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Abstract
Bilevel problems are used to model the interaction between two decision makers in 
which the lower-level problem, the so-called follower’s problem, appears as a con-
straint in the upper-level problem of the so-called leader. One issue in many practi-
cal situations is that the follower’s problem is not explicitly known by the leader. 
For such bilevel problems with unknown lower-level model we propose the use of 
neural networks to learn the follower’s optimal response for given decisions of the 
leader based on available historical data of pairs of leader and follower decisions.  
Integrating the resulting neural network in a single-level reformulation of the bilevel 
problem leads to a challenging model with a black-box constraint. We exploit  
Lipschitz optimization techniques from the literature to solve this reformulation 
and illustrate the applicability of the proposed method with some preliminary case  
studies using academic and linear bilevel instances.

Keywords  Bilevel optimization · Unknown follower problems · Neural networks · 
Lipschitz optimization

1  Introduction

Bilevel optimization has been a highly active field of research in the last decades 
and has gained increasing attention over the last years. The main reason is that this 
class of optimization problems can serve as a powerful modeling tool in situations 
in which one has to model hierarchical decision making; see, e.g., the recent surveys 
by Beck et al. [18] and Kleinert et al. [2] as well as the annotated bibliography by 
Dempe [10] to get an overview of the many applications of bilevel optimization. 
However, this ability also renders bilevel optimization problems very hard to solve 
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both in theory and practice. For instance, even linear bilevel problems are strongly 
NP-hard [15].

As discussed in the survey by Beck et al. [2], bilevel optimization problems can 
also be subject to uncertainty. Moreover, the sources of potential uncertainties are 
even richer compared to usual, i.e., single-level, optimization. The reason is that not 
only the problem’s data can be uncertain but also the (observation of the) decisions 
of the two players can be noisy or uncertain. For instance, it might be the case that 
the leader is not sure about whether the follower can solve the respective lower-level 
problem to global optimality and might want to hedge against possibly occurring 
near-optimal solutions; see, e.g., Besançon et al. [3, 4]. In this short paper, we go 
even one step further and assume that the leader has no knowledge about an explicit 
formulation of the lower-level problem. Hence, the leader needs to solve a bilevel 
optimization problem and the lower level is unknown. What might sound impossible 
at a first glance can be done, at least approximately, if the bilevel game is repeatedly 
played so that past pairs of leader decisions and respective responses of the follower 
can be observed and collected. The obtained set of pairs of decisions can then be 
used as training data to train a neural network that learns the best-response function 
of the follower.

The downside of this approach is that the input-output mapping of the neural net-
work can again not be stated using a closed-form expression. This leads to the field 
of optimization under black-box constraints [23]. Fortunately, there is some recent 
research on deep neural networks with specific activation functions that shows that 
the input-output mapping of the neural network is Lipschitz continuous and that 
Lipschitz constants can actually be computed using specifically chosen semidefi-
nite programs [11, 22]. This paves the way for applying the Lipschitz optimization 
method proposed in Schmidt et  al. [25], see Schmidt et  al. [26] as well, in order 
to solve the single-level reformulation of the bilevel problem with unknown lower 
level in which the optimal response of the follower is replaced by the mapping that 
describes the input-output behavior of the trained neural network. In the Lipschitz-
based approach, the only nonlinearity, which is the one given by the input-output 
mapping of the neural network, is outer-approximated using the Lipschitz constant 
of the mapping. This outer approximation is tightened from iteration to iteration, 
leading to a union of polyhedra that form a relaxation of the graph of the nonlinear-
ity, which enables the application of powerful state-of-the-art mixed-integer solvers.

The main contribution of this short note is the combination of the recent results 
about the Lipschitz continuity of special neural networks with recent publications 
on Lipschitz optimization. By carrying this out in a careful way and by slightly  
adapting the method proposed in Schmidt et al. [25], we obtain a convergent algo-
rithm for this highly challenging situation. We further illustrate the applicability of 
our approach in a case study based on academic bilevel instances from the literature.

Although there have been some applications of bilevel optimization problems for 
machine learning (see, e.g., Table 1 in Khanduri et al. [17]), this is, to the best of our 
knowledge, the first paper that uses neural networks to solve general bilevel optimi-
zation problems. The only other paper we are aware of following this idea is the one 
by Vlah et al. [27], who apply deep convolutional neural networks to classic bilevel 
bidding problems in power markets. However, they focus on the specific application 
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and the specific type of network and its training. In contrast, we focus on the general  
mathematical idea of replacing unknown lower levels with neutral networks.  
Furthermore, the work by Borrero et  al. [7] presents a sequential learning method 
for linear bilevel problems under incomplete information. Provided that the strategic  
players interact with each other multiple times, the authors develop feedback  
mechanisms to update the missing information for the lower-level objective.  
Nevertheless, this way to address uncertainty and learning clearly differs from our  
neural-network based approach. The main idea of this short paper is to give a proof of 
concept for the proposed method and we, thus, make some simplifications such as that 
we only consider linear bilevel problems with a scalar upper-level variable and without 
coupling constraints. We discuss these assumptions in more detail in Sect. 2 and how 
the setting can be generalized in Sect. 6. Let us finally comment on that our approach 
is related to other methods for solving bilevel optimization problems that rely on using 
optimal-value or best-response functions (see, e.g., Lozano and Smith [20] and the  
references therein). However, our approach is different since we do not work with these 
functions themselves but with surrogates that we obtain from training a neural network.

