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Abstract
Catastrophe loss modeling has enormous relevance for various insurance compa-
nies due to the huge loss potential. In practice, geophysical-meteorological models
are widely used to model these risks. These models are based on the simulation of
meteorological and physical parameters that cause natural events and evaluate the
corresponding effects on the insured exposure of a certain company. Due to their com-
plexity, these models are often operated by external providers—at least seen from the
perspective of a variety of insurance companies. The outputs of these models can be
made available, for example, in the form of event loss tables, which contain different
statistical characteristics of the simulated events and their caused losses relative to the
exposure. The integration of these outputs into the internal risk model framework is
fundamental for a consistent treatment of risks within the companies. Themain subject
of this work is the formulation of a performant resimulation algorithm of given event
loss tables, which can be used for this integration task. The newly stated algorithm is
based on cluster analysis techniques and represents a time-efficient way to perform
sensitivities and scenario analyses.
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756 B. Funke, H. Roering

1 Introduction

This article deals with a numerically efficient way to resimulate event loss tables
(ELTs), which contain simulated losses due to natural catastrophe events and for
which the resimulation forms the basis to incorporate them into internal risk models
of insurance companies. Specifically, a natural catastrophe is an accumulation event,
namely a single extreme event that causes an enormous number of different small
or moderate losses that have—once summed up—a huge loss potential. Within the
insurance industry, the individual losses affect several different lines of business and
are often together in the billions of euros. For an extensive description of this topic, we
recommend [8] which provides a wide-ranging and excellent overview of the subject
of natural catastrophe modeling in general.

Basically, there are two different approaches for modeling these losses within insur-
ance companies, e.g. see [3, 4]. One class of models are the so-called mathematical-
statistical models, which are built on historical loss data (both internal and external).
These models are based on the idea of describing the loss caused by natural catastro-
phes using a collective model. In the course of this, probability distributions are fitted
to observed loss frequencies and loss severities using historical and indexed data. A
key drawback of this method is its dependence on a suitable data base. Catastrophe
risk, by definition, includes events that have caused enormous losses. Often, a multi-
year time series of data, usually a maximum of 50 years, is available to be used for
estimation. However, the events that are in the tail, such as those with returning periods
200, 1000 or even 10,000 years, cannot be estimated adequately in this way without
extrapolation. Evenwith a hypothetical longer time series, the necessary indexing, that
takes changes in the geographical distribution, the number of risks, the sum insured
or portfolio shifts into account, is a major challenge, so in general the historical losses
would not be useful for current modeling.

In viewof this, the second class ofmodels referred to as geophysical-meteorological
or exposure-based models is more often used on the market and is the main focus of
this article. The outputs of these models are usually supplied to insurance companies
by external providers. In order to derive these outputs, granular portfolio data is made
available to the service provider that subsequently simulated the losses relative to this
portfolio resulting from different synthetic and historic natural events. The resulting
outputs in the form of ELTs can be integrated into the company’s own risk models by
means of resimulation. In practice, problems arise in the resimulation of ELTs, such
as that of a long runtime or an increased simulation error. In view of this, the main
purpose of our article is to present a clustering algorithm that searches for similarities
in these outputs and acts then as a much more performant resimulation tool and thus
allows a faster evaluation of sensitivities or scenario analyses, e.g. in the context of
the Own Risk and Solvency Assessment (ORSA) process under Solvency II.

The rest of our work is organized in such a way that we first describe the general
procedure of resimulation of vendor outputs in Sect. 2. After that, we will present our
enhanced clustering approach for more performant resimulation in Sect. 3. In Sect. 4
we apply our algorithm to a set of ELTs representing different perils and compare the
outputs to the traditional resimulation approach in order to demonstrate the practical
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A resimulation framework for event loss tables. . . 757

relevance of our contribution. We conclude with a brief discussion and an outlook on
the handling of multi-portfolio ELTs.

2 Resimulating event loss tables: the traditional approach

2.1 Structure of an event loss table

In this subsection we want to introduce the structure of an ELT, which is needed for
our purposes. In general, the actual structure of the outputs of exposure-based models
depends on the choice of the external provider. In particular, we will address outputs
that contain parameters that can be used tomathematicallymodel the listed loss events.
The rows of an ELT represent stochastically independent scenarios, each of which can
be understood as a separate independent collective model.

One example ELT can be found in Table 1. For each row of this table we can read
parameters for the average number of events per year, as well as information about
the expected value and the variability of the row-wise scenario losses.

Specifically, each event is uniquely coded by an EVENTID. The RATE-column
indicates the probability of occurrence of the specific event within a year. The
PERSPVALUE-column (“Perspective Value”) contains the expected value of the loss
severity distribution when the event occurs. The columns STDDEVI and STDDEVC
contain information about the standard deviation of the loss level at event occurrence.
A distinction is made between the risk-specific standard deviation STDDEVI and the
standard deviation across affected risks STDDEVC. The total standard deviation per
row is calculated as the sum of these two variables.

