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Abstract
In this paper, we introduce a natural learning rule for mean field games with finite 
state and action space, the so-called myopic adjustment process. The main moti-
vation for these considerations is the complexity of the computations necessary to 
determine dynamic mean field equilibria, which makes it seem questionable whether 
agents are indeed able to play these equilibria. We prove that the myopic adjustment 
process converges locally towards strict stationary equilibria under rather broad con-
ditions. Moreover, we also obtain a global convergence result under stronger, yet 
intuitive conditions.

Keywords  Mean field games · Learning in games · Finite state space · Finite action 
space

JEL Classification  C73 · C70

1  Introduction

Mean field games have been introduced by Lasry and Lions (2007) and Huang et al. 
(2006) in order to make dynamic games with a large number of players tractable. 
The central idea is to approximate these games with many players by a game with 
a continuum of anonymous players. Thereafter a vibrant field of research emerged 
in particular concerning games where the dynamics of the individual players are 
described by diffusions. For a first overview consider the monographs of Bensous-
san et al. (2013) and Carmona and Delarue (2018a, 2018b) or the lecture notes by 
Cardaliaguet (2013). However, a central problem for applications is that equilibria 
are described by forward-backward systems of (stochastic) differential equations and 
are, therefore, notoriously intractable.
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Recently, also mean field games with finite state space have been considered, for 
example in Gomes et al. (2013), Cecchin and Fischer (2018), Belak et  al. (2021), 
Carmona and Wang (2021), Doncel et  al. (2019), Neumann (2020) and Carmona 
and Delarue (2018a,  Section  7.2). Also in these games dynamic equilibria are 
described by forward-backward systems of differential equations. Moreover, consid-
ering stationary equilibria allows for closed-form solutions: This was first demon-
strated in several applications including the spread of corruption, botnet defence, 
paradigm shift in science and consumer choice (Besancenot and Dogguy 2015; 
Kolokoltsov and Bensoussan 2016; Kolokoltsov and Malafeyev 2017; Gomes et al. 
2014). Thereafter, in Neumann (2020) results yielding a semi-explicit characteriza-
tion of stationary equilibria in general mean field games with finite state and action 
space have been derived.

For applications it is now clearly desirable to understand whether stationary 
equilibria are an adequate description of agents’ behaviour. One approach is to dis-
cuss the question in how far these equilibria are suitable limit objects of dynamic 
equilibria when the finite time horizon tends to infinity (consider Kolokoltsov and 
Malafeyev (2018) for the analysis of an example). The second approach is to under-
stand in how far stationary equilibria arise when agents apply certain only partly 
rational decision rules. This approach is a classical one in standard game theory and 
known as learning.

Why players should play equilibrium strategies is a classical concern. The expla-
nation that agents arrive at these strategies from “introspection and computation” is 
challenged by many facts: The computational complexity of the problems at hand, 
the question which equilibrium to choose in case of multiple equilibria as well as 
experimental evidence (Fudenberg and Levine 1998). Because it was observed in 
experiments that agents “learn” to play equilibria after some time, many authors 
focussed on the definition and analysis of partially rational “learning rules” (for 
example fictitious play or partial best response) mostly for static games. For an 
overview consider the monograph of Fudenberg and Levine (1998) or the survey by 
Nachbar (2009).

Recently, learning has also been discussed for mean field games with diffusion-
based dynamics: On the one hand, in Cardaliaguet and Hadikhanloo (2017) fictitious 
play for repeated games with finite time horizon has been introduced, which there-
after has been analysed in subsequent publications (Hadikhanloo 2017; Briani and 
Cardaliaguet 2018) and extended to discrete time finite state mean field games with 
finite time horizon (Hadikhanloo 2018). On the other hand, in Mouzouni (2018) a 
learning procedure similar to the myopic adjustment process considered here has 
been introduced. In this paper existence and local convergence under strong assump-
tions (quadratic Hamiltonian and Lasry–Lions monotonicity condition) have been 
proved. We highlight, that the methods for diffusion-based mean field games cannot 
be adapted to our setting of a mean field game with finite state and action space, 
since the crucial assumption for most methods (a unique optimizer of the Hamilto-
nian) is typically not satisfied (see Neumann 2020, Remark 2.5).

Another branch of literature analyses learning methods for discrete time mean 
field games with finite state and action space from a reinforcement learning per-
spective, see the survey by Lauriére et  al. (2022) for an overview. These learning 
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methods do not aim to explain how players adjust their behaviour in a (partially) 
rational way, but how to obtain nearly optimal solutions using data or samples. 
Hence, these methods include (generalizations of) classical (economically moti-
vated) learning rules like fictitious play (Perrin et al. 2020) or best-response based 
methods (Guo et al. 2019), but also others.

Up to the knowledge of the author, this paper is the first paper that considers 
learning in continuous time mean field games with finite state and action space. The 
learning procedure we consider in this paper is motivated from an economic stand-
point as a partially rational decision procedure for the agents. Namely, we introduce 
a myopic adjustment process, where agents choose to play a best response for the 
scenario that the current state distribution in the population will persist for all future 
times. Moreover, whenever the current state distribution in the population changes, 
the agent will adjust his strategy to the new best response. We highlight that, in con-
trast to most other learning procedures, we do not assume that all agents choose 
the same strategy as best response. Given the players’ choices the state distribution 
of the population gradually changes as described by the chosen strategies. This dif-
fers from best-response based methods, where the distribution would immediately 
change to the stationary distribution given the best response. This definition yields 
to a formulation of this process as a differential inclusion and we can prove exist-
ence of this process under a continuity assumption. Thereafter we address the ques-
tion whether the process converges locally or globally towards stationary equilibria. 
In this context we first obtain under suitable conditions an analogue of the classical 
result from the theory of matrix games that a strict equilibrium is locally stable. 
Thereafter, we also establish a global convergence result under stronger, yet intui-
tive conditions, which are different to the conditions used in analogous contexts in 
evolutionary game theory. Since the proof is rather complex and technical we first 
provide a result for a two strategy setting in which case the general idea becomes 
clear. Thereafter, we provide the general statement.

Let us conclude the introduction by relating the myopic adjustment process with 
the notion of evolutionary game dynamics for population games as in Sandholm 
(2010, 2015). In the setting of a static game among a continuum of small, anony-
mous players, an evolutionary game dynamic describes the evolution of the strategy 
choices using so-called revision protocols, which are simple myopic rules to adjust 
the behaviour based on the observed strategies by all others. The myopic adjustment 
process considered here can be seen as an extension of this idea to dynamic games 
where each agent has an individual state that evolves over time (according to the 
action he chooses) and earns a reward that depends on his individual state, his indi-
vidual action and the distribution of states of the other agents. Thus, in contrast to 
standard learning procedures the game is not played repeatedly and the agents do not 
learn from round to round, but the agents learn while playing the game. A second 
difference is that besides the strategies also a state evolves over time, an idea that 
occurs also in Marden (2012). In this paper a global state taking finitely many values 
that evolves over time is introduced and the static game that is played repeatedly 
depends on this state. However, here we introduce an individual state for each agent, 
which has, up to the knowledge of the author, not been considered so far. Due to fact 
that the adjustment of strategies and the evolution of the individual states happen 
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simultaneously, classical results from evolutionary game theory cannot be applied. 
However, since the myopic adjustment process looks somehow similar to classical 
evolutionary game dynamics the results often have the same flavour. In this sense, 
we prove as in Sandholm (2014) that the myopic adjustment process converges 
locally towards strict equilibria and similar to Hofbauer and Sandholm (2009) and 
Zusai (2020) we propose gradient conditions to ensure global convergence of the 
adjustment process.

The rest of the paper is structured as follows: Sect.  2 describes the mean field 
game model considered in this paper. Section 3 introduces the myopic adjustment 
process and justifies its definition as a sensible partially rational learning rule. More-
over, it presents the myopic adjustment process for a simple example. In Sect. 4 we 
study the local convergence of the myopic adjustment process and in Sect.  5 we 
investigate the global convergence first for the special case of two strategies, thereaf-
ter in a general setting. The Appendix A describes an algorithm to verify the condi-
tions of the general global convergence theorem, Appendix B contains all proofs.

2 � Stationary equilibria of mean field games with finite state 
and action space

This section describes the mean field game model. The setup is the same as in Neu-
mann (2020) and we refer the reader to this paper for more details. Moreover, we 
remark that the model has been first introduced in an analytic formulation and with-
out the notion of stationary equilibria in Doncel et al. (2019).

We consider a continuum of agents. Let S = {1,… , S} ( S > 1 ) be the set of pos-
sible states of each player and let A = {1,… ,A} be the set of possible actions. 
With P(S) we denote the probability simplex over S and with P(A) the probabil-
ity simplex over A . We refer to an element m ∈ P(S) that describes the distribu-
tion of states in the population as social state, whereas the state i ∈ S of an indi-
vidual agent is called the individual state. A (mixed) strategy is a measurable 
function � ∶ S × [0,∞) → P(A) , (i, t) ↦ (�ia(t))a∈A with the interpretation that 
�ia(t) is the probability that at time t and in the individual state i the player chooses 
action a. A strategy � = d ∶ S × [0,∞) → P(A) is deterministic (or a pure strat-
egy) if it satisfies for all t ≥ 0 and for all i ∈ S that there is an a ∈ A such that 
dia(t) = 1 and dia� = 0 for all a� ∈ A⧵{a} . Sometimes the following equivalent rep-
resentation is helpful: Namely, we represent a deterministic strategy as a function 
d ∶ S × [0,∞) → A, (i, t) ↦ di(t) with the interpretation that di(t) = a states that at 
time t in the individual state i action a is chosen. A stationary strategy is a map 
� ∶ S × [0,∞) → P(A) such that �ia(t) = �ia for all t ≥ 0 . With Π we denote the set 
of all (mixed) strategies and with Πs the set of all stationary strategies. Similarly, we 
denote by D the set of all deterministic strategies and by Ds the set of all determinis-
tic stationary strategies.

Let for all a ∈ A and m ∈ P(S) the matrices (Q⋅⋅a(m))a∈A be conservative 
generators, that is Qija(m) ≥ 0 for all i, j ∈ S with i ≠ j and 

∑
j∈S Qija(m) = 0 for 

all i ∈ S . The individual dynamics of each player given a Lipschitz continuous 
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flow of social states m ∶ [0,∞) → P(S) and a strategy � ∶ S × [0,∞) → P(A) are 
given as a Markov process X�(m) with given initial distribution x0 ∈ P(S) and 
infinitesimal generator given by the Q(t)-matrix

Given the initial condition x0 ∈ P(S) , the goal of each player is to maximize his 
expected discounted reward, which is given by

where r ∶ S ×A × P(S) → ℝ is a real-valued function and � ∈ (0, 1) is the discount 
factor. That is, for a fixed flow of social states m ∶ [0,∞) → P(S) the individual 
agent’s decision problem is a Markov decision process with expected discounted 
reward criterion and time-inhomogeneous reward functions and transition rates.

In this paper we work under the following standing assumption, which 
ensures the well-definition of the model as well as the existence of dynamic as 
well as stationary equilibria (Neumann 2020):

Assumption A1  For all i, j ∈ S and all a ∈ A the function m ↦ Qija(m) mapping 
from P(S) to ℝ is Lipschitz-continuous in m. For all i ∈ S and all a ∈ A the function 
m ↦ ria(m) mapping from P(S) to ℝ is continuous in m.

Definition 2.1  Given an initial distribution m0 ∈ P(S) , a mean field equilibrium is 
a pair (m,�) consisting of a flow of social states m ∶ [0,∞) → P(S) with m(0) = m0 
and a strategy � ∶ S × [0,∞) → P(A) such that

•	 the distribution of the process X�(m) at time t is given by m(t), and
•	 Vm0

(�,m) ≥ Vm0
(��,m) for all �� ∈ Π.

Definition 2.2  A stationary mean field equilibrium is given by a stationary strategy 
� and a vector m ∈ P(S) such that

•	 the law of X�(m) at any point in time t is given by m, and
•	 for any initial distribution x0 ∈ P(S) we have Vx0

(�,m) ≥ Vx0
(��,m) for all 

�� ∈ Π.