The remainder of the paper is structured as follows. In Sect. 2, we introduce the class 
of bilevel problems that we consider and pose the main assumptions that are required 
in what follows. Afterward, in Sect.  3, we then review the recent literature about  
computing Lipschitz constants for deep neural networks, which is a prerequisite for 
the overall solution approach discussed in Sect. 4. Section 5 contains the case studies 
that illustrate the applicability of our approach for small instances from the literature. 
Finally, we conclude in Sect. 6 and discuss some topics for future research.

2 � Problem statement

We consider linear bilevel problems of the general form 

 where Ψ(x) is the set of optimal solutions of the x-parameterized problem 

with c ∈ ℝ
nx , d, f ∈ ℝ

ny , A ∈ ℝ
m×nx , C ∈ ℝ

�×nx , D ∈ ℝ
�×ny , a ∈ ℝ

m , and b ∈ ℝ
� . 

Problem (1) is called the upper-level or leader’s problem. The decision variables of 

(1a)min
x∈X,y

c⊤x + d⊤y

(1b)s.t. Ax ≥ a,

(1c)x ≤ x ≤ x̄, x ∈ ℝ
nx ,

(1d)y ∈ Ψ(x),

(2a)min
y∈Y

f ⊤y

(2b)s.t. Cx + Dy ≥ b,
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the leader are x ∈ ℝ
nx . Problem (2) is called the lower-level or follower’s problem 

and has the decision variables y ∈ ℝ
ny . Note that we consider the optimistic bilevel 

problem. Hence, the leader also optimizes over y if the lower-level problem is not 
uniquely solvable. The set Ω ∶= {(x, y) ∈ X × Y ∶ (1b), (1c), (2b)} is called the 
shared constraint set and the set F ∶= {(x, y) ∈ Ω ∶ y ∈ Ψ(x)} is called the bilevel 
feasible set. With Fx , we denote its projection onto the x variables. For what follows, 
we make the ensuing assumptions.

Assumption 1 

	 (i)	 The upper-level decision x ∈ ℝ
nx is scalar, i.e., nx = 1.

	 (ii)	 For all upper-level decisions x for which Ψ(x) is non-empty, we have |Ψ(x)| = 1 . 
Hence, if the lower level is feasible and bounded, then it has a unique optimal 
solution y. Consequently, we can write y = Ψ(x) instead of y ∈ Ψ(x).

	 (iii)	 The solution-set mapping Ψ(⋅) is Lipschitz continuous.

According to Assumption 1, Ψ(x) is a singleton, leading to a one-to-one corre-
spondence between follower’s optimal responses and the upper-level decisions. 
Moreover, the mapping Ψ(⋅) is polyhedral, i.e., its graph is a finite union of poly-
hedra; see Theorem 3.1 in Dempe [9]. Furthermore, the bilevel feasible set is con-
nected because we have no coupling constraints and, thus, Ψi(x) is a Lipschitz con-
tinuous and piecewise linear function in x for all i ∈ [ny] ∶= {1,… , ny}.

Lower-level uniqueness is particularly important when it comes to training a 
neural network to learn the optimal response of the follower for a given upper-level 
decision. It ensures that, during supervised learning, there is only a single output y 
to be learned for a given input x. The assumption of a scalar leader’s decision can be 
generalized and is mainly taken for the ease of presentation. We will discuss this in 
more detail in our conclusion in Sect. 6.

3 � Using neural networks to approximate the follower’s response

Stating the bilevel problem (1) relies on the knowledge about an explicit formulation 
for the lower-level problem (2). In the case in which the follower’s problem (2) is not 
known by the leader but past pairs (x, y) of leader and follower decisions are avail-
able, we propose using this historical data to learn the optimal response y = Ψ(x) of 
the follower using neural networks.

Such (x, y)-pairs naturally arise in many applications. For instance, for pricing mod-
els, the upper-level variable x is the price set by the leader for a certain good and y is 
the amount of this good bought by the follower. Both the price and the bought goods 
can be observed and collected to obtain (x, y)-pairs to train a neural network. Simi-
lar situations appear in many other fields such as in bilevel optimization for market 
design, transportation, or security. Obviously, it is required that the game modeled by 
the bilevel problem is played repeatedly so that large enough training sets can be col-
lected over time.
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In what follows, we use a neural network to learn Ψ(⋅) , which will then replace the 
lower level and turn the bilevel model into the single-level problem 

where gi is the function corresponding to the neural network for the ith follower’s 
response  yi , i ∈ [ny] . Thus, we assume gi(x) ≈ Ψi(x) . In what follows, we exploit 
some recent results from the literature to show that gi is Lipschitz continuous and 
that Lipschitz constants can indeed be computed. This property of the used neural 
networks is vital for the decomposition method we use to solve Problem  (3); see 
Sect. 4.

