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Abstract
In the single-processor scheduling problem with time restrictions there is one main
processor and B resources that are used to execute the jobs. A perfect schedule has no
idle times or gaps on the main processor and the makespan is therefore equal to the
sum of the processing times. In general, more resources result in smaller makespans,
and as it is in practical applications often more economic not to mobilize resources
that will be unnecessary and expensive, we investigate in this paper the problem to
find the smallest number B of resources that make a perfect schedule possible. We
show that the decision version of this problem is NP-complete, derive new structural
properties of perfect schedules, and we describe a Mixed Integer Linear Programming
(MIP) formulation to solve the problem. A large number of computational tests show
that (for our randomly chosen problem instances) only B = 3 or B = 4 resources are
sufficient for a perfect schedule.

Keywords Minimizing the number of resources · Perfect schedule · Single-processor
scheduling · Mixed integer linear programming

1 Introduction

In the single-processor scheduling problem with time restrictions (STR), there are n
independent jobs J1, . . . , Jn (or 1, . . . , n) with positive integer processing times (or
job lengths) s j , j ∈ {1, 2, . . . , n}. The jobs have to be processed non-preemptively
on a single processor (note that the processor could be a computer processor or a
person/workerwhooperates resources/machines).A feasible schedule is a permutation
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192 R. Benmansour , O. Braun

π = (π1, π2, . . . , πn) of the jobswith corresponding processing times p1, p2, . . . , pn ,
completion times C1,C2, . . . ,Cn , makespan Cmax = Cn and the following property:
The initial job π1 starts at time 0 and completes its processing at time p1. For k ≥ 2,
job πk starts no earlier than job πk−1 has completed its processing, and possibly later
as the following constraint must always be satisfied:

Each job requires the use of one of B identical additional resources that have to
be renewed in α time units after the processing of a job has been finished and
before they can be used again (Braun et al. 2014).

Because of its general formulation, this model is widely applicable. The renewal
time of the resource reflects that it has to be cleaned, transported to another place,
cool down, refilled, re-loaded, updated, etc. A practical application can be found in
a production environment in which one main machine can use several resources that
must be cleaned etc. after their usage. Another application would be, for example, one
or more team members who can work on a project for a certain amount of time and
then are locked out until they can be reassigned to a new project.

From the constraint above it follows that 1. At most B jobs can be processed during
any interval [x, x + α)∀x ∈ R≥0, and that 2.∀x ∈ R≥0, the interval [x, x + α) can
intersect at most B jobs.

The following example with n = 4 jobs J1, J2, J3, J4, processing times s1 =
6, s2 = 4, s3 = 2, s4 = 4 and renewal times α = 10 is given for better illustration.
Figures 1 and 2 present two feasible schedules for B = 2. As an example, in Fig. 1,
resource R1 is occupied by job J1 from timepoint 0 to timepoint 6 and has to be
renewed afterwards which takes 10 timeunits until timepoint 16. In order to schedule
job J2 immediately after J1 we need another resource R2 which is occupied by J2
from timepoints 6 to 10 and which has to be renewed afterwards from timepoint 10 to
timepoint 20. It follows that we have a gap on the main processor from timepoint 10
until timepoint 16. The schedule (1, 2, 3, 4) is not optimal with respect to minimzing
the makespan, whereas the schedule (3, 2, 1, 4) is an optimal schedule with makespan
C∗
max = 22 (on the main processor).

R2 ///////// − − − − − − − − − − −− ///////// − − − − − − − − − − −−
R1 ////////////// − − − − − − − − − − −− //// − − − − − − − − − − −−

P J1 J2 − − − − − − − J3 −− J4

0 6 10 16 18 20 24 28 34

Fig. 1 Schedule (1, 2, 3, 4)with n = 4 jobs, B = 2 resources R1, R2, renewal times α = 10, andmakespan
Cmax = 24

R2 ///////// − − − − − − − − − − −− ///////// − − − − − − − − − − −−
R1 //// − − − − − − − − − − −− ////////////// − − − − − − − − − − −−

P J3 J2 − − − − − − − J1 J4

0 2 6 12 18 22 28 32

Fig. 2 Schedule (3, 2, 1, 4) with n = 4 jobs, B = 2 resources R1, R2, renewal times α = 10, and optimal
makespan C∗

max = 22
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R3 ////////////// − − − − − − − − − − −−
R2 ///////// − − − − − − − − − − −−
R1 //// − − − − − − − − − − −− ///////// − − − − − − − − − − −−