As discussed in Neumann (2020) this is a sensible notion of stationary equi-
librium: Indeed, the second condition ensures that an agent will at no time ben-
efit from deviating from the equilibrium strategy since irrespective of his current 
state or distribution, respectively, the strategy � is optimal for him.

(Q�(m(t), t))ij =
∑
a∈A

Qija(m(t))�ia(t).

(1)Vx0
(�,m) = �

[
∫

∞

0

(∑
a∈A

rX� (m)a(m(t))�X� (m)a(t)

)
e−�tdt

]
,
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3 � The myopic adjustment process

In general, it is not possible to compute dynamic mean field equilibria for the 
considered game; it is not even possible to explicitly characterize solutions of the 
individual control problem for a given non-constant flow of social states. Moreo-
ver, also in the case of a finite time horizon, the search for equilibria can only be 
reduced to a forward-backward system of ODEs, which can, most of the time, 
be only solved numerically (see Belak et al. 2021). The aim of this section is to 
motivate and define a reasonable alternative decision mechanism for the agents.

In contrast to Cardaliaguet and Hadikhanloo (2017) we cannot assume that the 
game is played repeatedly, but instead we have to assume that the agent changes 
his strategy during the game. In contrast to classical evolutionary game theory, 
we moreover assume that the agents can change their strategy at any time t. We 
note that the game at time t with current distribution m is, due to the time-homo-
geneous formulation and the infinite time horizon, equivalent to the game started 
at time 0 with initial distribution m. Moreover, we remind ourselves that the influ-
ence of the individual agent on the game characteristics and thus on the payoff 
of the other players is negligible. Therefore, it is reasonable to assume that the 
agents do not try to influence the other players’ choices, but that they only maxi-
mize their own payoff. Because of time-homogeneity and the negligible influence 
on other players, we assume that the agents choose Markovian strategies that only 
depend on the current individual state and current social state.

We assume that the agent when choosing an optimal strategy given the current 
social state m assumes that the social state is constant. Indeed, by construction of the 
dynamics and since Q is uniformly bounded, the social state will be close to m for a 
certain time horizon. Since the rewards and transition rates are continuous, this means 
that for this time horizon the approximation that the social state is constant works 
well. For a longer time horizon a sensible prediction of the evolution of the social 
state is complex, since the agent would also need to take into account that the popula-
tion’s strategy might change due to the change in the social state. However, since the 
agent is allowed to change his strategy at any time (in particular if the social state 
changes drastically), it is reasonable to assume that he focuses on the near future, i.e. 
chooses a strategy that maximizes his reward given the constant prediction m.

Given such a constant prediction of the evolution of the social state, the optimiza-
tion problem becomes a tractable Markov decision process with stationary transition 
rates and rewards (see Neumann 2020, Lemma 3.1). It is well known that there is 
always an optimal stationary strategy for the considered optimization problem (Guo 
and Hernández-Lerma 2009) and it is again natural to assume that agents choose 
such a stationary strategy. We remark that this assumption that agents choose a sta-
tionary strategy is classical and that there are several conceptual reasons for the use 
of these strategies (see Maskin and Tirole 2001). Namely, stationary Markov strate-
gies are the simplest (rational) form of decision-making in this context. Moreover, 
this type of strategies is related to subgame perfection, which is as discussed earlier 
a reasonable requirement in our setting. Indeed, these strategies ensure that a game 
with the same relevant characteristics (i.e. individual and social state) is played in 
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the same way. Finally, the restriction on this type of strategies reduces the number of 
possible best responses and thus increases predictive power.

In order to characterize the optimal stationary strategies that could be chosen 
by the agent let us review the relevant results on Markov decision processes with 
stationary transition rates and rewards. By V�(m) = (V�

�i
(m))i∈S we denote the 

reward vector for the Markov decision process, which collects for each i ∈ S the 
expected discounted reward defined in (1) given that the individual agent starts in 
state i, chooses strategy � ∈ Π and the social state is m for all times. A strategy � 
is optimal if it satisfies V𝜋(m) ≥ V 𝜋̃(m) pointwise for all 𝜋̃ ∈ Π . Moreover, if � is 
optimal we have V�(m) = V∗(m) , where V∗(m) is the unique solution of the opti-
mality equation

For our purpose now the following result explicitly characterizing the set of all opti-
mal stationary strategies proves to be useful (see Neumann 2020, Section 3): Define

and set

Then the set of all optimal stationary strategies is given by conv(D(m)).
So all in all we assumed that at any time any agent can change his strategy and he 

will do this using his current individual state and the current social state. Moreover, 
we argued that every agent will choose a strategy from the set conv(D(m)) . However, 
we cannot assume that all agents choose a particular strategy nor that the agents 
or groups of them agree on a common strategy. Moreover, we also cannot describe 
which agents will choose which strategy. The only sensible assumption is that the 
population chooses aggregately a strategy from the set conv(D(m)) . The next lemma 
describes how the social state evolves if all agents adopt this decision mechanism:

Lemma 3.1  Let m ∶ [0,∞) → P(S) be the distribution of the population, where at 
time t ≥ 0 any agent chooses a strategy from conv(D(m(t))) . Then

for almost all t ≥ 0.

With these preparations we define the myopic adjustment process as a solution 
of the differential inclusion in the sense of Deimling (1992) given by (2). Namely, 
a trajectory of the myopic adjustment process is an absolutely continuous func-
tion m ∶ [0,∞) → P(S) such that

�V∗
i
(m) = max

a∈A

{
ria(m) +

∑
j∈S

Qija(m)V
∗
j
(m)

}
, i ∈ S.

Oi(m) =∶ argmaxa∈A

{
ria(m) +

∑
j∈S

Qija(m)V
∗
j
(m)

}

D(m) ∶= {d ∶ S → A|d(i) ∈ Oi(m) for all i ∈ S}.

(2)ṁ(t) ∈ F(m(t)) ∶= conv
{
(Qd(m(t)))Tm(t) ∶ d ∈ D(m(t))

}
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We remark, that the use of differential inclusions as a modelling tool for situations 
where uncertainty, the absence of control or a variety of available dynamics occurs 
is classical (Aubin and Cellina 1984).

Before we start the analysis of the long-term behaviour, we note, relying on a 
classical existence result for differential inclusions, that under Assumption A1 a 
solution of the differential inclusion exists.

Theorem  3.2  The differential inclusion defined by (2) and (3) admits a solution 
m ∶ [0,∞) → P(S).

Let us briefly compare the myopic adjustment process to classical evolutionary 
game dynamics. The central difference is that here two layers of adjustment have 
to be considered, namely the adjustment of strategies and the evolution of the indi-
vidual states, whereas in classical evolutionary game dynamics only the adjustment 
of the strategies matters. Also from the motivation/construction the processes dif-
fer: First, here we consider learning during a dynamic game, whereas in classical 
evolutionary game dynamics it is assumed that agents learn from round to round in 
a static game. Second, here the agent is allowed to change his strategy at any time, 
in classical evolutionary game dynamics he can often do this only at random times. 
This means that in evolutionary game dynamics the change of strategies is rather 
continuous, whereas here it is abrupt and sometimes discontinuous. However, 
since the individual agent’s states are modelled by a Markov chain and the map 
m ↦ D(m) is upper semi-continuous (see the proof of Theorem 3.2), the resulting 
evolution of the social state is again upper semi-continuous. Yet, besides all the 
differences, the emerging processes are both dynamical systems on a probability 
simplex having a similar structure. Therefore, also the results have a similar flavour, 
although the economic intuitions behind the results are different.

For our purpose, it is central to understand how stationary equilibria and the 
trajectories of the myopic adjustment process interact. The following observation, 
which is classical for many learning procedures, is a first step:

Remark 3.3  By definition, a point is a stationary point of (3) if and only if it is a 
stationary mean field equilibrium. This is immediate, since 0 ∈ F(m(t)) implies that

	�  □

(3)ṁ(t) ∈ F(m(t)) for almost all t ≥ 0, m(0) = m0.

0 ∈ conv

⎧
⎪⎨⎪⎩

��
i∈S

�
a∈A

miQija(m(t))dia

�

j∈S

∶ d ∈ D(m(t))

⎫
⎪⎬⎪⎭

=

⎧
⎪⎨⎪⎩

��
i∈S

�
a∈A

miQija(m(t))�ia

�

j∈S

∶ � ∈ conv(D(m(t)))

⎫
⎪⎬⎪⎭
.
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In Sect. 4 we will analyse, whether the myopic adjustment process started close to 
a stationary equilibrium converges towards it. Thereafter, in Sect. 5 we analyse under 
which conditions convergence towards some stationary equilibrium irrespective of the 
starting point can be expected.

We conclude this section by discussing the shape of the myopic adjustment process 
for an example linked to consumer choice in the mobile phone sector, for which previ-
ously in Neumann (2020) the stationary equilibria have been computed:

Example 3.4  The agents can choose between two providers and their utility is 
increasing in the share of customers using the same provider. The agents can switch 
the provider facing a time-unit cost c. However, the decision is not implemented 
immediately, but according to a Poisson process with rate b. The formal description 
of the model is given as follows: Let S = {1, 2} and A = {stay, change} . Let 𝛿 > 0 
be small and define

Then the transition rates and rewards are given by

where � , b, s1 , s2 and c are positive constants with 𝜖 < b . Note that m2 = 1 − m1 , 
however, we need this unusual definition for the analysis of the global convergence.

Let us introduce the notation cs for the strategy d such that d(1) = change and 
d(2) = stay and analogously the notations sc and ss. In Neumann (2020) it is then 
shown that

where

Thus, the myopic adjustment process is defined as a solution of the differential 
inclusion ṁ(t) ∈ F(m(t)) with

f𝛿 ∶ ℝ → ℝ y ↦

{
1

2𝛿
y2 +

𝛿

2
if y ≤ 𝛿

y if y > 𝛿
.

Qchange(m) =

(
−b b

b − b

)
rchange(m) =

(
ln(f�(m1)) + s1 − c

ln(f�(1 − m1)) + s2 − c

)

Qstay(m) =

(
−� �

� − �

)
rstay(m) =

(
ln(f�(m1)) + s1

ln(f�(1 − m1)) + s2

)
,

D(m) =

⎧
⎪⎪⎨⎪⎪⎩

{cs} if m1 < k1
conv{cs, ss} if m1 = k1
{ss} if k1 < m1 < k2
conv{ss, sc} if m1 = k2
{sc} if m1 > k2

,

k1 =
exp

(
−

c(�+2�)

b−�
− s1 + s2

)

1 + exp
(
−

c(�+2�)

b−�
− s1 + s2

) and k2 =
exp

(
c(�+2�)

b−�
− s1 + s2

)

1 + exp
(

c(�+2�)

b−�
− s1 + s2

) .
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In Fig. 1 we illustrate the behaviour of this process for a parameter choice that yields 
for any initial condition to a unique solution of the differential inclusion.

4 � Local convergence

This section discusses the question of local convergence, that is we analyse under 
which conditions we can expect that for an initial condition close to a stationary 
equilibrium the trajectories of (3) converge towards that equilibrium. We start the 
analysis of the case where the equilibrium is strict in the sense that the equi-
librium strategy is the unique optimal strategy for the equilibrium social state. 

F(m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
−bm1(t) + 𝜖m2(t)

bm1(t) − 𝜖m2(t)

�
if m1(t) < k1

conv

��
−bm1(t) + 𝜖m2(t)

bm1(t) − 𝜖m2(t)

�
,

�
−𝜖m1(t) + 𝜖m2(t)

𝜖m1(t) − 𝜖m2(t)

��
if m1(t) = k1�

−𝜖m1(t) + 𝜖m2(t)

𝜖m1(t) − 𝜖m2(t)

�
if k1 < m1(t) < k2

conv

��
−𝜖m1(t) + 𝜖m2(t)

𝜖m1(t) − 𝜖m2(t)

�
,

�
−𝜖m1(t) + bm2(t)

𝜖m1(t) − bm2(t)

��
if m1(t) = k2�

−𝜖m1(t) + bm2(t)

𝜖m1(t) − bm2(t)

�
if m1(t) > k2

.