3.1 � Lipschitz constants of neural networks

In this paper, we use the LipSDP-Neuron method published in Fazlyab et  al. [11] to 
compute Lipschitz constants of the neural network functions gi , i ∈ [ny] . That is, we 
compute a constant Li ≥ 0 that satisfies

and for all i ∈ [ny] . The main idea in Fazlyab et  al. [11] is to replace the nonlin-
ear activation functions at the nodes of a neural network by so-called incremental 
quadratic constraints, which then allows to state the problem of estimating Lipschitz 
constants as a semidefinite program (SDP). It is worth noting that the most complex 
and, hence, the most accurate version of LipSDP in Fazlyab et al. [11] is shown to be 
wrong in Pauli et al. [22]. Thus, we use the second of the three versions of LipSDP, 
namely LipSDP-Neuron.

We now describe the quadratic constraints that we use to replace all activation func-
tions 𝜙(x) = [𝜑(x1),… ,𝜑(xn)]

⊤ ∶ ℝ
n
→ ℝ

n in a network layer, where the same slope-
restricted function � ∶ ℝ → ℝ is applied to each component of � . Here and in what 
follows, we call a function � slope-restricted w.r.t. 0 ≤ 𝛼 < 𝛽 < ∞ if

holds for all x, y ∈ ℝ . This definition states that the slope of the line connecting any 
two points x and y on the graph of � is bounded by � and � . It is easy to see that the 
Rectified Linear Unit  (ReLU) activation function defined as �(x) ∶= max{0, x} is 
slope-restricted with � = 0 and � = 1 ; see Goodfellow et al. [13]. Furthermore, if the 
activation function � is slope-restricted w.r.t.  [�, �] = [0, 1] , then so is the vector-
valued function �(x) = [�(x1),… ,�(xn)] , which contains all activation functions in 
a network layer [12], if we apply the definition in (4) component-wise.

(3a)min
x,y

cx + d⊤y

(3b)s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ ℝ,

(3c)gi(x) = yi, i ∈ [ny],

|gi(x1) − gi(x2)| ≤ Li|x1 − x2| for all x1, x2 ∈ ℝ

(4)� ≤
�(y) − �(x)

y − x
≤ �
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The following lemma shows that the slope property  (4) can be written as a 
quadratic constraint. We use the notation �n for the set of all symmetric n × n 
matrices.

Lemma 1  (Based on Lemma 1 in Fazlyab et al. [11]) Suppose � ∶ ℝ → ℝ is slope-
restricted w.r.t. � and � . Moreover, we define the set

of diagonal matrices T with nonnegative entries. Then, for any T ∈ Tn , the function 
𝜙(x) = [𝜑(x1),… ,𝜑(xn)]

⊤ ∶ ℝ
n
→ ℝ

n satisfies the quadratic constraint

for all x, y ∈ ℝ
n.

The statement of the lemma above is based on Lemma 1 in Fazlyab et al. [11] 
and has been modified according to the corrections published in Pauli et al. [22]. 
There, the authors give a counterexample that shows that the original lemma in 
Fazlyab et  al. [11] is wrong. To be more specific, they show that there exists a 
matrix T built according to the definition of the set Tn given in Fazlyab et al. [11] 
that violates (6).

Assuming that all activation functions � ∶ ℝ → ℝ are the same, a feed-forward 
neural network f (x) ∶ ℝ

n0 → ℝ
�+1 can be written compactly as

where x = [(x0)⊤,… , (x�)⊤]⊤ is the concatenation of the input values at every layer 
of the network, � is the number of layers, xi ∈ ℝ

ni for all i ∈ {1,… ,�} , � is the 
vector-valued function, which applies the activation function � to every entry of the 
input vector, and

holds, where Wi is the weight matrix connecting layer i with layer i + 1 , and Ini is the 
ni × ni identity matrix. The next theorem is the central result in Fazlyab et al. [11] 

(5)Tn ∶=

{
T ∈ �

n ∶ T =

n∑
i=1

𝜆iieie
⊤
i
, 𝜆ii ≥ 0

}

(6)
(

x − y

𝜙(x) − 𝜙(y)

)⊤ [
−2𝛼𝛽T (𝛼 + 𝛽)T

(𝛼 + 𝛽)T − 2T

](
x − y

𝜙(x) − 𝜙(y)

)
≥ 0

(7)Bx = �(Ax + b) and f (x) = Cx + b� ,

(8)
A =

⎡
⎢⎢⎢⎣

W0 0 … 0 0

0 W1 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … W𝓁−1 0

⎤
⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎣

0 In1 0 … 0

0 0 In2 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … In𝓁

⎤
⎥⎥⎥⎦
,

C =
�
0 … 0 W𝓁

�
, b =

�
(b0)⊤,… , (b𝓁−1)⊤

�⊤
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and shows that the Lipschitz constant of a neural network is the solution of an SDP 
in which the matrix T defined in Lemma 1 serves as a decision variable.

Theorem 2  (Theorem 2 in Fazlyab et al. [11]) Consider an �-layer and fully con-
nected neural network given by (7). Let n =

∑�

k=1
nk be the total number of hidden 

neurons and suppose that the activation functions are slope-restricted w.r.t. � and � . 
Define Tn as in (5), A and B as in (8), and consider the matrix inequality

with

If (9) holds for some (�, T) ∈ ℝ≥0 × Tn , then ‖f (x) − f (y)‖2 ≤
√
�‖x − y‖2 holds for 

all x, y ∈ ℝ
n0.