An ELT contains information about two different sources of uncertainty. The uncer-
tainty regarding the occurrence of the event is coded via the RATE-column and is also
referred to as primary uncertainty. On the other hand, the uncertainty in the amount
of loss caused is parameterized by the two standard deviation parameters STDDEVI
and STDDEVC and is accordingly referred to as secondary uncertainty.

The EXPVALUE-column (“Exposed Value”) indicates the insured values affected
by the respective event (e.g. the total sum insured or the sum of the PMLs of the
insured risks) and thus provides an upper limit for the maximum event loss.

Table 1 Example of an event loss table

EVENTID RATE PERSPVALUE STDDEVI STDDEVC EXPVALUE

4180731 0.000432996 223,870 30,170 164,421 29,901,935,239

4180732 0.000321448 5,236,225 85,976 3,665,470 1,922,520,000

4180734 0.0034441 15,665 5258 12,238 1,820,097,738

4180737 0.0000202 428,075 18,632 356,513 34,006,033,640

4180738 0.000329058 72,138 15,865 50,591 2,813,630,546

4180739 0.001621555 3517 2353 2632 203,059,682
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758 B. Funke, H. Roering

In general, external models are independent modeling platforms. Independent here
means that they are independent of the company-specific internal risk modelling
framework. Hence, the provided outputs of these models must therefore first be suit-
ably integrated into the simulation engine of the internal model of the company. The
required embedding of these results is done by resimulating the catastrophic losses
per peril and by relying on different distributional assumptions on the event num-
bers and severities. The losses resimulated in this way can be embedded in the runs
of the internal model across different risks, portfolios and local business units. The
choice of a unique seed is an important factor here, as this is the only way to ensure
reproducibility and guarantee consistency in the way randomness is incorporated.

In the following subsection, we will explain how the resimulation of catastrophe
losses from ELTs can be implemented in practice and which modeling assumptions
underlie it in our case.

2.2 Resimulation from ELTs

We assume below that each row i , 1 ≤ i ≤ n, of an ELT represents a collective model
Si

Si :=
Ni∑

j=1

Xi j ,

whereby Ni is a random variable that models the claim numbers and is assumed
to have a Poisson distribution with parameter λi . This parameter coincides with the
corresponding RATE in row i . Moreover, the severity of the j-th claim of collective
model i is modelled by a random variable Xi j with mean and standard deviation that
are denoted by

E[Xi j ] := μi and σ [Xi j ] := σi .

We assume that Xi j , 1 ≤ j ≤ Ni , are independent and identically distributed random
variables. Moreover, μi equals the perspective value PERSPVALUEi and σi is the
sum of the independent and the correlated standard deviations (σi = STDDEVIi +
STDDEVCi ).

We assume that different collective models Si , 1 ≤ i ≤ n, are also all stochastically
independent. In addition, for each row i , we assume that the claim number Ni and
the claim severities Xi j are stochastically independent, too. Even if this assumption
might be violated in practice—for a practical example of this dependency, we refer
to [2] which treats this dependence for flood scenarios—it is a common assumption
when dealing with collective models to assume independence here. In particular, the
amount of the losses often increases with the number of claims in practice. The reason
for this is due to the fact that claims settlement is often more of a lump-sum type when
there are a large number of claims within an event.

123



A resimulation framework for event loss tables. . . 759

Another key assumption concerns the distribution of the degree of loss

zi j := Xi j/Ei ,

whereby Ei is the exposed value EXPVALUEi of collective model i . Using this def-
inition we note that the mean and the standard deviation of the degree of loss can be
represented according to

E[zi j ] = μi/Ei := μ̄i and σ [zi j ] = σi/Ei := σ̄i .

Due to the fact that zi j ∈ [0, 1], it is a common practice to choose the Beta distribution
with parameters αi and βi for zi j (see [3, 4]).

For the resimulation of the total annual loss, we now proceed as follows. First, for
simulation path (M) and each row i the number of losses Ni is simulated by a draw
of a corresponding Poisson distributed random number ñ(M)

i . This random number
indicates how many events of the collective model i occurred in path (M). For each
event that occurred, we now simulate a Beta-distributed random number z̃(M)

i j under
the use of the parameters αi and βi . Since these parameters are unknown, we estimate
them canonically by using method of moments-type estimators as follows:

αi =
[
μ̄i · (1 − μ̄i )

σ̄i
2 − 1

]
· μ̄i and βi =

[
μ̄i · (1 − μ̄i )

σ̄i
2 − 1

]
· (1 − μ̄i ).