Fig. 1   Illustration of Example 3.4: The figure shows m
1
(t) for several trajectories of the myopic adjust-

ment process given different initial conditions. The blue vertical lines represent the thresholds at which 
the set of optimal strategies changes
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Thereafter, we comment on the (limited) possibilities to extend the results to non-
strict equilibria.

Lemma 4.1  Let m̄ ∈ P(S) and assume that d is the unique optimal stationary strat-
egy for m̄ (that is D(m̄) = {d} ). Then there is an 𝜖 > 0 such that for all m� ∈ N𝜖(m̄) 
we have D(m�) = {d}.

This lemma now yields that for all m� ∈ N𝜖(m̄) we have F(m�) = {(Qd(m�))Tm�} . 
Thus, it suffices to investigate whether there is a 𝛿 > 0 such that for all m0 ∈ P(S) 
satisfying |m0 − m̄| < 𝛿 we have that the solution of ṁ(t) = (Qd(m(t)))Tm(t) lies in 
N𝜖(m̄) for all t ≥ 0 and converges towards m̄ . This question is closely linked to the 
notion of asymptotically stable solutions of autonomous ordinary differential equa-
tions ẋ = f (x) . However, we do not consider arbitrary initial conditions in N𝛿(x̄) , but 
only those that lie in P(S).

The first positive result we present covers the case where the dynamics given the 
equilibrium strategy are constant, that is ṁ = (Qd)Tm.

Theorem 4.2  Let (m̄, d) be a stationary mean field equilibrium such that D(m̄) = {d} 
(that is, d is the unique optimal strategy at m̄ ). Furthermore, assume that Qd(m) is 
constant in m and an irreducible generator. Then there is a 𝛿 > 0 such that any solu-
tion of the myopic adjustment process (3) with initial condition m0 ∈ P(S) ∩ N𝛿(m̄) 
converges exponentially fast to m̄ , i.e. there are constants C1,C2 > 0 such that

The condition that Q is an irreducible generator is a classical one in the analysis 
of Markov chains, it basically states that an agent being in any individual state has a 
positive probability to move to any other individual state. In this sense, the assump-
tion requires that the state space is not partitioned into several parts that the individ-
ual agent cannot leave. It is immediately clear, that if the condition is not met, local 
convergence cannot be expected for all starting points. Indeed, if the share of agents 
in each of the parts of the state space does not coincide with the share of agents in 
the respective parts for the equilibrium social state, then convergence is not possible.

The proof of the statement now mainly relies on the fact that the eigenvalues 
of an irreducible generator are such that there is an eigenvalue �1 = 0 with mul-
tiplicity 1 and all other eigenvalues �2,… , �n have negative real part (Asmus-
sen 2003,  Corollary 4.9). This insight together with the fact that the solutions of 
a linear ODE with initial condition v ∈ Eig(�) for some eigenvalue � is given by 
x(t) = e�t

∑m(�)−1

l=0
tl∕l!

�
(Qd)T − �I

�l
v (Logemann and Ryan 2014,  Theorem  2.11) 

then yields the desired result. In this setting it is even possible to explicitly describe 
what “close” to the equilibrium means:

Denote by m(�j) the multiplicity of �j and by (v0
j
,… , v

m(�j)−1

j
) the basis of the gen-

eralized eigenspace Eig(�j) ∶= ker
(
(Qd)T − �jI

)m(�j) . Choose 𝜖 > 0 such that for all 
m̃ ∈ N𝜖(m̄) it holds that D(m̃) = {d} and define

||m(t) − m̄|| ≤ C1e
−C2t for all t ≥ 0.
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for all j ∈ {2,… , n} and k ∈ {0,… ,m(�j) − 1} . Then

is a suitable choice.
Also in the case of general dynamics we can provide a similar positive statement. 

However, now the evolution of the social state under the strategy d is described by 
the nonlinear ordinary differential equation ṁ = (Qd(m))Tm . For this general setting 
we now adjust the classical condition for local stability of a nonlinear ordinary dif-
ferential equation, which usually reads that all eigenvalues have negative real part, 
to our setting. Since Qd(m) is a generator, it is immediate that in our setting 0 is 
an eigenvalue of 𝜕

𝜕m
(Qd(m̄))Tm̄ . However, since ṁ = (Qd(m))Tm evolves in the prob-

ability simplex P(S) , we obtain that the part of the solution associated to this eigen-
value and its associated eigenvector is irrelevant. Using this insight, we can prove 
that if the zero eigenvalue has multiplicity one and all other eigenvalues have strictly 
negative real parts the myopic adjustment process converges locally.

Theorem 4.3  Let (m̄, d) be a stationary mean field equilibrium such that D(m̄) = {d} 
(that is, d is the unique optimal strategy at m̄ ). Let O ⊇ P(S) be an open set such that 
Qd ∶ O → ℝ

S×S is componentwise Lipschitz continuous, the matrix Qd(m) is a tran-
sition rate matrix for all m ∈ P(S) and the function f d ∶ O → ℝ

S,m ↦ (Qd(m))Tm 
is continuously differentiable in m. Assume further that the Jacobian 𝜕

𝜕m
f d(m̄) has a 

zero eigenvalue with eigenvector m̄ and all other eigenvalues have strictly negative 
real parts. Then there is a 𝛿 > 0 such that any solution of the myopic adjustment 
process (3) with initial condition m0 ∈ P(S) ∩ N𝛿(m̄) converges exponentially fast to 
m̄ , i.e. there are constants C1,C2 > 0 such that

Remark 4.4  This result covers Theorem 4.2, since the Jacobian matrix in the case of 
constant dynamics is (Qd)T . However, the proof is non-constructive. In particular, in 
contrast to the setting of Theorem 4.2, we cannot explicitly describe �.

These theorems can be directly applied in examples: Indeed, we obtain for the 
consumer choice model introduced in Sect. 3 and analysed in Neumann (2020) that 
local convergence happens to any deterministic stationary equilibrium where the 
equilibrium distribution does not equal the boundary value k1 or k2 , respectively. 
Also in corruption and botnet defence models (see Kolokoltsov and Malafeyev 
2017; Kolokoltsov and Bensoussan 2016) usually most stationary equilibria have a 
deterministic equilibrium strategy that is unique for the equilibrium point. Hence, 
they form a natural class to apply these results. For example in a simplified version 

(4)Ck
j
∶=

m(�j)−1∑
l=0

e−l
ll

l!(−Re(�j))
l

|||
|||
(
(Qd)T − �jI

)l
vl
j

|||
|||

� ∶=
�∕2 ⋅minj∈{2,…,n},k∈{0,…,m(�j)−1}

||vk
i
||

minj∈{2,…,n},k∈{0,…,m(�j)−1}
Ck
i

||m(t) − m̄|| ≤ C1e
−C2t for all t ≥ 0.
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of the corruption model presented in Kolokoltsov and Malafeyev (2017), we can 
show, relying on the analysis in Neumann (2020), that for any parameter choice 
there is local convergence towards those deterministic stationary equilibria where 
the equilibrium distribution lies in the interior of P(S) . Moreover, for some parame-
ter constellations we also obtain local convergence towards the deterministic station-
ary equilibria where the equilibrium distribution is such that all agents are corrupt or 
all agents are honest.

Let us finally comment on the local stability of the myopic adjustment process 
for equilibria (m̄,𝜋) such that |D(m̄)| > 1 , i.e. in the case that there are more than 
one (indeed infinitely many) optimal strategies for m̄ . In this case a necessary condi-
tion for local stability would be that under any strategy 𝜋 ∈ conv(D(m̄)) the solution 
of the ordinary differential equation ṁ = (Q𝜋(m))Tm converges to m̄ . However, this 
would in particular mean, that 0 = Q𝜋(m̄)Tm̄ for all 𝜋 ∈ conv(D(m̄)) . This means 
that local stability results would be only possible for the case that (m̄,𝜋) is an equi-
librium for all 𝜋 ∈ conv(D(m̄)) , a special case that will not often occur. Since the 
results and conditions would be in the same spirit as Theorems 4.2 and 4.3, we do 
not present any local stability results for non-strict equilibria here.

5 � Global convergence

The question of global convergence “Given an arbitrary initial condition 
m0 ∈ P(S) does any trajectory converge towards some mean field equilibrium?” 
is much more complex. Here, we prove two global convergence results, which do 
not directly yield the desired convergence statement, instead we only obtain con-
vergence towards equilibria with a deterministic equilibrium strategy or that the 
trajectory remains in a set where at least two deterministic strategies are simul-
taneously optimal. However, relying on example-specific properties, we can then 
often prove the convergence towards the mixed strategy equilibria by hand. This 
idea is illustrated in Example 5.2.

In order to prove these statements we again have to assume that the myopic 
adjustment process can be defined on an open superset O of P(S) : For this we 
assume that the functions Qija and ria are still Lipschitz continuous on this set 
for all i, j ∈ S and a ∈ A and that Q⋅⋅a(m) is a generator matrix for all a ∈ A and 
m ∈ O . Then we write D(m) for the set of all optimal deterministic stationary 
strategies for the continuous time Markov decision process with transition rates 
Qija(m) and reward function ria(m) and define F ∶ O → 2ℝ

S by

Let us moreover introduce the set

F(m) ∶= conv

{(∑
i∈S

∑
a∈A

miQija(m)dia

)
∶ d ∈ D(m)

}
.

U ∶= {d ∈ Ds ∶ D(m) = {d} for some m ∈ P(S)}
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that collects all those strategies that are for some social state the unique optimal strat-
egy. Note that a strategy that satisfies d ∈ D(m) for some m ∈ P(S) does not auto-
matically lie in U . It only does this, if there is an m ∈ P(S) such that D(m) = {d} . 
Therefore, the restriction that |U| = 2 , which we will consider in the first part of this 
section, is not as strict as it seems, see Example 5.2.

As a final preparation we review nonlinear Markov chains, which naturally arise 
in our context and play a crucial role for the assumptions of our theorems: Namely, 
whenever D(m) = {d} the trajectory of the myopic adjustment process equals the 
evolution of the marginals of a nonlinear Markov chain with generator Qd(⋅) . Thus, 
the long-term behaviour of the myopic adjustment process is partly governed by 
the long-term behaviour of the nonlinear Markov chains with generator Qd(⋅) , 
d ∈ Ds . Nonlinear Markov chains are a generalization of classical Markov chains 
with the new feature that the transition probabilities do not only depend on the 
current state, but also on the current distribution of the process. Thus, the pro-
cesses are characterized through the transition probabilities (Pij(t,m))i,j∈S , which 
describe the probability to be in state j and time t when at time 0 the state was i 
and the initial distribution was m, or (non-uniquely) through the marginal distribu-
tions Φt

i
(m) , which describes the probability to be in state i at time t when the ini-

tial distribution was m. One can show that it is indeed sufficient to characterize a 
nonlinear Markov chain through a nonlinear generator, that is a Lipschitz continu-
ous function Q ∶ P(S) → ℝ

S×S such that Q(m) is a conservative generator for all 
m ∈ P(S) . As in the theory of standard Markov chains, the invariant distribution 
is a central tool for the analysis of the long-term behaviour and it solves the (now 
non-linear) equation 0 = Q(m)Tm . For our purpose it suffices to require that the 
nonlinear Markov chain converges in the limit towards some invariant distribution, 
that is that for all m0 ∈ P(S) there is an invariant distribution m̄(m0) such that

We remark that this condition is weaker than ergodicity (see Neumann 2023, Sec-
tion 4.2). (For more details consider Kolokoltsov (2010) and (in particular regarding 
the long-term behaviour) Neumann (2023).)

We will now first provide a simple global convergence statement for the spe-
cial case where |U| = 2 , in which case the ideas used in the general proof become 
clearer. Thereafter, we provide a general statement.

