a particular district like Boston, where are the missing schools that might have

otherwise been sampled?

An important theme of this chapter is that EB methods perform well even judged on purely

frequentist terms, independent of such philosophical considerations. As discussed further below,

estimators and decision rules incorporating distributional information based on an estimate of G

can improve on approaches treating each θ̂j in isolation. These improvements are achieved even if

the stylized model in (6) is wrong. We can therefore think of G as a device for motivating procedures

with desirable frequentist properties, irrespective of whether the parameters are fixed or random.

In what follows I will often make use of continuous models for G, which must be misspecified on a

fixed effects view; for a committed frequentist, these models may be seen as useful approximations

rather than literal descriptions of the data-generating process.
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To illustrate the basic mechanics of EB, the remainder of this section will mostly focus on a

parametric normal model for G:

θj |sj ∼ N (µθ, σ
2
θ). (7)

Model (7) is written conditional on sj , which implies the effect sizes θj are independent of the

sampling variances s2j across groups, a restriction I relax later. With this parametric model decon-

volution amounts to estimating the two hyperparameters µθ and σθ. The “hyperparameter” label

refers to the fact that µθ and σθ govern the distribution of lower-level parameters (the θj ’s). Simple

estimators for these hyperparameters are given by:

µ̂θ =
1

J

J∑
j=1

θ̂j , (8)

σ̂2θ =
1

J

J∑
j=1

[
(θ̂j − µ̂θ)

2 − s2j

]
. (9)

The subtraction of s2j in (9) is a bias-correction that accounts for excess variability of the θ̂j ’s

due to statistical noise. We should expect some chance variation in the estimated θ̂j ’s even if all

the latent θj ’s are equal, so the naive sample variance of θ̂j ’s is too large relative to the variance of

the mixing distribution. Subtracting the average squared standard error removes this excess noise.

A finding that σ̂2θ > 0 indicates overdispersion in the θ̂j ’s: the observed estimates differ more than

should be expected from sampling error, implying variation in the underlying θj ’s. With a growing

number of groups J , the bias-corrected variance estimate σ̂2θ is consistent for the hyperparameter

σ2θ .
2 Section 3 considers unbiased estimation of the mixing variance in finite samples and non-

parametric deconvolution methods for flexibly estimating the hyperparameters of a non-normal

G.

Step 3: Shrinkage

The third and final step of an EB analysis uses the noisy θ̂j ’s together with the estimated mixing

distribution Ĝ to form posteriors for each θj . Specifically, we treat the deconvolved Ĝ as a prior,

then use Bayes’ rule to perform an update based on (θ̂j , sj) and generate a posterior distribution for

θj . We are often interested in a particular feature of this posterior distribution such as the posterior

mean. The use of an estimated Ĝ as a prior when forming posterior predictions is commonly known

as empirical Bayes shrinkage.

Suppose first that the mixing distribution G is known. Equations (1) and (6) along with Bayes’

rule imply the cumulative distribution function for θj conditional on (θ̂j , sj) evaluated at a point t

2Standard errors for the hyperparameter estimates in the normal/normal model can be calculated as SE(µ̂θ) =

J−1
√∑

j(θ̂j − µ̂θ)2 and SE(σ̂2
θ) = J−1

√
2
∑

j(σ̂
2
θ + s2j )

2.
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is given by:

Pr
[
θj ≤ t|θ̂j , sj

]
=

∫ t
−∞

1
sj
ϕ
(
θ̂j−θ
sj

)
dG(θ)∫∞

−∞
1
sj
ϕ
(
θ̂j−θ
sj

)
dG(θ)

≡ P(t|θ̂j , sj ;G). (10)

I will sometimes refer to P(t|θ̂, sj ;G) as an oracle posterior distribution because it coincides with

the posterior beliefs of an oracle who knows the mixing distribution G a priori. With the normal

mixing distribution in model (7), this oracle posterior distribution is also normal:

θj |θ̂j , sj ∼ N (θ∗j , V
∗
j ), (11)

θ∗j =

(
σ2θ

σ2θ + s2j

)
θ̂j +

(
s2j

σ2θ + s2j

)
µθ, (12)

V ∗
j =

σ2θs
2
j

σ2θ + s2j
. (13)

The posterior mean θ∗j shrinks the noisy estimate θ̂j towards the prior mean µθ in proportion to its

signal-to-noise ratio. When θ̂j is completely uninformative or the prior distribution is degenerate

(s2j → ∞ or σ2θ → 0) the posterior mean equals the prior mean µθ. As the precision of θ̂j or the

variability of the prior grow large (s2j → 0 or σ2θ → ∞) the posterior mean approaches the estimate

θ̂j . In between these extremes, θ∗j is a convex weighted average of the unbiased estimate θ̂j and the

prior mean µθ.

An analyst that does not know G cannot calculate the oracle posterior formulas in equations

(10)-(13). The empirical Bayes approach is to plug in an estimate Ĝ of the mixing distribution,

resulting in an empirically feasible posterior:

P(t|θ̂j , sj ; Ĝ) =

∫ t
−∞

1
sj
ϕ
(
θ̂j−θ
sj

)
dĜ(θ)∫∞

−∞
1
sj
ϕ
(
θ̂j−θ
sj

)
dĜ(θ)

, (14)

where Ĝ is the deconvolution estimate from step 2. With the normal model in (7), this means

substituting the estimated hyperparameters µ̂θ and σ̂2θ from equations (8)-(9) into the posterior

formulas in equations (12)-(13). This substitution yields an empirical Bayes posterior mean:

θ̂∗j =

(
σ̂2θ

σ̂2θ + s2j

)
θ̂j +

(
s2j

σ̂2θ + s2j

)
µ̂θ. (15)

The EB posterior mean θ̂∗j shrinks the unbiased estimate θ̂j for group j using distributional

information based on the ensemble of estimates for all J groups, which enters through the estimated

hyperparameters µ̂θ and σ̂2θ . Morris (1983) refers to this adjustment as “borrowing strength from

the ensemble.” EB shrinkage refines the estimate for each individual unit by interpreting it in the

context of results for a larger pool units that are similar in some relevant sense. Efron (2012) labels
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such refinements “learning from the experience of others.”

In the remainder of this chapter I will often refer to the estimator in equation (15) as a linear

shrinkage estimator to distinguish it from EB posterior means derived from more elaborate non-

normal models for G. While linear shrinkage is motivated by normality, the resulting predictions

are likely to have good properties even when G is not normal. In particular, θ∗j coincides with the

fitted value from an infeasible ordinary least squares regression of the unobserved θj on θ̂j .
3 By

standard properties of OLS regression, we can then think of the linear shrinkage estimate as a best

linear approximation to the true (possibly nonlinear) conditional mean of θj given θ̂j . As I discuss

next, linear approximations of this form turn out to improve upon the unbiased estimates θ̂j (in a

particular sense) regardless of the form of G.

Recap: A three-step EB recipe

The standard progression of an EB analysis is summarized in the following three-step recipe:

1. Estimation: Compute an estimate θ̂j and corresponding standard error sj for each unit j.

2. Deconvolution: Use the estimates and standard errors {θ̂j , sj}Jj=1 to compute an estimate

Ĝ of the mixing distribution.

3. Shrinkage: Treating Ĝ as a prior, update with (θ̂j , sj) to form posterior predictions θ̂∗j for

each unit.

The key outputs of the analysis are typically a summary of parameter heterogeneity based on Ĝ

from the deconvolution step along with posterior predictions for each unit generated in the shrinkage

step.

2.2 Gains From Shrinkage

MSE improvements in the normal/normal model

In what sense do the EB posterior means θ̂∗j improve upon the unbiased estimates θ̂j? I first explore

this question in the context of the normal/normal model defined by equations (1) and (7), focusing

on a mean squared error (MSE) criterion.4 Assume the hyperparameters µθ and σ2θ are known,

and consider the MSE of the oracle posterior mean θ∗j and the unbiased estimate θ̂j conditional on

the unknown parameter θj and standard error sj :

E
[
(θ̂j − θj)

2|θj , sj
]
= s2j , (16)

E
[
(θ∗j − θj)

2|θj , sj
]
=

(
σ2θ

σ2θ + s2j

)2

s2j +

(
s2j

σ2θ + s2j

)2

(θj − µθ)
2 . (17)

3When θj is independent of sj we have θ∗j =
(

Cov(θj ,θ̂j |sj)
V ar(θ̂j |sj)

)
θ̂j +

(
1− Cov(θj ,θ̂j |sj)

V ar(θ̂j |sj)

)
µθ.

4See Angrist et al. (2023) for related discussion in the context of school value-added models.
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Since θ̂j is unbiased, its MSE is given by its sampling variance s2j . The posterior mean θ∗j shrinks

θ̂j toward a constant µθ, thereby reducing variance in exchange for an increase in bias. This results

in a squared bias term in the conditional MSE formula, reflected in the second term in (17).

These expressions show that if an analyst is only interested in one unit (say θ1), it is not

clear which of the two estimators is better. The linear shrinkage posterior is less variable than

the unbiased estimate, but for any particular unit this variance reduction may be outweighed by

increased bias. Moreover, equation (17) shows that the conditional MSE of θ∗j is not uniform in the

true parameter θj . The bias introduced by shrinkage is worse for units that are more atypical in

the sense of having θj ’s farther from the mean µθ. This bias can be arbitrarily large if the mixing

distribution has unbounded support. An analyst interested in a specific unit and concerned about

worst-case MSE might reasonably prefer the unbiased estimate θ̂j .

Next, consider an analyst who cares about reporting estimates with low MSE for many units

simultaneously. This analyst expects to study many units drawn from G and wants to do well

on average across all of them. We can evaluate the performance of θ̂j and θ∗j for this purpose by

integrating conditional MSE over the mixing distribution:

E
[
(θ̂j − θj)

2|sj
]
=

∫
E
[
(θ̂j − θj)

2|θj = θ, sj

]
dG(θ) = s2j , (18)

E
[
(θ∗j − θj)

2|sj
]
=

∫
E
[
(θ∗j − θj)

2|θj = θ, sj
]
dG(θ) =

(
σ2θ

σ2θ + s2j

)
s2j . (19)

This integration averages the squared bias of θ∗j over values of θj while leaving MSE for θ̂j un-

changed.

The signal-to-noise ratio σ2θ/(σ
2
θ + s

2
j ) is less than one, so equations (18) and (19) establish that

unconditional MSE for the shrinkage estimator is below that of the unbiased estimator. While

shrinkage increases conditional MSE for atypical values of θj far from the mean, it improves MSE

for values close to the mean, and on average over repeated draws from G the θj ’s cannot all be

atypical. The reduction in variance therefore outweighs the increased conditional bias on average,

reducing overall MSE. In fact, since θ∗j is the conditional mean of θj given (θ̂j , sj), it must have

lowest average MSE of all functions of (θ̂j , sj) under the normal/normal model. As long as the

hyperparameter estimates µ̂θ and σ̂2θ are sufficiently precise we should expect the EB posterior

mean θ̂∗j to inherit the properties of the oracle posterior mean θ∗j and improve average MSE relative

to θ̂j .

The James/Stein Theorem

I next show that the gains from EB shrinkage apply more generally outside the normal random

effects setup. This is a classic result due to James and Stein (Stein, 1956; James and Stein, 1961),

referred to here as the James/Stein Theorem. Suppose each θ̂j is unbiased for the corresponding

θj and normally distributed with common sampling variance of s2j = s2 ∀j:
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θ̂j |θj ∼ N (θj , s
2). (20)

We are interested in finding an estimator with low total MSE summed over all J units, treating

the θj ’s as fixed but unknown parameters. For any estimator δj , this objective is given by:

MSEδ =
J∑
j=1

E
[
(δj − θj)

2|θj
]
. (21)

By equation (16), total MSE of the unbiased estimates θ̂j is equal to Js
2:

MSEθ̂ =

J∑
j=1

E
[
(θ̂j − θj)

2|θj
]
= Js2. (22)

Now consider an alternative estimator that shrinks each θ̂j toward a constant µ as follows:

θ̂JSj =

(
1− (J − 2)s2∑J

k=1(θ̂k − µ)2

)
θ̂j +

(
(J − 2)s2∑J
k=1(θ̂k − µ)2

)
µ. (23)

This estimator turns out to improve MSE relative to the unbiased θ̂j ’s whenever the number of

units J is at least 3. Assuming J ≥ 3, we have

MSEθ̂JS =

J∑
j=1

E
[
(θ̂JSj − θj)

2|θj
]

≤ Js2 − (J − 2)2s4

(J − 2)s2 +
∑J

j=1(θj − µ)2

< Js2

= MSEθ̂. (24)

See Chapter 1 of Efron (2012) for a simple proof.

This result shows that the unbiased estimator θ̂j is inadmissible under squared error loss since it

is dominated by θ̂JSj . This may seem counterintuitive since θ̂j is the maximum likelihood estimator

of θj under model (20). Indeed, as discussed in Efron and Morris (1975), the James/Stein result

was initially met with surprise and encountered resistance even among statisticians.

Where does the linear shrinkage rule in equation (23) come from? It should be clear based on

the preceding discussion that this estimator is the output of an empirical Bayes procedure based

on a normal mixing distribution. Suppose we adopt the prior that θj ∼ N (µ, σ2). Equation

(12) implies that if the hyperparameters µ and σ2 are known, the posterior mean for θj is given

by θ∗j =
(
σ2/[s2 + σ2]

)
θ̂j +

(
s2/[s2 + σ2]

)
µ. If µ is known but σ2 is not, the shrinkage factor

s2/(s2 + σ2) must be estimated. The quantity (J − 2)s2/[
∑J

j=1(θ̂j − µ)2] provides an unbiased

11



estimate of this shrinkage factor as long as J ≥ 3, resulting in an EB posterior mean equal to θ̂JSj .5

While the James/Stein estimator can be derived from an EB approach based on a normal mixing

distribution, linear shrinkage reduces MSE whether or not this model is true. In particular, the

result in (24) holds for any configuration of θj ’s and any µ. For the purpose of reducing aggregate

MSE, the θj ’s need not be drawn from a normal distribution, or even viewed as random effects at

all. The unknown parameters also need not be centered at µ, though shrinkage will result in larger

MSE improvements if the prior mean is near the average of the θj ’s. The sum of squares in the

denominator of the shrinkage coefficients in equation (23) provides an empirical measure of how far

the parameters tend to fall from µ, letting the data dictate the appropriate amount of shrinkage.

Versions of the James/Stein result generalize to more complex settings than the simple ho-

moskedastic noise model in equation (20). These include scenarios where the noise variance s2 is

unknown so must be estimated from the microdata, different noise variances or correlation in noise

across units, or an estimated prior mean (Lindley, 1962; Efron and Morris, 1973b; Bock, 1975).

The case where the standard error sj varies across groups is especially relevant since this is likely

to be true in any realistic value-added analysis. With at least three units for each value of sj the

linear shrinkage formula in (23) can in principle be implemented separately for every sj , in which

case the basic James/Stein Theorem immediately applies. This amounts to using an unrestricted

conditional prior distribution of the form

θj |sj ∼ N (µ(sj), σ
2(sj)) (25)

for EB shrinkage. In practice shrinking separately for each value of sj may not be feasible, which

motivates less flexible priors imposing restrictions on how the distribution of θj varies with sj . An

important caution is that such restrictions may break the James/Stein guarantee of a reduction

in MSE.6 The standard EB posterior mean in (15) assumes independence of θj and sj , and may

perform poorly if effect sizes and standard errors are correlated (Chen, 2023). I return to such

precision-dependence issues in Section 2.6.

Compound decision problems

The James/Stein Theorem shows that EB shrinkage reduces MSE even when the normal random

effects model motivating this method is wrong. Then why does shrinkage yield improvements? The

requirement that J ≥ 3 in the James/Stein Theorem provides a clue. Rather than an assumption on

the data generating process, the value of EB shrinkage depends on the objective of the econometric

5With normal noise and a normal mixing distribution, the marginal distribution of each estimate is θ̂j ∼
N

(
µ, s2 + σ2

)
. This implies the scaled sum of squared deviations (s2 + σ2)−1 ∑J

j=1(θ̂j − µ)2 follows a χ2 distri-

bution with J degrees of freedom. Its reciprocal then follows an inverse χ2 distribution, which has mean 1/(J − 2)
for J ≥ 3. It follows that E[(J − 2)s2/

∑J
j=1(θ̂j − µ)2] = s2/(s2 + σ2) when J ≥ 3.

6Since the James/Stein Theorem implies a reduction in MSE for shrinkage toward any constant, it is not necessary
to allow the prior mean to depend on sj to guarantee an improvement. Implementing the shrinkage formula in (23)
separately for each sj – but shrinking all units towards a common prior mean µ – reduces aggregate MSE as long as
there are at least 3 units with each value of sj . In contrast, imposing restrictions on how the prior variance varies
with sj may break the James/Stein guarantee.
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analyst. The gains highlighted in the James/Stein Theorem arise because of the form of the loss

function in equation (21), which cares about total mean squared error summed over all J units.

This idea is generalized with a loss function of the form

L(δ1, ..., δJ ; θ1, ..., θJ) =
J∑
j=1

ℓ(δj , θj), (26)

where δj represents a decision for unit j and ℓ(θj , δj) gives the loss associated with making decision

δj for a unit with parameter θj .

Such a loss function gives rise to a compound decision problem (Robbins, 1951; Gu and Koenker,

2016) in which a sequence of similar independent decisions are considered for each of several units

and the decisionmaker seeks to minimize aggregate loss. A decisionmaker with this loss function

views units as exchangeable – the labels on the units are irrelevant, so the decisionmaker does

not distinguish between different configurations of outcomes across units that lead to the same

total loss. This notion of exchangeability motivates the abstraction in model (6) treating the

θj ’s as draws from a common distribution G. The James/Stein Theorem reveals that using this

conceptual device to incorporate distributional information via EB shrinkage improves expected

outcomes in a compound decision problem.