Subsequently, the loss degrees generated in this way aremultiplied by the respective
exposure values Ei to yield the simulated losses x̃ (M)

i j = z̃(M)
i j · Ei for collective model

i and simulation path (M).
Finally, in order to calculate the Aggregate Exceedance Probability (AEP) curve,

the simulated losses are summed up across all collective models and result in the total
annual loss for this single simulation path (M)

S(M) :=
n∑

i=1

ñ(M)
i∑

j=1

x̃ (M)
i j .

The Occurrence Exceedance Probability (OEP) curve in simulation path (M) is anal-
ogously determined by using the maximum simulated event over all rows 1 ≤ i ≤ n.

In the next section, we will now present how the problems that occur within the
context of resimulating ELTs, such as that of a long runtime as well as that of an
increased simulation error, can be tackled by a clustering-based approach. Moreover,
this section contains our main result, which builds up on the facts introduced so far.
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760 B. Funke, H. Roering

3 Clustering-based resimulation

3.1 Introduction to a clustering-based approach

Apossible solution for the runtimeproblems and indirectly for the increased simulation
error is to perform the resimulation of an ELT through a clustered approach. One basic
assumption here is formed by the independence of the rows of theELT. In particular, we
assume that the number of events across different scenarios i1, . . . , ik are stochastically
independent. This results in the fact that for distinct scenarios i1, . . . , ik

• the sum of the number of events follows again a Poisson distribution with an
accumulated frequency parameter

∑k
j=1 λi j due to the convolution property of

the Poisson distribution and
• the conditional distribution

(
Ni1 , . . . , Nik

) ∣∣
(∑k

j=1 Ni j = n
)
fulfills

(
Ni1 , . . . , Nik

) ∣∣∣∣

⎛

⎝
k∑

j=1

Ni j = n

⎞

⎠ ∼ Multinom (k, πk) ,

whereby

πk := (πi1 , . . . , πik )

and

πil := λil∑k
j=1 λi j

, l = 1, . . . , k.

The latter relation represents the fact that by simulating from the aggregated scenarios,
we do not lose any information about the occurrence of the individual scenarios.

Now because the events occur independent from one another and because the sum
of events from different rows follows a Poisson distribution with an accumulated
frequency, we can state that (re-)simulating scenarios of rows i1, . . . , ik can be done
with one single collective model as long as the severity distributions are equal.

To keep things in perspective let us now specifically look at two distinct rows i and
i ′ such that the degrees of loss and the exposed values fulfill

zi j , zi ′ j ∼ B(αi , βi )
D= B(αi ′ , βi ′) and Ei = Ei ′ ,

then resimulation in path (M) of losses of both events could be done by summing up
the corresponding frequencies (λi and λi ′ ) and using the same severity distribution for
both as in

S(M)
i + S(M)

i ′ :=
ñ(M)
i∑

j=1

x̃ (M)
i j +

ñ(M)

i ′∑

j=1

x̃ (M)

i ′ j =
ñ(M)
i +ñ(M)

i ′∑

j=1

x̃ (M)
i j .
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A resimulation framework for event loss tables. . . 761

Therefore, finding severity distributions among the rows in the ELT that are (approx-
imately) equal allows for a reduction in the amount of collective models used in the
resimulation. This would reduce the runtime as the total amount of simulations needed
for obtaining stable results of the OEP- and AEP-curve decrease. Note that through
the second Poisson property given above, it is still possible to simulate the losses per
individual row after using the clustered resimulation framework.

3.2 Clustering the ELTs

The proposed solution to resimulate by using a clustering framework requires an
algorithm that combines scenarios that have nearly equal severity distributions. How
exactly “nearly equal” is defined in our case is explained in more detail below.

Finding such nearly identical pairs or groups of severity distributions in the ELT is
often performed by an unsupervised learning technique. However, most conventional
unsupervised learning methods are focused on finding a (preferably) small number
of clusters to represent the data. In our case, we are not interested in finding the
smallest number of clusters to comprehensibly represent the data. We rather want to
find a number of clusters that minimizes the runtime while preserving the original
data characteristics. More specifically, we require the within-cluster-distances to be
small to ensure the clustered framework being a good representation of the original
resimulation framework. In order to reach this aim, a careful treatment of outliers is
necessary.

The first challenge when considering a clustering algorithm is to define the distance
between severity distributions. To define distances in our case, we propose to directly
use the parameters of the severity distribution (αi , βi and Ei ). However, we note that
these parameters—in particular the different exposed values Ei—can become quite
large. At the same time, it is expected that the shape parameters αi and βi of the
Beta distributions would not become that large. Therefore, we encounter a scale issue
when using distance measures such as the Euclidean norm. To prevent this, we will
standardize all parameters in order to make them comparable.

To create our clusters, we propose an algorithm somewhat related to DBSCAN
(“Density-Based Spatial Clustering of Applications with Noise”) introduced by [5]
and also similar to the contribution in [1]. The actual DBSCAN algorithm is widely
used in the context of cluster analysis. Although there are very different fields of
application, it has not been used in its original form, nor have variants of this algorithm
been applied in the context of actuarial problems to the best of our knowledge.