P J3 J2 J1 J4

0 2 6 12 16 22 26

Fig. 3 Perfect schedule (3, 2, 1, 4) with n = 4 jobs, B = 3 resources R1, R2, R3, renewal times α = 10,
and optimal makespan C∗

max = ∑4
j=1 s j = 16

It is obvious that in the STR-problem more resources lead to smaller (or at least not
larger) makespans and that never more than n resources are necessary to schedule the
jobs on themain processorwithout any idle times (or gaps). In this paper,we investigate
the question how many resources are needed at most (in the sense of a supremum)
for such a perfect schedule (Braun et al. 2014). We call this problem the STR-B-
problem. The idea behind this problem is that in practical applications it is often more
economic not to mobilize resources that will be unnecessary and expensive (Rustogi
and Strusevich 2013). This kind of question arises as well in scheduling problems with
no-wait constraints, e.g. Ruiz et al. (2009).

To continue with our introductory example, it turns out that only B = 3 resources
are necessary for a perfect schedule (3, 2, 1, 4)withmakespanC∗

max = ∑n
j=1 s j = 16

(Fig. 3).
Another example with n = 10 jobs, processing times 7, 14, 19, 25, 27, 31, 38, 38,

49, 71 and renewal times α = 100 has the following optimal makespan values for
a different number of resources: C∗

max = 570 (B = 2), C∗
max = 373 (B = 3),

C∗
max = 319 (B = 4). The optimal makespan values decrease with an increasing

number B of resources until C∗
max reaches for B = 4 the value of the sum of the

processing times
∑10

j=1 s j = 319, i.e. for B = 4 there is a perfect schedule that has
no gap (or delay) on the main processor.

The single-processor scheduling problem with time restrictions (STR) was at first
studied by Braun et al. (2014, 2016). The authors show that the decision version of
the STR-problem is NP-complete when the number of resources B is part of the input
and therefore possibly arbitrarily large. They analyze the worst-case behaviour of List
Scheduling (where the jobs are scheduled in an arbitrary permutation) and prove that
for B = 2 the best possible worst-case factor of List Scheduling is 4

3 of the optimum
(plus the additional constant 1), and that for B ≥ 3, the best possible worst-case factor
is equal to 2− 1

B−1 of the optimum (plus the additional constant B/(B−1)).Moreover,
the authors analyze theLongest-Processing-Time-first (LPT)-algorithm,where the jobs
are ordered non-increasingly and show that LPT-ordered jobs can be processed within
the best possible factor of 2− 2/B of the optimum (plus the additional constant 1

2 for
B = 2 and 1 for B ≥ 3). Zhang et al. (2017) show independently the same bound for
B = 2. Moreover, they provide an approximation algorithm for B ≥ 3 that achieves
the factor 3

2 plus the additional constant 2 for B = 3, the factor 4
3 plus the additional

constant 2 for B = 4, and the factor 5
4 plus the additional constant 2 for B ≥ 5. Zhang

et al. (2017) prove that the decision version of the STR-problem is even NP-complete
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for B = 2 and they describe a Polynomial Time Approximation Scheme (PTAS) for
any fixed value B ≥ 2.

Benmansour et al. (2018) propose Mixed Integer Linear Programming (MIP) for-
mulations, based on a time-indexed formulation and based on an assignment and
positional date formulation, to solve the STR-problem and they prove that the deci-
sion version of the STR-problem is NP-complete even for B = 2. Benmansour et al.
(2019) present two algorithms, namely Variable Neighborhood Search (VNS) and
Fixed Neighborhood Search (FNS), for the approximate solution of the STR-problem.

There is an interesting connection between the single-processor scheduling problem
with time restrictions and the parallel machine scheduling problemwith a single server
(PSS, P, S1 | si , p′

i | Cmax ) (Benmansour et al. 2018; Kravchenko andWerner 1997).
In PSS, si is the setup time to load a job i on a common server, and p′

i is the processing
time of that job. The server and the processor are both occupied during the loading
operation. STR and PSS are in fact equivalent problems: The setup times of PSS are
equal to the processing times of STR (it might well be that in a practical application
some jobs need more or less time than others to be ready for being processed), and the
processing times of PSS are equal to the renewal times of STR (which is a constant α
in this case). Therefore, our analysis gives also an answer to the following question:
How many parallel machines do we need at least to construct a schedule of the jobs
that has no idle times on the single server?