Applying shrinkage outside the compound decision context can quickly lead to reductio ad ab-

surdum arguments against EB methods. Should a labor economist shrink estimates of the elasticity

of labor supply, the return to schooling, and the intergenerational income elasticity toward one an-

other?7 Shrinkage seems inappropriate in this scenario because it is hard to imagine a decision

for which total error across these three parameters is the relevant criterion. On the other hand, a

framework that seeks to minimize aggregate error seems more natural when studying distributions

of parameters across large sets of similar units like firms, schools, or neighborhoods. This makes

the EB framework appealing for value-added analysis. Sections 2.5 and 3.6 present further analysis

of EB methods in a compound decision setup.

2.3 Practical Shrinkage Issues

This subsection considers some issues of interpretation and implementation that often arise in

value-added studies using empirical Bayes methods.

Distributions of true parameters, unbiased estimates, and posterior means

In any EB value-added analysis it is worth keeping in mind the distinction between true unobserved

effects, unbiased estimates, and shrunk posterior means. For instance, suppose we are interested in

summarizing heterogeneity in effectiveness across schools by looking at the variance of school value-

added. This is a question about the variability of the true parameters θj , which are unobserved.

7This facetious example intentionally mimics Robbins’ (1951) discussion of jointly shrinking observations on “a
butterfly in Ecuador...an oyster in Maryland...[and] the temperature of a star.” As noted by Lai and Siegmund (2018),
examples of this type led to early skepticism regarding the practical value of the compound decision framework (see
also Efron and Morris, 1973a).
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Due to sampling error, the variance of the observed unbiased estimates θ̂j is too big relative to the

variance of true effects:

V ar(θ̂j |sj) = σ2θ + s2j > σ2θ . (27)

In contrast, the variance of the oracle posterior means θ∗j is too small relative to the variance of

true effects:

V ar(θ∗j |sj) =

(
σ2θ

σ2θ + s2j

)
σ2θ < σ2θ . (28)

With precisely-estimated hyperparameters the EB posterior means θ̂∗j should be expected to exhibit

variance less than σ2θ as well. As a result, the mixing variance σ2θ will typically lie in between the

variances of θ̂j and θ̂
∗
j across groups.

The bias-corrected variance estimator in equation (9) splits this difference to recover the variance

of unobserved effects. This estimator removes the expected contribution of noise from the variance

of θ̂j ’s, yielding a consistent estimate of the true mixing variance σ2θ . The estimate σ̂2θ is therefore

the right metric for summarizing variation in effects across units. More generally, the deconvolution

estimate Ĝ from step 2 of the EB recipe is the appropriate object to use for studying questions

about the distribution of latent parameters. A plot of the shrunk posterior means θ̂∗j should not be

expected to reproduce features of the mixing distribution G.

Shrinkage and regression

Another common application of EB shrinkage arises in the context of group-level OLS regression.

Suppose we are interested in an OLS regression of an observed variable for unit j, Zj , on the

unknown parameter θj :

Zj = α0 + α1θj + ej . (29)

The slope coefficient α1 = Cov(Zj , θj)/V ar(θj) measures the change in Zj associated with a one-

unit increase in θj . Examples of analyses in this mold include Chetty et al.’s (2014b) study linking

labor market outcomes to teacher test score effects and Abdulkadiroglu et al.’s (2020) study relating

measures of school popularity to test score value-added.

Regression (29) is not feasible since the regressor θj is not observed, and substituting the noisy

estimate θ̂j in its place biases the resulting slope coefficient. To see this, suppose the standard

deviation of noise in θ̂j is common across units (sj = s ∀j) and the estimation error θ̂j − θj is

uncorrelated with ej . Then the slope coefficient from a regression of Zj on θ̂j is

Cov(Zj , θ̂j)

V ar(θ̂j)
=

Cov(α0 + α1θj + ej , θj + (θ̂j − θj))

V ar(θj + (θ̂j − θj))

=

(
σ2θ

σ2θ + s2

)
α1. (30)
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Putting the noisy estimate θ̂j on the right-hand side of a regression therefore yields bias toward

zero. This is an instance of the standard result that classical measurement error in a regressor

causes attenuation bias.

Empirical Bayes shrinkage corrects this bias. The regression of Zj on the oracle posterior mean

θ∗j yields

Cov(Zj , θ
∗
j )

V ar(θ∗j )
=

Cov
(
Zj ,
(

σ2
θ

σ2
θ+s

2

)
θ̂j +

(
s2

σ2
θ+s

2

)
µθ

)
V ar

((
σ2
θ

σ2
θ+s

2

)
θ̂j +

(
s2

σ2
θ+s

2

)
µθ

)
=

(
σ2θ + s2

σ2θ

)
Cov(Zj , θ̂j)

V ar(θ̂j)

= α1. (31)

Equation (31) shows that using the shrunk posterior mean θ∗j as a regressor recovers the same

coefficient as using the true θj . This is a version of errors-in-variables regression, which uses the

signal-to-noise ratio of the independent variable to correct attenuation bias due to measurement

error. An empirically-feasible version of this correction substitutes the EB posterior mean θ̂∗j in

place of θ∗j .
8 Note that while shrinkage fixes attenuation bias due to noise in θ̂j , this noise still

reduces the precision of the resulting estimate since the shrunk regressor θ∗j has lower variance than

the ideal regressor θj by equation (28).

The situation is reversed when the unknown parameter θj appears on the left-hand side of a

regression rather than the right. Consider the OLS regression

θj = β0 + β1Zj + uj . (32)

The slope coefficient β1 = Cov(θj , Zj)/V ar(Zj) measures the change in θj associated with a one

unit increase in Zj . For example, Chetty and Hendren (2018) investigate the correlates of neigh-

borhood quality by regressing neighborhood effects on location characteristics, and Kline et al.

(2020) study the attributes of high-paying employers by regressing firm earnings effects on firm

covariates. Assuming the estimation error θ̂j − θj is independent of Zj across units, replacing θj

with the unbiased estimate θ̂j on the left-hand side of (32) recovers the target regression coefficient:

Cov(θ̂j , Zj)

V ar(Zj)
=
Cov(θj , Zj)

V ar(Zj)
+
Cov(θ̂j − θj , Zj)

V ar(Zj)
= β1. (33)

This is a consequence of the fact that classical measurement error on the left-hand side of a regres-

sion does not lead to bias. In contrast, shrinkage on the left introduces non-classical measurement

error that does generate bias. The slope coefficient from a regression of θ∗j on Zj is

8When the standard error sj varies across units a regression of Zj on θ∗j recovers α1 if θj is independent of sj ,
but may not recover α1 when θj and sj are correlated (see Section 2.6). One solution in this heteroskedastic case is
to shrink all of the θ̂j ’s using a pooled signal-to-noise ratio equal to κ = σ2

θ/V ar(θ̂j), which can be estimated with
κ̂ = σ̂2

θ/[J
−1 ∑

j(θ̂j − µ̂θ)
2]. A regression of Zj on κθ̂j recovers α1 regardless of correlation between θj and sj , though

this estimator will be less efficient than regressing Zj on θ∗j when θj and sj are independent.
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Cov(θ∗j , Zj)

V ar(Zj)
=
Cov

((
σ2
θ

σ2
θ+s

2

)
θ̂j +

(
s2

σ2
θ+s

2

)
µθ, Zj

)
V ar(Zj)

=

(
σ2θ

σ2θ + s2

)
β1. (34)

Shrinkage of the dependent variable therefore attenuates the resulting coefficient toward zero. This

combination of results suggests a rule-of-thumb for EB shrinkage in a regression context: shrinkage

on the right fixes bias, but shrinkage on the left causes bias.

Long regression or mean residuals? Correlated versus uncorrelated random effects

The initial estimation step in many empirical Bayes value-added analyses is an OLS regression

like (5), which includes a set of group indicator variables along with a vector of controls Xi. Some

studies instead start by partialing controls out of the outcome variable, then apply empirical Bayes

methods to group means of the resulting residuals (e.g., Chetty et al., 2014a; Jackson et al., 2020).

How should we interpret differences in results between these approaches?

This question can be answered with the familiar OLS omitted variable bias formula. Con-

sider a mean residual strategy applied to school value-added estimation in Example 2. Let γs =

E[XiX
′
i]
−1E[XiYi] denote the vector of coefficients from a short regression of Yi on only the con-

trols Xi, omitting the school indicators Dij . This short regression coefficient is linked to the long

regression coefficient γ from equation (5) by the relation

γs = γ + E
[
XiX

′
i

]−1
E
[
Xi

(∑
j Dijθj

)]
= γ + E

[
XiX

′
i
−1
]
E
[
X̄J(i)θJ(i)

]
, (35)

where J(i) = {j : Di = j} encodes the school attended by student i, X̄j = E[Xi|Di = j] is the

mean of Xi at school j, and the second line uses the law of iterated expectations. The school means

of the short regression residuals Yi −X ′
iγ
s are then

θsj = E
[
Yi −X ′

iγ
s|Di = j

]
= E

[
θj −X ′

i(γ
s − γ)|Di = j

]
= θj − X̄ ′

jE
[
XiX

′
i

]−1
E
[
X̄J(i)θJ(i)

]
. (36)

Equation (36) shows that the value-added parameters from the long regression and mean residual

approaches coincide when X̄ ′
jE[XiX

′
i]
−1E[X̄J(i)θJ(i)] = 0 ∀j. One scenario satisfying this condition

is when the averages of the control variables do not vary across groups, so X̄j = E[Xi] = 0 ∀j
(recall that the mean of Xi is normalized to zero). This is unlikely in realistic applications since

the motivation for including controls in the first place is typically to adjust for group differences

in the covariates. In the school value-added context, this would require every school to enroll a

student population with the same demographics and mean past achievement.

A second possible justification for the mean residual approach is an assumption that E[X̄J(i)θJ(i)] =

0. This allows for the possibility that the school average covariates X̄j differ across schools but rules
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out a relationship between these averages and school value-added θj . When Xi is a lagged student

test score, for example, this restriction requires schools enrolling students with higher average past

achievement to be no better (or worse) in terms of causal value-added. The mean residual approach

is therefore implicitly based on an uncorrelated random effects model in which the θj ’s are inde-

pendent of X̄j . In contrast, the long regression approach is compatible with a correlated random

effects (CRE) model in which the distribution of θj may depend arbitrarily on X̄j (Chamberlain,

1982).9 Since there is typically no reason to rule out a relationship between θj and X̄j , the long

regression approach is likely to be preferable in most applications. The uncorrelated random effects

assumption can also be tested with a Hausman (1978) test comparing coefficients from the long

and short regressions.10

2.4 Generalizations of Linear Shrinkage

This subsection considers extensions of the basic empirical Bayes recipe to cases incorporating

observed unit characteristics, multiple parameters per unit, and multiple estimates of each unit’s

parameter.

Adding covariates

Suppose we observe a vector Zj of covariates for each unit j (including a constant). Consider a

conditional normal/normal model of the form:

θ̂j |θj , sj , Zj ∼ N (θj , s
2
j ), (37)

θj |sj , Zj ∼ N
(
Z ′
jµ, σ

2
r

)
, (38)

where µ describes the relationship between effect sizes θj and observed characteristics Zj , and σ
2
r

measures residual variance in θj not explained by Zj . By the logic of Section 2.3, a regression of

θ̂j on Zj yields an unbiased estimate µ̂ of µ. We can then estimate the unexplained variance in θj

by deconvolving the resulting residuals with the estimator σ̂2r = J−1
∑

j [(θ̂j − Z ′
jµ̂)

2 − s2j ].

The posterior mean for θj implied by equations (37) and (38) is:

θ∗j =

(
σ2r

σ2r + s2j

)
θ̂j +

(
s2j

σ2r + s2j

)
Z ′
jµ. (39)

Plugging µ̂ and σ̂2r into equation (39) yields an EB posterior mean that shrinks θ̂j toward an

estimated linear index Z ′
jµ̂ rather than toward a constant. This approach borrows more strength

from units that are similar on observed dimensions, potentially yielding further reductions in MSE

9Note that the long regression control coefficient γ can be obtained either by regressing Yi on Xi and the Dij ,
or by regressing Yi on Xi controlling for X̄J(i) (Mundlak, 1978). The long regression value-added coefficients θj are
means of the residual Yi −X ′

iγ.
10This test is sometimes described as comparing “fixed effects” and “random effects” models, terminology that

mixes the question of whether the θj ’s are treated as fixed or random with the question of whether they are related
to X̄j .
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relative to θ̂j . The resulting EB posterior places less weight on the noisy θ̂j if the covariates explain

more of the variance in θj , reflected in a smaller residual variance σ2r . It is straightforward to allow

the residual variance σ2r to depend on Zj as well.

Multivariate EB

Suppose we expand the school value-added setup in Example 2 so that schools may affect each of

K outcomes for a given student, labeled Yi1, ..., YiK . These might include test scores as well as

longer-term outcomes like educational attainment, criminal justice involvement, or earnings (e.g.,

Jackson et al., 2020; Beuermann et al., 2022; Rose et al., 2022). This yields a separate version of

the VAM regression in equation (5) for each outcome:

Yik =
∑
j

θjkDij +X ′
iγk + ϵik, k ∈ {1, ...,K}. (40)

School j’s quality is now described by a K × 1 vector θj = (θj1, θj2, ..., θjK)
′ collecting its value-

added on all outcomes. Seemingly Unrelated Regression (SUR) estimation of system (40) yields

an estimate θ̂j of this vector, along with a K × K sampling variance matrix Vj for each school.

This matrix has squared standard errors s2jk for each θ̂jk along its diagonal and off-diagonal terms

measuring sampling covariances between θ̂jk and θ̂jm for m ̸= k. These covariances will generally

be non-zero if the underlying student-level outcomes are correlated.

Extending the normal/normal model to the multivariate case, we have:

θ̂j |θj , Vj ∼ N (θj , Vj) , (41)

θj |Vj ∼ N (µθ,Σθ), (42)

where the mixing distribution in (42) is now parameterized by a K×1 mean µθ and K×K variance

matrix Σθ. The off-diagonal elements of Σθ describe how schools’ effects on different outcomes are

related. For example, do schools that boost test scores also boost high school graduation? The

deconvolution step estimates these hyperparameters with:

µ̂θ = J−1
∑
j

θ̂j , Σ̂θ = J−1
∑
j

[(θ̂j − µ̂θ)(θ̂j − µ̂θ)
′ − Vj ]. (43)

As before, the bias-corrected variance matrix estimator Σ̂θ removes excess variability in the θ̂jk’s

due to sampling error, as well as the contribution of noise to the covariances of estimates across

outcomes.

Finally, in the shrinkage step, the multivariate oracle posterior mean implied by equations (41)

and (42) is a precision-matrix-weighted average of the unbiased estimate θ̂j and the prior mean:

θ∗j =
(
V −1
j +Σ−1

θ

)−1 (
V −1
j θ̂j +Σ−1

θ µθ

)
. (44)
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A multivariate EB posterior mean θ̂∗j plugs hyperparameter estimates from (43) into (44). This

estimator borrows strength across multiple outcomes as well as across the ensemble of schools when

predicting any one of the outcome-specific value-added parameters θjk. For instance, if effects

on test scores (outcome 1) and high school graduation (outcome 2) are highly correlated across

schools, then the posterior mean graduation effect θ̂∗j2 may place substantial weight on the estimated

test score effect θ̂j1, especially if θ̂j2 is much noisier than θ̂j1. Other applications of multivariate

EB include value-added models with heterogeneous effects, so that each unit is associated with

treatment effect parameters for multiple subgroups (e.g., Abdulkadiroğlu et al., 2020; Avivi, 2024);

and instrumental variables settings with imperfect compliance, with each unit characterized by

multiple parameters governing outcomes and selection into treatment (e.g., Raudenbush et al.,

2012; Walters, 2015).

Combining estimators

The empirical Bayes approach extends naturally to cases with multiple estimates of each parameter,

some possibly biased. In the school value-added example, consider a population OLS regression of

Yi on school indicators with controls for Xi:

Yi =
J∑
j=1

αjDij +X ′
iΓ + υi. (45)

This equation differs from the causal value-added model (5) because the OLS residual υi satisfies

E[Dijυi] = 0 ∀j by definition, while the error term ϵi from the causal model may be correlated with

the Dij ’s if selection-on-observables fails to hold. This possibility is represented by a list of bias

parameters bj = θj − αj measuring deviations between causal value-added parameters and OLS

regression coefficients.

Let {α̂j}Jj=1 denote OLS value-added estimates based on fitting equation (45) in a random

sample of students. Suppose we also have access to a second set of estimates {θ̂j}Jj=1 from an

alternative research design that is not contaminated by selection bias. For example, the θ̂j ’s may

be instrumental variables (IV) estimates derived from randomized school entrance lotteries. The

θ̂j ’s are assumed to be (asymptotically) unbiased estimates of the causal θj ’s, but are likely to be

noisier than the OLS α̂j estimates. We then have the model:

(α̂j , θ̂j)
′|θj , bj , sjα, sjθ, cj ∼ N

(
(θj + bj , θj)

′,

[
s2jα cj

cj s2jθ

])
. (46)

Here s2jα and s2jθ are the sampling variances of the OLS and IV estimates, and cj is their sampling

covariance. A Hausman (1978)-style overidentification test comparing OLS and IV is a test of the

null hypothesis that bj = 0 ∀j (Angrist et al., 2016).11

11Under the classical Gauss-Markov assumptions and with no selection bias OLS is the efficient linear estimator of
the θj ’s, in which case cj = s2jα so that V ar(θ̂j − α̂j) = s2jθ − s2jα .
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If this overidentification test rejects, we may conclude that the OLS estimates are contaminated

by selection bias. The biased α̂j ’s may be more precise than the unbiased θ̂j ’s, however, so throwing

away OLS completely may discard useful information about school quality. An empirical Bayes

approach incorporates this information by forming a best guess of value-added for each school that

trades off the bias of OLS against the imprecision of IV.

Consider a model of the causal-valued parameters θj and bias parameters bj as draws from a

multivariate normal mixing distribution:

(θj , bj)
′|sjα, sjθ, cj ∼ N

(
(µθ, µb)

′,

[
σ2θ σθb

σθb σ2b

])
. (47)

The variance parameters σ2θ and σ2b describe the variability of causal value-added and selection bias

across schools, while the covariance σθb determines whether OLS tends to over-rate or under-rate

higher value-added schools. These hyperparameters can be estimated by deconvolving the joint

distribution of (α̂j , θ̂j). For example, we can estimate the variance of bias across schools as σ̂2b =

J−1
∑

j [(α̂j − θ̂j − µ̂b)
2 − (s2jα + s2jθ − 2cj)], where µ̂b = J−1

∑
j(α̂j − θ̂j). The estimator σ̂2b looks

for overdispersion in the difference between OLS and IV beyond what should be expected from

sampling error, implying variation in selection bias.