In general, the underlying idea is to examine neighborhoods Nε(Di ) around each
single data object Di . In our case, the data objects are the points in the three-
dimensional space, whose coordinates are determined by the scaled parameters of
the Beta distribution and the scaled exposed value of the individual scenarios i . In
accordance to that we define the ε-neighborhood

Nε(Di ) :=
⎧
⎨

⎩y ∈
n⋃

j=1

Dj

∣∣∣∣ 0 ≤ ||y − Di ||2 ≤ ε

⎫
⎬

⎭ ,
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762 B. Funke, H. Roering

where ε > 0, || · ||2 denotes the three-dimensional Euclidean norm and Di :=
(αi,scaled, βi,scaled, Ei,scaled)

′ consists of the scaled parameters of scenario i . We note
that we restrict the neighborhood Nε(Di ) only to three-dimensional data points that
belong to the scenarios of the underlying ELT, as these points act as our objectives.

Our algorithmclusters the data objects byfirst determining the cardinality of Nε(Di )

for each different data object Di and then arrange Nε(Di ) in descending order with
respect to this quantity. The neighborhood Nε,max(Di ′), into which the most points
fall, acts as the first cluster. Hence, all data objects that belong to this neighborhood
including the center Di ′ fall into this first cluster. The clustered severity distribution
is then given by the average of the original parameters within Nε,max(Di ′) while the
frequency parameter is given by the sum of all frequencies of the data objects within
this neighborhood. These parameters act as representatives of the first cluster. We then
remove all data objects that are clustered and repeat this process until no cluster can
be created anymore.

As this algorithm requires the computation of distances between the data objects, we
speed up the algorithm by splitting the data into disjoint subsets that together contain
all the data. Using a proper splitting strategy prevents redundant distance calculations
of data objects that are far apart in our parameter space. One possible splitting strategy
is to divide the parameter space based on the quantiles of each univariate parameter
distribution.

As an illustrative example, we will consider our splitting strategy for a data set that
contains at least five different data points per dimension. If we split the α, β and E
univariate parameter spaces based on the corresponding parameter quantiles in five
disjoint parts for each dimension, then this particular subdivision leads to a total of
53 = 125 subsets. The union of these disjoint subsets covers all data objects, even
though some of these sets may be empty. The previous statement can be understood by
the fact that all α-values in a data set must fall between the minimum and maximum
α of the data set—the same reasoning applies to the β and the exposure values.

In particular, the first subset in this example is given by

T1 =
⎧
⎨

⎩y ∈
n⋃

j=1

Dj |αmin ≤ αy < α20%, βmin ≤ βy < β20%, Emin ≤ Ey < E20%

⎫
⎬

⎭ ,

where

y := (αy, βy, Ey)
′ := (αy,scaled, βy,scaled, Ey,scaled)

′

and αx%, βx%, Ex% denote the x%−quantiles of the three scaled parameters.
The second subset T2 would be obtained by considering the next disjoint part for

one of the parameters, as in

T2 =
{
y ∈

n⋃

j=1

Dj

∣∣∣∣α20% ≤ αy < α40%, βmin ≤ βy < β20%, Emin ≤ Ey < E20%

}
.

123



A resimulation framework for event loss tables. . . 763

The, say, last of the sets constructed in this way is then given by

T125 =
{
y ∈

n⋃

j=1

Dj

∣∣∣∣

α80% ≤ αy < α100% + 1, β80% ≤ βy < β100% + 1, E80% ≤ Ey < E100% + 1

}
.

The indexing of the sets does not play a role and has only illustrative reasons.We point
out here that whenever a subset imposes a condition on the maximum of the values of
α, β or E , we formally increase the upper bound by 1 in order to be able to assign all
points accordingly.

Algorithm 1 shows the pseudo-code of our clustering resimulation framework.

Algorithm 1 ELT clustering algorithm
C ← ∅
D ← {D1, D2, ..., Dn}
Define T ← {T1, T2, ..., Tt : for each h and g, h �= g, Th ∩ Tg = ∅ and

∑t
j=1 Tj = D} based on the

parameter values
for j = 1 : t do

D( j) = D ∩ Tj
while |D( j)|�= 0 do

∀ Di ∈ D( j), compute |Nε(D
( j)
i )|

Find k = argmaxDi∈D( j) |Nε(D
( j)
i )|

Label as cluster Nε(D
( j)
k )

C ← C + Nε(D
( j)
k )

D( j) ← D( j) − C
end while

end for

Our algorithm requires two tuning parameters, ε and the choice of disjoint sets which
is given by a set

T =
⎧
⎨

⎩T1, T2, ..., Tt : for each h and g, h �= g, Th ∩ Tg = ∅,
t∑

j=1

Tj = D

⎫
⎬

⎭

where D = ⋃n
j=1 Dj . The tuning parameter ε controls towhat extent different severity

distributions are grouped together within a cluster. Therefore, an ε-value of (nearly)
0 would represent the original resimulation framework without clustering whereas a
sufficiently large ε would result in a resimulation framework based on a single large
event. To find the optimal value of ε, a similar approach as in a K-means algorithm
is applied by using an elbow plot that displays the sum of within-cluster-distances
as a function of the number of clustered data points. The use of this plot to select a
suitable ε-value is also taken in the pioneering work [5] in which DBSCAN was first
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764 B. Funke, H. Roering

introduced. The procedure proposed in [5] is to choose the value for ε at which this
graph has an “elbow”, i.e. a kink (see Fig. 4).