The remainder of the paper is organized as follows. In Sect. 2 we prove that the
decision version of STR-B is NP-complete by reducing the decision version of (the
known NP-complete problem) STR to the decision version of STR-B. In Sect. 3, we
develop structural properties of perfect schedules, and we present a Mixed Integer
Programming (MIP) formulation to solve the STR-B problem. Section 4 presents
computational performance tests of the MIP. Finally, in Sect. 5 we give a conclusion.

2 The decision version of STR-B is NP-complete

It is easy to see that in the worst-case, there must be n resources available in order
to schedule the jobs without gaps on the main processor. As an example: When the
sum of the n − 1 largest processing times is less than α, then n − 1 resources are
not sufficient and we need as many as n resources for a perfect schedule. From a
computational complexity point of view, STR-B is not harder than STR as STR-B can
be solved by solving at most �log n� + 1 instances of the STR-problem: We just have
to perform a binary search to determine the smallest B such that the makespan of the
solution to the STR-problem is equal to the sum of the processing times. Note that the
optimal makespans for an increasing number B of resources are non-increasing.

Theorem 1 The decision version of the STR-B-problem (given n processing times
s j , j = 1, . . . , n, with S = ∑n

j=1 s j , the renewal time α of the resources, and a
number B of resources, is there a feasible schedule with a makespan Cmax = S?) is
NP-complete.

Proof STR-B is obviously in NP: Given B and a schedule π , i.e. a permutation of
the jobs, it is in polynomial time possible to check that the jobs can be scheduled
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without gaps on the main processor using at most B resources. The decision version
of the STR-problem is as follows: Given n processing times s j , j = 1, . . . , n, the
number B of resources, the renewal time α of the resources, and a makespan Cmax ,
is there a feasible schedule with a makespan not larger than Cmax? It is known to be
NP-complete (Benmansour et al. 2018). We want to show that STR ∝ STR-B: Given
an instance of STR-B, we ask if it is possible to schedule the jobs without any gap
on the main processor with B resources. The only way to answer this question is to
solve STR. Conversely, given a solution to STR that uses B resources and has no
gaps on the main processor yields immediately to a solution to STR-B (we would
possibly and in the worst-case have to solve �log n�+1 instances of the STR-problem
as described above). Since STR-B is in NP, since the input for STR-B can be computed
in polynomial time from the input for STR, and since we can reduce the NP-complete
problem STR to STR-B, STR-B must also be NP-complete. 
�

As a remark, Braun et al. (2014) show that the decision version of STR (when the
value B is variable) is NP-complete through a reduction of PARTITION to the special
case of STR where there is a perfect schedule.

3 MIP formulation

We start with a useful property of perfect schedules.

Theorem 2 There is always a perfect schedule where the two jobs with the smallest
processing times are scheduled at the beginning and at the end of the schedule.

Proof We assume w.l.o.g. that Jn−1 and Jn are the jobs with the smallest processing
times sn−1 and sn and claim that there is always a perfect schedule with a permutation
(n − 1, π2, . . . , πn−1, n). Imagine a perfect schedule π ′ where the first B − 1 jobs
have a sum of processing times ≥ α and use only B − 1 resources. We can construct
another perfect schedule π by using the Bth resource for processing another job in
the beginning. This resource will be available again after α time units. Therefore
scheduling this new job at the very beginning will not cause any delay. The same is
true for the last B−1 jobs in a perfect schedule. Again, we can use the Bth resource for
another job. It follows that there is always a perfect schedule where the two smallest
jobs are scheduled at the beginning and at the end of the schedule. 
�

Next we describe a necessary and sufficient condition for a perfect schedule with
B resources.