Posterior means θ∗j = E[θj |θ̂j , α̂j , sjα, sjθ, cj ] based on model (46)-(47) provide minimum MSE

forecasts of value-added for each school using all available information. In a scenario where the

OLS estimates are extremely precise (sjα ≈ 0), the oracle posterior mean for θj is given by:

θ∗j =

(
(1−R2)σ2θ

(1−R2)σ2θ + s2jθ

)
θ̂j +

(
s2jθ

(1−R2)σ2θ + s2jθ

)
(ρ(α̂j − µb) + (1− ρ)µθ) , (48)

where ρ = Cov(α̂j , θj)/V ar(α̂j) = (σ2θ + σθb)/(σ
2
θ + σ2b + 2σθb) is the slope coefficient from a

regression of θj on α̂j (the reliability of OLS), and R2 is the R-squared from this regression. This

linear shrinkage formula can be seen as a version of equation (39) treating the OLS estimate α̂j

as a covariate that predicts θj . An empirical implementation plugs deconvolution estimates of ρ,

R2, and other hyperparameters into (48) to produce an EB posterior mean. Chetty and Hendren

(2018) use such a strategy to combine quasi-experimental estimates of neighborhood effects based

on cross-neighborhood moves with observational estimates based on levels of permanent resident

outcomes. Angrist et al. (2017; 2024a) generalize this approach to estimate school value-added in

an underidentified scenario where lotteries are unavailable for some schools.

2.5 EB Decision Rules

We have seen that linear shrinkage delivers posterior mean estimates with low mean squared error.

It is often of interest to consider goals other than minimizing MSE. In the school value-added exam-

ple, suppose a school district administrator seeks to select schools with value-added below a cutoff

c for reform or closure, and incurs different costs for erroneously selecting high-performing schools

(type I errors) or failing to select low-performing schools (type II errors). The objective of the ad-
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ministrator is formalized in a compound decision problem of the form of (26), with component-wise

loss function

ℓ(δj , θj) = δj1{θj ≥ c}+ (1− δj)1{θj < c}ξ, (49)

where δj ∈ {0, 1} indicates selection of school j, ξ is the cost of a type II error, and the cost of a

type I error is normalized to one. Gu and Koenker (2023b) discuss empirical Bayes tail selection

problems with loss functions of this type.

Since the θj ’s are unknown, the administrator chooses a decision rule δ(θ̂j , sj) to minimize risk

(expected loss). With J schools the risk of a decision rule δ is given by

R(δ) =
J∑
j=1

E
[
ℓ(δ(θ̂j , sj), θj)|sj

]

=

J∑
j=1

∫ ∫
ℓ
(
δ(θ̂, sj), θ

) 1

sj
ϕ

(
θ̂ − θ

sj

)
dθ̂dG(θ). (50)

The risk-minimizing decision rule is δ∗ = argminδ∈D R(δ), where D is the set of functions mapping

(θ̂j , sj) to binary decisions. With the loss function in (49), the optimal decision rule is

δ∗(θ̂j , sj) = 1

{
Pr[θj < c|θ̂j , sj ] ≥

1

1 + ξ

}
. (51)

That is, the administrator selects schools with sufficiently high posterior probability of falling below

the cutoff c, where the confidence necessary to make a selection depends on the relative costs of

type I and type II errors. With the normal mixing distribution in (7) this decision rule becomes:

δ∗(θ̂j , sj) = 1

{(
σ2θ

σ2θ + s2j

)
θ̂j +

(
s2j

σ2θ + s2j

)
µθ +

√
σ2θs

2
j

σ2θ + s2j
Φ−1

(
1

1 + ξ

)
≤ c

}
. (52)

An EB decision rule δ̂∗(θ̂j , sj) plugs estimated hyperparameters µ̂θ and σ̂2θ into equation (52).

Equation (52) reveals that the solution to this tail selection problem will not generally select

schools based on the posterior mean. The optimal decision is a cutoff in the (1 + ξ)−1 posterior

quantile, which adds an adjustment to the posterior mean based on the posterior standard deviation√
σ2θs

2
j/(σ

2
θ + s2j ). This means schools with the same posterior mean θ∗j will be treated differently

based on their standard errors sj . Whether this adjustment rewards or punishes schools with large

standard errors depends on whether Φ−1(1/(1 + ξ)) is positive or negative, which depends in turn

on whether type I or type II errors are more costly (note that this function crosses zero at ξ = 1).

When the administrator is especially concerned about mistakenly selecting high-performing schools

(so ξ is small), she gives the benefit of the doubt to schools with poor posterior means but large

standard errors. When the administrator is more concerned about failing to select low performers

(so ξ is large), she penalizes schools with large sj since there is a reasonable chance a school with

a very noisy estimate belongs to the lower tail even if its posterior mean appears favorable.
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This simple example demonstrates that the right posterior prediction to report in the EB

shrinkage step depends on the goal of the analysis and associated loss function. A clear statement

of the loss function is therefore a central part of any coherent EB shrinkage analysis. Specifically,

what is the purpose of reporting unit-specific posterior estimates, and how do we expect them to be

used? Reporting posterior means is sensible if the aim is to maximize average outcomes by directing

consumers to units with high value-added. If the goal is to find units in the tail of the distribution

while limiting the likelihood of mistakes, a posterior quantile may be more appropriate. Ordered

lists of EB posterior predictions may lead to scrutiny of the highest- and lowest-ranked performers,

a tendency that Gu and Koenker (2023b) term the “league table mentality.” As I discuss further

in Section 3.5, neither posterior means nor posterior quantiles are generally optimal if the objective

is to accurately convey information about relative ranks.

2.6 Precision-dependence

So far I have focused on models assuming independence of the effect sizes θj and sampling variances

s2j across units. In practice these parameters may be correlated. Potential sources of such precision-

dependence can be seen in the normal-means problem of Example 1. Recall that the sampling

variance of θ̂j in this case equals s2j = σ2j /nj . A correlation between θj and s
2
j will arise if the effect

size θj is related to group size nj , the within-group outcome variance σ2j , or both.

There are often economic reasons to expect such correlations. In the teacher value-added

context, a large body of research establishes that teaching skill improves with experience (Staiger

and Rockoff, 2010). Lower-quality teachers may also exit the teaching profession faster (Goldhaber

et al., 2011). Both of these forces suggest more data will be available to estimate value-added for

higher-quality teachers, implying a negative correlation between θj and s2j . Research on hospital

value-added shows that higher-quality hospitals tend to have higher market shares and gain market

share over time, potentially generating a positive relationship between hospital quality and sample

size (Chandra et al., 2016, 2023). In empirical Bayes meta-analyses of the distribution of research

findings across studies, precision-dependence may arise because studies are screened on the basis

of statistical significance (publication bias) or because researchers concerned with statistical power

choose sample sizes with an eye toward expected effect sizes (Sterne and Narbord, 2004).

To understand the implications of precision-dependence, consider the independent normal/normal

model defined by equations (1) and (7). In this model the simple hyperparameter estimates in

equations (8) and (9) are not efficient when s2j varies across units. Instead, the following precision-

weighted averages provide asymptotically efficient estimates of the mean and variance of G:

µ̂θ =
J∑
j=1

(
[σ2

θ+s
2
j ]

−1∑J
k=1[σ2

θ+s
2
k]

−1

)
θ̂j , (53)

σ̂2θ =
J∑
j=1

(
[σ2

θ+s
2
j ]

−2∑J
k=1[σ2

θ+s
2
k]

−2

)[
(θ̂j − µ̂θ)

2 − s2j

]
. (54)
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The weights in these formulas depend on the unknown mixing variance σ2θ .
12 A one-step maximum

likelihood approach continuously updates σ2θ and µθ to simultaneously estimate the parameters and

efficient weights, while a two-step approach substitutes in weights based on a first-step estimate

of σ2θ (e.g. the unweighted estimator in (9)). A simpler alternative is to use weights that are

proportional to nj or s−2
j , which captures some of the gains to precision-weighting without the

need to estimate the optimal weights.

Under the assumption that θj and s2j are independent, these precision-weighting approaches

will produce more precise estimates of the hyperparameters of G than the unweighted averages in

(8) and (9). When θj and s2j are correlated, however, precision-weighting changes the estimand,

so the unequally-weighted averages in (53) and (54) will not generally be consistent for µθ and σ
2
θ .

The choice of whether or not to precision-weight when estimating the hyperparameters of G in the

deconvolution step therefore involves a classic robustness/efficiency tradeoff.

Precision-dependence also affects the shrinkage step of the EB recipe. The standard EB linear

shrinkage estimator in equation (15) is based on a prior distribution assuming independence between

θj and sj . Its performance will degrade if this assumption is false, and the shrinkage estimate may

even perform worse than the unshrunk estimate θ̂j with some forms of precision-dependence.

This problem can be seen in a simple example. Suppose the true mixing distribution has mean

zero and variance proportional to s2j , so that θj |sj ∼ N (0, s2jσ
2). The oracle posterior mean in this

model is E[θj |θ̂j , sj ] = (σ2/[1+σ2])θ̂j , which uses a constant shrinkage factor that does not depend

on s2j and therefore preserves the ordering of the raw θ̂j ’s. Because true effects are more variable

for units with higher standard errors, we should not shrink noisier estimates more. A conventional

linear shrinkage estimator of the form of (15) will instead apply more shrinkage to units with larger

s2j , changing the ordering of units relative to θ̂j (and the oracle posterior mean). This means that

if we aim to select units with high average value-added, the unadjusted θ̂j performs better than

standard linear shrinkage in this case.13 I next consider strategies for avoiding such problems by

relaxing the assumption that effect sizes and standard errors are independent.

Testing and modeling precision-dependence

The assumption that θj and sj are independent is testable. It is convenient to test this assumption

with regression-based procedures checking whether the conditional mean and variance of θj depend

on sj . If θj and sj are independent we have E[θ̂j |sj ] = µθ and E[(θ̂j−µθ)2−s2j |sj ] = σ2θ . Regressions

of θ̂j and (θ̂j − µ̂θ)
2 − s2j on functions of sj should therefore yield coefficients of zero. Such tests

provide a practical first check for the importance of precision-dependence.

If dependence is present, we can incorporate it into the deconvolution step by estimating a

conditional mixing distribution that depends on sj . Chen (2023) studies a class of conditional

location scale estimators (CLOSE) that allow the mean and variance of the prior to depend on

precision. As a simple parametric version of such a strategy, consider the specification:

12Equations (1) and (7) imply the marginal variance of θ̂j is σ2
θ + s2j , while the marginal variance of (θ̂j − µθ)

2 is
2(σ2

θ + s2j )
2. The estimators in equations (53) and (54) are therefore inverse-variance-weighted averages.

13See Xie et al. (2012) for an analysis of the performance of various linear shrinkage rules in models with het-
eroskedasticity.
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θj = ψ0 + ψ1 log sj + sψ2
j rj , (55)

with rj |sj ∼ N (0, σ2r ). This model treats sj as a covariate that shifts the mean and variance of G,

and assumes features of the mixing distribution beyond the first two moments do not depend on

precision.

Equation (55) implies the moment conditions E[θ̂j |sj ] = ψ0 + ψ1 log sj and E[(θ̂j − ψ0 −
ψ1 log sj)

2 − s2j |sj ] = s2ψ2
j σ2r . The deconvolution step leverages these restrictions to estimate the

hyperparameters of the conditional mixing distribution. A simple two-step approach is to estimate

ψ0 and ψ1 with a linear regression of θ̂j on log sj , then estimate ψ2 and σ2r with a non-linear least

squares regression of [(θ̂j − ψ̂0 − ψ̂1 log sj)
2 − s2j ] on s

2ψ2
j σ2r . Alternatively, we can estimate all the

parameters in one step by embedding both moment conditions in a single generalized method of

moments (GMM) procedure.

The shrinkage step incorporates precision-dependence by forming EB posteriors for the residuals

rj and transforming these residuals to produce posteriors for θj . Let r̂j = (θ̂j − ψ̂0 − ψ̂1 log sj)/s
ψ̂2
j

denote a noisy estimate of rj constructed using hyperparameter estimates from the deconvolution

step. Equations (1) and (55) imply r̂j |rj , sj ∼ N
(
rj , s

2(1−ψ2)
j

)
. This motivates the residual linear

shrinkage estimator:

r̂∗j =

 σ̂2r

σ̂2r + s
2(1−ψ̂2)
j

 r̂j . (56)

An EB posterior mean for θj accounting for precision-dependence is then given by:

θ̂∗j = ψ̂0 + ψ̂1 log sj + sψ̂2
j r̂

∗
j . (57)

When effect sizes and precision are correlated, this estimator should be expected to improve aggre-

gate MSE relative to both the unbiased estimate θ̂j and the conventional linear shrinkage estimator

in (15) which neglects precision dependence.

Variance-stabilizing transformations

In some cases it is possible to transform the estimates θ̂j to have constant sampling variance rather

than estimating the relationship between θj and sj . Such variance-stabilizing transformations

(VSTs) eliminate concerns about precision-dependence since effect sizes cannot be correlated with

precision if precision is constant. In the normal noise model (1), suppose the squared standard

error s2j is a known function of the unobserved effect θj :

s2j = v(θj). (58)

Consider a transformation of the form:
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t(θ) = η

∫ θ

−∞
v(u)−1/2du (59)

for a constant η. The delta method implies

V ar(t(θ̂j)|θj) ≈ t′(θj)
2s2j

= η
(
v(θj)

−1/2
)2
v(θj)

= η, (60)

where the second line follows from Leibniz’s rule. The transformed variable t̂j = t(θ̂j) then has the

same sampling variance for all units, and its mixing distribution can be recovered by deconvolution

without worrying about precision-dependence.

A VST is an attractive option for handling precision-dependence in settings where a known

function v(·) satisfying (58) is available. This approach is less appealing when the right VST is

unknown, though in some cases it may be possible to estimate v(·). This involves modeling s2j as

a deterministic function of θj as in equation (58), rather than modeling θj as a (random) function

of sj as in equation (55).14

Example 3: Binomial mixtures

Suppose the microdata Yi are generated by independent Bernoulli trials with a different success

probability θj for each group j. This implies the group-specific success counts Cj =
∑

iDijYi follow

a mixture of Binomial distributions:

Cj |θj , nj ∼ Bin(nj , θj). (61)

The variance of the binomial distribution is given by V ar(Cj |θj , nj) = njθj(1− θj). The variance

of the success rate θ̂j = n−1
j Cj is then deterministically linked to the success probability as s2j =

n−1
j θj(1− θj) .

With binomial noise, sampling variance is stabilized by the Bartlett (1936) arcsine-square-root

transformation:

t(θ) = sin−1
(√

θ
)
. (62)

The derivative of this transformation is t′(θ) =
(
2
√
θ(1− θ)

)−1
, so the asymptotic variance of

14Holland (1973) shows that a VST may not exist in the multivariate case where θj is a vector with more than one
element.
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t̂j = sin−1

(√
θ̂j

)
is given by

V ar(t̂j |θj , nj) ≈

(
1

2
√
θj(1− θj)

)2(
θj(1− θj)

nj

)
=

1

4nj
. (63)

The variance of t̂j no longer depends directly on θj , though some precision-dependence may remain

if the sample sizes nj vary and are correlated with θj . Kline et al. (2024) apply the arcsine-square-

root transformation to analyze variation in callback rates across first names in a correspondence

experiment. Brown (2008) considers an extended class of related binomial VSTs with improved

finite-sample properties.

Noisy standard errors

While the standard errors s2j are often treated as known, in practice it is usually necessary to

estimate the sampling variance of each θ̂j . Recall from Example 1 that with normal microdata the

sample mean θ̂j is normally distributed with mean θj and variance s2j = σ2j /nj . If σ2j is unknown

it must be estimated from the data, typically with the unbiased variance estimator:

σ̂2j =
1

nj − 1

∑
i

Dij(Yi − θ̂j)
2. (64)

The standard error estimate for unit j is then ŝ2j = σ̂2j /nj , which includes error due to noise in σ̂2j .

In principle we can account for this noise using a model for the sampling distribution of ŝ2j .

When the microdata Yi are normally distributed, for example, the scaled sum of squares (nj −
1)σ̂2j /σ

2
j follows a χ2 distribution with nj − 1 degrees of freedom. This implies ŝ2j follows a Gamma

distribution with shape parameter (nj − 1)/2 and scale parameter 2σ2j /[nj(nj − 1)] = 2s2j/[nj − 1]:

ŝ2j |s2j , nj ∼ Γ

(
nj − 1

2
,

2s2j
nj − 1

)
. (65)

This model can be used to implement a bivariate deconvolution that estimates the joint distribution

of (θj , s
2
j ) accounting for the noise in both θ̂j and ŝ

2
j (see, e.g., Gu and Koenker, 2017, 2023a). Mul-

tivariate deconvolution may be empirically challenging, however, especially if precision-dependence

is present so that the effect sizes θj and group-specific variances σj are correlated with one another

or with sample size nj .

Three considerations suggest the sampling error in ŝj may not be consequential in typical

applications. First, noise in estimates of sampling variance does not compromise estimates of some

features of the mixing distribution. For example, the bias-corrected variance estimate in (9) is

consistent for σ2θ whether the true noise variance s2j or an unbiased estimate ŝ2j is used for bias

correction (see Section 3.1 for elaboration on this point). Second, the noise in ŝ2j will often be
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approximately independent of the noise in θ̂j , ruling out more pernicious forms of measurement

error in ŝ2j . With normal data the sample mean and sample variance are independent.15 Finally,

the noise in ŝ2j disappears with sample size at a faster rate than the noise in θ̂j . Equation (65)

implies ŝ2j has variance 2s
4
j/(nj−1), which will typically be much smaller than s2j itself as long as nj

is reasonably large. This motivates the standard approach of treating the noise in ŝ2j as negligible

relative to the noise in θ̂j .