As a result of Theorem 2, a Lipschitz constant for multi-layer networks can be 
computed by solving

where (�, T) ∈ ℝ+ × Tn are the decision variables. Furthermore, M(�, T) is linear 
in � and T and the set Tn is convex. Hence, Problem (10) is a semidefinite program.

4 � Solution approach

The neural network constraint (3c) turns model (3) into a challenging problem. In 
particular, for complex and large neural networks, it cannot be expected to get a 
closed-form expression for gi , i ∈ [ny] , that has reasonable properties required for 
optimization. In any case, the resulting constraints will be nonlinear, nonconvex, and 
nonsmooth. However, we can evaluate these constraints and we can compute their 
Lipschitz constants. Thus, it is reasonable to make the following assumption.

Assumption 2  An oracle is available that evaluates gi(⋅) for all i ∈ [ny] and all gi are 
globally Lipschitz continuous on x ≤ x ≤ x̄ with known global Lipschitz constant Li.

(9)M(𝜌, T) =

[
A

B

]⊤ [
−2𝛼𝛽T (𝛼 + 𝛽)T

(𝛼 + 𝛽)T − 2T

] [
A

B

]
+ R ⪯ 0

R =

⎡
⎢⎢⎢⎢⎢⎣

−𝜌In0 0 … 0 0

0 0 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 0 0

0 0 … 0 (W𝓁)⊤W𝓁

⎤
⎥⎥⎥⎥⎥⎦

.

(10)min
�,T

� s.t. M(�, T) ⪯ 0, T ∈ Tn,
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To solve Problem (3), we use the decomposition method published in Schmidt et al. [25]  
but modify it slightly so that we can apply it to our setting. We assume Lipschitz con-
tinuity of the problematic nonlinearities and use the corresponding Lipschitz constants 
to build a mixed-integer linear problem (MILP) that is a relaxation of the original 
model  (3). We refine this relaxation in every iteration until a satisfactory solution is 
found or until the problem is shown to be infeasible. A satisfactory solution is formally 
defined to be an �-feasible point, i.e., a point that solves 

where � ≥ 0 a user-specified tolerance. Note that this relaxation of Problem (3) only 
affects the nonlinear functions gi , i ∈ [ny].

4.1 � Core ideas and notation

The main idea of the decomposition method is to relax the graphs of gi with help of a 
set Ωi . The set Ωi is given by linear constraints built around gi using the corresponding 
Lipschitz constant Li . The resulting relaxation Ωi is then refined in each iteration k such 
that Ωk

i
 can be written as a union of polytopes

which converges towards the graph of gi for k → ∞ . The union of polytopes is 
uniquely defined in each iteration k by a set of points on the x-axis,

where xk,j
i

∈ ℝ are scalar values for j ∈ {0} ∪ Jk
i
= {0} ∪ {1,… , |Jk

i
|} and

Note that while xi are scalar, the index i indicates that the sets Xi can develop dif-
ferently from each other, specifically to every i ∈ [ny] . In other words, the relaxa-
tions of gi can be refined individually in each iteration k. This relaxation Ωk

i
 of gi is 

improved by adding a new point xk,j
i

 to Xk
i
 . The polytopes of the union mentioned 

above are given by

(11a)min
x,y

cx + d⊤y

(11b)s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ ℝ,

(11c)|gi(x) − yi| ≤ �, i ∈ [ny],

Ωk
i
=
⋃
j∈Jk

i

Ωk
i
(j),

X
k
i
∶=

{
x
k,0

i
, x

k,1

i
,… , x

k,|Jk
i
|

i

}
,

x
i
=∶ x

k,0

i
< x

k,1

i
< ⋯ < x

k,|Jk
i
|

i
∶= x̄i.
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for j ∈ Jk
i
 . Visually speaking, (12) states that the polytopes Ωk

i
(j) are all quadrila

terals with two vertices xk,j−1
i

 and xk,j
i

 on the graph of gi ; see Fig. 1. To understand 
how a point is added to Xi , we discuss the two problems solved in each iteration of 
the algorithm.

4.2 � The master problem

The master problem (M(k)) is solved in each iteration over the sets Ωk
i
 . The problem is 

formally given by

with � = (x, y) and �i ∶= (x, yi) . Note that �i is not the ith entry in � , since   
� ∈ ℝ

1+ny is the vector containing x and y while �i ∈ ℝ
2 contains x and yi . If the 

solution �k with  xk ∈ ℝ and yk ∈ ℝ
ny of (M(k)) is �-feasible, then Problem  (3) is 

approximately solved. According to Schmidt et al. [25], the master problem (M(k)) 
can be modeled as the mixed-integer linear problem 

(12)

Ωk
i
(j) =

{
(x, yi) ∈ ℝ

2 ∶ x
k,j−1

i
≤ x ≤ x

k,j

i
,

yi ≤ gi
(
x
k,j−1

i

)
+ Li

(
x − x

k,j−1

i

)
,

yi ≥ gi
(
x
k,j−1

i

)
− Li

(
x − x

k,j−1

i

)
,

yi ≤ gi
(
x
k,j

i

)
+ Li

(
x
k,j

i
− x

)
,

yi ≥ gi
(
x
k,j

i

)
− Li

(
x
k,j

i
− x

)}

min
𝜔

cx + d⊤y

s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ ℝ, (M(k))

𝜔i ∈ Ωk
i
, i ∈ [ny],

Fig. 1   Left: The subproblem is solved on the set Ω̃k

i
 , which is bounded by the dashed, vertical lines. 