An ε of 0 should return a dissimilarity of 0 while a sufficiently large ε would
return the sum of all distances. We suggest that all ε-values on the more conservative
side (hence, less dissimilarity within the clusters) are eligible for the resimulation and
therefore, we consider the knot in the elbow plot as the maximum suitable number for
ε.

For the choice of disjoint sets in T , we consider the trade-off between the decrease
in the cluster efficiency and the increase in the efficiency of the clustering algorithm.

3.3 Testing the clustered resimulation output

In order to evaluate the performance of our proposed clustered resimulation frame-
work, we must obtain significantly similar outputs of both (clustered and unclustered)
resimulation frameworks. To test this, we simulated 10,000 simulations paths for a
100 times with both the original and the clustered resimulation framework. We then
test for each run with regards to the original resimulation framework R(i)

original, whether

this simulated run R(i)
original significantly differs in its distribution compared to the pre-

vious simulated run R(i−1)
original using a paired Kolmogorov-Smirnov (KS) test under a

10%-significance level. In comparison, we use the same test statistic and significance
level to test whether the distribution of the run R(i)

clustered significantly differs from the

distribution of R(i−1)
original. The idea is to test to what extent the distribution of R(i)

clustered

mimics that of R(i)
original, since this is the main goal of a proper clustering algorithm in

our case. After 100 resimulation runs, we compare the number of rejections of both
frameworks.

4 A comparison between both frameworks

In this section, we will now compare the results of the two resimulation frameworks.
For this purpose, we use a data set consisting of four different and fictitious ELTs and
covering the perils windstorm, flood and earthquake. For the windstorm hazard, two
different ELTs are available.

4.1 Discussion on the characteristics of the data set used

The most important descriptive information of the data set we used can be found in
Table 2. In this table, S denotes the total loss of the complete ELT for each individual
peril. Each ELT in turn represents a collective model, so that the mean and the variance
across all scenarios can be calculated using Wald’s equations as well as Bienayme’s
identity due to the independence of the individual scenarios and the independence
between the claim number and severity distributions in each scenario i .
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A resimulation framework for event loss tables. . . 765

Table 2 Descriptive statistics of the present ELTs including secondary uncertainty

Peril Scenarios Sum of frequencies E[S] Std(S) CoV (S) (%)

Windstorm 1 21,010 41.66 37,797,65 64,889,212 171.7

Windstorm 2 17,747 38.07 5,647,010 9,192,134 162.8

Flood 7045 2.19 10,952,003 90,486,752 826.2

Earthquake 4803 0.05 442,074 12,785,084 2892.1

Table 3 Descriptive statistics of
the present ELTs excluding
secondary uncertainty

Peril Std(S) CoV (S) (%)

Windstorm 1 61,342,690 162.3

Windstorm 2 8,386,852 148.5

Flood 84,912,569 775.3

Earthquake 11,019,135 2492.6

Fig. 1 Logarithmized annual maximum losses and the associated exceedance probabilities without taking
the secondary uncertainty into account

We remark that the number of scenarios in Table 2 varies widely and that the distri-
bution for the earthquake hazard has an enormously high coefficient of variation. The
number of expected events also varies greatly, so that for the earthquake hazard, one
expects only a single occurrence of a corresponding event every 200 years from the
present ELT scenario catalogue. How to deal in general with estimating the loss fre-
quency of such extremely rare risks in practice, is presented in the current contribution
[6].

The values for the standard deviation of the total loss shown in Table 2 also take
into account the secondary uncertainty. For the sake of completeness, it should be
mentioned that the coefficients of variation of the data sets change without taking into
account the secondary uncertainty as listed in Table 3. The only source of uncertainty
here is the probability of occurrence as measured by the rates. The loss severities
are deterministic and defined by the expected values of the loss severity distributions
(PERSPVALUEi ).
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766 B. Funke, H. Roering

Fig. 2 OEP-curves of the four perils studied without considering the secondary uncertainty

In Fig. 1, the logarithmized annual maximum losses are displayed against the
corresponding exceedance probabilities. For this representation as well as for the
representation of the corresponding OEP-curves in Fig. 2, we have not considered the
secondary uncertainty.