2.7 Connections to Machine Learning

Empirical Bayes methods are closely connected to machine learning (ML) approaches to model

selection and regularization. ML refers to a battery of empirical tools used to reduce overfit-

ting in high-dimensional settings where the number of available predictors is large relative to

sample size (see Varian, 2014, Mullainathan and Spiess, 2017, and Athey and Imbens, 2019 for

econometrically-oriented reviews). The idea of penalizing model complexity to limit overfitting

bears close resemblance to the use of EB shrinkage to reduce variance. I next develop this con-

nection further by highlighting well-known equivalences between EB shrinkage and simple machine

learning approaches.

Return to the setup of Example 1 with normally-distributed microdata, and simplify further

by assuming a common standard deviation of outcomes across groups (σj = σy ∀j). Suppose the

θj ’s are drawn from the normal mixing distribution in (7) and set the prior mean µθ to zero. The

oracle posterior density for θj can be written

p(θj |D,Y) =

[
N∏
i=1

{
1
σy
ϕ
(
Yi−θj
σy

)}Dij

]
1
σθ
ϕ
(
θj
σθ

)
∫ [∏N

i=1

{
1
σy
ϕ
(
Yij−θ
σy

)}Dij
]

1
σθ
ϕ
(
θ
σθ

)
dθ

, (66)

where D and Y are vectors collecting the group indicators Dij and outcomes Yi for all observations.

We have already seen by equation (11) that this posterior distribution is normal with mean given

by the linear shrinkage formula θ∗j in (12). Since the mean and mode of a normal distribution

coincide, we can equivalently represent θ∗j as the maximizer of the posterior density in (66), which

implies

(θ∗1, ..., θ
∗
J) = arg max

θ1,...,θJ

J∑
j=1

log p(θj |D,Y)

= arg max
θ1,...,θJ

J∑
j=1

N∑
i=1

Dij logϕ
(
Yij−θj
σy

)
+

J∑
j=1

log ϕ
(
θj
σ
θ

)
, (67)

15Independence of θ̂j and ŝ
2
j does not generally hold for estimators other than the sample mean. For instance, Keane

and Neal (2023) note that instrumental variables estimation produces correlated noise in estimates and standard
errors.
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where I have dropped constants that do not depend on the θj ’s. The maximizer of the posterior

density is called a maximum a posteriori (MAP) estimate. Plugging normal densities into equation

(67) and simplifying yields

(θ∗1, ..., θ
∗
J) = arg max

θ1,...,θJ
−

J∑
j=1

N∑
i=1

Dij
(Yi − θj)

2

2σ2y
−

J∑
j=1

θ2j
2σ2θ

= arg min
θ1,...,θJ

J∑
j=1

N∑
i=1

Dij(Yij − θj)
2 + λh(θ1, ..., θJ), (68)

where λ = σ2y/σ
2
θ and h(θ1, ..., θJ) =

∑
j θ

2
j .

Equation (68) shows that the linear shrinkage posteriors θ∗j solve a regularized least squares

problem with an L2 (quadratic) penalty function h(·), a simple ML procedure known as ridge

regression. This implies we can equivalently think of ridge regression as a Bayesian procedure

based on an independent mean-zero normal prior over the parameters. An EB version of this

procedure plugs in an estimate of the prior, which means using the data to choose λ. The EB

posterior means θ̂∗j are therefore ridge regression estimates based on a data-dependent value of the

ridge penalty.

ML regularization procedures can often be reinterpreted through an EB lens, with the specific

form of regularization determined by choices of prior distribution and loss function. This EB view

helps to clarify the implicit distributional assumptions and objectives underlying ML procedures.

For example, if we choose a Laplace (double-exponential) prior distribution rather than a normal

distribution for G, an analogous derivation yields a MAP estimator that replaces the L2 penalty in

equation (68) with an L1 (absolute value) penalty h(θ1, ..., θJ) =
∑

j |θj |. Regularized least squares

with an L1 penalty is another basic ML procedure called the least absolute shrinkage and selection

operator (lasso; Tibshirani, 1996). The use of lasso can therefore be justified by a choice of Laplace

prior combined with a choice to report MAP estimates rather than posterior means.16 Abadie and

Kasy (2019) consider the risk properties of ridge, lasso, and other common ML procedures in an

EB framework.

2.8 Linear Shrinkage Application: School Value-Added in Boston

The basic empirical Bayes recipe is illustrated here by estimating school value-added in Boston

based on data from Angrist et al. (2017). I focus on 2014 math value-added estimates for 46

Boston middle schools. Thirty of these 46 schools operate within the Boston Public Schools (BPS)

district, while the remaining 16 are charter schools, which are publicly-funded schools that operate

outside BPS and have more freedom than traditional public schools to set curricula and make

staffing decisions. The charters in this sample mostly follow the “No Excuses” educational model,

a package of practices that has been shown to generate large achievement gains for students in

Boston and elsewhere (Abdulkadiroğlu et al., 2011; Angrist et al., 2013; Dobbie and Fryer, 2013;

16Tibshirani (1996) noted this Bayesian interpretation when first introducing the lasso.
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Walters, 2018). Further details on the characteristics of Boston schools and students are available

in Angrist et al. (2017).

Figure 1 summarizes the three steps of the empirical Bayes recipe for Boston middle schools.

I implement step 1 with an OLS regression of sixth-grade math test scores on school indicators

and controls as in equation (5). Math scores Yi are standardized to have mean zero and standard

deviation (σ) one in the Boston student population. The covariate vector Xi includes fifth-grade

math and reading scores along with indicators for sex, race, free or reduced price lunch status,

special education, and English language learner status. I center the school coefficient estimates to

have mean zero so that each θ̂j is interpretable as an estimate of the effect of school j relative to the

average school. Standard errors sj are computed with the White (1980) heteroskedasticity-robust

variance estimator. The open bars in panel A of Figure 1 display a histogram of the estimated

θ̂j ’s, with blue bars representing traditional BPS schools and red bars representing charter schools.

These value-added estimates range from roughly −0.4σ to 0.5σ with a standard deviation of 0.221σ.

Some of the variation in OLS VAM estimates in Figure 1 comes from statistical noise in the es-

timated θ̂j ’s. Step 2 of the empirical Bayes recipe adjusts for this noise to recover an estimate of the

underlying distribution of school quality. The average s2j in this sample is 0.010, which (using equa-

tion (9)) results in a bias-corrected standard deviation estimate equal to σ̂θ =
√
0.2212 − 0.010 =

0.197σ. The black curve in panel A of Figure 1 plots a normal distribution with standard deviation

σ̂θ, which is the deconvolution estimate of G under the normal model for the mixing distribution

in (7). The raw standard deviation of average test scores across Boston schools is 0.5σ, so the

estimated value-added distribution implies that only about (0.2/0.5)2× 100 = 16% of the observed

variance in school performance is due to causal contributions of schools, with the remaining 84%

explained by selection bias.

The standard errors sj vary across schools, so I next probe for dependence between effect sizes

and precision as discussed in Section 2.6. This investigation suggests little relationship between

school value-added and sampling variance. A regression of θ̂j on log sj yields a slope coefficient

of 0.246 with a robust standard error of 0.231, while a regression of θ̂2j − s2j on log sj produces a

slope coefficient of 0.012 with a standard error 0.047. In view of these weak relationships between

estimates and standard errors, I maintain an independent prior in step 3 of the EB recipe and form

linear shrinkage posterior means based on equation (15) for each school.

The resulting linear shrinkage estimates are plotted in the solid histogram in panel A of Figure

1. As expected based on the discussion in Section 2.3, the standard deviation of shrunk posteriors

(0.180σ) is smaller than the standard deviation of the prior distribution (0.197σ), which is in turn

smaller than the standard deviation of the unadjusted VAM estimates (0.221σ). To understand the

gains from shrinkage, note that MSE for θ̂j equals the average squared standard error (0.010), while

MSE for the posterior mean equals the difference between the variance of the mixing distribution

and the variance of posterior means.17 This comparison indicates that shrinkage reduces aggregate

MSE for school value-added estimates by (1− [(0.1972 − 0.1802)/0.010])× 100 = 36%.

17By the law of total variance we have E[(θj − E[θj |θ̂j , sj ])2] = V ar(θj)− V ar(E[θj |θ̂j , sj ]).
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The upper tail of the estimated value-added distribution in panel A of Figure 1 is dispropor-

tionately composed of charter schools. This suggests that incorporating differences in effectiveness

across school sectors may result in improved estimates of school quality. I account for school sector

with a conditional prior of the form of (38), allowing a charter-sector location shift in the mean of

the mixing distribution and assuming a common within-sector variance σ2r .

Following the logic of Section 2.3, I estimate the charter sector effect by regressing the unbi-

ased θ̂j ’s on a charter indicator, which yields a coefficient of 0.293σ. This implies that attend-

ing an average charter school boosts achievement by nearly one-third of a standard deviation

relative to an average BPS school. The standard deviation of residuals from this regression is

0.194σ, which generates a deconvolution estimate of the residual variance in school quality equal

to σ̂r =
√
0.1942 − 0.010 = 0.139σ. The smaller value of σ̂r relative to the unconditional σ̂θ

reveals that charter status explains half of the variation in effectiveness across Boston schools:

the implied R-squared from a regression of unobserved school quality θj on a charter indicator is

1− (0.139/0.197)2 = 0.502. Linear shrinkage posteriors incorporating charter status shrink the θ̂j ’s

toward a sector-specific mean using equation (39).

Panel B of Figure 1 summarizes this conditional EB procedure by plotting the histogram of

unadjusted VAM estimates, separate estimated prior distributions for BPS and charter schools, and

a histogram of the resulting EB posteriors. A comparison to panel A illustrates how conditional

shrinkage treats schools differently based on charter sector status. In panel A, for example, shrinkage

toward the mean has little effect on charter schools with unbiased θ̂j ’s near zero since these schools

are already estimated to be about average. The shrinkage in panel B accounts for the fact that

such schools come from a high-performing sector and pulls estimates for these schools up above

zero. Incorporating charter status into the shrinkage procedure yields further improvements in

mean squared error, reducing aggregate MSE by an estimated 47% relative to the unbiased θ̂j ’s.

3 Non-Parametric Empirical Bayes

This section extends the EB framework by relaxing the normality and independence assumptions

maintained for much of Section 2. I first discuss methods for estimating the variance of parameters

across units under minimal assumptions, building on the variance component estimation framework

of Kline et al. (2020). I then proceed to cover non-parametric estimation of priors and posteriors,

partial identification, and other important special cases of non-parametric EB methods. The section

concludes with an application of non-parametric EB to a labor market correspondence experiment

studied by Kline et al. (2022) and Kline et al. (2024).

3.1 Bias-Corrected Variance Estimation

As before, consider a grouped data structure with J groups, each associated with a group-specific

parameter θj . Collect these parameters in the J × 1 vector Θ = (θ1, ..., θJ)
′. Suppose we can

form an unbiased estimate θ̂j of each group’s parameter, and collect these estimates in the vector
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Θ̂ = (θ̂1, ..., θ̂J)
′. A J × J matrix V describes the sampling variance of Θ̂. This matrix has the

squared standard errors s2j of the individual θ̂j ’s along its diagonal. Unlike the simpler framework

of Section 2.1, I do not assume the noise in θ̂j is normally distributed, and I do not assume the

θ̂j ’s are independent (i.e. the off-diagonal elements of V may not be zero). Moreover, I assume

the elements of V are unknown, but an unbiased variance estimator V̂ is available. This setup is

formalized as:

E
[
Θ̂|Θ, V

]
= Θ, (69)

E
[
(Θ̂−Θ)(Θ̂−Θ)′|Θ, V

]
= V, (70)

E
[
V̂ |Θ, V

]
= V. (71)

The conditioning on (Θ, V ) in (69)-(71) emphasizes that these objects are treated as fixed param-

eters rather than random variables for now.

Suppose we are interested in a quadratic form in the vector Θ, given by:

Q(Θ, A) = Θ′AΘ, (72)

where A is a known non-random weighting matrix. An important special case uses the matrix

A0 =
1

J − 1

(
IJ − 1

J
1J1

′
J

)
, (73)

where IJ is the J × J identity matrix and 1J is a J × 1 vector of 1’s. With this choice of weighting

matrix, the quadratic form Q(Θ, A0) is the sample variance of θj ’s:

Q(Θ, A0) =
1

J − 1

J∑
j=1

(
θj − θ̄

)2
, (74)

with θ̄ = J−1
∑

j θj . Parameter Q(Θ, A0) summarizes variation in the unknown θj ’s across the

finite set of J observed groups. The general quadratic form in (72) also nests other useful special

cases, such as covariances between value-added parameters across multiple outcomes.18

An obvious starting point for estimating Q(Θ, A) is a plug-in estimator Q(Θ̂, A), which substi-

tutes the unbiased estimate Θ̂ for the true Θ in equation (72). This estimator is biased due to the

18In the multivariate value-added framework of Section 2.4, collect value-added parameters for all schools and
outcomes in the JK × 1 vector Θ = (θ11, ..., θJ1, θ12, ...., θJK)′, and let Akm denote a JK × JK matrix with A0 at its
k−mth J×J block and zeros elsewhere. Then Q(Θ, Akm) = (J−1)−1 ∑

j(θjk− θ̄k)(θjm− θ̄m) with θ̄k = J−1 ∑
j θjk.
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non-linearity of the quadratic form Q(·). Specifically, we have

E
[
Q(Θ̂, A)|Θ, V

]
= E

[
Θ̂′AΘ̂|Θ, V

]
= Θ′AΘ+ E

[(
Θ̂−Θ

)′
A
(
Θ̂−Θ

)
|Θ, V

]
= Q (Θ, A) + tr (AV ) , (75)

where the last equality uses standard properties of the trace operator.19 Equation (75) formalizes

the intuition from Section 2.1 that noise inflates the sample variance of estimated θ̂j ’s relative to

the variability of the true θj ’s. With the weighting matrix in (73) and a diagonal V , the bias in

the plug-in variance estimate is given by tr(A0V ) = J−1
∑

j s
2
j .

The bias in the plug-in estimator can be corrected using the variance estimate V̂ . The result

in equation (75) motivates a bias-corrected estimator of the form:

Q̂BC = Q(Θ̂, A)− tr(AV̂ ). (76)

When V̂ is unbiased for V, the second term of (76) is an unbiased estimator of the bias term in

(75). This implies Q̂BC is an unbiased estimator of Q(Θ, A):

E
[
Q̂BC |Θ, V

]
= E

[
Q(Θ̂, A)|Θ, V

]
− E

[
tr
(
AV̂
)
|Θ, V

]
= Q (Θ, A) + tr (AV )− tr

(
AE[V̂ |Θ, V ]

)
= Q(Θ, A). (77)

This bias correction approach may be implemented with various choices of the variance estimate

V̂ . The properties of the resulting Q̂BC will depend on this choice as well as the variance structure

of the underlying microdata. For the case where Θ̂ is a vector of linear regression coefficients,

Andrews et al. (2008) consider bias-correction with a V̂ that is unbiased with homoskedasticity but

biased and inconsistent with heteroskedasticity. A V̂ formed based on conventional White (1980)

heteroskedasticity-robust (HC0) standard errors is consistent with heteroskedasticity but biased in

finite samples. The HC2 robust variance modification proposed by MacKinnon and White (1985) is

unbiased when the microdata are homoskedastic and biased but consistent with heteroskedasticity.

Kline et al. (2020) propose a leave-out variance estimator that yields a finite-sample unbiased V̂ with

arbitrary heteroskedasticity. This property makes the Kline et al. (2020) estimator an appealing

choice for bias-correction in value-added studies with few observations per unit. In cases where

groups are large enough for the standard errors of the individual θ̂j ’s to be accurate, alternative

heteroskedasticity-robust variance matrices are likely to produce similar results.

Unbiased estimation of the mixing variance

Equation (77) establishes that we can use Θ̂ and V̂ to construct an unbiased estimate of any

19A scalar equals its trace, trace is a linear operator, and a trace is invariant to cyclic permutations.

32



quadratic form Q(Θ, A), treating Θ and V as unknown fixed parameters. If we instead view the

θj ’s as random effects drawn from a mixing distribution, the law of iterated expectations implies

Q̂BC is an unbiased estimate of the expectation of Q(Θ, A). We have

E
[
Q̂BC

]
= E

[
E
[
Q̂BC |Θ, V

]]
= E [Q (Θ, A)] , (78)

where the outer expectations treat Θ and V as random. Importantly, this implies that in the

random effects model (6) with θj ’s drawn independently from G, we can form an unbiased estimate

of the mixing variance as:

σ̂2θ = Θ̂′A0Θ̂− tr(A0V̂ ). (79)

This estimator is unbiased for σ2θ because

E
[
Θ̂′A0Θ̂− tr(A0V̂ )

]
= E [Q(Θ, A0)]

= E

 1

J − 1

J∑
j=1

(
θj − θ̄

)2
= σ2θ , (80)

where the last equality follows from the fact that the sample variance of θj ’s is an unbiased estimate

of the population variance. When V̂ is a diagonal matrix composed of unbiased squared standard

error estimates ŝ2j , the bias-corrected mixing variance estimator simplifies to σ̂2θ = (J−1)−1
∑

j [(θ̂j−
µ̂θ)

2 − J−1(J − 1)ŝ2j ]. This estimator modifies equation (9) with degrees-of-freedom corrections to

yield a finite-sample unbiased estimate of σ2θ .

In summary, subtracting off an average squared standard error as in equation (9) is a simple and

transparent starting point for bias-corrected mixing variance estimation. Using the more compre-

hensive bias-correction formula in equation (79) is likely to make a difference when J is small and

when the off-diagonal elements of V are large. In a value-added regression like equation (5) with

independent student observations, correlation in the θ̂j ’s across schools comes from error in the

estimated control coefficient γ̂.20 This implies the off-diagonal elements of V can be safely ignored

when the control coefficients are estimated very precisely, but may be important in scenarios with

many fixed effects or other high-dimensional controls. Other approaches to value-added estima-

tion, such as “movers designs” leveraging individuals switching between groups, may also generate

important correlations in noise across units, leading to a non-diagonal V (Bonhomme and Denis,

2024). The full bias correction in (79) extracts the signal variance of value-added from correlated

20As noted in Section 2.3, the θ̂j ’s are school means of the long regression residual Yi−X ′
i γ̂, which are uncorrelated

across schools if there is negligible noise in γ̂. The nature of correlation in estimates will also depend on how the
reference category in a value-added regression is defined. Equation (5) includes a dummy for every school and no
constant term, which makes θ̂j an estimate of an average covariate-adjusted outcome level at school j. If we instead
include a constant and omit a dummy for school 1, the resulting value-added estimates for schools 2 through J equal
∆̂j = θ̂j − θ̂1, which are likely to be correlated since these are differences relative to the same base school.
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noise in such cases. In applications where correlated noise is a potential concern, a comparison of

mixing variance estimates based on equations (9) and (79) is a useful robustness check.