5.1 � Global convergence for  |U| = 2

If U = {d1, d2} then the differential inclusion (3) describing the myopic adjustment 
process simplifies substantially: Define

lim
t→∞

||Φt(m0) − m̄(m0)|| = 0.

g(m) ∶=
(
Vd2(m) − Vd1(m)

)
⋅ 1

=
(
(�I − Qd2 (m))−1rd

2

(m) − (�I − Qd1 (m))−1rd
1

(m)
)
⋅ 1,
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where Vd1(m) and Vd2(m) are the reward vectors of the Markov decision process with 
transition rates Qija(m) and ria(m) . Moreover, assume that g is twice continuously 
differentiable and Lipschitz continuous. Since Vd1(m) ≥ Vd2(m) or Vd1(m) ≤ Vd2(m) 
for all m ∈ P(S) by classical results on Markov decision processes it is immediate 
that g(m) < 0 if and only if D(m) = {d1} , g(m) = 0 if and only if D(m) = {d1, d2} 
and g(m) > 0 if and only if D(m) = {d2} . This means that g(m) describes the behav-
iour of agents given the social state m ∈ O . Therefore, we have

Theorem 5.1  Assume that for all m ∈ O such that g(m) = 0 it holds that ∇g(m) ≠ 0 . 
Furthermore, assume that the nonlinear Markov chains with transition rate 
matrix functions Qd1 (m) and Qd2 (m) converge in the limit towards some stationary 
distribution.

	 (i)	 Assume that for all m ∈ O such that g(m) = 0 it holds that

Then the myopic adjustment process converges towards some stationary 
mean field equilibrium with deterministic equilibrium strategy from U.

	 (ii)	 Assume that for all m ∈ O such that g(m) = 0 it holds that

Then the myopic adjustment process converges towards some stationary 
mean field equilibrium with deterministic equilibrium strategy from U.

	 (iii)	 Assume that for all m ∈ O such that g(m) = 0 it holds that

Then the myopic adjustment process either converges towards a deterministic 
stationary mean field equilibrium with equilibrium strategy from U or there 
is a T > 0 such that the process satisfies g(m(t)) = 0 for all t > T .

The gradient conditions in the theorem now link for the case that both strat-
egies are simultaneously optimal (i.e. g(m) = 0 ) the evolution of the strategic 
behaviour of the individual agents ( ∇g(m) ) with the evolution of the social state 
given the deterministic strategies d1 and d2 (given by Qd1 (m))Tm and Qd2 (m))Tm , 
respectively). The conditions state that this evolution should be in the same 

F(m) ∶=

⎧
⎪⎪⎨⎪⎪⎩

�∑
i∈S miQ

d1

ij
(m)

�
j∈S

g(m) < 0

conv

��∑
i∈S miQ

d1

ij
(m)

�
j∈S

,
�∑

i∈S miQ
d2

ij
(m)

�
j∈S

�
g(m) = 0

�∑
i∈S miQ

d2

ij
(m)

�
j∈S

g(m) > 0

.

⟨(Qd1(m))Tm,∇g(m)⟩ > 0 and ⟨(Qd2(m))Tm,∇(−g)(m)⟩ < 0.

⟨(Qd1(m))Tm,∇g(m)⟩ < 0 and ⟨(Qd2(m))Tm,∇(−g)(m)⟩ > 0.

⟨(Qd1(m))Tm,∇g(m)⟩ ≥ 0 and ⟨(Qd2(m))Tm,∇(−g)(m)⟩ ≥ 0.
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“direction” for all points m ∈ P(S) that satisfy g(m) = 0 . Moreover, they explic-
itly encode the direction to which the social state moves under the myopic adjust-
ment process: The conditions in case (i) state that when g(m) = 0 the social state 
heads to the set where the strategy d2 is optimal, and the conditions in case (ii) 
state that when g(m) = 0 the social state heads to the set where the strategy d1 
is optimal. In case (iii) the conditions say, that when g(m) = 0 and the popula-
tion chooses d1 the distribution tends into the set where d2 is optimal, and, when 
g(m) = 0 and the population chooses d2 the distribution tends into the set where d1 
is optimal. Therefore, the trajectory will always stay in the set where both strate-
gies are simultaneously optimal.

The proof of the theorem relies on the fact that the shape of the myopic adjust-
ment process F does only depend on the fact whether g(m) = 0 , g(m) < 0 or 
g(m) > 0 . Depending on the gradient conditions we prove for each of the three cases 
that once g(m(t)) > 0 or g(m(t)) < 0 or g(m(t)) = 0 , respectively, the function g(m(⋅)) 
will be greater or less or equal zero for all future times. This yields, together with 
the fact that Qd1 (⋅) and Qd2 (⋅) are converging in the limit, to the desired convergence 
result.

Example 5.2  Let us consider the following example, which consists of two “good” 
states, where a positive reward is earned, and one “bad” state, where no reward is 
earned. The agents in the “good” state face congestion effects, namely there is a 
risk, increasing in the share of individuals in that state, to go to the “bad” state. The 
control options are to switch between the two good states. One can interpret this 
model as a stylized model of the choice between two mobile phone providers, where 
the customer faces the risk of a breakdown in connection that increases in the share 
of customers using the same provider. For simplicity, we assume that agents in the 
“bad” state have no choice option, but recover into each of the two states with equal 
probability.

The formal characterization is given by S = {1, 2, 3} and A = {change, stay} 
together with

and r⋅stay(m) = r⋅change(m) = (1, 1, 0) , where all constants are strictly positive. A visu-
alization of the model is given in Fig. 2.

In Neumann (2019) it is shown that there are infinitely many mixed strategy equi-
libria with equilibrium distribution

Q⋅⋅change(m) =

⎛
⎜⎜⎝

−(b + em1 + �) b em1 + �

b − (b + em2 + �) em2 + �

� � − 2�

⎞⎟⎟⎠

Q⋅⋅stay(m) =

⎛⎜⎜⎝

−(em1 + �) 0 em1 + �

0 − (em2 + �) em2 + �

� � − 2�

⎞⎟⎟⎠
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with equilibrium strategies satisfying �1,change = �2,change.
To apply Theorem  5.1 we first note, that in Neumann (2023) it is shown that 

the relevant Markov chains are strongly ergodic and thus, converge to some 
limit distribution. Moreover, choosing U = {(change, stay), (stay, change)} , 
O = (−

�

b
,∞) × (−

�

b
,∞) ×ℝ and g(m) = m1 − m2 we obtain that

Thus, Theorem  5.1 yields that either convergence towards a stationary equilib-
rium with an equilibrium strategy from U happens or that there is a T ≥ 0 such that 
g(m(t)) = 0 for all t ≥ T  . Since there is no stationary equilibrium with an equilib-
rium strategy from U it is clear that there is a T ≥ 0 such that g(m(t)) = 0 for all 
t ≥ T  , which means that m1(t) = m2(t) for all t ≥ T  . Thus, also ṁ1(t) = ṁ2(t) . By 
(3), this yields that

Thus, for almost all t ≥ T  the trajectory of the myopic adjustment process has to 
satisfy

which is a Riccati equation, for which [0, 1] is flow invariant and for which a unique 
classical solution for any initial condition m0 ∈ [0, 1] exists. Numerical simulations 

�√
4�2 + 8�� + �2 − 2� − �

2�
,

√
4�2 + 8�� + �2 − 2� − �

2�
,
4� + 4� −

√
4�2 + 8�� + �2

2�

�

⟨
Qcs(m))Tm,∇ − g(m)

⟩
= 2bm2 ≥ 0⟨

Qsc(m))Tm,∇g(m)
⟩
= 2bm2 ≥ 0.

− �1,change(t)bm1(t) − em1(t)
2 − �m1(t) + �2,change(t)bm1(t) + �m3(t)

= �1,change(t)bm1(t) − �2,change(t)bm1(t) − em1(t)
2 − �m1(t) + �m3(t),

i.e. − �1,change(t)bm1(t) + �2,change(t)bm1(t) = 0.

ṁ1(t) = −em1(t)
2 − (𝜖 + 2𝜆)m1(t) + 𝜆,

Fig. 2   Representation of Exam-
ple 5.2

1:1P 2:1P

3:0P

b/0

b/0

em2 + ε

λem1 + ε
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indicate that in our setting with initial conditions m0 ∈ [0, 1] convergence towards 
the distribution of the stationary mixed strategy equilibria is likely.	�  □

5.2 � Global convergence for the general case

The idea in the simple two strategy case was that the set of social states, where d1 
or d2 or both strategies, respectively, are optimal is characterized by the function 
g. Describing the behaviour in a neighbourhood of {m ∈ O ∶ g(m) = 0} by gradi-
ent conditions allows understand that once g(m(t)) = 0 it will not happen again (in 
case (i) or (ii)) or g(m(t)) will remain at 0 (in the case (iii)) for all future times, 
which then allows to understand the exact behaviour of the myopic adjustment 
process from this time on. Here, we want use a similar approach: First, we define 
a function gd such that gd(m) < 0 means that d is the unique optimal strategy 
for m ( D(m) = d ), gd(m) = 0 means that d is one of multiple optimal strategies 
( |D(m)| ≥ 2, d ∈ D(m) ) and gd(m) > 0 means that d is not optimal for m. There-
after, we set up gradient conditions for all those m ∈ O satisfying gd(m) = 0 that 
again describe consistent behaviour.

Assumption A2  For each m ∈ O there is a strategy d ∈ U such that d ∈ D(m).

Moreover, let us write Optunique(d) for the set of all m ∈ O such that D(m) = {d} 
and Optsome(d) for the set of all m ∈ O such that d ∈ D(m) . For these sets let us 
assume the following:

Assumption A3  For each strategy d ∈ U there exists a twice continuously differenti-
able, Lipschitz continuous function gd ∶ O → ℝ such that

and such that for all d ∈ U and all m ∈ {m ∈ O ∶ gd(m) = 0} we have ∇gd(m) ≠ 0.

Assumption A4  For any m ∈ P(S) there are at most two strategies d ∈ U such that 
m ∈ Optsome(d).

Assumption A5  The set P(S) is flow invariant for ṁ ∈ F(m).

Assumption A6  For all d ∈ U and all d1, d2 ∈ U satisfying Optsome(d1) ∩ Optsome(d2) ≠ � 
we have

Optunique(d) = {m ∈ O ∶ gd(m) < 0}

Optsome(d) = {m ∈ O ∶ gd(m) ≤ 0}
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or

Let us briefly comment on the assumptions: The Assumptions A2, A3 and A4 
are automatically satisfied in the previously described case with |U| = 2 . The 
fifth assumption could be replaced by Assumption  A6 with strict inequalities 
for m ∈ P(S) with mi = 0 for some i ∈ S (see Appendix B). However, this would 
make the statement less general, since for example Assumption  A5 is satisfied 
in Example  5.2, but Assumption  A6 with strict inequalities for m ∈ P(S) with 
mi = 0 for some i ∈ P(S) is not satisfied.

The Assumption  A6 captures partly the conditions imposed in the three dif-
ferent cases of  Theorem  5.1. The rest of these conditions will be described by 
the family of digraphs that helps to characterize the long-term behaviour of the 
myopic adjustment process: For any d ∈ U  let D(d) be a digraph with vertex set U 
and arc set given by d1 → d2 ∈ A(D(d)) if and only if Optsome(d1) ∩ Optsome(d2) ≠ � 
and

This digraph can be interpreted as follows: If d1 → d2 then the nonlinear Markov 
chain with generator Qd(⋅) will when it hits the set Optsome(d1) ∩ Optsome(d2) tends to 
the set Optsome(d2).

If the digraph D(d) is acyclic then it provides a good description of the behav-
iour of solutions of ṁ = (Qd(m))Tm . Namely, by a well known result from graph 
theory there is in this case an acyclic ordering, which is an ordering d1 ≤ ⋯ ≤ du 
of the vertices of D(d) such that whenever di ≤ dj there is no edge from dj to 
di . For this acyclic ordering one can prove that for any strategy k ∈ {1,… , u} 
the set P(S) ∩

⋃
l≥k Optsome(dl) is flow invariant, i.e. once the trajectory hits this 

set, it will never leave it. Loosely speaking, this means that the trajectory moves 
through the optimality sets Optsome(dl) in a way that is consistent with the arrows 
in the digraph D(d).