Right: The feasible set of the master problem in iteration k + 1 , after x̃
i
 has been added to Xk

i
 . The dashed 

lines depict the old feasible set
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The constraint �i ∈ Ωk
i
 , i ∈ [ny] , in (M(k)) is modeled here using big-M constraints. 

The binary variables z in (13i) and (13h) ensure that only one polytope is active for 
all i ∈ [ny].

4.3 � The subproblem

On the other hand, if the solution �k is not �-feasible, the relaxation Ωk
i
 of the graph 

of gi needs to be refined. This is achieved by solving a subproblem to find a point on 
the graph of gi , which is as close as possible to the solution �k

i
∈ Ωk

i
 of the master 

problem (M(k)). We then use this point to refine the relaxation.
Our subproblem differs from the original method described in Schmidt et al. [25]. 

There, an optimization problem over nonlinearities and other linear constraints is 
solved. This is not possible in the setting we consider here, or is at least extremely 
challenging, due to the nonconvex and nonsmooth nature of neural networks.

The subproblem is solved only for the particular polytope Ωk
i
(jk
i
) ⊂ Ωk

i
 with 

�k
i
∈ Ωk

i
(jk
i
) . That is, we look for a point on the graph of gi , which is contained 

in Ωk
i
(jk
i
) . Additionally, the feasible set of the subproblem is further reduced to only 

allow for a solution in an inner-approximation of the respective polytope. This way 
we ensure that newly found points do not accumulate at an already existing value 
in Xk

i
 . For a given j ∈ Jk

i
 , this subset is defined as

(13a)min
𝜔

cx + d⊤y

(13b)s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ ℝ,

(13c)−M
(
1 − z

k,j

i

)
+ x

k,j−1

i
≤ x ≤ x

k,j

i
+M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
,

(13d)yi ≤ gi
(
x
k,j−1

i

)
+ Li

(
x − x

k,j−1

i

)
+M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
,

(13e)yi ≥ gi
(
x
k,j−1

i

)
− Li

(
x − x

k,j−1

i

)
−M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
,

(13f)yi ≤ gi
(
x
k,j

i

)
+ Li

(
x
k,j

i
− x

)
+M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
,

(13g)

yi ≥ gi
(
x
k,j

i

)
− Li

(
x
k,j

i
− x

)
−M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
, (13h)

∑
j∈Jk

i

z
k,j

i
= 1, i ∈ [ny],

(13i)z
k,j

i
∈ {0, 1}, i ∈ [ny], j ∈ Jk

i
.

Ω̃k
i
(j) = Ωk

i
(j) ∩ Ω̂k

i
(j),
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with

and dk,j
i

= x
k,j

i
− x

k,j−1

i
 is the length of the corresponding segment on the x-axis. The 

constant 0.25 can be replaced by any value in (0, 0.5). The left plot in Fig. 1 indi-
cates the set Ω̂k

i
 with vertical dashed lines.

To solve the subproblem, we sample points  x̃i on the x-axis segment corre-
sponding to Ω̃k

i
(jk
i
) and evaluate gi at these points. Then, the solution of the sub-

problem is given by the computed point 𝜔̃i ∶= (x̃i, gi(x̃i)) that is closest to the solu-
tion �k

i
= (xk, yk

i
) of the master problem w.r.t. the Euclidean distance; see Fig. 1. 

In other words, we choose from a finite set of points in Ω̃k
i
(jk
i
) the one that is on 

the graph of gi and as close as possible to the solution �k
i
 of (M(k)). Note that 

we solve the subproblem only for those i ∈ [ny] that are not �-feasible, i.e., if 
|gi(xk) − yk

i
| > 𝜀 holds.

The solution x̃k
i
 of the subproblem is added to the set Xk

i
 and thus refines the 

relaxation of gi ; see Fig. 1 (right). While xk in �k
i
 is the solution of (M(k)) and thus 

shared by all i ∈ [ny] , the solution x̃k
i
 of the subproblem unique to i ∈ [ny].

4.4 � Algorithm and convergence properties

The Lipschitz decomposition method is formally given in Algorithm 1. There, the 
master problem (M(k)) is solved in each iteration k and the algorithm checks if the 
solution �k is �-feasible. If this is not the case for all i ∈ [ny] , the polytope Ωk

i
(jk
i
) 

containing the solution �k
i
 is identified using the index of the variables zk,j

i
 in the 

MILP (13) for all �-infeasible i ∈ [ny] . Then, a new point 𝜔̃k
i
= (x̃k

i
, ỹk

i
) is found on 

a subset �Ωk
i
(jk
i
) ⊂ Ωk

i
(jk
i
) and x̃k

i
 is added to Xk

i
 , refining the approximation of gi . 