Theorem 3 Necessary and sufficient conditions for a perfect schedule π = (π1, π2,

. . . , πn) with processing times p1, p2, . . . , pn and B resources are:

i+B−2∑

k=i

pk ≥ α ∀i ∈ {2, . . . , n − (B − 1)} (1)
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196 R. Benmansour , O. Braun

Proof If Ci + α would be greater than Ci+(B−1), then there would be a gap in the
schedule. This observation leads to the following necessary conditions for a perfect
schedule: Ci + α ≤ Ci+(B−1) ∀i ∈ {2, . . . , n − (B − 1)}. From this it follows
immediately that the following constraints must be satisfied in a perfect schedule:∑i+B−2

k=i pk ≥ α ∀i ∈ {2, . . . , n − (B − 1)}. 
�
As an example, consider the situation for B = 4, α = 1000 and n = 10 jobs with

p4 = p7 = 1000 and p j = 1 for all other jobs. This schedule is a feasible schedule
and we have

p1 + p2 + p3 < α,

p2 + p3 + p4 ≥ α,

p3 + p4 + p5 ≥ α,

p4 + p5 + p6 ≥ α,

p5 + p6 + p7 ≥ α,

p7 + p8 + p9 ≥ α,

p8 + p9 + p10 < α.

Note that p1 + p2 + p3 and p8 + p9 + p10 can be smaller than α as the corresponding
jobs are scheduled at the beginning and at the end of the schedule.

Another useful observation is about the number of jobs that must have a certain
length to build a perfect schedule.

Theorem 4 In a perfect schedule π = (π1, π2, . . . , πn) with processing times

p1, p2, . . . , pn and B resources, at least
⌈
n−B
B−1

⌉
jobs have processing times p j ≥ α

B−1 .

Proof Let Jn−1 and Jn be the two jobs with the smallest processing times sn−1 and sn .
We observe that in a perfect schedule π (where we put Jn−1 in the front and Jn at the
end of the schedule), all of the other jobs must fulfill the following property: Always
B − 1 processing times of adjacent jobs have to sum up to at least α. In a perfect
schedule for B resources, by the pigeonhole principle, in each of the inequations (1)
from Theorem 3, at least one job has to have a processing time that is ≥ α

B−1 . As we
can schedule the two smallest jobs at the beginning and at the end of a perfect schedule

(Theorem 2), it remains that in a perfect schedule at least
⌈
n−B
B−1

⌉
jobs have processing

times ≥ α
B−1 . 
�

In our example for Theorem 3, we see that there are
⌈
n−B
B−1

⌉
=

⌈
10−4
4−1

⌉
= 2 jobs,

namely p4 and p7 with processing times p j ≥ α
B−1 = 1000

3 .
As a result, before starting the MIP, we check if the necessary conditions from

Theorem 4 for a perfect schedule for B = 2 are fulfilled. If yes, this gives the lower
bound l on the number of resources that are needed. Otherwise, we increase B by 1
and continue until we found a lower bound (Algorithm 1).

An upper bound is obviously u = n as there might be as many resources as there are
jobs necessary to construct a perfect schedule (see the example in Sect. 2). However,
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Algorithm 1Algorithm to determine a Lower Bound l on the number of resources for
a perfect schedule.
1: procedure LowerBound(n, p1, . . . , pn , α)
2: l := 2;

3: while number of jobs with processing times ≥ α
l−1 is smaller than

⌈
n−l
l−1

⌉
do

4: l := l + 1;

there might be tighter upper bounds possible. We did not investigate this question fur-
ther, but we decided to use u as a parameter in theMIP. The resultingMIP formulation
to solve the STR-B-problem is given in Fig. 4.

min B =
u

b=l

byb (1)

s.t.
u

b=l

yb = 1 (2)

n−1

k=2

xjk = 1 ∀j ∈ {1, . . . , n − 2} (3)

n−2

j=1

xjk = 1 ∀k ∈ {2, . . . , n − 1} (4)

i+b−2

k=i

n−2

j=1

sjz
b
jk ≥ αyb ∀b ∈ {l, . . . , u}, ∀i ∈ {2, . . . , n − (b − 1)} (5)

zbjk ≤ xjk ∀b ∈ {l, . . . , u}, ∀j ∈ {1, . . . , n − 2}, ∀k ∈ {2, . . . , n − 1}
(6)

zbjk ≤ yb ∀b ∈ {l, . . . , u}, ∀j ∈ {1, . . . , n − 2}, ∀k ∈ {2, . . . , n − 1}
(7)

zbjk ≥ xjk + yb − 1 ∀b ∈ {l, . . . , u}, ∀j ∈ {1, . . . , n − 2}, ∀k ∈ {2, . . . , n − 1}
(8)

yb, xjk, zbjk ∈ {0, 1} ∀b ∈ {l, . . . , u}, ∀j ∈ {1, . . . , n − 2}, ∀k ∈ {2, . . . , n − 1}
(9)