Before we present the main theorem of the section, we verify that the con-
sumer choice model introduced in Example 3.4 satisfies all assumptions:

Example 5.3  We choose O = (−�, 1 + �)2 , U = {cs, ss, sc} and setting

⟨(Qd(m))Tm,∇gd1 (m)⟩ ≥ 0 for all m ∈ Optsome(d1) ∩ Optsome(d2)

⟨(Qd(m))Tm,∇gd1 (m)⟩ ≤ 0 for all m ∈ Optsome(d1) ∩ Optsome(d2).

⟨(Qd(m))Tm,∇gd1 (m)⟩ > 0 for all m ∈ Optsome(d1) ∩ Optsome(d2).

gcs(m) = m1 − k1

gss(m) = −(m1 − k1) ⋅ (k2 − m1)

gsc(m) = k2 − m1,
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completes the set-up. Moreover, noting that k1 < k2 and

it is immediate that Assumptions A2, A3 and A4 are satisfied. Assumption A5 is 
immediate since in a neighbourhood of (1, 0) and (0, 1) we face a classical ODE 
that can be solved explicitly and for which moreover P(S) is flow invariant. More-
over, also Assumption  A6 is satisfied since the sets Optsome(d1) ∩ Optsome(d2) are 
singletons.

With all these preparations let us now formulate the main theorem of this 
section:

Theorem 5.4  Let Assumptions A1, A2, A3,  A4, A5 and A6 hold and assume that:

	 (i)	 For all d ∈ U the nonlinear Markov chain with transition rate matrix function 
Qd(⋅) converges in the limit to some stationary distribution.

	 (ii)	 For all d ∈ U the digraph D(d) is acyclic.
	 (iii)	 There exists an ordering d1, d2,… , du of U such that for each i ∈ {1,… , u} 

there exists an acyclic ordering ≤D(di) of D(di) such that

	 (iv)	 If every ordering that satisfies the conditions of (iii) has the same final vertex 
d̂ , then for any d ∈ U⧵{d̂} either Optsome(d) ∩ Optsome(d̂) = � or d̂ → d ∉ D(d̂) 
with

Then for any initial condition m0 ∈ P(S) the myopic adjustment process either con-
verges towards the distribution m̄ of some deterministic mean field equilibrium (m̄, d) 
or there is a T > 0 and a strategy d ∈ U such that the trajectory stays in

for all t ≥ T .

Let us first comment that all four conditions can be intuitively justified: Condi-
tion (i) guarantees that whenever we stay inside an optimality set Optunique(d) for 
all subsequent times then we converge towards a deterministic stationary mean 

∇gcs(m) =

(
1

0

)
⇒ ∇gcs(k1,m2) ≠ 0

∇gcs(m) =

(
k2 + k1 − 2m1

0

)
⇒ ∇gss(k1,m2) ≠ 0

and ∇gss(k2,m2) ≠ 0

∇gsc(m) =

(
−1

0

)
⇒ ∇gsc(k1,m2) ≠ 0,

di ≤D(di) d
j for all j ≥ i.

⟨(Qd(m))Tm,∇gd(m)⟩ < 0 for all m ∈ Optsome(d) ∩ Optsome(d̂).

P(S) ∩
(
Optsome(d) ⧵ Optunique(d)

)
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field equilibrium. Condition (ii) ensures that the evolution of the social state given 
strategy di is consistent on all sets where two strategies are simultaneously optimal, 
i.e. the evolution tends for all points to the set where a particular strategy is opti-
mal. Moreover, the condition ensures that the evolution is not cyclic in the sense 
that it moves through a sequence of optimality sets again and again. Condition (iii) 
then links like the gradient conditions in Theorem 5.1 the evolution of the strategic 
behaviour with the evolution of the social state. First, it requires that for any pair 
of strategies that are simultaneously optimal the behaviour is locally as specified in 
Theorem 5.1. Second, it also requires that the behaviour of the agents on all these 
sets where two strategies are simultaneously optimal is consistent, in the sense that 
the behaviour is not cyclic as described before. The mainly technical condition (iv) 
ensures that for the final vertex of the acyclic ordering we will never jump from 
Optunique(d) to Optsome(d)⧵Optunique(d) and back infinitely often, which is necessary 
to ensure the desired convergence.

The conditions (iii) and (iv) seem to be rather complex. However, relying on the 
well-known fact that a digraph is acyclic if and only if there is an acyclic ordering of 
its vertices as well the classical algorithm to obtain such a sequence, it is also pos-
sible to verify conditions (iii) and (iv) using a (polynomial-time) algorithm. This is 
in detail explained in Appendix A.

If we compare the conditions here with the conditions of Theorem 5.1, we see 
that condition (i) of Theorem 5.4 is also present in the conditions of Theorem 5.1. 
The other three conditions (ii)–(iv) are equivalent to the three distinct cases covered 
in Theorem 5.1. Such a case distinction is however, not sensible in the context of 
a larger number of strategies, for which reason we utilize the formalization by the 
digraphs D(d).

To conclude the section, let us apply Theorem 5.4 in the consumer choice model 
introduced in Example 3.4.

Example 5.5  We already verified in Example 5.3 that the model satisfies Assump-
tions A1–A6. Moreover, condition (i) of Theorem 5.4 is satisfied since Qd(m) is a 
standard Markov chain with irreducible generator. Condition (ii) is satisfied since 
we can solve the differential equation ṁ = (Qd(m))Tm explicitly and obtain that 
these solutions are monotone in m1 . Using the algorithm from Sect.  A we obtain 
that conditions (iii) and (iv) are only satisfied in those three of eight cases discussed 
in Neumann (2020) where a unique equilibrium exists. In these cases global con-
vergence towards this unique equilibrium is obtained since the solution cannot 
remain in the sets {(k1, 1 − k1)} or {(k2, 1 − k2)} for all t ≥ T  for some T ≥ 0 . In the 
other five cases the condition (iii) is not satisfied since we obtain that in the sets 
Optsome(sc) ∩ Optsome(cc) or Optsome(cs) ∩ Optsome(cc) the trajectories of the myopic 
adjustment process can evolve non-uniquely either it moves towards Optunique(sc) 
or it moves towards Optunique(ss) or it stays in Optsome(cs) ∩ Optsome(cc) (or with cs 
replaced by sc). In the current two-dimensional setting with linearly ordered opti-
mality sets we still observe convergence (which however cannot be expected in 
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general). However, for the starting point (k1, 1 − k1) or (k2, 1 − k2) the long-term 
behaviour is somewhat unstable. Indeed, the trajectory can remain at (k1, 1 − k1) (or 
(k2, 1 − k2) respectively) until time T ∈ [0,∞] and thereafter the process can either 
converge to the equilibrium given the strategy sc (or cs respectively) or it converges 
to the equilibrium given the strategy ss. This behaviour is illustrated in Fig. 3.

6 � Conclusion

This paper introduces a learning procedure for mean field games with finite state 
and action space. More precisely, at any time the agents assume that the social 
state is constant and choose the optimal strategy given this social state. The learn-
ing procedure is non-standard since it involves two layers of adjustment - the 
adjustment of the strategies and the evolution of the individual states. Yet, we 
obtain local and global stability results that are similar to classical results from 
evolutionary game theory: We show that strict equilibria are locally stable if the 
dynamics have constant transition rates that form an irreducible generator or if 
the dynamics are a nonlinear sink on the probability simplex. Moreover, we prove 
global convergence under assumptions that ensure that at each point at most two 
strategies primarily influence the evolution of the myopic adjustment process and 
that at each point the local payoff structure and transition rates guide the agent 
consistently to some direction.

Fig. 3   Some of the infinitely many possible solutions with initial condition (m
0
)
1
= k

1
 and (m

0
)
1
= k

2
 . 

Additionally, the red vertical lines depict the stationary points given the strategies cs, ss and sc (from bot-
tom to top) and the blue vertical lines depict the crucial thresholds k

1
 and k

2
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Appendix A. An algorithm to verify the consistency condition

The question whether an ordering satisfying  condition (iii)  in Theorem  5.4 exists 
or not seems to be complex at first sight. One would have to check for all possible 
permutations whether the ordering satisfies the condition. However, the close con-
nection to the notion of acyclic orderings allows to provide a polynomial algorithm 
that determines whether such an ordering exists or not. As in the case of acyclic 
orderings, it is moreover possible to formulate a polynomial time algorithm to find 
all orderings satisfying (iii). Due to the additional notational complexity, we omit 
this here.

Our algorithm is a modification of the following simple algorithm to determine 
an acyclic ordering if it exists: Namely, in each step a vertex with indegree 0 is 
picked, added to the tail of the acyclic ordering obtained so far and deleted from the 
digraph (Bang-Jensen and Gutin 2010, Section 2.1). Since we want to construct an 
ordering {d1,… , dS} such that {di+1,… , dS} lies behind di in an acyclic ordering of 
D(di) for each strategy di ∈ U the central modification of the algorithm is that when 
we add a vertex to the ordering we do not only delete the vertex and its arcs from 
the digraphs, but that we also add arcs in order to ensure that an acyclic ordering of 
D(d)⧵{d1,… , di} is also an acyclic ordering of D(d). More precisely, if we add d 
to the ordering since it had indegree 0 in D(d), then we add the arcs d1 → d2 to the 
graphs D(d̂) for all d̂ ∈ V̂  whenever d1 → d and d → d2 are both arcs in D(d̂) . This 
yields that two vertices d1, d2 ∈ V̂  are connected in the modified digraph if and only 
if they are connected in the original graph D(d̂) . This algorithm is formalized in 
Algorithm 1 and Algorithm 2.

Algorithm 1: GraphModification
Data: A digraph D = (V,A) and a vertex x
Result: A new digraph D̂ = (V̂ , Â) such that V̂ = V \ {x} and for all

x1, x2 ∈ V̂ there is a path from x1 to x2 in D if and only if there is a
path from x1 to x2 in D̂

1 V̂ ←− V \ {x}
2 Â ←− A
3 for x1 such that x1 → x ∈ A do
4 for x2 such that x → x2 ∈ A do
5 add x1 → x2 to Â

6 delete all arcs containing x from Â
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Algorithm 2: An Algorithm to Find an Acyclic Ordering (if it exists)
Data: A family of digraphs (D(d))d∈U
Result: An ordering (d1, . . . , du) of U satisfying (iii) or ∅ (if no such ordering

exists)
1 V̂ ←− U
2 I ←− set of all d ∈ U with indegree 0 in D(d)
3 O ←− am empty list
4 while I non-empty do
5 remove an element d from I

6 remove d from V̂
7 add d to the tail of O
8 for d̂ ∈ V̂ do
9 D(d̂) ← GraphModification(D(d̂), d))

10 if d̂ has no incoming arcs in D(d̂) then
11 add d̂ to I

12 if V̂ is non-empty then
13 return ∅
14 else
15 return O

The proof that the algorithm works as desired relies on the following two easy-to-
verify properties of Algorithm 1:

Lemma A.1  Let D be a digraph, x be a vertex of D and D̂ = (V̂ , Â) be the digraph 
resulting from Algorithm 1 applied for D and x. Then the following statements hold:

	 (i)	 Let x1, x2 ∈ V̂  . Then there is a path from x1 to x2 in D if and only if there is a 
path from x1 to x2 in D̂.

	 (ii)	 Let ≤D̂ be an acyclic ordering of D̂ . Then there is an acyclic ordering ≤ of D 
such that x1 ≤ x2 ⇔ x1 ≤D̂ x2 for all x1, x2 ∈ V̂ .

	 (iii)	 Let ≤D be an acyclic ordering of D. Then there is an acyclic ordering ≤ of D̂ 
such that x1 ≤ x2 ⇔ x1 ≤D x2 for all x1, x2 ∈ V̂ .