Example 4: Worker and firm effects

A prominent application of bias-corrected variance estimation comes from two-way fixed effects

(TWFE) models for worker and firm effects on earnings. Starting with Abowd et al. (1999), a large

literature studies linear regressions of the form:

log Yit = αi + ψJ(i,t) +X ′
itβ + ϵit, (81)

where Yit is earnings for worker i in year t and Xit is a vector of time-varying controls. The function

J(i, t) returns the identity of the firm employing worker i in year t. The worker effect αi represents

a permanent component of earnings specific to worker i that is constant across employers, while the

firm effect ψj reflects an effect of working for firm j that is constant across workers and over time.

Under an exogenous mobility assumption the firm effects in equation (81) capture causal effects

of particular employers on pay, which may reflect factors such as market power, compensating

differentials, wage setting policies, or rent sharing (Card et al., 2018). Analyses of such additive

worker and firm effect models include Gruetter and Lalive (2009), Card et al. (2013), Card et al.

(2015), Song et al. (2018), Lachowska et al. (2023a), and Lachowska et al. (2023b).

The parameters of equation (81) are identified based on movements of workers across firms, so

TWFE estimation must be restricted to a connected set of employers linked by worker mobility.

Even within this set there may be few workers linking some groups of firms, yielding noisy estimated

worker and firm effects ψ̂j and α̂i. The errors in these estimates are also likely to be correlated:

overestimating a worker’s effect will tend to lead to underestimating the effect of his or her firm,

resulting in a negative sampling covariance between α̂i and ψ̂J(i,t). The influence of this noise on

the variation in estimated worker and firm effects is commonly referred to as “limited mobility

bias” (Andrews et al., 2008), a special case of the plug-in bias illustrated in equation (75).

The variances and covariances of the worker and firm effects from equation (81) can be written

as special cases of the quadratic form in (72). Bonhomme et al. (2023) compare estimates of these

variance components using multiple strategies for bias correction including the “homoskedasticity-

only” correction of Andrews et al. (2008), the heteroskedasticity-robust bias correction of Kline et al.

(2020), and random effects methods building on Woodcock (2008) and Bonhomme et al. (2019).

Their results for several countries show that bias-correction substantially reduces the estimated

magnitude of variation in firm effects and often flips the sign of the estimated covariance between

αi and ψJ(i,t) from negative to positive. They also find that alternative methods for bias-correction

tend to produce similar results. Adopting an EB view, we can think of the parameters of equation

(81) as (correlated) random effects drawn from a mixing distribution describing worker and firm

heterogeneity, and interpret bias-corrected variance components as estimates of the second moments

of this distribution.
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3.2 Non-parametric Priors and Posteriors

The preceding section shows that we can estimate the variance of G under minimal assumptions.

If we are content to quantify heterogeneity across units with the mixing variance and form linear

shrinkage posteriors with low mean squared error, estimating the mean and variance of G may be

enough. In some cases, however, it is useful to develop a more complete picture of the value-added

distribution. To flexibly estimate the full mixing distribution G, I return to a hierarchical random

effects setup with mutually independent normally distributed estimates and effect sizes independent

of standard errors:

θ̂j |θj , sj ∼ N (θj , s
2
j ), (82)

θj |sj ∼ G. (83)

The mixing distribution is non-parametrically identified in this model (Kotlarski, 1967; Evdokimov

and White, 2012), which motivates estimators that avoid imposing a functional form for G. I con-

sider two approaches to flexible estimation of G: a non-parametric maximum likelihood estimator

(NPMLE), and a log-spline deconvolution estimator proposed by Efron (2016).

Non-parametric maximum likelihood

Non-parametric maximum likelihood is a classic approach to flexibly estimating distributions of

unobserved heterogeneity. NPMLE was outlined in an abstract by Robbins (1950) and developed

in detail by Kiefer and Wolfowitz (1956). Within labor economics, Heckman and Singer (1984)

applied NPMLE to estimate heterogeneity distributions in mixed proportional hazards models.

The NPMLE estimator picks Ĝ to maximize the likelihood of the observed data over all possible

mixing distributions. This estimator is given by:

ĜNPMLE = argmax
G∈G

J∑
j=1

log

(∫
1

sj
ϕ

(
θ̂j − θ

sj

)
dG(θ)

)
, (84)

where G is the set of all cumulative distribution functions. The ĜNPMLE that solves this prob-

lem is a discrete distribution with at most J mass points. While maximizing over all possible

distribution functions may appear to be a formidable empirical task, Koenker and Mizera (2014)

outline computationally-efficient procedures that quickly approximate the NPMLE using convex

optimization methods.21 Gilraine et al. (2020) apply these methods to non-parametrically estimate

distributions of teacher value-added.

NPMLE imposes no restrictions on the mixing distribution, and EB decision rules using ĜNPMLE

as prior have been shown to provide a close approximation to the decisions of an oracle who knows

G (Jiang and Zhang, 2009; Jiang, 2020). However, the discrete distribution function produced by

NPMLE can be unweildy in some applications. Posterior distributions using ĜNPMLE as prior

21The REBayes R package implements these methods (Koenker and Gu, 2017).
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will also be discrete, which may be awkward in settings where exact ties of θj ’s are implausible.

Koenker (2020) notes that this discreteness can lead to narrow EB credible intervals (differences in

posterior quantiles) with poor frequentist coverage.22 These issues make it attractive to consider

adding some smoothness restrictions in non-parametric deconvolution.

Log-spline deconvolution

Efron (2016) proposes a flexible deconvolution approach that approximates the mixing distribution

with a smooth log density parameterized by a natural cubic spline. For a grid of M support points

(θ̄1, ..., θ̄M ), suppose the probability mass at point m is given by:

gm(α) = exp

(
S′
mα− log

(
M∑
k=1

exp(S′
kα)

))
, (85)

where Sm = S(θ̄m) is a K × 1 vector of natural cubic spline basis functions with K knots and α

is a K × 1 parameter vector. The parameters of the model are estimated by penalized maximum

likelihood as follows:

α̂ = argmax
α

J∑
j=1

log

(
M∑
m=1

gm(α)
1

sj
ϕ

(
θ̂j − θ̄m
sj

))
− λ

√
α′α, (86)

where λ ≥ 0 is a tuning parameter. The resulting log-spline deconvolution estimate ofG is ĜLS(θ) =∑
m 1{θ̄m ≤ θ}gm(α̂).
The Efron (2016) log spline deconvolution estimator is straightforward to compute and (when

M is large) yields a smoother mixing distribution estimate than NPMLE.23 These advantages

make it an appealing option for flexible deconvolution in practice. However, the estimator in (86)

requires choosing several tuning parameters including the number of spline knots K; the support

limits, spacing, and number of the support points θ̄m; and the penalization parameter λ. By the

logic of Section 2.7, the penalty term λ
√
α′α may be interpreted as a second-level prior that pushes

the estimated mixing distribution toward a uniform distribution to manage overfitting. Kline

et al. (2022) suggest choosing λ so that the variance of the resulting ĜLS matches a bias-corrected

variance estimate based on the methods of Section 3.1. Tuning ĜLS to match low-order moment

estimates in this way ensures that the deconvolved mixing distribution reproduces basic features

of G estimated with simpler methods (Efron and Tibshirani, 1996).

Non-parametric posteriors

Non-parametric EB shrinkage uses an NPMLE or log-spline estimate Ĝ when forming EB posterior

distributions P(θ|θ̂j , sj ; Ĝ) for each unit. The resulting distribution can be used to compute any

posterior feature of interest. The posterior mean of an oracle who knows G is

22Armstrong et al. (2022) propose EB confidence intervals with average coverage guarantees regardless of the form
of G.

23The deconvolveR R package provides software for log spline deconvolution (Narasimhan and Efron, 2020).
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θ∗j =

∫
θdP

(
θ|θ̂j , sj ;G

)
, (87)

with the posterior P defined as in (10). A non-parametric estimate of this quantity derived from

log-spline deconvolution is:

θ̂∗j =

∫
θdP

(
θ|θ̂j , sj ; ĜLS

)
=

∑M
m=1 θ̄m

1
sj
ϕ
(
θ̂j−θ̄m
sj

)
gm(α̂)∑M

m=1
1
sj
ϕ
(
θ̂j−θ̄m
sj

)
gm(α̂)

, (88)

where α̂ is calculated according to equation (86).

Changing notation relative to Section 2.1, we can contrast the non-parametric shrinkage esti-

mate θ̂∗j with a linear shrinkage estimate given by:

θ̂linj =

(
σ̂2θ

σ̂2θ + s2j

)
θ̂j +

(
s2j

σ̂2θ + s2j

)
µ̂θ, (89)

where µ̂θ and σ̂2θ are estimates of the mean and variance of G. These hyperparameters can be

calculated either using simple mean and variance estimators as in Sections 2.1 and 3.1, or based on

the first two moments of a non-parametric Ĝ.

The choice between θ̂linj and θ̂∗j mirrors the usual tradeoff between the robustness and simplicity

of linear estimators versus potential efficiency gains from non-linear estimators. If the mixing

distribution is far from a normal distribution the non-parametric approach will leverage the higher

moments of G to produce a richer posterior distribution, reducing mean squared error relative

to linear shrinkage. On the other hand, non-parametric deconvolution requires estimating extra

parameters, and the higher moments of G may be poorly estimated. Linear shrinkage provides

a minimum MSE linear approximation to the posterior mean without the need to estimate these

higher moments. In applications of non-parametric EB for value-added estimation, comparing non-

parametric and linear shrinkage posteriors is a useful reality check on the output of non-linear

shrinkage procedures.

Incorporating precision-dependence

The general mixing distribution model in equation (83) assumes independence between effect sizes

and standard errors. The same precision-dependence issues discussed in Section 2.6 apply to non-

parametric estimation of this model. Like the precision-weighted mean and variance estimators in

equations (53) and (54), the maximum likelihood estimators in (84) and (86) will leverage all the

restrictions implied by independence of θj and sj to increase efficiency. Imposing these restrictions

will enhance precision if they are satisfied but may compromise consistency of the resulting Ĝ if

not. The performance of non-parametric EB posteriors may also suffer if the prior erroneously rules

out precision-dependence.

Paralleling the parametric approach of Section 2.6, we can build precision-dependence into non-

parametric EB by estimating a model of the relationship between effect sizes and standard errors,

then deconvolving residuals. A non-parametric extension of the conditional location/scale model
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in equation (55) is given by:

θj = µ(sj) + σ(sj)rj , rj |sj ∼ Gr, (90)

with E[rj |sj ] = 0 and V ar(rj |sj) = 1. Chen (2023) proposes a CLOSE-NPMLE estimator that esti-

mates the conditional mean and variance functions µ(sj) and σ(sj) by non-parametric (local linear)

regression, then applies NPMLE to the resulting residuals to estimate Gr. His theoretical results

establish that this estimator yields EB decision rules that approximate the decisions of an oracle

who knows the full conditional mixing distribution, even if the conditional location/scale model is

misspecified. A tractable semi-parametric alternative (sacrificing some flexibility in the first step)

is to specify functional forms for µ(sj) and σ(sj), estimate the unknown parameters of these func-

tions, then non-parametrically deconvolve residuals with NPMLE or log-spline deconvolution. I

provide an example of such an approach in Section 3.7.

3.3 Partial Identification

The normal noise model (82) is usually justified as an asymptotic approximation with a growing

number of observations in each group. With few observations per group the distribution of the noise

in θ̂j will depend on the distribution of the underlying microdata Yi, and the mixing distribution

G may not be non-parametrically identified. However, it may still be possible to recover useful

features of the prior and posterior distributions with a partial identification approach. I illustrate

such an approach through an example drawn from Kline and Walters’ (2021) study of job-specific

employment discrimination.

Example 5: Job-level employment discrimination

Kline and Walters (2021) analyze data from resume correspondence experiments sending fic-

titious applications to real job vacancies (Bertrand and Mullainathan, 2004; Arceo-Gomez and

Campos-Vasquez, 2014; Nunley et al., 2015). To manipulate employers’ perceptions of race, resumes

in these experiments are assigned racially-distinctive names. Suppose each vacancy j ∈ {1, ..., J} in

a study receives L applications, with race assignment stratified so that Lw have distinctively-white

names and Lb = L−Lw have distinctively-Black names. For example, Bertrand and Mullainathan

(2004) sent four applications per job with two in each racial group, so Lw = Lb = 2.

Let Di ∈ {1, ..., J} denote the vacancy that received application i, let Ri ∈ {w, b} represent the

racial valence of the name assigned to this application (white or Black), and let Yi ∈ {0, 1} denote

an indicator equal to one if the application was called back by the employer. Assume callback

outcomes are generated by Bernoulli trials with stable job-by-race callback probabilities:

Yi|Di = j, Ri = r ∼ Bernoulli(pjr). (91)

The unknown unit-specific parameter in this case is the 2×1 vector θj = (pjw, pjb)
′. As in Example 3,

this model of independent Bernoulli trials implies the success counts Cjr =
∑N

i=1 1{Di = j}1{Ri =
r}Yi follow Bin(Lr, pjr) distributions for r ∈ {w, b}.
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Adopting an empirical Bayes view, suppose the two job-specific success probabilities are drawn

randomly from a bivariate mixing distribution G:

(pjw, pjb)
′ ∼ G. (92)

This mixing distribution describes heterogeneity in discrimination across jobs in the population.

We would like to use the distribution of observed success counts to learn about G. However, it is

clear that an asymptotic normal approximation does not apply with only two trials per group, so

the assumptions underlying the deconvolution methods discussed in Section (3.2) do not hold.

What can we learn about the mixing distribution in this case? With binomial trials, the

likelihood of a particular callback configuration (cw, cb) conditional on the callback probabilities at

job j is:

f(cw, cb|pjw, pjb) ≡ Pr[Cjw = cw, Cjb = cb|pjw, pjb]

=

(
Lw

cw

)(
Lb

cb

)
pcwjw(1− pjw)

Lw−cwpcbjb(1− pjb)
Lb−cb . (93)

Combined with the mixing distribution model in (92), equation (93) implies the share of jobs with

this callback configuration is given by:

f̄(cw, cb) ≡ Pr[Cjw = cw, Cjb = cb]

=

∫
f(cw, cb|pw, pb)dG(pw, pb)

=

(
Lw

cw

)(
Lb

cb

)
Lw∑
k=0

Lb∑
m=0

(−1)k+m
(
Lw − cw

k

)(
Lb − cb

m

)
µ(cw + k, cb +m), (94)

where the function µ(x, y) =
∫
pxwp

y
bdG(pw, pb) describes non-central moments of the bivariate

distribution G. Evaluating this expression for all observed values of (cw, cb) yields a linear system

of the form f̄ = BµG, which links a vector of callback frequencies f̄ to a vector of moments µG

of the mixing distribution via a known invertible matrix B of binomial coefficients. We can then

solve for µG = B−1f̄ to recover a set of moments of G from the observed callback frequencies.

This argument shows that all moments of G involving powers of (pw, pb) up to (Lw, Lb) are

identified. As a result, useful measures of heterogeneity in discrimination are identified even with

few trials per job. For example, the variance of the white/Black gap in callback probabilities

involves moments up to order two:

V ar(pjw − pjb) = µ(2, 0)− µ(1, 0)2 + µ(0, 2)− µ(0, 1)2 − 2[µ(1, 1)− µ(1, 0)µ(0, 1)]. (95)

The moments in equation (95) are identified in an experiment that sends at least two applications

per group (i.e. min{Lw, Lb} ≥ 2), as in Bertrand and Mullainathan (2004). Such an experiment can

therefore be used to distinguish a scenario in which a positive average effect of white names comes
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from an equal advantage for white applicants at all jobs (in which case V ar(pjw − pjb) = 0) from a

scenario in which some jobs favor white applicants much more than others (in which case V ar(pjw−
pjb) is large). Intuitively, we should see more modest imbalances of Cjw − Cjb = 1 in the former

case, while the latter case generates both more highly-imbalanced jobs with (Cjw, Cjb) = (2, 0) and

more instances of equal treatment with Cjw = Cjb. Kline and Walters (2021) apply this approach

to document substantial variation in discrimination in several correspondence experiments.

In addition to characterizing heterogeneity in discrimination, the moments of G imply bounds

on features of the prior and posterior distributions that are not point-identified. Consider jobs that

call back both applicants with distinctively-white names and no applicants with distinctively-Black

names in the Bertrand and Mullainathan (2004) study. How sure should we be that jobs with this

seemingly-suspicious callback configuration are discriminating? The share of such jobs that have

different callback rates for white and Black applicants is:

Pr[pjw ̸= pjb|Cjw = 2, Cjb = 0] =

∫
f(2, 0|pw, pb)1{pw ̸= pb}dG(pw, pb)

f̄(2, 0)
. (96)

The smallest value of this posterior probability that is consistent with the observed callback fre-

quencies f̄ solves the problem

min
G∈G

∫
f(2, 0|pw, pb)1{pw ̸= pb}dG(pw, pb)

f̄(2, 0)
s.t. f̄ = BµG, (97)

where G is the set of all bivariate cumulative distribution functions with domain [0, 1]2.