The reason for not considering the secondary uncertainty is based on the fact that
in this case a closed analytical representation of the OEP-curve is possible, which
significantly affects and simplifies the representation, see [7].

Figure 1 clearly shows the heaviness of the tails of the peril distributions. The two
windstorm distributions are the ones with the lightest tail as expected and in contrast,
the distribution of earthquake events is extremely heavy-tailed. The probability that
no earthquake event is realized in this case is about 95%. For better comparability, the
logarithmized exceedance probabilities can be taken from the right graph of Fig. 1.

Figure 2 shows the OEP-curves of the four ELT distributions considered. For both
axes a logarithmic scaling was chosen to achieve comparability. The impressions of
Fig. 1 are reinforced by Fig. 2. We conclude that the earthquake distribution has the
largest return periods within the tail, but the highest total loss with even a smaller
return period is shown by the flood ELT. The comparatively lighter tails of the two
windstorm ELTs can also be identified.

4.2 Hyperparameter tuning

Our first step is to select the hyperparameters ε and T . For T , we created 63 = 216
sets by dividing each of the three univariate parameter spaces in six disjoint subspaces
based on their quantile values. The choice of T was based on the computational
efficiency.

To illustrate the effect that the number of clusters falls when ε grows, we have
plotted in Fig. 3 the relative shrinkage-proportions of the number of scenarios against
the respective ε-values. Here, the monotonic behavior can be found for all hazards.We
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Fig. 3 Shrinkage-proportions of the number of scenarios compared to the unclustered ELT

further note that due to the extreme skewness of the earthquake distribution, the relative
proportions of the scenario shrinkages are the largest. This is not very surprising, since
wewant to keep the characteristics of the original distribution andmany of the extreme
scenarios are classified as outliers.

In order to select ε, we have to identify the knots in the corresponding elbow plots.
In Fig. 4, we show the elbow plots corresponding to the four different ELT data sets.
In an elbow plot, the number of clusters are plotted against the corresponding summed
discrepancy measures. The summed discrepancy for a given cluster is defined as the
sum of the Euclidean distances of the clustered scenarios to the representative of this
cluster. These distances are then summed over all clusters and result in the discrepancy
measures shown for ε-values between 0 and 0.20.

As can be seen from the plots, the ELT data sets windstorm 2 and flood seem to have
a knot around the ε-value of 0.01 and around the ε-value 0.10. In contrast, the ELT
data sets windstorm 1 and earthquake seem to have a single knot around the ε-value
0.05. To test our methodology, we will pick the values of 0.05 and 0.10 for ε, as these
might be considered as knot values.

4.3 Comparing the simulated losses

Most important for the clustered resimulation framework is that the output is com-
parable to the original resimulation framework. To compare the outputs of both
resimulation frameworks, we first present the descriptive statistics of the clustered
data for ε-values of 0.05 and 0.1. The corresponding figures for the base case can be
found in Table 2. Subsequently, we use the scheme presented in Sect. 3.3 and a Q-Q
plot analysis based on the average quantile estimates and their confidence intervals
after 100 resimulations with a resimulation path of 10,000.

Table 4 shows themain descriptive results of the total losses of the entire ELTs of the
four considered perils. The enormous reduction in the number of scenarios is striking.
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Fig. 4 Elbow plots of the amount of ELT clusters against a dissimilarity level for ε-values ranging from 0
up to 0.20

The sum of the frequencies is not reduced by our clustering algorithm, since per cluster
the frequencies of the individual clustered scenarios are summed up. It can be derived
that the differences in the expected total loss and the standard deviation of the total loss
are very small, which indicates that the characteristics of the original distribution are
approximately maintained. It is noticeable that the coefficient of variation is reduced
by our clustering algorithm, which is in accordance with the reduction of the number
of scenarios and the smoothing of the distribution parameters.

Table 5 shows the results of our testing framework for both ε-values of 0.05 and
0.10. For an ε-value of 0.05, we can see that the rejection rate is for both frameworks
around 10% of the amount of resimulations with the exception of the earthquake ELT.
However, the amount of rejections for both resimulation frameworks is the same for
the earthquake ELT such that the high rejection rate is more due to the variation in the
simulation than due to the clustering framework.

In the case of an ε-value of 0.10, we can see that the rejection rates for the clustered
ELT starts to behave differently compared to what is expected. For the windstorm 1
data set, the rejection rate is much lower than that of the original data set. Moreover,
the ELT data sets windstorm 2 and flood have notably different rejection rates, too.
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Table 4 Descriptive key figures of the total loss S for ε = 0.05 and ε = 0.10 including the secondary
uncertainty

Perils Windstorm 1 Windstorm 2 Flood Earthquake

ε = 0.05 No. of scenarios

Clustered data set 4888 6102 2523 2028

Difference to − 77.73 − 65.62 − 64.19 − 57.78

the base case in %

E(S)

Clustered data set 37,734,045 5,668,573 10,932,948 442,273

Difference to − 0.17 0.38 − 0.17 0.04

the base case in %

Std(S)

Clustered data set 64,702,593 9,210,767 90,213,234 12,769,220

Difference to − 0.29 0.20 − 0.30 −0.12

the base case in %

CoV(S)

Clustered data set 171.5 162.5 825.2 2887.2

Difference to − 0.2 − 0.3 − 1.1 − 4.9

the base case in p.p.