Theorem A.2  The algorithm is correct, that is whenever an ordering exists the algo-
rithm finds one and if no ordering exists the algorithm returns ∅.

Proof  If the algorithm returns an ordering O = (d1,… , du) , then in each step we find 
a strategy di such that di has indegree 0 in the digraph

Since di has indegree 0, we obtain (for example by using the standard algorithm to 
find an acyclic ordering, which was informally described in the beginning of this 
section) an acyclic ordering of D̂(di) such that di ≤ dj for all j > i . By Corollary A.1, 

D̂(di) = GraphModification(…GraphModification(D(di), d1),… , di−1).
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we then also obtain an acyclic ordering of D(di) such that di ≤ dj for all j ≥ i . This 
proves the first claim.

Now assume that (d1,… , du) satisfies (iii). Then for each i ∈ {1,… , u} we find 
an acyclic ordering of D(di) such that di ≤ dj for all j > i . In particular, Lemma A.1 
yields that there is an acyclic ordering ≤D̂(di) of

such that di ≤D̂(di) d
j for all j > i . However, this yields, by definition, that there is no 

incoming arc into di in D̂(di) , which in particular yields that in step i the vertex di 
lies in I. Thus, choosing di in step i for all 1 ≤ i ≤ n yields that the algorithm outputs 
(d1,… , du) . 	�  ◻

Appendix B. Proofs

Proof of Lemma 3.1  Using the Kolmogorov forward equation, the individual agent’s 
dynamics given any strategy � ∈ Πs can be equivalently described as being the solu-
tion of the ordinary differential equation (in the sense of Caratheodory)

with initial condition x(0) = x0 . Since the aggregated strategy � of the population 
satisfies � ∈ conv(D(m)) the desired claim follows. 	�  ◻

Proof of Theorem 3.2  We show that the conditions of Lemma 5.1 in Deimling (1992) 
are satisfied, as this yields the desired existence statement. More precisely, we show 
in the following that 

	 (i)	 F is upper semicontinuous,
	 (ii)	 F(m) is a closed, convex set for all m ∈ P(S),
	 (iii)	 there is a constant c > 0 such that ||F(m)|| ∶= sup{||y|| ∶ y ∈ F(m)} ≤ c(1 + ||m||) 

for all m ∈ P(S) , and
	 (iv)	 F(m) ∩ TP(S)(m) ≠ � for all m ∈ P(S) where 

 (Aubin and Cellina 1984, Proposition 5.1.7).
(i): Let m ∈ P(S) and let N ⊆ ℝ

S be an open set such that F(m) ⊆ N . 
Since 2ℝS equipped with the Hausdorff distance H(⋅, ⋅) is a metric space, 
it suffices to consider sets of the form N = N�(F(m)) with 𝜖 > 0 . Since 
D(m) = {d ∈ Ds ∶ Vd(m) = V∗(m)} , we find for any d� ∈ Ds⧵D(m) a constant 

D̂(di) = GraphModification(…GraphModification(D(di), d1),… , di−1)

ẋj(t) =
∑
i∈S

xi(t)
∑
a∈A

Qija(m(t))𝜋ia(t) for all j ∈ S

TP(S)(m) =

{
y ∈ ℝ

S ∶ lim inf
h↓0

d(m + hy,P(S))

h
= 0

}

=

{
y ∈ ℝ

S ∶ yi ≥ 0∀i ∈ S s.t. mi = 0 ∧
∑
i∈S

yi = 0

}
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cd′ > 0 such that Vd� (m) < V∗ − cd� . Therefore by finiteness of Ds , the constant 
c = mind∈Ds⧵D(m) cd� > 0 satisfies Vd� (m) < V∗(m) − c for all d� ∈ Ds⧵D(m) . 
Since Vd ∶ P(S) → ℝ

S is continuous for every d ∈ Ds , there is a 𝛿d > 0 such that 
m̃ ∈ N𝛿d

(m) ⇒ ||Vd(m̃) − Vd(m)|| < c

3
 . In particular, choosing �1 ∶= mind∈Dd �d we 

obtain for all m̃ ∈ N𝛿1
(m) and all d� ∈ Ds⧵D(m) that pointwise

Thus, d� ∉ D(m̃) , that is D(m̃) ⊆ D(m) . Furthermore, for d ∈ Ds the map 
Fd ∶ P(S) → ℝ

S , m ↦
�∑

i∈S

∑
a∈A miQija(m)dia

�
j∈S

 is continuous. Therefore, there 
is a 𝛿2,d > 0 such that m̃ ∈ N𝛿2,d

(m) ⇒ ||Fd(m̃) − Fd(m)|| < 𝜖 . Set �2 = mind∈Ds �2,d . 
Then for � ∶= min{�1, �2} it holds that m̃ ∈ N𝛿(m) ⇒ F(m̃) ⊆ N𝜖(F(m)).

(ii) Since for all m ∈ P(S) the set F(m) is a convex polytope, it is closed and convex.
(iii) Since Qija(⋅) is Lipschitz continuous for all i, j ∈ S and all a ∈ A it is moreo-

ver uniformly bounded in m ∈ P(S) , i, j ∈ S and a ∈ A by some constant, which we 
denote by M. Thus, for all d ∈ Ds ⊇ D(m) we have

which implies, since F(m) is the convex hull of (Fd(m))d∈D(m) that ||F(m)||1 ≤ SM.
(iv) The condition is trivially satisfied for all m ∈ int(P(S)) since then 

TP(S)(m) = ℝ
S and F(m) ≠ � because D(m) ≠ � . Now, let m ∈ �P(S) be a boundary 

point. Then there is at least one j ∈ S such that mj = 0 . Since the only non-positive 
column entry of Q⋅ja(m) is in row j, this implies that Fd(m)j ≥ 0 . Moreover,

which yields that Fd(m) ∈ TP(S)(m) . Since F(m) is a convex combination of Fd(m) 
and TP(S)(m) is convex, the desired claim follows. 	�  ◻

Proof of Lemma 4.1  Let Vd(m) = (V�i
(d,m))i∈S denote the expected discounted 

reward vector if the player’s initial individual state is i, the player chooses strategy d 
and the social state is m for all times. In Neumann (2020, Section 3) it is shown that 
m ↦ Vd(m) is continuous. Since D(m̄) = {d} , we have Vd(m̄) > Vd̂(m̄) pointwise for 
all d̂ ∈ Ds⧵{d} . By continuity there is an 𝜖 > 0 such that Vd(m�) > Vd̂(m�) pointwise 
for all m� ∈ N𝜖(m̄) and d̂ ∈ Ds ⧵ {d} . Thus, D(m�) = {d} for all m� ∈ N𝜖(m̄) . 	�  ◻

Proof of Theorem  4.2  Choose 𝜖 > 0 such that for all m̃ ∈ N𝜖(m̄) it holds that 
D̃(m̃) = {d} , which is possible by Lemma 4.1. Let (�1,… , �n) be the eigenvalues of Qd 
with �1 = 0 and Re(𝜆i) < 0 for all i ≠ 1 , which exists by Asmussen (2003, Corollary 

V
∗(m̃) − V

d
�(
m̃
) ≥ (

V
∗(m̃) − V

∗(m)
)
+
(
V
∗(m) − V

d
�

(m)
)
+
(
V
d
�

(m) − V
d
�

(m̃)
)

> −
c

3
+ c −

c

3
> 0.

||Fd(m)|| = ∑
j∈S

|||||
∑
i∈S

∑
a∈A

miQija(m)dia

|||||
≤ ∑

j∈S

∑
i∈S

∑
a∈A

miMdia = SM,

∑
j∈S

Fd(m)j =
∑
i∈S

∑
a∈A

(∑
j∈S

Qija(m)

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=0

dia = 0,
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4.9). Moreover, let us denote by m(�j) the multiplicity of �j and by (v0
j
,… , v

m(�j)−1

j
) the 

basis of the generalized eigenspace Eig(�j) ∶= ker
(
(Qd)T − �jI

)m(�j) . We note that

is a basis of ℝS . Thus, for any initial condition m0 ∈ ℝ
S we find a unique set of 

constants (�k
i
) such that m0 = 𝛼0

1
m̄ +

∑n

i=2

∑m(𝜆i)−1

k=0
𝛼k
i
vk
i
 . By Logemann and Ryan 

(2014, Theorem 2.11) and since m̄ is the eigenvector for the eigenvalue 0 we obtain

Since the continuous time Markov chain with generator Qd is ergodic, we have that 
m(t) → m̄ for t → ∞ . Since moreover Re(𝜆i) < 0 for all i > 1 , it holds that �0

1
= 1 . 

Using that the function t ↦ eRe(�i)t
tl

l!
 has a unique global maximum in [0,∞) at 

t = −
l

Re(�i)
 and recalling the definition of Ck

j
 in (4), we obtain

If m0 ∈ N𝛿(m̄) ∩ P(S) , then

which implies 
∑n

i=2

∑m(𝜆i)−1

k=0
�𝛼k

i
�Ck

i
< 𝜖 . Therefore, m(t) ∈ N𝜖(m̄) for all t ≥ 0 . The 

exponential convergence then follows from (5). 	�  ◻

Proof of Theorem 4.3  The central idea of the proof has also been used in the analy-
sis of nonlinear sinks in Hirsch and Smale (1974), namely to bound �

�t
||x(t)||B with 

x(t) = m(t) − m̄ for a suitable basis B = (b1,… , bS) (and corresponding scalar 
product (i.e. ⟨bi, bj⟩ = �ij ) and norm). More precisely, since for any basis B there is 
a matrix C ∈ ℝ

S×S such that ⟨x, y⟩B = xTCy we obtain the product rule 
�

�t
⟨g(t), h(t)⟩B =

�
�

�t
g(t), h(t)

�
B
+
�
g(t),

�

�t
h(t)

�
B
 and using this

In the following proof we now identify, similar to Hirsch and Smale (1974), a basis 
B and a constant C > 0 such that

(m̄, v0
2
,… , v

m(𝜆2)−1

2
,… , v0

n
,… , vm(𝜆n)−1

n
)

m(t) = 𝛼0
1
m̄ +

n∑
i=2

e𝜆it
m(𝜆i)−1∑
l=0

tl

l!
((Qd)T − 𝜆iI)

lvl
i
.

(5)

||m(t) − m̄|| =
||||||

||||||

n∑
i=2

e𝜆it
m(𝜆i)−1∑
k=0

𝛼k
i

m(𝜆i)−1∑
l=0

tl

l!

(
(Qd)T − 𝜆i

)l
vk
i

||||||

||||||
≤

n∑
i=2

m(𝜆i)−1∑
k=0

|𝛼k
i
|
(

m(𝜆i)−1∑
l=0

eRe(𝜆i)t
tl

l!

|||
|||
(
(Qd)T − 𝜆iI

)l
vk
i

|||
|||
)

≤
n∑
i=2

m(𝜆i)−1∑
k=0

|𝛼k
i
|Ck

i
.

||||m0 − m̄|||| =
n∑
i=2

m(𝜆i)−1∑
k=0

|𝛼k
i
||||
|||v

k
i

|||
||| <

𝜖mini,k ||vki ||
maxi,k C

k
i

,

𝜕

𝜕t
��x(t)��B =

𝜕

𝜕t

√⟨x(t), x(t)⟩B =
1

��x(t)��B ⟨ẋ(t), x(t)⟩B.
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from which we then deduce the desired result.
Give ℝS new coordinates via the transformation x = m − m̄ , which in particular 

means that we now consider f̃ d(x) = f d(x + m̄) . Denote by A the Jacobian matrix of 
f̃ d at 0. Let �1,… , �n be the eigenvalues of A. Without loss of generality �1 = 0 . By 
assumption Re(𝜆i) < 0 for all i ∈ {2,… , n} , moreover, there are constants b, c > 0 
such that Re(𝜆i) < −b < −c for all i ∈ {2,… , n}.