Notice that while x is scalar, the index i in x̃k
i
 signals that the new point found on 

the x-axis in iteration k is specific to the relaxation of function gi . Moreover, the 
number of points in Xk

i
 is at most k in every iteration, which means that |Jk

i
| ≤ k for 

all i ∈ [ny].

We remark that the new point x̃k
i
 found by the subproblem splits the original 

quadrilateral Ωk
i
(jk
i
) into two smaller ones; see Fig. 1. For the two new polytopes, 

we use the notations Ωk
i
(jk
1
) and Ωk

i
(jk
2
) . Hence, the union of polytopes Ωk+1

i
 that 

approximates gi in iteration k + 1 is given by

 
and we have the following lemma.

Ω̂k
i
(j) =

{
(x, yi) ∈ ℝ

2 ∶ x
k,j−1

i
+

1

4
d
k,j

i
≤ x ≤ x

k,j

i
−

1

4
d
k,j

i

}

Ωk+1
i

= Ωk
i
(jk
1
)
⋃

Ωk
i
(jk
2
)
⋃

j≠jk
i
∈Jk

i

Ωk
i
(j)
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Lemma 3  (See Lemma 4 in Schmidt et  al. [25]) There exists a constant 𝛿 > 0 
depending only on � and L such that as long as Algorithm 1 does not terminate in 
Line 5 or 9, there exists a constant 𝛿k > 𝛿 for every k with

Theorem 4  (See Theorem 1 in Schmidt et al. [25]) There exists a K < ∞ such that 
Algorithm 1 either terminates with an approximate globally optimal point �k or with 
the indication of infeasibility in an iteration k ≤ K.

Similarly to Theorem 1 in Schmidt et al. [25], Theorem 4 follows from the fact 
that, according to Lemma 3, the volume of Ωk

i
 decreases by a positive value �k in 

each iteration that is uniformly bounded away from zero.
However, due to the fact that Ωi is refined in each iteration to better approxi-

mate gi , the master problem (M(k)) grows linearly over the course of the iterations, 
leading to one additional binary variable zk,j

i
 and some additional linear constraints. 

Consequently, the computational effort increases in every iteration.

Vol

(
Ωk

i
(jk
1
)
)
+ Vol

(
Ωk

i
(jk
2
)
)
= Vol

(
Ωk

i
(jk
i
)
)
− �k.
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5 � Case study

In this section, we illustrate the applicability of Algorithm 1 on the basis of a set of 
exemplary case studies. We first discuss some implementation details and then pre-
sent the results of the algorithm.

5.1 � Implementation details

We now explain how we generate the (x, y)-pairs for the considered instances. We 
also discuss the used neural networks and their training, the sampling of points for 
the subproblem, and how we verify the solutions obtained with our algorithm.

We generate the (x, y)-pairs as follows. First, we solve the high-point relaxation of 
the bilevel problem but with a different objective function in which we either mini-
mize or maximize the upper-level variable x to get the set Fx . Then, we equidistantly 
sample in this interval and solve the parametric lower-level problem for the given 
values of x, obtain the lower-level problem’s solution y, and store the point  (x, y) 
with y = Ψ(x) in our data set. The resulting data set entirely consists of bilevel fea-
sible points. The obtained (x, y)-pairs are then used to train neural networks to learn 
the optimal follower’s response. Note that using the modified high-point relaxation 
to obtain the x-interval used for sampling is not possible in reality if the lower-level 
problem is not known. However, a generation procedure would not be required in 
reality at all since the set of (x, y)-pairs for training the neural networks consist of 
observed data from the past.

The lower-level problem of every instance is then assumed to be unknown. 
Instead, for every considered problem, the optimal follower’s response for a given 
leader’s decision  x, i.e., Ψi(x) , is learned with feed-forward neural networks with 
ReLU activation functions at every node, for all i ∈ [ny] ; see, e.g., Goodfellow et al. 
[13]. The functions learned with ReLU networks are inherently piecewise linear and, 
thus, Lipschitz continuous. Moreover, for all instances the weights of the network 
are updated via the Adam optimizer [24]. We vary the learning rate, the number of 
epochs, and the network architecture depending on the instance at hand.

The bilevel feasible set F  and its projection Fx onto the x-variables also depend 
on the unknown lower level. Hence, we attempt to deduce F  and Fx from the avail-
able (x, y)-pairs. Due to the fact that the interval [x, x̄] with x ≤ x ≤ x̄ can be larger 
than Fx , we do not use x and x̄ to initialize Ωi ; see (12). Instead, we use the closed 
interval generated by the smallest and the largest x-values in the available training 
set as a proxy for Fx.

Given the trained networks gi , we solve the master problem and, subsequently, 
the subproblems as described in Sect. 4. To solve the subproblem, we evaluate the 
functions gi at p = 100 points on the corresponding x-axis segment. If s points have 
already been evaluated on this segment in earlier iterations, then only p − s new 
equidistantly distributed points (x, gi(x)) are computed.

Finally, Algorithm 1 stops with the indication that Problem  (3) is infeasible or 
with an �-feasible solution, where � = 10−5 is used in our experiments. The solution 
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computed by our algorithm is compared with the solution obtained by solving the 
mixed-integer KKT reformulation with sufficiently large big-M constants; see, e.g., 
Kleinert et al. [18].