ε = 0.10 No. of scenarios

Clustered data set 2211 3377 1759 1521

Difference to − 89.48 − 80.97 −75.03 − 68.33

the base case in %

E(S)

Clustered data set 37,785,796 5,695,088 10,961,460 441,611

Difference to − 0.03 0.85 0.09 − 0.10

the base case in %

Std(S)

Clustered data set 64,707,513 9,198,838 90,444,750 12,712,466

Difference to − 0.28 0.07 − 0.05 − 0.57

the base case in %

CoV(S)

Clustered data set 171.2 161.5 825.1 2878.7

Difference to − 0.4 − 1.3 − 1.1 − 13.4

the base case in p.p.

For the earthquake data set, there is no remarkable difference in the rejection rates but
this might also be caused by the variance in the resimulation in general. Note that it
is interesting to see that the ELT data sets windstorm 2 and flood perform the worst
as those were the data sets we assumed to have two knots. These results support the
presumption that in the case of multiple elbows, a smaller, i.e. more conservative,
ε-value is preferable.
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Table 5 Comparison of the rejection rates for both frameworks using a paired KS test under a 10%-
significance level

Perils Windstorm 1 Windstorm 2 Flood Earthquake

ε = 0.05 Proportion rejected

Original data set 0.12 0.12 0.11 0.96

Clustered data set 0.08 0.10 0.12 0.96

ε = 0.10 Proportion rejected

Original data set 0.10 0.11 0.09 0.97

Clustered data set 0.05 0.41 0.17 0.95

Fig. 5 Q–Q plots displaying the averaged quantiles of 100 resimluations and corresponding 95% upper
and lower bounds of the quantile estimates of the original framework and the clustered approach using
ε = 0.05, 0.1

To compare the outputs more directly, we use Q-Q plots to see whether the original
resimulation framework and the clustered resimulation framework produce similar
quantiles in general. We do this by taking the average over 100 resimulations of the
quantile estimates. The quantileswe select to plot are corresponding to the 0%-quantile
up to the 99.5%-quantile with a 0.5% step between two consecutive quantiles. Figure 5
shows the resultingQ-Qplots, which contain additionally the 95%confidence intervals
of the simulated quantiles of the original resimulation framework (“UB reference”
and “LB Reference”) and of our clustering-based approach (“UB epsilon” and “LB
epsilon”) for two different values ε = 0.05 and 0.1, respectively.
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As can be seen from the plots, both the clustered resimulation with an ε-value of
0.05 and 0.10 seem to match the quantile estimates of the original resimulation quite
well. However, we do see that the clustered resimulation with an ε of 0.05 for the
earthquake data does not result in a proper averaged estimate for the 99.5%-quantile.
This again might be caused by the simulation variance and due to the heavy-tailed
distribution of the earthquake ELT.

4.4 Comparing the runtime

In order to benefit from the clustered algorithm, a sufficient decrease must be obtained
in the runtime. In addition, the time it takes to cluster the ELTs must also be taken into
account as this adds to the runtime. In Fig. 6a the runtime is shown for the original
resimulation framework together with the clustered resimulation framework using an
ε-value of 0.05 for 10,000 resimulations. We can deduce from the figure that the
runtime of the clustered framework together with the time it takes to cluster is roughly
half of the runtime of the original framework.When using amore aggressive clustering
approach using an ε-value of 0.10, the runtime further decreases to roughly a third or
a fourth of the original resimulation runtime as shown in Fig. 6b.

Note that the time it takes to cluster is constant with respect to the simulation path
while the frameworks are roughly linearly increasing in runtime with respect to the
simulation path. This means that if we would increase the simulation paths to, say,
100,000, we would see a further improvement of the relative runtime.

4.5 Further comparison with the same runtime

In this section we want to compare both simulation techniques on the basis of an addi-
tional aspect. We have seen that a more aggressive, i.e. larger, choice of ε works well
on average when comparing the resulting quantiles and that this aggressive approach
reduces the runtime more than the conservative choice. This in turn opens up time
for additional simulation paths. To compare the benefit of the additional simulation
paths to the variance of simulated quantiles, we reran both frameworks with the same
runtime, whereby the time constraint is imposed by the original framework.