Equation (97) defines an optimization problem that is linear in the probability mass function

associated with G, which can be solved with linear programming techniques. Kline and Walters

(2021) plug empirical estimates of the callback frequencies f̄ into this problem and optimize over

discrete mixing distributions defined on a fine two-dimensional grid of callback probabilities. Their

results show that experiments with few observations per job can generate informative posterior

bounds. For instance, in the Bertrand and Mullainathan (2004) experiment, at least 72% of jobs

that call back two white applicants and no Black applicants must be discriminating, even using the

most conservative mixing distribution consistent with the experimental data. The corresponding

bound for a more recent experiment conducted by Nunley et al. (2015) is 85%. The idea of using

a maximally-conservative empirical prior to bound posterior probabilities in this way is closely

related to empirical Bayes approaches to multiple testing, as I discuss next.

3.4 EB for Multiple Testing: Large-Scale Inference

Non-parametric empirical Bayes methods are tightly connected with multiple testing problems that

arise frequently in labor economics and other areas of applied work. Efron (2012) uses “large-scale

inference” to refer to EB methods in this context. Consider a list of null hypotheses for each of

J units, such as H0 : θj = 0. This collection of hypotheses might concern which subgroups are

affected by an intervention, which schools have value-added below some quantile of the distribution

(as in Section 2.5), or which jobs discriminate against racially-distinctive names (as in Section 3.3).
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Let Tj = 1{θj = 0} denote an indicator equal to 1 if the null is true for unit j. Suppose we conduct

an independent test of H0 for each unit to generate a collection of p-values pj . For a rejection

threshold p̄, indicators δj = 1{pj ≤ p̄} describe which null hypotheses are rejected.

Traditional hypothesis testing seeks to control the probability of type I error (size) for a single

test. In other words, we limit the likelihood of a mistaken rejection when the null is true by

adopting a decision rule such that Pr[δj = 1|Tj = 1] ≤ α for a tolerance α. With p-values that are

uniformly distributed under the null size is controlled by setting a rejection threshold of p̄ = α. A

concern with multiple tests is that applying this rule may lead to scenarios in which many rejected

hypotheses are true. In the extreme case where all null hypotheses are true, all rejected hypotheses

will be true, but we will be very likely to reject some if p̄ is fixed and J is large. This motivates

approaches that control alternative notions of aggregate error such as the family-wise error rate

(FWER), which is the probability of at least one mistaken rejection: FWER = Pr[
∑J

j=1 Tjδj ≥ 1].

A standard Bonferroni correction uses a modified rejection threshold p̄ = α/J which shrinks with

J and thereby controls FWER at level α.

Approaches that control FWER (or generalizations such as k-FWER; Lehmann and Romano,

2005) are natural when each mistaken rejection is very costly. In settings with large numbers of

tests, however, controlling the absolute number of mistakes is stringent, and it is often more natural

to control the rate of mistakes. The false discovery proportion (FDP) is given by:

FDP =


∑J

j=1 δjTj∑J
j=1 δj

,
∑J

j=1 δj > 0;

0,
∑J

j=1 δj = 0.
(98)

FDP is the share of rejected hypotheses that are true when we reject at least one hypothesis,

and is defined to be zero otherwise. Benjamini and Hochberg (1995) propose controlling the false

discovery rate (FDR), which is the expectation of FDP:

FDR = E[FDP ]. (99)

FDR gives the expected share of true nulls among rejected hypotheses. With a test procedure that

controls FDR, therefore, we should expect most rejected null hypotheses to be false.

An EB approach to FDR control

An empirical Bayes approach facilitates FDR control in a setting with many tests. If we adopt

the random effects model (6), each true null indicator Tj is a function of a random draw from G.

Under this model, the expected share of true nulls among rejected hypotheses (those with pj ≤ p̄)
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is

FDR = Pr [Tj = 1|δj = 1]

=
Pr[pj ≤ p̄|Tj = 1]Pr [Tj = 1]

Pr [pj ≤ p̄]

=
p̄π0
F (p̄)

, (100)

where the second line uses Bayes’ rule, the third uses that p-values are uniformly distributed under

the null, F (p) = Pr[pj ≤ p] is the marginal CDF of p-values, and π0 =
∫
1{θ = 0}dG(θ).

Equation (100) shows that controlling FDR requires choosing p̄ to limit p̄π0/F (p̄). The CDF

F (·) can be estimated using the observed p-value distribution, e.g. with F̂ (p̄) = J−1
∑

j 1{pj ≤ p̄}.
The key unknown quantity in equation (100) is π0, the population share of true nulls. Importantly,

π0 is a feature of G, and therefore reflects an objective fact about the distribution of parameters

in the population being studied. If π0 = 1 all hypotheses are true, and any rejection is a mistake.

When π0 = 0 all rejected hypotheses are false, but so are all hypotheses that are not rejected. In

between, π0 provides the correct prior presumption that the null is true in this population.

Benjamini and Hochberg (1995) propose a conservative approach to FDR control that plugs

π0 = 1 into equation (100). This approach may still allow FDR control with a p̄ greater than

zero if the p-values are concentrated toward the origin, so that F (p̄) >> p̄. It is clear, however,

that we can do better. It is logically inconsistent to assume π0 = 1 while finding that F (p̄) > p̄.

More generally, the probability π0 is a feature of G, and we can learn about G via empirical Bayes

deconvolution. This suggests leveraging the distribution of results across tests to discipline the

choice of π0.

The mixing distribution G is non-parametrically identified in the normal noise model (82)-(83),

which suggests π0 may be point identified in some applications. However, it is standard to treat

this probability as partially identified in the multiple testing context. Intuitively, it is difficult to

empirically distinguish between G’s with mass points at exactly zero or only very close to zero. To

bound π0, note that the marginal density of the p-value distribution at a point p can be written:

f(p) = π0 + (1− π0)fa(p), (101)

where fa(p) is the density of p-values among false null hypotheses (those with Tj = 0). Equation

(102) reveals that the observed p-value distribution is a mixture of a uniform density with weight

π0 and an alternative density fa(p) with weight 1−π0 (Efron et al., 2001). While the exact form of

fa(p) is usually unknown, this density cannot be negative, so the marginal p-value density at any

point p provides an upper bound on π0 :

f(p) = π0 + (1− π0)fa(p) ≥ π0 ∀p. (102)

A useful test should generate p-values that are concentrated toward zero when the null is false,
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so we expect fa(p) to be lowest (and the resulting bound on π0 to be tightest) in the upper tail of

the p-value distribution. Storey (2002) proposes to bound π0 with the estimator

π̂0 =

∑J
j=1 1{pj > b}
(1− b)J

, (103)

where the threshold b ∈ [0, 1) is a tuning parameter. This amounts to assuming all p-values above

b correspond to true nulls and using the share of units in this region to estimate the height of

the null density. A higher b results in a tighter bound but noisier estimate. Storey et al. (2004)

propose a bootstrap approach to selecting b that balances this tradeoff to minimize MSE. A simple

alternative is to select a value of b a priori since any b provides an upper bound on π0.

With an estimated upper bound π̂0 in hand, equation (100) gives an upper bound on FDR for

any rejection cutoff p̄. Evaluating this expression at each observed p-value yields a list of q-values,

given by:

qj =
pj π̂0

F̂ (pj)
. (104)

The q-value is an empirical Bayes analogue of the p-value (Storey, 2003).24 Rather than controlling

Pr[δj = 1|Tj = 1] with the p-value, we borrow strength from the ensemble of tests to flip the

conditioning and control Pr[Tj = 1|δj = 1] with the q-value. If we reject all hypotheses with

p-values less than pj , we should expect at most a share qj of rejections to be mistakes.

3.5 Ranking Problems

Empirical Bayes and related methods are increasingly used to build report cards that summarize

estimates of quality with rankings or coarse grades. Examples include evalutions of K-12 schools,

teachers, colleges, hospitals, doctors, and neighborhoods (Angrist et al., 2024b; Bergman and Hill,

2018; Chetty et al., 2017; Kolstad, 2013; Pope, 2009; Chetty and Hendren, 2018). Report cards of

this sort lead naturally to comparisons of top and bottom performers (the “league table mentality”

discussed by Gu and Koenker, 2023b). However, the estimators and decision rules I have considered

so far aim for good average performance across units, not for accurate pairwise comparisons. Can

we be sure that units assigned top grades in a value-added report card are actually among the best?

One approach to this question is to analyze relative rankings of units in a standard frequentist

inference framework. Treating the θj ’s as unknown fixed parameters, the rank of unit j is given

by rankj =
∑J

k=1 1{θj ≤ θk}. Mogstad et al. (2023) develop methods to construct confidence sets

for any individual rankj as well as simultaneous confidence sets for the rankings of all J units.

Andrews et al. (2023) propose tools for inference on the value-added of the highest-ranked unit,

accounting for upward bias in the maximum estimate due to the ranking step.

An alternative strategy is to formalize the objective of a report card system in an EB compound

decision framework. In some cases this makes clear that mis-ranking units may not be a problem. If

our goal is to communicate reliable information on absolute quality, ranking units with an absolute

24The approach to q-value estimation outlined here is implemented in the qvalue R package (Storey, 2015).
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performance metric such as an EB posterior mean may lead to good decisions, even if such a

ranking yields a high rate of mistakes in relative comparisons (i.e. a low correlation between

reported rankings and the true rankj ’s). Such mistakes will be hardest to avoid when the θj ’s are

very close together, in which case mis-rankings may be of little consequence for outcomes. In other

cases we may be specifically interested in getting the rankings right, which requires a loss function

tailored to this goal.

Kline et al. (2024) use such a loss function to construct a report card summarizing firm-specific

discrimination estimates.25 Consider a decision-maker tasked with assigning a grade δj ∈ {1, ..., J}
to each of J units. Let δ = (δ1, ..., δJ)

′ denote the vector of grades for all units, and let Θ =

(θ1, ..., θJ)
′ denote the vector of true parameters. Suppose the decisionmaker seeks to minimize the

loss function

L(δ; Θ) =

(
J

2

)−1 J∑
j=2

j∑
k=1

[1{θj > θk}1{δj < δk}+ 1{θj < θk}1{δj > δk}

−λ(1{θj > θk}1{δj > δk}+ 1{θj < θk}1{δj < δk})]. (105)

This function assigns a loss of 1 for each pair of units that are mis-ordered (discordances), and a

gain of λ ∈ [0, 1] for each pair that is correctly ordered (concordances). Assigning two units the

same grade (δj = δk) guarantees a loss of zero for the pair.

By rearranging terms in equation (105), we can represent this loss function as

L(δ; Θ) = (1− λ)DP (δ; Θ)− λτ(δ; Θ), (106)

where DP (δ; Θ) =
(
J
2

)−1∑J
j=2

∑j
k=1[1{θj > θk}1{δj < δk} + 1{θj < θk}1{δj > δk}] is the discor-

dance proportion – the share of pairwise comparisons that are incorrect – and τ(δ; Θ) is Kendall’s τ

measure of rank correlation between grades δj and parameters θj (the share of concordances minus

the share of discordances). This expression shows that a decision-maker who weights concordances

and discordances equally (λ = 1) will seek to maximize the rank correlation between true parame-

ters and grades. A λ below one can be interpreted as discordance aversion that penalizes mistakes

over and above their effect on the rank correlation. Such discordance aversion creates an incentive

to coarsen rankings and create a report card with fewer than J grades. If ranking mistakes are

very costly, it may be optimal to group units together and avoid making assertions about relative

performance of units that cannot be distinguished with sufficient certainty.

Following the approach of Section 2.5, an empirical Bayes grading system treats the θj ’s as

random draws from a mixing distribution G, and minimizes risk based on a deconvolution estimate

Ĝ. Optimal decisions for an oracle that knows G are given by

δ∗ = argmin
δ

(1− λ)DR(δ)− λτ̄(δ), (107)

25See Gu and Koenker (2022) and Gu and Koenker (2023b) for other recent approaches to ranking and selection
in an EB framework.
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where the discordance rate DR(δ) is the posterior expectation of the discordance proportion

DP (δ; Θ), and τ̄(δ) is the posterior expectation of the rank correlation τ(δ; Θ). Under model

(82)-(83) with a continuous G, these quantities can be written

τ̄(δ) =

(
J

2

)
J∑
j=2

j∑
k=1

[2πjk − 1] [1{δj > δk} − 1{δj < δk}] , (108)

DR(δ) =

(
J

2

)
J∑
j=2

j∑
k=1

[πjk1{δj < δk}+ (1− πjk}1{δj > δk}] , (109)

where πjk = Pr[θj > θk|θ̂j , θ̂k, sj , sk] is the posterior probability that value-added for unit j exceeds

that of unit k given the estimates and standard errors for both units:

πjk =

∫∞
−∞

∫ t
−∞

1
sj
ϕ
(
θ̂j−t
sj

)
1
sj
ϕ
(
θ̂k−u
sk

)
dG(u)dG(t)∫∞

−∞
∫∞
−∞

1
sj
ϕ
(
θ̂j−t
sj

)
1
sj
ϕ
(
θ̂k−u
sk

)
dG(u)dG(t)

. (110)

Equations (108) and (109) show that the decision-relevant features of the posterior distribution

for this ranking problem are the pairwise posterior probabilities πjk. With two units the optimal

grading rule sets δj > δk if πjk > (1 + λ)−1, sets δj < δk if πjk < λ(1 + λ)−1, and declares a tie

(δj = δk) otherwise. With more than two units such pairwise decisions may lead to Condorcet

(1785)-style cycles that violate transitivity – for example, for three units j, k, and m, the decision-

maker may want to set δj > δk but δj = δm and δk = δm. Kline et al. (2024) represent problem (107)

as an integer linear programming problem with transitivity constraints that rule out such cycles.

An EB solution δ̂∗ plugs empirical posterior probabilities π̂jk into this problem based on a mixing

distribution estimate Ĝ from the deconvolution step. The resulting report card classifies units

into coarse grades that balance information content (captured by τ̄(δ̂∗)) against ranking mistakes

(captured by DR(δ̂∗)), with the strength of this tradeoff determined by the preference parameter

λ.

3.6 Compound Decisions and Shrinkage Strategies

I next synthesize themes from throughout the chapter in a simple compound decision framework.26

Consider a decision-maker who aims to select units with high values of a parameter θj , which is

assumed to be positive for all units (θj ≥ 0). For example, θj might be value-added of unit j

relative to a baseline or status-quo reference category. The decision-maker earns utility θ1−ωj if

she selects a unit with parameter θj and pays a constant cost κ for each selection. Parameter

ω ∈ [0, 1) governs the decision-maker’s risk aversion, with ω = 0 corresponding to risk-neutrality.

The component-wise loss function for this decision-maker is given by:

ℓ(θj , δj) = −δj
(
θ1−ωj − κ

)
, (111)

26See Section XI.A of Kline et al. (2022) for related discussion in the context of auditing to detect discrimination.
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where δj ∈ {0, 1} indicates selection of unit j.

Suppose the decision-maker has access to estimates and standard errors (θ̂j , sj) for each unit

to use in making decisions. These estimates are unbiased and normally distributed as in equation

(82). The underlying parameters θj are drawn from a distribution G according to model (83). With

J units, the risk of a decision rule δ is then

R(δ;G,ω) = −
J∑
j=1

∫ ∫
δ(θ̂, sj)

(
θ1−ωj − κ

) 1

sj
ϕ

(
θ̂ − θ

sj

)
dθ̂dG(θ). (112)

I have written R(δ;G,ω) as a function of G and ω to emphasize that risk depends on the mixing

distribution as well as the decision-maker’s preferences. The optimal decision rule for an oracle

that knows G is δ∗(G,ω) = argminδ∈D R(δ;G,ω), where D is the set of candidate decision rules

mapping (θ̂j , sj) to binary selection decisions. It is straightforward to show that such an oracle

selects units if and only if the posterior expectation of θ1−ωj exceeds the cost κ:

δ∗(θ̂j , sj ;G,ω) = 1

{∫
θ1−ωdP(θ|θ̂j , sj ;G) ≥ κ

}
, (113)

where the posterior distribution P is defined as in equation (10).

Equation (113) facilitates comparison of shrinkage approaches distinguished by different degrees

of risk aversion. When ω = 0 the decision-maker selects units based on a cutoff in the posterior

mean θ∗j . As ω grows, the expectation that determines the decision rule becomes increasingly

sensitive to the lower tail of the posterior distribution. In the limit as ω approaches 1, we have

lim
ω→1

δ∗(θ̂j , sj ;G,ω) = 1
{
Pr[θj = 0|θ̂j , sj ] ≤ 1− κ

}
. (114)

The probability Pr[θj = 0|θ̂j , sj ] =
∫
1{θ = 0}dP(θ|θ̂j , sj ;G) is the share of units with θj = 0

among those with a particular estimate and standard error, also known as a local false discovery

rate (Efron et al., 2001). Equation (114) shows that a maximally risk-averse decision-maker selects

units based on a cutoff in LFDR. We can therefore think of decisions based on posterior means and

false discovery rates as endpoints of a continuum of shrinkage strategies traced out by varying risk

aversion.

A decision-maker who does not know G must estimate the posterior expectation in equation

(113) to implement a feasible EB decision rule. When G is point-identified as in model (82)-(83), it

is sensible to estimate the mixing distribution with the deconvolution methods described in Section

3.2. When the mixing distribution is partially identified as in Section 3.3, there are multiple G’s

that are consistent with the distribution of the observed data, and it is no longer clear which one

to use for decision-making. Minimax decisions provide an important conservative benchmark in

this case (Wald, 1945; Savage, 1951; Manski, 2000). Formally, a minimax decision rule is given by:

δmm(ω) = argmin
δ∈D

max
G∈GI

R(δ;G,ω), (115)
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where GI is the identified set for the mixing distribution (i.e. the set of G’s consistent with the

population distribution of the observed data). Problem (115) can be motivated by an adversarial

setup in which an opponent observes the decision rule selected by the analyst and chooses the

maximally-damaging mixing distribution in response. An EB minimax rule plugs a deconvolution

estimate of the identified set GI into (115).

This decision framework clarifies the relationship between the EB posterior mean emphasized for

much of this chapter and other shrinkage strategies such as the multiple testing approach developed

in Section 3.4. The conventional approach of listing units ordered by EB posterior means mimics the

selection decisions of a risk-neutral decision-maker who forms posteriors based on a point estimate

of G. In contrast, ordering units by q-values is conservative in two senses. First, this approach

corresponds to the decisions of a maximally risk-averse decision-maker, as shown in equation (114).