We implemented the LipSDP-Neuron method using the cvxpy 1.1.13 package and 
the SDP solver MOSEK 9.3.20. All occurring linear or mixed-integer linear prob-
lems (in particular, (M(k))) are solved using Gurobi 9.5.1. All neural networks have 
been trained using the Python library torch 1.11.0. All computations have been exe-
cuted on a Intel© CoreTMi7-10510U CPU with 8 cores of 1.8 GHz each and 32 GB 
RAM.

5.2 � Discussion of the results

We apply the Lipschitz decomposition method to 6 instances of linear bilevel prob-
lems from the literature. All instances have a scalar upper-level decision variable x 
so that Assumption 1 is satisfied. For all 6 instances we use 60% of the (x, y)-pairs 
for training and the rest for validation. Alternative proportions of training and 
validation set sizes could be used as well if appropriate. Furthermore, given that 
Ψi(⋅), i ∈ [ny] , is piecewise linear in our context, rather small data sets are often 
already enough to find good solutions for the considered instances.

Table 1 shows the training set sizes, the configurations of the neural networks, and 
the used learning rates. Table 2 contains the corresponding Lipschitz constants com-
puted for the networks described in the previous table as well as the time required to 
compute them. Finally, Table 3 displays the solutions obtained with Algorithm 1 (as 
well as the required number of iterations) next to the ones computed by solving the 
KKT reformulation. All computation times are given in seconds.

5.2.1 � The performance of Algorithm 1

As discussed in Sect.  4.4, the computational effort of solving the master problem 
naturally increases over the course of the iterations. This can also be seen clearly 
in Fig. 2 for 4 exemplarily chosen instances. Furthermore, the computed Lipschitz 
constants determine the volume of the polytopes Ωk

i
 , i ∈ [ny] . Thus, according to 

Lemma 3 and Theorem 4, the convergence of Algorithm 1 directly depends on the 
constants Li.

One way to keep Algorithm 1 most efficient is to compute Lipschitz constants Li 
that are as small as possible. To illustrate this, we consider the instance [21] 

where Ψ(x) is the set of optimal solutions of the x-parameterized linear lower-level 
problem 

(14a)max
x,y

F(x, y) = −x − 2x

(14b)s.t. y ∈ Ψ(x),
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(15a)max
y

f (x, y) = y

(15b)s.t. − x + 2.5y ≤ 3.75,

(15c)x + 2.5y ≥ 3.75,

(15d)2.5x + y ≤ 8.75,

(15e)x, y ≥ 0,

(15f)x, y ∈ ℝ.

Table 1   Basic information about 
the instance-specific neural 
networks

All networks are trained for 200 epochs and have training losses 
close to zero. The learning rates are rounded to three decimals

Instance Training Network Learning
Set size Architecture Rate

Bard [1] 30 [1, 15, 10, 15, 1] 0.055
Bialas and Karwan [5] 30 [1, 20, 10, 20, 1] 0.049
Clark and Westerberg [8] 30 [1, 10, 15, 10, 1] 0.023
Haurie et al. [16] 30 [1, 10, 15, 10, 1] 0.049
Liu and Hart [19] 30 [1, 20, 10, 20, 1] 0.094
Moore and Bard [21] 30 [1, 5, 5, 1] 0.074

Table 2   Lipschitz constants 
as computed with the LipSDP-
Neuron method using MOSEK 
9.3.20; see Sect. 3

Instance Lipschitz constant Computation time

Bard [1] 5.77 0.049
Bialas and Karwan [5] 7.69 0.052
Clark and Westerberg [8] 0.98 0.045
Haurie et al. [16] 7.3 0.059
Liu and Hart [19] 21.65 0.081
Moore and Bard [21] 3.02 0.022

Table 3   Algorithm  1 solves the instances above using the networks in Table  1 and the corresponding 
Lipschitz constants in Table 2

Instance Solution of Solution of Nr. of Comp.
KKT reform. Algorithm 1 Iterations Time

Bard [1] (7.2, 1.6) (7.07, 1.54) 12 0.3
Bialas and Karwan [5] (16, 11) (15.67, 10.34) 55 2.23
Clark and Westerberg [8] (19, 14) (18.63, 13.76) 33 1.42
Haurie et al. [16] (12, 3) (11.79, 3.15) 49 4.44
Liu and Hart [19] (4, 4) (3.92, 3.67) 58 3.22
Moore and Bard [21] (0, 1.5) (0, 1.4999) 31 1.21



1098	 I. Molan, M. Schmidt 

1 3

Fig. 2   The computational effort of Algorithm 1 grows linearly in the number of constraints in each itera-
tion. The x-axis shows the number of iterations required by Algorithm 1
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The optimal solution of Problem  (14) is (0,  1.5). As explained in Sect. 5.1, we 
use the smallest and the largest x-values in the available data set to initialize [x, x̄] , 
which is required in Line 1 of Algorithm 1. For this instance, the unknown lower 
level is substituted by a neural network that has 2 hidden layers with 5 nodes each 
and is trained on a set of 30  points. The learning rate is approximately  0.074. 
Using the trained network’s weights, we compute a Lipschitz constant of 
about  3.02. Finally, Algorithm  1 finds the approximate solution (0,  1.4999) in 
1.21 seconds and 31 iterations for � = 10−5.