Table 6 shows the gains that are obtained from the additional resimulation paths for
the 99.5%-quantile estimate. As can be seen, for both hyperparameters the average bias
in the output seems to be small. Only the earthquake peril witnesses biases over 1%. In
contrast, the standard deviation is reduced up to 73% for the aggressive approach and
up to 55% for the more conservative approach which emphasizes the gains in variance
by our approach.
In general, a more aggressive choice of ε leads to an increased bias of the clustered
output due to the larger number of scenarios clustered together. Together with the
results in Table 6 this reflects some kind of bias-variance trade-off that should be
mitigated as far as possible by an appropriate choice of ε.
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Fig. 6 Runtime of a single resimulation of 10,000 samples with the original framework and the clustered
framework using an ε-value of 0.05 and 0.10

5 Conclusion

In this work, we presented a performant resimulation algorithm for ELTs based on a
clustering-based approach. Empirical evidence so far in this work suggests that with
the correct tuning, the clustered approach produces outputs that are statistically not
significantly different from the original resimulation approach.

We have seen that the runtime can be a fraction of the original approach even when
additionally taking the time to cluster into account. Thus, our clustered approach could
help to solve the runtime versus variance issue.

Looking ahead, we plan to improve thismethodology by deriving amoremathemat-
ical way to optimize the hyperparameters. We expect that the runtime gains versus the
decrease in accuracy could bemathematically describedwith respect to the parameters.
This in turn should end up in a data-driven way of optimizing the hyperparameters.
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Table 6 Descriptive statistics of the 99.5%-quantile of the total loss when running the resimulation frame-
work a 100 times with ε = 0.05 and 0.10, whereby the time budget is the same as for the original framework

Perils Windstorm 1 Windstorm 2 Flood Earthquake

ε = 0.05 q̄99.5%
Clustered data set 337,261,496 52,499,090 596,785,420 8,946,989

Difference to 0.01 0.37 − 0.77 − 3.48

the base case in %

Std(q99.5%)

Clustered data set 9,711,722 1,634,446 32,632,702 1,375,803

Difference to − 55.33 − 47.04 − 53.00 − 41.98

the base case in %

ε = 0.10 q̄99.5%
Clustered data set 335,705,451 52,520,277 600,980,558 9,393,852

Difference to − 0.45 0.41 − 0.07 1.34

the base case in %

Std(q99.5%)

Clustered data set 5,945,100 1,247,679 31,472,377 1,241,614

Difference to − 72.66 − 59.57 − 54.67 − 47.64

the base case in %

An interesting and practically relevant extension of our approach could be to gen-
eralize the proposed algorithm to the case of multi-portfolio ELTs. In this case, single
events trigger different portfolios so that different business units that belong to one
company experience losses that are caused by the same event and that have to be shared
across this company. In this situation, the scenarios within the ELT possess not a single
but multiple severity distributions. It is well known in the literature, that the increase
of dimensionality is quite cumbersome for clustering algorithms. The adaption of our
algorithm is under investigation and is the subject of a future contribution.

Acknowledgements The authors thank the Handling Editor and an anonymous referee for their helpful
remarks and suggestions.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123



774 B. Funke, H. Roering

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Chen X (2015) A new clustering algorithm based on near neighbor influence. Expert Syst Appl
42(21):7746–7758

2. DeutscheGesellschaft fürVersicherungs- undFinanzmathematik: InterneRisikomodelle in der Schaden-
/Unfallversicherung (2008)

3. Diers D (2007) Interne Unternehmensmodelle in der Schaden- und Unfallversicherung : Entwicklung
Eines Stochastischen InternenModells Für dieWert- und Risikoorientierte Unternehmenssteuerung und
Für die Anwendung Im Rahmen Von Solvency II. ifa-Verlag, Ulm

4. Diers D (2009) Stochastic modelling of catastrophe risks in internal models. German Risk Insur Rev
(GRIR) 5(1):1–28

5. Ester M, Kriegel H-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters
in large spatial databases with noise. Kdd 96:226–231

6. Fackler M (2022) Premium rating without losses. Eur Actuar J 12:275–316
7. Homer D, Li M (2017) Notes on using property catastrophe model results. Casual Actuar Soc E-Forum

2:29–44
8. Mitchell-Wallace K, Jones H, Foote M (2017) Natural catastrophe risk management and modelling: a

practitioner’s guide. Wiley-Blackwell, New Jersey

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	A resimulation framework for event loss tables based on clustering
	Abstract
	1 Introduction
	2 Resimulating event loss tables: the traditional approach
	2.1 Structure of an event loss table
	2.2 Resimulation from ELTs

	3 Clustering-based resimulation
	3.1 Introduction to a clustering-based approach
	3.2 Clustering the ELTs
	3.3 Testing the clustered resimulation output

	4 A comparison between both frameworks
	4.1 Discussion on the characteristics of the data set used
	4.2 Hyperparameter tuning
	4.3 Comparing the simulated losses
	4.4 Comparing the runtime
	4.5 Further comparison with the same runtime

	5 Conclusion
	Acknowledgements
	References