By Hirsch and Smale (1974, Chapter 7) there is a basis

with b0
1
= m̄ and corresponding inner product given by ⟨bk

i
, bl

j
⟩ = 1{i=j,k=l} such that 

	 (i)	 for all i ∈ {1,… , n} the family (b0
i
,… , b

m(�i)−1

i
) is a basis of the generalized 

eigenspace Eig(�i)
	 (ii)	 for all i ∈ {2,… , n} and x ∈ span(b0

i
,… , b

m(�i)−1

i
) we have ⟨Ax, x⟩B ≤ −b��x��2

B
.

We first obtain that for all vectors x =
∑n

i=2

∑m(�i)−1

k=0
�k
i
bk
i
 for some constants (�k

i
) we 

have ⟨Ax, x⟩B ≤ −b��x��2
B
 . Indeed, since Abj

i
∈ Eig(�i) we obtain

1

��x(t)��B ⟨ẋ(t), x(t)⟩B ≤ −C��x(t)��B,

B = (b0
1
, b0

2
,… , b

m(�2)−1

2
,… , b0

n
,… , bm(�n)−1

n
)

⟨Ax, x⟩B =

�
A ⋅

�
n�
i=2

m(�i)−1�
k=0

�k
i
bk
i

�
,

n�
i=2

m(�i)−1�
k=0

�k
i
bk
i

�

B

=

n�
i=2

�
A

�
m(�i)−1�
k=0

�k
i
bk
i

�
,

m(�i)−1�
k=0

�k
i
bk
i

�

B

+

n�
i=2

n�
j=2,j≠i

�
m(�i)−1�
k=0

�k
i
Abk

i
,

m(�j)−1�
k=0

�k
j
bk
j

�

B

(ii)≤ −b

n�
i=2

������

������

�
m(�i)−1�
k=0

�k
i
bk
i

�������

������

2

B

+ 0

= −b

n�
i=2

�
m(�i)−1�
k=0

�k
i
bk
i
,

m(�i)−1�
k=0

�k
i
bk
i

�

B

= −b

�
n�
i=2

m(�i)−1�
k=0

�k
i
bk
i
,

n�
i=2

m(�i)−1�
k=0

�k
i
bk
i

�

B

= −b

������

������

n�
i=2

m(�i)−1�
k=0

�k
i
bk
i

������

������

2

B

.
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As a next step we note that the set P(S) − m̄ ∶= {x ∈ ℝ
S ∶ ∃m ∈ P(S) ∶ x = m − m̄} 

is compact and that

is a homeomorphism. Thus, also

is compact.
For x = 𝛼0

1
m̄ +

∑n

i=2

∑m(𝜆i)−1

k=0
𝛼k
i
bk
i
∈ P(S) − m̄ we moreover obtain that

Since P is compact and D(𝛼) > 0 for all � ∈ P , it immediately follows that D > 0.
As a final preparation we note that, by the same reasoning as in the proof of The-

orem 3.2, the set P(S) is flow invariant for ṁ(t) = f d(m(t)) . Thus, the set P(S) − m̄ is 
flow invariant for ẋ(t) = f̃ d(x(t)).

(𝛼k
i
)i∈{1,…,n},k∈{1,…,m(𝜆i)−1}

↦ 𝛼0
1
m̄ +

n∑
i=2

m(𝜆i)−1∑
k=0

𝛼k
i
bk
i

P ∶=

{
(𝛼k

i
)i∈{1,…,n},k∈{1,…,m(𝜆i)−1}

∈ ℝ
S ∶ 𝛼0

1
m̄ +

n∑
i=2

m(𝜆i)−1∑
k=0

𝛼k
i
bk
i
∈ P(S) − m̄

}

⟨Ax, x⟩B

=

�
A

�
𝛼0
1
m̄ +

n�
i=2

m(𝜆i)−1�
k=0

𝛼k
i
bk
i

�
, 𝛼0

1
m̄ +

n�
i=2

m(𝜆i)−1�
k=0

𝛼k
i
bk
i

�

B

= (𝛼0
1
)2⟨Am̄, m̄⟩B +

�
𝛼0
1
Am̄,

n�
i=2

m(𝜆i)−1�
l=0

𝛼k
i
bk
i

�

B

+

�
n�
i=2

m(𝜆i)−1�
k=0

𝛼k
i
Abk

i
, 𝛼1

0
m̄

�

B

+

�
A ⋅

n�
i=2

m(𝜆i)−1�
k=0

𝛼k
i
bk
i
,

n�
i=2

m(𝜆i)−1�
k=0

𝛼k
i
bk
i

�

B

= 0 + 0 + 0 +

�
A ⋅

n�
i=2

m(𝜆i)−1�
k=0

𝛼k
i
bk
i
,

n�
i=2

m(𝜆i)−1�
k=0

𝛼k
i
bk
i

�

B

≤ −b ⋅

������

������

n�
i=2

m(𝜆i)−1�
k=0

𝛼k
i
bk
i

������

������

2

B

= −b ⋅

���
���
∑n

i=2

∑m(𝜆i)−1

k=0
𝛼k
i
bk
i

���
���
2
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���𝛼0
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∑m(𝜆i)−1

k=0
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bk
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���
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2
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�������������������������������������������
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k=0
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bk
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B
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�
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D(𝛼)
�
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.
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By definition of the derivative (which in particular yields 
||f̃ d(x) − Ax||B ∈ o(||x||B) in a neighbourhood of 0) and Cauchy’s inequality we have

Since for all x ∈ P(S) − m̄ we have ⟨Ax, x⟩B ≤ −bD��x��2
B
 , there is a 𝛿 > 0 such that 

for all x ∈ N𝛿(0) ∩ (P(S) − m̄) it holds that ⟨f̃ d(x), x⟩B ≤ −cD��x��2
B
. If x̃ ∈ N𝛿(0) 

such that D(x̃ + m̄) ≠ {d} , then make � smaller such that D(x + m̄) = {d} for all 
x ∈ N�(0) ∩ (P(S) − m).

Now let x0 ∈ N𝛿(0) ∩ (P(S) − m̄) . Then by Peano’s existence theorem there is 
a solution x ∶ [0,∞) → ℝ

S of the initial value problem ẋ(t) = f̃ d(x(t)) , x(0) = x0 
and, furthermore, any solution x ∶ [0, t0) → ℝ

S can be extended on [0,∞) . Let 
x ∶ [0, t0] → ℝ

S be a solution curve of the differential equation ẋ(t) = f̃ d(x(t)) in 
N�(0) and assume that x(t) ≠ 0 for all 0 ≤ t ≤ t0 . (If x(t̃) = 0 for some t̃ ≥ 0 , then 
x(t) = 0 for all t ≥ t̃.)

Then it holds that

which means that ||x(t)||B is strictly decreasing on [0, t0] . Thus, x(t) ∈ N�(0) for all 
t ∈ [t0, t0 + 𝜖] . Repeating this argument, we obtain by Hirsch and Smale (1974, Sec-
tion  8.5) that x(t) ∈ N�(0) for all t ≥ 0 . Furthermore, the estimate (6) yields that 
||x(t)||B ≤ e−cDt||x(0)||B , which is the desired exponential convergence. 	� ◻

Proof of Theorem 5.1  We first note that if there is a T ≥ 0 such that the trajectory sat-
isfies g(m(t)) < 0 or g(m(t)) > 0 for all t ≥ T  , then the solution of (3) is also a solu-
tion of ṁ(t) = Qd1 (m(t))Tm(t) or ṁ(t) = Qd2 (m(t))Tm(t) , respectively, which means 
that (m(t))t≥T are the marginals of a nonlinear Markov chain. By assumption, we 
thus obtain convergence towards some stationary point, which is, since g(m(t)) < 0 
or g(m(t)) > 0 for all t ∈ [T ,∞) , a stationary equilibrium.

In case (i) whenever g(m(T)) = 0 for some T ≥ 0 , then g(m(t)) > 0 for all t > T  . 
Indeed, assume that g(m(t)) = 0 for all t ∈ [T , T + �] for some 𝜖 > 0 . Then there is a 
measurable function � ∶ [T , T + �] such that for almost all t ∈ [T , T + �] it holds that

which is a contradiction. Similarly, if we assume that g(m(t)) < 0 for all 
t ∈ (T , T + �) with 𝜖 > 0 , then it holds for almost all t ∈ (T , T + �) that

0 = lim
x→0

��f̃ d(x) − Ax��B
��x��B = lim

x→0

��f̃ d(x) − Ax��B ⋅ ��x��B
��x��2

B

≥ lim
x→0

⟨f̃ d(x) − Ax, x⟩B
��x��2

B

= 0.

(6)
𝜕

𝜕t
��x(t)��B =

1

��x(t)��B ⟨ẋ(t), x(t)⟩B ≤ −cD��x(t)��B,

𝜕

𝜕t
g(m(t)) =

⟨
𝜆(t)Qd1 (m(t))Tm(t) + (1 − 𝜆(t))Qd2 (m(t))Tm(t),∇g(m(t))

⟩
> 0,

𝜕

𝜕t
g(m(t)) =

⟨
Qd1 (m(t))Tm(t),∇g(m(t))

⟩
> 0,
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again a contradiction. Thus, it either holds that g(m(t)) < 0 for all t ≥ 0 or that 
g(m(t)) > 0 for all t ≥ T  with T ≥ 0 , which by the first observation yields the desired 
convergence. Analogously, in case (ii) we obtain that whenever g(m(T)) = 0 for 
some T ≥ 0 , then g(m(t)) < 0 for all t > T .

In case (iii) we have that whenever g(m(T)) = 0 for some T ≥ 0 , then g(m(t)) = 0 
for all t ≥ T  . Indeed, assume that there is a t̃ > T  such that g(m(t̃)) > 0 . Since g is 
Lipschitz continuous and m is Lipschitz continuous as long as g(m(⋅)) > 0 we have 
that there is an 𝜖 > 0 such that g(m(t̃ − 𝜖)) = 0 and g(m(t)) > 0 for all t̃ − 𝜖 < t ≤ t̃ . 
In particular for some �2 ∈ (0, �1) we have for almost all t̃ − 𝜖1 < t ≤ t̃ − 𝜖2 that

a contradiction. Similarly, we obtain for the case that there is a t̃ > T  such that 
g(m(t̃)) < 0 that there are 0 < 𝜖2 < 𝜖1 such that for almost all t̃ − 𝜖1 < t ≤ t̃ − 𝜖2 we 
have

again a contradiction. Thus, either g(m(t)) < 0 for all t ≥ 0 , or g(m(t)) > 0 for all 
t ≥ 0 , in which case we obtain convergence towards some stationary equilibrium 
with a deterministic equilibrium strategy, or there is a T > 0 such that g(m(t)) = 0 
for all t ≥ T  . 	�  ◻

Lemma B.1  Let Assumptions  A2,  A3 and  A4 hold. Moreover, assume that for all 
d1, d2 ∈ U satisfying Optsome(d1) ∩ Optsome(d2) ≠ � we either have

for all m ∈ Optsome(d1) ∩ Optsome(d2) such that mi = 0 for some i ∈ S or

for all m ∈ Optsome(d1) ∩ Optsome(d2) such that mi = 0 for some i ∈ S . Then the set 
P(S) is flow invariant for ṁ ∈ F(m).

Proof  We first note that {m ∈ ℝ
S ∶

∑
i∈S mi = 1} is flow invariant for F since ∑

i∈S ṁi(t) = 0 holds almost surely because all transition rate matrices are conserva-
tive. Therefore, if at time t̃1 a solution of ṁ ∈ F(m) leaves the set P(S) at least one 
component mi(t̃1) has to be zero. By Assumption A4 there are at most two strate-
gies d1, d2 ∈ U such that gd1(m(t̃1)) ≤ 0 and gd2(m(t̃1)) ≤ 0 . In particular, there is an 
𝜖 > 0 such that gd(m̃) > 0 for all d ≠ d1, d2 and m̃ ∈ N𝜖(m(t̃1)).