Fig. 4 MIP to determine the minimum number of resources for a perfect schedule

The objective function (1) minimizes the number of B of resources that are neces-
sary for a perfect schedule. Since the value of B is not known in advance, we introduce
the binary variables yb such that B = ∑u

b=l byb, where l is the lower bound (deter-
mined by Algorithm 1) and u is the upper bound (we chose u = n) on the number of
resources that are needed for a perfect schedule. Constraint (2),

∑u
b=l yb = 1, assures

that B equals exactly one value (the minimum number of resources that are necessary
to find a perfect schedule) out of the possible values {l, . . . , u}. It assures that exactly
one of the binary variables yl , . . . , yu is equal to 1.
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198 R. Benmansour , O. Braun

The binary variable x jk corresponds to the assignment of job j to position k (i.e.,
x jk = 1 if and only if job j is assigned to position k). Note that in a perfect schedule,
we can place the two jobs with the smallest processing times (w.l.o.g. Jn−1 and Jn
with processing times sn−1 and sn) to positions k = 1 and k = n so that π1 = n − 1
and πn = n with p1 = sn−1 and pn = sn (Theorem 2). We then have to decide at
what positions 2, . . . , n − 1 to place jobs J1, . . . , Jn−2 in the optimal permutation
π . Therefore the job index variable j always runs from 1 to n − 2 and the position
variable k always runs from 2 to n − 1.

Constraints (3) and (4) state that each job is assigned to only one position and that
each position is assigned to exactly one job.

The constraints from inequalities (1) of Theorem 3

i+B−2∑

k=i

pk ≥ α ∀i ∈ {2, . . . , n − (B − 1)}

are reflected in constraints (5).
Note that

pk =
n−2∑

j=1

s j x jk

is the processing time of job j at position k and that the binary variable x jk = 1 if and
only if job j is assigned to position k.

Constraints (6–8) model the linearization of the product of the two binary variables
x jk and yb:

zbjk = x jk yb

Constraints (6) and (7) ensure that zbjk will be zero if either x jk or yb are zero. Con-

straints (8) make sure that zbjk will take value 1 if both binary variables x jk and yb are
one.

The variables yb, x jk, zbjk are defined as binary variables in constraints (9).

4 Computational tests

In this section, we describe the results of the computational tests for the MIP. The
meaning of the parameters are explained in Table 1. We used an Intel i7 1.8 GHz
processor with 16 GB RAM and IBM ILog CPLEX 20.10 using default settings. It
is obvious that the number of resources for a perfect schedule are smaller when α is
small in comparison to the processing times. Therefore, we restricted the processing
times of the jobs to be generated from a discrete uniform distribution in [1, α], i.e. no
job has a processing time that is larger than the renewal time α of the resources.
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Table 1 Parameters for the computational tests

n Number of jobs, n = 10, 50, 100

α Renewal time of the resources, α = 10, 100, 1000

s j (Integer) processing time of job J j , 1 ≤ s j ≤ α
∑

s j Sum of the processing times
∑

s j = ∑n
j=1 s j

Lower Bound Lower bound for the number of resources calculated by Algorithm 1

B (MIP) Number of resources obtained by the MIP; an asterisk ∗ in the

B-column indicates that B is optimal because the MIP provably

found the optimal solution

Runtime (in Runtime of the MIP (in seconds); we stopped the MIP after at most

seconds) 3000 s

4.1 n = 10 jobs

The computational results for n = 10 jobs and α = 10, 100, 1000 are displayed in
Table 2.

The MIP found the optimal solutions for all of the problem instances in less than
0.1 seconds. In 4 out of the 30 problem instances the optimal MIP result is not equal
to the lower bounds calculated by Algorithm 1.