Second, by using an estimated upper bound on the prior probability π0, the q-value approach

adopts a worst-case empirical prior that is as favorable as possible to the null hypothesis among

those consistent with the data, in the spirit of the minimax rule in (115). Whether one of these two

shrinkage strategies (or something in between) is preferable depends on the context and economic

goal – is the aim to select units that will improve average outcomes, or to recommend units that are

likely to generate improvements even in a worst-case scenario? Section 3.7 presents an empirical

contrast of these two types of shrinkage.

3.7 Non-Parametric EB Application: Firm-Level Labor Market Discrimination

This subsection applies non-parametric empirical Bayes methods to study variation in race and

gender discrimination across large US employers. My analysis revists a large resume correspondence

experiment conducted by Kline, Rose andWalters (2022; 2024), which extended the analysis of Kline

and Walters (2021) to study variation in discrimination across entire firms rather than individual

jobs. This experiment submitted applications to multiple entry-level job vacancies nested within

108 Fortune 500 employers. Up to 125 vacancies were sampled for each firm, with each vacancy

for a given firm in a different US county. Following Bertrand and Mullainathan (2004), resumes

were randomly assigned distinctive names to convey race and gender to the employer, with race

assignment stratified so that each vacancy received 4 distinctively-Black and 4 distinctively-white

names. Male and female names were each assigned to 50% of applications with no stratification.

The primary outcome is an indicator for whether the employer attempted to contact an applicant

within 30 days by phone or e-mail (I sometimes use “callbacks” as shorthand for these contacts).

Following Kline et al. (2024), I focus on 97 firms with at least 40 sampled vacancies and overall

callback rates above 3 percent. This results in a sample of 78,910 applications to 10,453 jobs nested

within 97 firms. Full details on the experimental design and sample characteristics are available in

Kline et al. (2022) and Kline et al. (2024).

My analysis mostly follows Kline et al. (2022), with some departures to illustrate issues discussed

in the preceding sections. In step 1 of the EB recipe, I estimate firm-level discrimination parameters

and corresponding standard errors for each employer. These estimates come from firm-specific OLS

47



regressions of callbacks on race, which can be written:

Yi =

J∑
j=1

Dij [αj + θj1{Ri = w}] + ei, (116)

where Yi indicates a callback for application i, Dij indicates that application i was sent to a vacancy

at firm j, and Ri ∈ {w, b} denotes the racial distinctiveness of the name assigned to the application.

Parameter αj measures the callback rate for applications with distinctively-Black names at firm j,

while θj captures the gap in contact rates between distinctively-white and distinctively-Black names

at this firm. Since race was randomly assigned we can interpret θj as an average treatment effect

of distinctively-white names on callbacks at firm j.27 Corresponding OLS estimates θ̂j provide

unbiased estimates of these causal parameters. Standard errors sj are clustered by job to account

for job-level differences in overall contact rates along with stratification of race assignments by job.

Models for gender replace the race indicator with an indicator for a distinctively-male name in

equation (116).

Distributions of discrimination

Step 2 of the EB recipe uses the firm-specific estimates to summarize the distribution of discrimi-

nation across firms. I first report means and bias-corrected standard deviations of race and gender

contact gaps. The estimated mean µ̂θ is the average of θ̂j ’s as in equation (8), while the esti-

mated standard deviation is the square root of the bias-corrected variance estimate from equation

(80). Since estimates are independent across firms the mixing variance estimator simplifies to

σ̂2θ = (J − 1)−1
∑

j [(θ̂j − µ̂θ)
2 − J−1(J − 1)s2j ] in this case. As in Kline et al. (2022), I report

standard errors for µ̂θ and σ̂θ based on a job-clustered weighted bootstrap procedure that draws

iid exponential weights for each job and reweights the regressions used to produce (θ̂j , sj) in each

bootstrap iteration.

Firms favor distinctively-white names over distinctively-Black names on average, and this gap is

highly variable across firms. This can be seen in column (1) of Table 1, which shows estimated means

and standard deviations of firm-specific OLS race coefficients. The mean level gap in column (1)

demonstrates that on average, firms call applications with distinctively-white names 2.1 percentage

points more often than applications with distinctively-Black names, an estimate that is highly

statistically significant (t-statistic > 11). Subsequent rows compare unadjusted and bias-corrected

standard deviations of contact gaps. Bias correction reduces the standard deviation of gaps from

2.4 percentage points to 1.7 percentage points, which implies that (1− (0.017/0.024)2)×100 = 50%

of the variance in θ̂j ’s is due to statistical noise rather than true firm heterogeneity. Nonetheless,

the bias-corrected estimate reveals large differences in discrimination even after accounting for this

noise: a firm that is one standard deviation above the mean penalizes distinctively-Black names 80

percent more than the average firm.

In contrast to the results for race, column (3) of Table 1 shows that the mean gender coefficient

is a precisely-estimated zero. However, the bias-corrected standard deviation estimate is even larger

27See the Appendix to Kline et al. (2022) for a potential outcomes framework formalizing this interpretation.
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for gender than for race (0.031 versus 0.017). The combination of a zero mean and a large standard

deviation implies that there must be mass both above and below zero – some firms favor men, while

others favor women. This finding highlights the value of an EB analysis of firm heterogeneity: a

focus on the mean would suggest little gender discrimination in this experiment, but the second

moment of the distribution reveals substantial discrimination operating in each direction.

I next characterize the full mixing distribution of firm-specific discrimination with the log-

spline deconvolution estimator of Efron (2016). Unlike the mean and variance estimates in Table

1, this deconvolution procedure requires taking a stand on the relationship between effect sizes and

precision. The basic tests discussed in Section 2.6 reject independence in this case, which indicates

that accounting for precision-dependence is likely to be important. Specifically, a regression of the

race level gap θ̂j on log sj yields a coefficient of 0.034 with a robust standard error of 0.005. This

indicates strong precision-dependence in the conditional mean of the race gap. A corresponding

regression of the male/female gap on its log standard error yields an insignificant coefficient of

-0.005 (SE = 0.018), but a regression of (θ̂j − µ̂θ)
2 − s2j on log sj yields a marginally significant

coefficient of 0.0035 (SE = 0.0019), suggesting potential dependence in the conditional variance.

Motivated by these tests, I estimate models of dependence between effect sizes and standard

errors and deconvolve residuals from these models. Seventy-eight of the 97 estimated racial gaps

favor distinctively-white names, and Kline et al. (2022) test and cannot reject the hypothesis that

the few observed negative estimates are attributable to sampling error. Following Kline et al.

(2024), I therefore adopt a model of precision-dependence that implies white/Black contact gaps

are positive for each value of sj :

θj = exp (ψ1 + ψ2 log sj) rj , rj |sj ∼ Gr, (117)

where rj has positive support and E[rj ] = 1. This model implies E[θ̂j |sj ] = exp(ψ1 + ψ2 log sj).

I estimate ψ1 and ψ2 in a first-step non-linear least squares regression, which yields estimates of

ψ̂1 = 2.52 (SE = 0.80) and ψ̂2 = 1.56 (SE = 0.21). I then form residuals r̂j = θ̂j/ exp(ψ̂1+ψ̂2 log sj),

and estimate Gr by applying the log-spline deconvolution estimator to these residuals, assuming

r̂j |rj , sj ∼ N
(
rj , exp(−2ψ̂1)s

2(1−ψ̂2)
j

)
and constraining the mean of the deconvolved distribution

to equal 1. The log-spline penalty in equation (86) is calibrated to match a bias-corrected estimate

of the variance of rj . I choose the other log-spline tuning parameters by fixing the number of spline

knots at K = 5 and usingM = 1, 000 equally-spaced support points between zero and the empirical

maximum of r̂j .

Model (117) is inappropriate for gender since we know from Table 1 that some gender gaps

are positive while others are negative. The tests discussed above also indicate dependence in

the conditional variance but not the conditional mean. I accommodate these findings with the

alternative model

θj = ψ0 + sψ2
j rj , rj |sj ∼ Gr, (118)

where E[rj ] = 0 and V ar(rj) = σ2r . This model implies E[θ̂j |sj ] = ψ0 and E[(θ̂j − ψ0)
2 − s2j |sj ] =
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σ2rs
2ψ2
j . I estimate ψ0 with the mean of the θ̂j ’s, then estimate ψ2 by non-linear least squares

based on the second moment condition. The resulting estimates are ψ̂1 = −0.001 (SE = 0.005)

and ψ̂2 = 0.854 (SE = 0.361). I then deconvolve the residuals r̂j = (θ̂j − ψ̂1)/s
ψ̂2
j assuming

r̂j |rj , sj ∼ N
(
rj , s

2(1−ψ̂2)
j

)
and constraining the mean of the deconvolved distribution to equal

zero. Following the analysis for race, I use a five-knot spline with 1, 000 equally-spaced support

points between the empirical minimum and maximum of the estimated residuals.

Results of these flexible deconvolutions appear in Figure 2, with log-spline estimates for race

in panel A and estimates for gender in panel B. Each panel displays the deconvolved distribution

of the residual rj along with the resulting marginal distribution of θj , which comes from applying

a change-of-variables to the distribution of residuals combined with the empirical distribution of

standard errors.28 The first two moments of these distributions are close to the means and vari-

ances reported in Table 1, but the non-parametric deconvolutions also reveal more subtle features

of the distributions of race and gender discrimination. The distribution of race gaps in panel A(ii)

is asymmetric with a long right tail, suggesting that while all firms weakly favor distinctively-white

names, the average race gap is driven by a small share of heavy discriminators. The gender gap dis-

tribution in panel B(ii) is symmetric with a sharp peak at zero and fat tails in both directions. This

indicates that most firms display little preference for male or female names, but a few discriminate

substantially against each group.

Posterior predictions of discrimination

Moving to step 3 of the EB recipe, I next consider the prospects for learning about firm-specific

discrimination parameters via empirical Bayes shrinkage. Figure 3 plots posterior mean race and

gender gaps θ̂∗j derived from the log-spline prior estimates, overlaid on the prior distribution and

a histogram of the unbiased θ̂j estimates. Posteriors for each θj are constructed by computing EB

posterior mean residuals r̂∗j , then transforming these to predict θj according to equations (117)

and (118). As usual, the shrunk posteriors are less variable than the mixing distribution, which is

less variable than the noisy unbiased estimates. Still, the posterior mean estimates are dispersed

enough to generate informative estimates of firm-specific parameters. The standard deviation of

the posterior mean estimates for race is 0.014 and the average squared standard error of the θ̂j ’s

is 0.0003. Coupled with the mixing standard deviation of 0.018 in Figure 2, this implies shrinkage

reduces MSE by an estimated (1 − [(0.0182 − 0.0142)/0.0003]) × 100 = 57%. For gender, the

corresponding reduction in MSE is 75%.

Figure 4 assesses differences between non-parametric and linear shrinkage by plotting posterior

means θ̂∗j against linear shrinkage estimates θ̂linj . The linear shrinkage estimates are constructed as

in equation (14) using mean and variance hyperparameter estimates from Table 1. The differences

between linear and non-linear shrinkage estimates are most evident in the tails of the distribution.

28Estimates of the precision-dependence parameters and residual distribution from equations (117) and (118)
imply a conditional distribution of θj for each observed value of sj . I construct a smoothed estimate of the marginal
distribution of θj by creating an equally-spaced grid of M support points between the minimum and maximum
support limits of the conditional distributions, and assigning the mass at each point of the conditional distributions
to the closest support point in the marginal grid (as measured by the absolute value of the difference between support
points).
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As shown in panel A(i), the non-parametric posterior means for race inherit the positive support

restriction I imposed on the prior, so the few negative point estimates are shrunk to slightly above

zero. The non-parametric and linear shrinkage posteriors also differ noticeably in the upper tail,

where the non-parametric procedure generates larger values. This is a consequence of two forces:

the upper tail of the non-parametric prior distribution is thicker than that of a normal distribution,

and the non-parametric posterior incorporates precision-dependence with effect sizes increasing in

standard errors. As a result, large positive point estimates are shrunk less by the non-parametric

procedure, particularly those with large standard errors.

I parse these explanations in panel A(ii) by incorporating precision-dependence into the linear

shrinkage approach. Specifically, I apply linear rather than non-parametric shrinkage to the esti-

mated residuals r̂j from equation (117) before transforming the residuals to compute posteriors for

θj . Posteriors from this conditional shrinkage strategy align better with the non-parametric poste-

rior estimates throughout the distribution. However, non-parametric shrinkage still generates some

larger posterior means at the top of the distribution due to the thick tail of the non-parametric

prior. Panel B shows that non-parametric shrinkage also generates more extreme posterior mean

gender gaps in the tails of the distribution than linear shrinkage, especially for one firm with a large

negative posterior mean indicating substantial discrimination against men. This is a consequence

of the extra mass in the left tail of the prior distribution displayed in Figure 3B(ii).

Multiple testing to detect discrimination

In addition to forming posterior mean estimates with low mean squared error, it is natural ask

what we can say with confidence about which firms discriminate against distinctively-Black names

at all. I investigate this question with a multiple testing analysis along the lines of Section 3.4. This

analysis begins with one-tailed z-tests of the null hypothesis H0 : θj = 0 against the alternative

HA : θj > 0, generating p-values pj = 1− Φ(θ̂j/sj) for each firm j.29

These tests generate small p-values for many firms. Panel A of Figure 5 displays a histogram

of the p-values pj , which are concentrated toward zero. This is unsurprising since the moment

estimates in Table 1 show the mean and variance of G are clearly not zero in this case – this implies

that some firms must be discriminating. To obtain a conservative estimate of the share of firms

that are not discriminating, I set the threshold b in equation (103) to 0.5 (shown as a black vertical

line in Figure 5A), which generates an estimated bound of π̂0 = 0.39 (the red horizontal line).

In other words, at least 61% of firms must be discriminating to rationalize the observed p-value

distribution.

This bound on the prior share of true nulls implies that many firms can be reliably classified as

discriminating even while controlling the false discovery rate to a low level. I compute q-values by

plugging π̂0 into equation (104) along with a CDF estimate F̂ (p) based on the empirical distribution

function of p-values. A histogram of the resulting q-value distribution appears in panel B of Figure

5. Twenty-eight firms have q-values below 0.05. Since a q-value threshold of 0.05 controls FDR

29Kline et al. (2022) conduct a similar multiple-testing analysis for the full sample of 108 firms based on paired-
sample t-tests. I use the subsample of 97 firms with large samples studied by Kline et al. (2024) and employ a simple
z-test for illustrative purposes, which tends to yield slightly smaller p-values.
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to 5%, we should expect at most one out of every twenty firms with qj ≤ 0.05 to have θj = 0 in

repeated applications of this test procedure.

Contrasting shrinkage approaches

Table 2 summarizes the empirical Bayes analysis of this experiment by listing the 97 firms in

the sample ordered by their q-values. The table reports each firm’s unbiased estimate θ̂j , standard

error sj , p-value pj , q-value qj , non-parametric posterior mean θ̂∗j , and linear shrinkage posterior

mean θ̂linj . The various EB shrinkage estimates are broadly aligned across firms. For example,

Genuine Parts (Napa Auto) has the smallest q-value along with the largest point estimate, the

largest linear shrinkage estimate, and the largest non-parametric posterior mean. However, some

notable differences are evident across these measures as well. For instance, Walmart has both a

large point estimate (0.070) and a large standard error (0.039). Since the estimated prior model

indicates strong positive dependence between effects and standard errors, this company’s estimate

is shrunk very little, and it receives the second-highest posterior mean on the list (0.070). Given

its large standard error, however, Walmart receives a q-value of 0.05, ranking 29th by this metric.

Conversely, VFC has a modest point estimate of 0.038 but a small standard error of 0.014, which

results in both a low q-value of 0.018 and a low posterior mean of 0.022.

Figure 6 presents a more systematic investigation of differences between shrinkage approaches

by plotting decision frontiers based on posterior means and q-values. Each decision rule selects

the 20% of firms with most extreme estimates of discrimination against distinctively-Black names,

corresponding to posterior means above 0.032 and q-values below 0.024. These decision rules can

be seen as versions of the selection rule in equation (113), setting ω = 0 for the posterior mean,

ω → 1 for the q-value, and calibrating the cost κ so that 20% of firms are selected. Observed

combinations of point estimates and log standard errors are denoted with black points, and shaded

regions depict hypothetical decisions for combinations not observed in the experiment.

While there is substantial overlap between firms selected based on posterior means and q-values,

there is also slippage between these two decision rules. Specifically, 13 of the 19 firms selected by

the posterior mean rule are also selected by the q-value rule. Similarly, since each rule selects the

same total number by design, 13 of 19 selected by the q-value rule are also selected by the posterior

mean rule. Columns (7) and (8) of Table 2 label the firms selected by each decision rule.

Discrepancies between these classifications arise because of the differing shapes of the selection

frontiers depicted in Figure 6. A q-value decision rule defines an upward-sloping frontier in the

plane relating point estimates to log standard errors. Since there is more uncertainty for firms with

large standard errors, higher point estimates are necessary to classify such firms as discriminating

while limiting the false discovery rate. In contrast, the posterior mean selection frontier defines a

downward-sloping relationship between point estimates and log standard errors.30 This pattern is

30The posterior mean selection rule becomes extremely non-linear for log standard errors below -4.5, suggesting
that an enormous point estimate is required to warrant selection in this region. This phenomenon is due to the upper
bound on the support of residuals imposed in Panel A(i) of Figure 2. The maximum of the empirical residuals r̂j
used to set this support is 3.4, which implies θj can be no bigger than exp(ψ̂1 + ψ̂2 log sj) × 3.4. With ψ̂1 = 2.52,
ψ̂2 = 1.56, and a decision cutoff of θ̂∗j ≥ 0.032, a firm with log sj ≤ −4.61 cannot be selected regardless of its point
estimate. This issue has little impact on empirical selection decisions since no firms have estimates near the highly
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driven by the strong positive relationship between effect sizes and standard errors evident in the

scatter plot of black points, which is built into the prior distribution used to construct posterior

means. As a result, among firms with intermediate point estimates, the q-value rule selects firms

with smaller standard errors (the yellow region) while the posterior mean rule selects firms with

larger standard errors (the green region).