Let us define � = gd1 and note that gd2(m) = gd1(m) for 
m ∈ Optsome(d1) ∩ Optsome(d2) . Thus, the consistency condition yields that one of the 
following three cases will hold for all m ∈ Optsome(d1) ∩ Optsome(d2) simultaneously:

•	 ⟨(Qd1(m))Tm,∇𝜙(m)⟩ > 0 and ⟨(Qd2(m))Tm,∇ − 𝜙(m)⟩ < 0

0 <
𝜕

𝜕t
g(m(t)) = ⟨Qd2(m(t))Tm(t),∇g(m(t))⟩ ≤ 0,

0 >
𝜕

𝜕t
g(m(t)) = ⟨Qd1(m(t))Tm(t),∇g(m(t))⟩ ≥ 0,

⟨(Qd(m))Tm,∇gd1 (m)⟩ > 0

⟨(Qd(m))Tm,∇gd1 (m)⟩ < 0
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•	 ⟨(Qd1(m))Tm,∇𝜙(m)⟩ < 0 and ⟨(Qd2(m))Tm,∇ − 𝜙(m)⟩ > 0

•	 ⟨(Qd1(m))Tm,∇𝜙(m)⟩ > 0 and ⟨(Qd2(m))Tm,∇ − 𝜙(m)⟩ > 0.

In particular, the results presented in Filippov (1988, §4 and §10) yield that the 
solution in N𝜖(m(t̃1)) is the solution of a classical ordinary differential equation 
ṁ = (Q̃(m))Tm with Q̃(m) being Qd1 (m) in the first case, Qd2 (m) in the second case 
and

in the third case. In all three cases we obtain that Q̃(⋅) is Lipschitz continuous. More-
over, we have that P(S) is flow invariant for ṁ = (Q̃(m))Tm with Q̃(m) : Indeed, it 
suffices to show that (Q̃(m))Tm ∈ TP(S)(m) , which works as in the proof of Theo-
rem 3.2. All in all, this is the desired contradiction. 	�  ◻

In order to prove Theorem  5.4 we first present two auxiliary lemmata describing 
flow invariant sets for ṁ ∈ F(m):

Lemma B.2  Let ≤ be an ordering of U satisfying (iii) and enumerate the determin-
istic stationary strategies such that d1 ≤ d2 ≤ ⋯ ≤ du . Furthermore, let 1 ≤ k ≤ u . 
Then the set

is flow invariant for F.

Proof  We prove the statement by backward induction on k. Let first k = u and assume 
that m ∶ [0,∞) → ℝ

S is a solution of ṁ ∈ F(m) starting in m0 ∈ P(S) ∩ Optsome(du) . 
By Assumption A5 we immediately have that m(t) ∈ P(S) for all t ≥ 0 . Moreover, it 
is immediate by definition of Optsome(du) as well as gdu that gdu(m(0)) ≤ 0 . We will 
now prove that whenever there is a T ≥ 0 such that gdu(m(T)) = 0 then gdu(m(t)) ≤ 0 
for all t > T  . This and the continuity of the function gdu then yields, again by defini-
tion of Optsome(du) as well as gdu the desired claim.

So assume that there is a T1 > 0 such that gdu(m(T1)) > 0 . Then by the Lip-
schitz continuity of gdu there is a T2 ≥ 0 and a 𝛿 > 0 such that gdu(m(T2)) = 0 and 
gdu(m(t)) > 0 for all t ∈ (T2, T2 + �] . Then by definition of Optsome(du) as well as gdu 
and Assumption A4 we immediately have that there is a unique strategy dl ∈ U⧵{du} 
such that gdl(m(T2)) = 0.

Moreover, there is an �1 ∈ (0, �) such that gdl(m(t)) < 0 for all t ∈ (T2, T2 + �1) : 
Indeed, assume that there is no 𝜖 > 0 satisfying this property. Then for all n ∈ ℕ 

⟨(Qd1 (m))Tm,∇�(m)⟩
⟨(Qd1 (m))Tm,∇�(m)⟩ + �

−⟨(Qd2 (m))Tm,∇�(m)⟩�Q
d1 (m)

+
−⟨(Qd2 (m))Tm,∇�(m)⟩

⟨(Qd1(m))Tm,∇�(m)⟩ + �
−⟨(Qd2 (m))Tm,∇�(m)⟩�Q

d2 (m)

P(S) ∩

(⋃
l≥k

Optsome(dl)

)
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there is a tn ∈ [T , T +
1

n
] such that gdl(m(tn)) ≥ 0 . Let n1

k
 be the subsequence such 

that gdl(m(tn1
k
)) = 0 and let n2

k
 be the subsequence such that gdl(m(tn2

k
)) > 0 . At least 

one of these sequences consist of infinitely many elements. Let us first assume that 
(n1

k
)k∈ℕ consists of infinitely many elements. Then, by definition of Optsome(dl) as 

well as gdl , there is another strategy dn1k ≠ du, dl such that g
d
n1
k
(m(tn1

k
)) = 0 . Since U 

is finite there is at least one strategy dj that occurs infinite many times in the 
sequences (dnk1)k∈ℕ . Let us choose a subsequence (n3

i
)i∈ℕ such that dn3i = dj for all 

i ∈ ℕ . Then we obtain that (tn3
i
)i∈ℕ is a sequence converging to T2 such that 

gdj(m(tn3
i
)) = 0 for all i ∈ ℕ . In particular, by continuity, we obtain gdj(m(T2)) = 0 , a 

contradiction. Let us now assume that (n2
k
)k∈ℕ consists of infinitely many elements. 

By Assumption A4 and by definition of gd there is at least one strategy dn2k ≠ du, dl 
such that g

d
n2
k
(m(tn2

k
)) ≤ 0 . Since U is finite there is at least one strategy dj that occurs 

infinitely many times in the sequence (dn2k )k∈ℕ . Let (n4
k
)k∈ℕ be the sequence such that 

dj = dn
4
k . Now we obtain that (tn4

k
)k∈ℕ is a sequence converging to T2 and that satisfies 

gdj(m(tn4
k
)) ≤ 0 . Therefore, by continuity of gdj , we obtain gdj(m(T2)) ≤ 0 , a 

contradiction.
By definition of the ordering ≤ , we have that dl ≤D(dl) d

u in the acyclic ordering 
≤D(dl) of the graph D(dl) . This means that there is no edge from du to dl in D(dl) , 
which by definition of the digraph means that

for all m ∈ Optsome(du) ∩ Optsome(dl).
In total, we obtain for some �2 ∈ (0, �1) and for almost all t ∈ (T2, T2 + �2) that

holds, a contradiction.
Let now k < u and assume that m ∶ [0,∞) → ℝ

S is a solution of ṁ ∈ F(m) 
starting in m0 ∈ P(S) ∩

⋃
l≥k Optsome(dl) . By Assumption  A5 we immedi-

ately have that m(t) ∈ P(S) . Moreover, by the induction hypothesis, the set 
P(S) ∩

⋃
l≥k+1 Optsome(dl) is flow invariant. Therefore, if the trajectory would leave 

P(S) ∩
⋃

l≥k Optsome(dl) , then for T = sup{t ≥ 0 ∶ m(t) ∈ P(S) ∩
⋃

l≥k Optsome(dl)} 
we would have that m(T) ∈ Optsome(dk) . As before, by definition of Optsome(dk) 
and gdk , this is equivalent to gdk (m(T)) = 0 and gdk (t) > 0 for some 𝛿 > 0 and all 
t ∈ (T , T + �).

By definition of Optsome(d) and d, Assumption  A5 and the requirement that m 
leaves the set P(S) ∩

⋃
l≥k Optsome(dl) after T we obtain that there is a unique l < k 

such that gdl(m(T)) = 0 . As in the base case we can now prove that there is an 
�1 ∈ (0, �) such that gdl(m(t)) < 0 for all t ∈ (T , T + �1).

The ordering ≤ now yields that dl ≤D(dl) d
k in the acyclic ordering ≤D(dl) of the 

graph D(dl) . This means that there is no edge from dk to dl in D(dl) , which by defini-
tion of the digraph means that

⟨(Qdl (m))Tm,∇gdu (m)⟩ ≤ 0

0 <
𝜕

𝜕t
gdu(m(t)) = ⟨(Qdl (m))Tm,∇gdu (m)⟩ < 0
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for all m ∈ Optsome(dk) ∩ Optsome(dl).
In total, we obtain for some �2 ∈ (0, �1) and for almost all t ∈ (T , T + �2) that

holds, a contradiction. 	�  ◻

Lemma B.3  Let d ∈ U be a deterministic stationary strategy such that for any other 
strategy d̂ ∈ U ⧵ {d} either Optsome(d) ∩ Optsome(d̂) = � or d̂ → d ∉ D(d̂) with

Then P(S) ∩ Optunique(d) is flow invariant for F.

Proof  Let m ∶ [0,∞) → ℝ
S be a solution of ṁ ∈ F(m) starting in 

m0 ∈ P(S) ∩ Optunique(d) . By Assumption A5 it is immediate that m(t) ∈ P(S) for 
all t ≥ 0 . By definition of Optunique(d) it is moreover immediate that gd(m(0)) < 0 . 
Now assume that there is a T > 0 such that gd(m(T)) = 0 . Then, by definition of 
Optsome(d) and gd̂ and Assumption A4, there is a unique strategy d̂ ∈ U ⧵ {d} such 
that gd̂(m(T)) = 0 . Now the assumption of the lemma yields that

In total, we obtain, since gd is twice continuously differentiable, that for some 𝜖 > 0 
and almost all t ∈ (T − �, T) we have

a contradiction. 	�  ◻

Proof of Theorem 5.4  We note that if a trajectory stays inside a set Optunique(d) for all 
t > T  , then by condition (i) the trajectory will converge towards a stationary point 
given Qd(⋅).

Let d1,… , du be an ordering that satisfies (iii) and assume that i is maximal such 
that m(0) ∈ P(S) ∩

�⋃
k≥i Optsome(dk)

�
 , then m(0) ∈ Optsome(di) . If the trajectory 

does not leave the set P(S) ∩ Optunique(di) we have by the previous observation con-
vergence towards a deterministic stationary mean field equilibrium. Else, by the flow 
invariance of P(S) there is a t0 ≥ 0 such that the trajectory will stay in

for all t ≥ t0 or there is a t1 > 0 such that m(t1) ∉ P(S) ∩ Optsome(di) . Then 
we find, since P(S) ∩

�⋃
k≥i Optsome(dk)

�
 is flow invariant an î > i such that 

m(t1) ∈ P(S) ∩
�⋃

k≥î Optsome(dk)
�
 and we can reapply the previous argument.

⟨
(Qdl (m))Tm,∇gdk (m)

⟩ ≤ 0

0 <
𝜕

𝜕t
gdk (m(t)) =

⟨
(Qdl (m))Tm,∇gdk (m)

⟩ ≤ 0

⟨(Qd(m))Tm,∇gd(m)⟩ < 0 for all m ∈ Optsome(d) ∩ Optsome(d̂).

⟨
(Qd(m))Tm,∇gd(m)

⟩
< 0 for all m ∈ Optsome(d) ∩ Optsome(d̂).

0 <
𝜕

𝜕t
gd(m(t)) =

⟨
(Qd(m(t)))Tm,∇gd(m(t))

⟩
< 0,

P(S) ∩
(
Optsome(di) ⧵ Optunique(di)

)
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If we reach the final vertex d of an ordering that satisfies (iii) and there is 
another strategy d̂ that is also the final vertex of an ordering, then we obtain that 
both P(S) ∩ Optsome(d) and P(S) ∩ Optsome(d̂) are flow invariant, which in particular 
yields that P(S) ∩ Optsome(d) ∩ Optsome(d̂) is flow invariant, which yields that when-
ever a trajectory leaves P(S) ∩ Optunique(d) , then it will remain in

for all times, which proves the claim.
If there is a unique final vertex d then we obtain, by Lemma  B.3, that 

P(S) ∩ Optunique(d) is flow invariant. Thus, if the trajectory leaves the set 
P(S) ∩ Optsome(d)⧵Optunique(d) , then we have convergence towards a deterministic 
stationary mean field equilibrium. 	�  ◻
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