Table 4 captures how different Lipschitz constants influence the computation 
time and the number of iterations of Algorithm 1 when applied to Problem (14). 
For all computations, we keep the tolerance � = 10−5 . This table clearly shows 
that the algorithm performs better, the closer the used Lipschitz constant is to the 
true value of 2.5.

Moreover, constants smaller than 2.5 seemingly perform even better. For 
instance, using 0.5, Algorithm 1 finds a solution in only 10 iterations. Neverthe-
less, using values smaller than the Lipschitz constant of function gi(⋅) can poten-
tially lead to false infeasibilities reported by the algorithm.

5.2.2 � The accuracy of Algorithm 1

According to (11), an �-feasible solution of an instance is �-close to the graph of all 
functions gi(⋅) . This does not mean that it is also necessarily close to the true opti-
mal response Ψi(⋅) , i ∈ [ny] . Consequently, the accuracy of the method depends on 
the ability of the neural network to approximate the true optimal responses as good 
as possible.

Figure 3 illustrates the importance of a good approximation. There you can see 
in the bottom plot that the �-feasible solution, in this case (0.03, 1.67), obtained for 
instance (14), is �-close to (0.03, g(0.03)) but not to (0.03,Ψ(0.03)).

In this context, it is also interesting that we observed that larger training sets can 
lead to better solutions. Table 5 shows how the computed Lipschitz constants and 
the solutions obtained for the instance in Bard [1] change with increasing data sets. 

Table 4   Computation times in 
dependence of the Lipschitz 
constant

The second row corresponds to the Lipschitz constant obtained with 
LipSDP-Neuron, and the third one to the true Lipschitz constant of 
Ψ(⋅) for instance (14)

Lipschitz con-
stant

Iterations Computation 
time

Solution

5 65 3.67 (0, 1.4999)
3.02 31 1.08 (0, 1.4999)
2.5 33 1.06 (0, 1.5)
1.5 20 0.45 (0, 1.4999)
0.5 10 0.13 (0, 1.4999)
0.1 – – –
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For this instance, the true solution is (7.2, 1.6). Due to the fact that the solution is 
located at an extreme point of Fx , the accuracy of Algorithm 1 directly depends on 
the proxy for Fx in this specific example.

6 � Conclusion

In many practical situations, the leader of a bilevel optimization problem is not 
aware of an explicit formulation of the follower’s problem. To cope with this 
issue, we proposed a method that uses neural networks to learn the follower’s 
optimal reaction from past bilevel solutions. After training of the network, we 
compute Lipschitz constants for the learned functions and use a Lipschitz decom-
position method to solve the reformulated, single-level problem with neural-net-
work constraints.

Fig. 3   Two neural networks 
trained on the same set with 
different learning rates. Conse-
quently, the learned function g 
(blue curves) is different and 
Algorithm 1 computes two 
different solutions (blue stars) 
for instance (14) using these 
functions
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This short paper should serve as a proof of concept for the ideas sketched above. 
However, many aspects can be improved. First of all, the assumption of a scalar 
leader’s decision seems rather strong. Very recently, a follow-up paper [14] of 
Schmidt et  al. [25] appeared, in which a similar Lipschitz decomposition method 
is developed that can tackle the multi-dimensional case. This method can now be 
used to also consider bilevel optimization problems with an unknown follower prob-
lem and multiple decision variables of the leader. Second, we restricted ourselves 
in this paper to the case in which we have no coupling constraints. Fortunately, it is 
rather straightforward to use Algorithm 1 also for linear bilevel problems with cou-
pling constraints as well. Even if the bilevel feasible set is disconnected due to the 
presence of coupling constraints, the follower’s optimal response function Ψi(⋅) is 
learned to be a piecewise linear function by the corresponding neural network. Due 
to the fact that solutions are found at vertices of the feasible set, at least one feasible 
point is always available to serve as solution, even if the line connecting two points 
is not bilevel feasible. On the other hand, this is getting more complicated if nonlin-
ear bilevel problems are considered. Hence, the setting of nonlinear problems with 
coupling constraints is a topic of future research. Third, the overall idea should be 
reasonable also in the mixed-integer case, at least if no coupling constraints are pre-
sent. Fourth, there has been some recent work [6] on the relation between multilevel 
mixed-integer linear optimization problems and multistage stochastic mixed-integer 
linear optimization problems with recourse. Hence, it might be possible to exploit 
these relations to carry over learning-based techniques for two-stage stochastic opti-
mization to bilevel optimization. Fifth and finally, it would be very interesting to see 
an application of the concept discussed in this paper to a real-world situation, which 
is, however, out the of the scope of this short paper.
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Table 5   Lipschitz constants and 
solutions in dependence of the 
size of the training set for the 
instance in Bard [1]

Training set size Lipschitz constant Solution

6 5.04 (6.5, 1.25)
12 6.64 (6.87, 1.43)
30 5.77 (7.07, 1.54)
60 6.35 (7.01, 1.5)
120 8.43 (7.17, 1.58)
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directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
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