While the q-value and posterior mean decision rules select different sets of firms, differences

in expected outcomes between these approaches turn out to be modest. Average posterior means

among firms selected by the posterior mean and q-value rules are 0.043 and 0.037, implying that

a q-value cutoff selects firms with only slightly smaller expected discrimination values. Likewise,

the highest q-value among firms selected by the posterior mean rule is only 0.071, suggesting that

a cutoff in θ̂∗j selects firms where the posterior probability of discriminating is also high. These

findings indicate that a risk neutral analyst would pay little price for using the decision rule of a risk-

averse decision-maker (and vice versa). More generally, these sorts of contrasts between decision

rules can help to trace out the frontier of outcomes available with different strinkage strategies and

assess the robustness of EB shrinkage analyses to the assumed form of decision-maker preferences.

4 Conclusion

Empirical research in labor economics increasingly focuses on variation in quality or conduct across

large sets of units like firms, schools, or neighborhoods. This chapter has reviewed empirical Bayes

methods for quantifying heterogeneity, estimating unit-specific parameters, and making statistical

decisions in such studies. The EB recipe outlined here proceeds by estimating each unit’s param-

eter, using the ensemble of parameter estimates to construct an empirical prior distribution, and

forming posteriors based on this prior combined with the unit-specific estimates. This EB shrinkage

approach can be applied in service of a variety of statistical and economic goals, including reducing

aggregate mean squared error, directing workers or consumers to units with favorable expected

outcomes, ranking units, and making selection decisions while limiting the likelihood of mistakes.

Thanks to the increasing availability of large-scale administrative labor market data, potential

applications of EB methods in labor economics should continue to grow. This is likely to generate

avenues for answering novel economic questions as well as new methodological challenges. Most

EB value-added analyses in labor economics to date have employed simple James/Stein-style linear

shrinkage strategies. However, realistic empirical applications often bear little resemblance to the

stylized James/Stein framework with normally-distributed estimates, homogeneous variances, and

independence across units. The non-parametric EB methods discussed in the second half of this

chapter provide tools for quantifying heterogeneity and implementing shrinkage in more general

settings. Applying these methods to account for the complexities of real-world labor market data

and research designs is a fruitful direction for empirical work.

A second promising direction is to tighten the link between economic objectives and econometric

non-linear portion of the decision frontier.

53



estimation when applying EB methods. This chapter has emphasized the connection between EB

shrinkage and decision problems that aim to minimize various forms of aggregate error across units.

Conventional linear shrinkage is useful for reducing mean squared error and making risk-neutral

selection decisions, which may not correspond to how EB estimates will be used in practice. An

explicit statement of the relevant loss function clarifies the appropriate shrinkage strategy and

injects economic reasoning into value-added analysis. Such an approach has the potential to make

EB applications in labor economics more useful and actionable for policymakers, workers, and

households.
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Figure 1: Empirical Bayes estimates of school value-added in Boston

B. Conditional shrinkage

Notes: This figure displays estimates of value-added for 46 Boston middle schools. Outcomes are sixth-

grade math scores in 2014 scaled to have mean zero and standard deviation one among all Boston students. 

Estimates come from regressions of math scores on school indicators with controls for fifth grade math and 

reading scores, sex, race, subsidized lunch, special education, and English language learner status. School 

coefficients are centered to have mean zero across all Boston schools. Open histograms plot the distribution 

of raw value-added estimates with Boston Public Schools (BPS) schools in blue and charter schools in red. 

Solid curves plot estimated priors based on normal models for the mixing distribution. The prior standard 

deviation in panel A is calculated by subtracting the average squared standard error from  the sample 

variance of estimates and taking the square root. The charter effect in panel B comes from a regression of 

value-added estimates on a charter indicator, and the residual standard deviation of the prior is calculated 

by subtracting the average squared standard error from the raw residual variance then taking the square 

root. Solid histograms plot linear shrinkage posterior means constructed using the estimated mixing 

distributions as priors.

A. Unconditional shrinkage



Figure 2. Deconvolution estimates of discrimination distributions

(i). Contact gap residual (ii). Contact gap level

Notes: This figure displays log-spline deconvolution estimates of distributions of differences in contact rates by race and gender across firms. Panel A displays 

estimated distributions of race gaps (white - Black), and panel B shows estimated distributions of gender gaps (male - female). Blue bars display histograms of 

observed estimates, and black curves show estimated prior distributions. In each panel, display (i) shows the deconvolved distribution of residuals transformed to 

eliminate precision-dependence, and display (ii) shows the resulting distribution of contact gap levels, which is constructed by applying a change of variables to the 

residual distribution and empirical distribution of standard errors. Log-spline estimates come from a penalized maximum likelihood procedure with penalty term 

calibrated so that bias-corrected and log-spline estimates of residual standard deviations match.

(i). Contact gap residual (ii). Contact gap level

A. Distributions of race contact gaps (white - Black)

B. Distributions of gender contact gaps (male - female)



Notes: This figure displays distributions of discrimination estimates for 97 US 

employers. Blue bars show histograms of unbiased contact gap estimates between 

applicants with distinctively-white and distinctively-Black names (panel A) or 

distinctively-male and distinctively-female names (panel B). Black curves show 

log-spline deconvolution estimates of discrimination distributions. Red bars show 

non-parametric posterior means that use the log-spline estimates as priors.

Figure 3. Empirical Bayes estimates of firm-level discrimination

A. Race contact gaps (white - Black)

B. Gender contact gaps (male - female)



Notes: This figure compares non-parametric and linear shrinkage posterior mean estimates of firm-specific discrimination parameters. Panel A displays posterior 

mean race gaps (white - Black), and panel B shows posterior mean gender gaps (male - female). Non-parametric posterior means use the deconvolved distributions 

from Figure 2 as priors. Linear shrinkage posterior means are precision-weighted averages of a firm's unbiased estimate and an estimated prior mean. In each panel, 

display (i) shows linear shrinkage estimates assuming effect sizes are independent of standard errors, while display (ii) incorporates precision-dependence by 

applying linear shrinkage to residuals from models relating effect sizes to standard errors, then transforming the resulting posterior residuals to produce posterior 

contact gaps. Dashed lines are 45-degree lines.

Figure 4. Non-parametric posterior mean and linear shrinkage estimates of firm-level discrimination

A. Posterior mean race contact gaps (white - Black)

(i). Linear shrinkage ignoring precision-dependence (ii). Linear shrinkage accounting for precision-dependence

B. Posterior mean gender contact gaps (male - female)

(i). Linear shrinkage ignoring precision-dependence (ii). Linear shrinkage accounting for precision-dependence



Figure 5. Empirical Bayes multiple-testing analysis of firm-level discrimination

A. P-values for no discrimination against distinctively-Black names

B. Q-values for no discrimination against distinctively-Black names

Notes: This figure displays the results of an empirical Bayes multiple testing analysis of 

discrimination against distinctively-Black names for 97 firms. Panel A shows p -values 

from one-tailed z -tests. The black vertical line indicates a threshold of b = 0.5 used to 

bound the share of true nulls, and the red horizontal line displays the resulting estimated 

bound. Panel B shows a histogram of q -values constructed based on the bound from 

panel A and the empirical distribution function of p -values.  



Figure 6. Selection frontiers for empirical Bayes decision rules

Notes: This figure contrasts empirical Bayes decision rules that select firms based on 

posterior means and q -values for discrimination against distinctively-Black names. 

Posterior means use log-spline deconvolution estimates as priors, allowing for 

dependence between effect sizes and precision. Q -values come from a multiple testing 

analysis that bounds the prior share of firms that do not discriminate. Decision rules 

select the 20% of firms with most extreme discrimination estimates based on either the 

posterior mean or the q -value. The red region shows combinations of point estimates 

and standard errors that are selected by both posterior mean and q -value decision rules. 

The yellow region shows combinations selected by a q -value decision rule but not a 

posterior mean decision rule. The green region shows combinations selected by a 

posterior mean decision rule but not a q -value decision rule. The blue region shows 

combinations selected by neither decision rule. Black points indicate the point estimates 

and standard errors for the 97 firms in the experiment.



Estimate Std. err. Estimate Std. err.

(1) (2) (3) (4)

Mean 0.021 0.002 -0.001 0.003

Std. devs.: Uncorrected 0.024 0.002 0.042 0.003

Bias-corrected 0.017 0.003 0.031 0.005

Number of firms

Table 1. Variation in race and gender contact gaps across firms

Notes: This table reports estimated means and standard deviations of race and gender 

contact gaps across 97 large US employers. Estimates come from OLS regressions of a 

callback indicator on an intercept and an indicator for a distinctively-white or 

distinctively-male name, separately for each firm. Columns (1) and (2) show results for 

race gaps (white names minus Black names), while columns (3) and (4) display results 

for gender gaps (male names minus female names). Standard errors for firm-specific 

OLS coefficients are calculated with a job-clustered covariance matrix. Mean estimates 

are averages of firm-specific gaps. The uncorrected standard deviation is the square root 

of the sample variance of firm gap estimates. Bias corrected standard deviations subtract 

the average squared standard error before taking the square root. Standard errors in 

columns (2) and (4) come from a job-clustered weighted bootstrap procedure with 1,000 

iterations. Each bootstrap iteration  draws an  iid exponential weight for each job and 

reweights the regressions used to produce firm-specific gaps and standard errors.

97 97

Race gaps (white - Black) Gender gaps (male - female)



Non-par. Linear Bottom 20% Top 20%

Estimate Std. err. P -value Q -value post. mean shrinkage q -value post. mean

Firm name (1) (2) (3) (4) (5) (6) (7) (8)

Genuine Parts (Napa Auto) 0.098 0.020 0.000 0.000 0.074 0.052 Yes Yes

AutoNation 0.053 0.015 0.000 0.004 0.032 0.039 Yes Yes

Advance Auto Parts 0.074 0.022 0.000 0.006 0.048 0.040 Yes Yes

O'Reilly Automotive 0.079 0.024 0.001 0.006 0.053 0.040 Yes Yes

Rite Aid 0.047 0.016 0.002 0.012 0.028 0.034 Yes  

Ascena (Ann Taylor / Loft) 0.068 0.023 0.002 0.012 0.045 0.037 Yes Yes

Gap 0.052 0.019 0.003 0.015 0.033 0.035 Yes Yes

Dick's 0.051 0.021 0.007 0.015 0.034 0.033 Yes Yes

Murphy USA 0.049 0.020 0.007 0.016 0.033 0.033 Yes Yes

Dillard's 0.045 0.017 0.003 0.016 0.028 0.033 Yes  

Tractor Supply 0.040 0.016 0.007 0.016 0.025 0.031 Yes  

AutoZone 0.054 0.022 0.006 0.017 0.037 0.033 Yes Yes

TJX 0.048 0.019 0.007 0.017 0.031 0.033 Yes  

Bed Bath & Beyond 0.040 0.016 0.006 0.018 0.024 0.031 Yes  

Pizza Hut 0.056 0.022 0.006 0.018 0.038 0.034 Yes Yes

VFC (North Face / Vans) 0.038 0.014 0.005 0.018 0.022 0.031 Yes  

Pilot Flying J 0.060 0.024 0.006 0.020 0.043 0.034 Yes Yes

Walgreens 0.061 0.024 0.005 0.020 0.042 0.035 Yes Yes

Universal Health 0.055 0.024 0.013 0.024 0.041 0.032 Yes Yes

Sherwin-Williams 0.035 0.015 0.012 0.025 0.022 0.028   

Bath & Body Works 0.040 0.018 0.014 0.026 0.028 0.030   

Olive Garden 0.034 0.016 0.016 0.028 0.022 0.028   

J.C. Penney 0.030 0.016 0.028 0.045 0.021 0.026   

Nationwide 0.026 0.014 0.027 0.045 0.017 0.024   

Dollar General 0.039 0.022 0.034 0.048 0.032 0.028  Yes

Publix 0.047 0.026 0.033 0.049 0.040 0.029  Yes

Marriott 0.030 0.017 0.038 0.049 0.022 0.025   

Republic Services 0.020 0.011 0.038 0.050 0.012 0.020   

Walmart 0.070 0.039 0.037 0.050 0.070 0.029  Yes

US Foods 0.024 0.014 0.044 0.050 0.017 0.023   

Victoria's Secret 0.042 0.023 0.033 0.050 0.034 0.028  Yes

Goodyear 0.015 0.009 0.042 0.052 0.009 0.016   

Hertz 0.018 0.010 0.044 0.052 0.011 0.019   

Builders FirstSource 0.028 0.017 0.047 0.053 0.021 0.024   

Aramark 0.019 0.012 0.051 0.055 0.013 0.020   

Tyson Foods 0.024 0.016 0.061 0.058 0.019 0.023   

Comcast 0.039 0.025 0.057 0.059 0.036 0.027  Yes

Best Buy 0.028 0.018 0.059 0.059 0.023 0.024   

Cardinal Health 0.034 0.021 0.056 0.059 0.030 0.026   

Dollar Tree 0.030 0.019 0.061 0.059 0.026 0.025   

UGI 0.022 0.015 0.077 0.068 0.018 0.022   

LKQ Auto 0.027 0.019 0.076 0.069 0.023 0.024   

KFC 0.022 0.015 0.075 0.070 0.018 0.022   

Dean Foods 0.044 0.032 0.082 0.071 0.049 0.026  Yes

Costco 0.022 0.016 0.089 0.073 0.019 0.022   

CVS Health 0.015 0.011 0.088 0.074 0.011 0.017   

PepsiCo 0.009 0.007 0.102 0.083 0.005 0.011   

Macy's 0.012 0.010 0.118 0.093 0.010 0.015   

Jones Lang LaSalle 0.018 0.015 0.123 0.095 0.017 0.019   

Sears (incl. repair / auto) 0.017 0.015 0.129 0.096 0.016 0.019   

Cintas 0.022 0.019 0.128 0.097 0.024 0.021   

Kohl's 0.015 0.014 0.143 0.105 0.015 0.017   

Edward Jones 0.013 0.012 0.147 0.106 0.012 0.016   

CBRE 0.007 0.007 0.155 0.109 0.005 0.009   

AECOM 0.005 0.005 0.159 0.110 0.004 0.007   

DISH 0.019 0.019 0.166 0.113 0.023 0.020   

Nordstrom 0.011 0.014 0.208 0.127 0.013 0.015   

Estee Lauder 0.018 0.022 0.206 0.128 0.026 0.020   

XPO Logistics 0.010 0.013 0.217 0.129 0.013 0.015   

Performance Food Group 0.019 0.023 0.206 0.130 0.028 0.020   

International Paper 0.013 0.016 0.216 0.130 0.017 0.017   

Honeywell 0.011 0.013 0.204 0.131 0.013 0.015   

Geico 0.018 0.024 0.227 0.133 0.029 0.020   

GameStop 0.008 0.011 0.238 0.133 0.010 0.012   

US Bank 0.012 0.014 0.204 0.133 0.014 0.016   

Starbucks 0.014 0.019 0.232 0.134 0.021 0.018   

UnitedHealth 0.006 0.008 0.236 0.134 0.006 0.009   

Ross Stores 0.018 0.022 0.203 0.136 0.027 0.020   

AT&T 0.010 0.017 0.281 0.155 0.017 0.016   

Stanley Black & Decker 0.008 0.014 0.290 0.157 0.013 0.013   

Foot Locker 0.006 0.013 0.312 0.167 0.012 0.012   

United Rentals 0.006 0.015 0.352 0.186 0.014 0.013   

Ulta Beauty 0.002 0.015 0.461 0.233 0.014 0.011   

WestRock 0.002 0.019 0.460 0.236 0.018 0.012   

Target 0.001 0.011 0.457 0.238 0.009 0.007   

CarMax 0.001 0.025 0.482 0.241 0.025 0.015   

Home Depot 0.000 0.006 0.508 0.241 0.003 0.002   

Kroger 0.000 0.011 0.506 0.243 0.009 0.006   

Disney (incl. stores) 0.000 0.015 0.500 0.244 0.014 0.010   

Waste Management 0.000 0.015 0.497 0.246 0.013 0.009   

Safeway -0.003 0.027 0.552 0.259 0.027 0.014   

McLane Company -0.005 0.026 0.571 0.261 0.025 0.013   

Lab Corp -0.002 0.014 0.571 0.265 0.011 0.007   

Mondelez -0.005 0.020 0.601 0.272 0.018 0.010   

Lowe's -0.008 0.020 0.648 0.290 0.018 0.009   

Sysco -0.003 0.006 0.675 0.298 0.003 0.000   

FedEx -0.007 0.014 0.687 0.300 0.010 0.004   

State Farm -0.009 0.013 0.741 0.320 0.010 0.003   

Ryder System -0.007 0.009 0.775 0.331 0.005 -0.001   

Charter / Spectrum -0.010 0.012 0.800 0.338 0.008 0.001   

JPMorgan Chase -0.012 0.014 0.820 0.342 0.010 0.001   

J.B. Hunt -0.017 0.015 0.861 0.356 0.011 0.001   

Avis-Budget -0.017 0.014 0.877 0.358 0.010 -0.001   

Kindred Healthcare -0.021 0.017 0.895 0.362 0.011 0.000   

Hilton -0.018 0.013 0.916 0.367 0.008 -0.003   

Quest Diagnostics -0.009 0.005 0.947 0.375 0.002 -0.006   

Dr Pepper -0.023 0.012 0.973 0.381 0.007 -0.008   

Table 2: Empirical Bayes estimates of discrimination against distinctively-Black names

Notes: This table reports the results of an empirical Bayes analysis of discrimination against distinctively-Black names among 97 

employers. Firms are ordered by q -values from a multiple testing procedure. Column (1) shows each firm's estimated difference in 

contact rates between distinctively-white and distinctively-Black names, and column (2) displays corresponding standard errors. 

Column (3) shows p -values from one-tailed tests of the null hypothesis of no discrimination against distinctively-Black names, and 

column (4) shows q- values. Column (5) displays non-parametric posterior means using log-spline deconvolution estimates as priors, 

incorporating dependence between effect sizes and standard errors. Column (6) shows linear shrinkage posterior means ignoring 

precision-dependence. Column (7) labels firms in the bottom 20% of the q -values from column (4). Column (8) labels firms in the top 

20% of the non-parametric posterior means from column (5).
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