4.2 n = 50 jobs

In Table 3 the results for n = 50 jobs and α = 10, 100, 1000 are displayed.
All of the problem instances with α = 10, 100 could be optimally solved by the

MIP. In 5 out of 20 problem instances the optimal MIP solution was not equal to
the lower bound. The hardest problem instances for n = 50 jobs were those with
α = 1000. All of the 4 problem instances with a lower bound of 4 could be solved
optimally by the MIP in less than 0.1 seconds. For two problem instances where the
lower bound is only 3, the MIP could only find a solution with B = 4 resources in the
given time (3000 s).

4.3 n = 100 jobs

In Table 4 the results for n = 100 jobs and α = 10, 100, 1000 are displayed.
10 out of the 30 problem instances could not be solved provable optimally by the

MIP. While all of the problem instances with a lower bound 4 could be optimally
solved by the MIP, there are some problem instances with a lower bound 3 where the
MIP could only find a solution with B = 4 resources.

We find it interesting that our MIP could not find the optimal solution for e.g.
problem instance 7 of n = 100, α = 100. The result of theMIP is B = 4, but there are
perfect schedules possible for this problem instance with only B = 3 resources: Take
out the two smallest jobs, sort the remaining jobs from large to small (i.e. s2 ≥ s3 ≥
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Table 2 Results for n = 10 jobs ∑
s j Lower bound B (MIP) Runtime (in s)

n = 10, α = 10

1 61 3 3∗ 0.01

2 46 3 3∗ 0.03

3 50 3 3∗ 0.02

4 50 3 3∗ 0.02

5 56 3 3∗ 0.02

6 47 3 3∗ 0.02

7 53 3 3∗ 0.02

8 43 4 4∗ 0.08

9 56 3 3∗ 0.01

10 44 3 4∗ 0.02

n = 10, α = 100

1 564 3 3∗ 0.03

2 414 3 4∗ 0.02

3 457 3 3∗ 0.02

4 394 3 4∗ 0.03

5 650 3 3∗ 0.01

6 457 3 4∗ 0.11

7 519 3 3∗ 0.02

8 571 3 3∗ 0.02

9 319 4 4∗ 0.03

10 439 4 4∗ 0.06

n = 10, α = 1000

1 5541 3 3∗ 0.01

2 4746 3 3∗ 0.01

3 6506 3 3∗ 0.01

4 4482 4 4∗ 0.02

5 6122 3 3∗ 0.02

6 6598 3 3∗ 0.01

7 5566 3 3∗ 0.02

8 5506 3 3∗ 0.01

9 5481 3 3∗ 0.01

10 3825 4 4∗ 0.02

s99), then schedule always a large job next to a small job, so that the final schedule
is (1, 2, 99, 3, 98, . . . , 50, 51, 100). This alternating schedule is obviously promising
as a heuristic or even an approximation algorithm for B = 3 resources.

We note that our implementation of aVariable Neighborhood Search (VNS) heuris-
tic lead in no case to a smaller number B of resources for a perfect schedule. This is
why we decided not to present the VNS results in this paper.
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Table 3 Results for n = 50 jobs ∑
s j Lower bound B (MIP) Runtime (in s)

n = 50, α = 10

1 287 3 3∗ 1.58

2 256 3 3∗ 19.41

3 276 3 3∗ 2.20

4 262 3 3∗ 7.61

5 277 3 3∗ 2.61

6 267 3 3∗ 3.59

7 266 3 3∗ 3.48

8 269 3 3∗ 3.69

9 276 3 3∗ 3.30

10 235 3 4∗ 0.75

n = 50, α = 100

1 2646 3 3∗ 8.27

2 2590 3 3∗ 235.03

3 2460 4 4∗ 0.03

4 2833 3 3∗ 1.77

5 2612 3 4∗ 443.28

6 2387 4 4∗ 0.08

7 2553 3 4∗ 36.66

8 2408 3 4∗ 11.02

9 2316 4 4∗ 0.06

10 2569 3 4∗ 38.39

n = 50, α = 1000

1 25,591 3 3∗ 1182.61

2 25,015 3 4 3000.00

3 25,836 3 3∗ 734.09

4 23,098 4 4∗ 0.06

5 24,602 4 4∗ 0.03

6 27,772 3 3∗ 5.77

7 25v420 3 4∗ 6.86

8 22,443 4 4∗ 0.06

9 22,142 4 4∗ 0.08

10 25,055 3 4 3000.00

We note further that we tested List Scheduling (where the jobs are given in a ran-
domly chosen permutation) and LPT (where the jobs are sorted in non-increasing order
of their processing times) on all of the problem instances but that these algorithms
were not effective at all (with LPT as expected even worse than List Scheduling).

From a practical point of view the MIP performs very well. Only 14 out of 90
problem instances could not be provably optimally solved by the MIP. In all of these
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Table 4 Results for n = 100
jobs

∑
s j Lower bound B (MIP) Runtime (in s)

n = 100, α = 10

1 584 3 3∗ 12.89

2 489 3 4∗ 3.78

3 569 3 3∗ 17.28

4 565 3 3∗ 22.14

5 510 3 3∗ 741.95

6 541 3 3∗ 26.99

7 560 3 3∗ 20.80

8 527 3 3∗ 104.28

9 567 3 3∗ 17.78

10 545 3 3∗ 38.58

n = 100, α = 100

1 5317 3 4 3000.00

2 5025 4 4∗ 0.23

3 5047 4 4∗ 0.13

4 4886 4 4∗ 0.20

5 5365 3 4 3000.00

6 5120 3 4∗ 568.30

7 5250 3 4 3000.00

8 5255 3 4 3000.00

9 5138 3 4 3000.00

10 4906 3 4 3000.00

n = 100, α = 1000

1 49,664 3 4 3000.00

2 46,447 4 4∗ 0.22

3 49,099 4 4∗ 0.20

4 55,427 3 3∗ 50.45

5 54,190 3 4 3000.00

6 53,146 3 4 3000.00

7 56,018 3 3∗ 24.00

8 50,177 3 4 3000.00

9 47,753 3 4∗ 4.70

10 50,001 4 4∗ 0.22

cases the number of resources achieved by the MIP is 4 and the lower bound on the
minimum number of resources necessary for a perfect schedule is 3.

5 Conclusion

We introduced a scheduling problem where the objective is to find the minimum
number of external resources in order to find a perfect schedule, i.e. a schedule of
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the jobs that has no idle times or gaps on the main processor. We showed that the
decision version of this problem is NP-complete, derived new structural properties of
perfect schedules, described a MIP formulation, and performed computational tests.
We observed that for all problem instances either B = 3 or B = 4 resources are
necessary for a perfect schedule. As we chose the processing times of the jobs from
discrete uniform distributions in [1, α], the expected processing time of a job is (α +
1)/2. Though possible, it is very unlikely that n − 2 out of the n jobs have processing
times that are equal to α. But as a result from Theorem 4, this would be a necessary
condition that only B = 2 resources are sufficient for a perfect schedule. On the other
hand, if B = 3, then we need at least

⌈ n−3
2

⌉
jobs with processing times that are at

least α/2 and this is indeed what we can expect. For B = 4 we need at least
⌈ n−4

3

⌉

jobs with processing times of at least α/3 and this is highly probable. Of course,
these are only necessary conditions but as the computational tests show that for all of
our problem instances either B = 3 or B = 4 resources are sufficient for a perfect
schedule. Note that this implies that for randomly generated problem instances any
schedule is optimal if we allow at least B = 4 resources. This might be a valuable hint
from a managerial perspective.

The worst-case bounds of Braun et al. (2014, 2016) for arbitrary schedules (i.e.
permutations of jobs) achieve asymptotically a worst-case-factor of even 2 for the
relation between the makespans of arbitrary schedules and optimal schedules. In more
detail, the asymptotic worst-case factors are 4

3 for B = 2, 3
2 for B = 3, 5

3 for B = 4,
and 2 for B → ∞. This is another example for the well-known observation that
often worst-case factors might be too pessimistic for arbitrary problem instances.
Another observation, related to the result of Rustogi and Strusevich (2013) is that in
the single-processor scheduling problem with time restrictions more resources do not
necessarily help. Again, at most B = 4 resources are sufficient for perfect schedules.
Finally, despite the single-processor scheduling problem with time restrictions is NP-
hard for the number of resources B being a variable parameter of the problem (Braun
et al. 2014) and even for B = 2 (Zhang et al. 2017), the single-processor scheduling
problem with time restrictions is easily solvable for our randomly chosen problem
instances by any permutation of the jobs when there are B = 4 or more resources.
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