
Molan, Ioana; Schmidt, Martin

Article — Published Version

Using neural networks to solve linear bilevel problems
with unknown lower level

Optimization Letters

Provided in Cooperation with:
Springer Nature

Suggested Citation: Molan, Ioana; Schmidt, Martin (2023) : Using neural networks to solve linear
bilevel problems with unknown lower level, Optimization Letters, ISSN 1862-4480, Springer, Berlin,
Heidelberg, Vol. 17, Iss. 5, pp. 1083-1103,
https://doi.org/10.1007/s11590-022-01958-7

This Version is available at:
https://hdl.handle.net/10419/307509

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s11590-022-01958-7%0A
https://hdl.handle.net/10419/307509
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol.:(0123456789)

Optimization Letters (2023) 17:1083–1103
https://doi.org/10.1007/s11590-022-01958-7

1 3

ORIGINAL PAPER

Using neural networks to solve linear bilevel problems
with unknown lower level

Ioana Molan1 · Martin Schmidt1 

Received: 1 July 2022 / Accepted: 6 December 2022 / Published online: 16 February 2023
© The Author(s) 2023

Abstract
Bilevel problems are used to model the interaction between two decision makers in
which the lower-level problem, the so-called follower’s problem, appears as a con-
straint in the upper-level problem of the so-called leader. One issue in many practi-
cal situations is that the follower’s problem is not explicitly known by the leader.
For such bilevel problems with unknown lower-level model we propose the use of
neural networks to learn the follower’s optimal response for given decisions of the
leader based on available historical data of pairs of leader and follower decisions.
Integrating the resulting neural network in a single-level reformulation of the bilevel
problem leads to a challenging model with a black-box constraint. We exploit
Lipschitz optimization techniques from the literature to solve this reformulation
and illustrate the applicability of the proposed method with some preliminary case
studies using academic and linear bilevel instances.

Keywords  Bilevel optimization · Unknown follower problems · Neural networks ·
Lipschitz optimization

1  Introduction

Bilevel optimization has been a highly active field of research in the last decades
and has gained increasing attention over the last years. The main reason is that this
class of optimization problems can serve as a powerful modeling tool in situations
in which one has to model hierarchical decision making; see, e.g., the recent surveys
by Beck et al. [18] and Kleinert et al. [2] as well as the annotated bibliography by
Dempe [10] to get an overview of the many applications of bilevel optimization.
However, this ability also renders bilevel optimization problems very hard to solve

 *	 Martin Schmidt
	 martin.schmidt@uni-trier.de

	 Ioana Molan
	 molan@uni-trier.de

1	 Department of Mathematics, Trier University, Universitätsring 15, 54296 Trier, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-022-01958-7&domain=pdf
http://orcid.org/0000-0001-6208-5677

1084	 I. Molan, M. Schmidt

1 3

both in theory and practice. For instance, even linear bilevel problems are strongly
NP-hard [15].

As discussed in the survey by Beck et al. [2], bilevel optimization problems can
also be subject to uncertainty. Moreover, the sources of potential uncertainties are
even richer compared to usual, i.e., single-level, optimization. The reason is that not
only the problem’s data can be uncertain but also the (observation of the) decisions
of the two players can be noisy or uncertain. For instance, it might be the case that
the leader is not sure about whether the follower can solve the respective lower-level
problem to global optimality and might want to hedge against possibly occurring
near-optimal solutions; see, e.g., Besançon et al. [3, 4]. In this short paper, we go
even one step further and assume that the leader has no knowledge about an explicit
formulation of the lower-level problem. Hence, the leader needs to solve a bilevel
optimization problem and the lower level is unknown. What might sound impossible
at a first glance can be done, at least approximately, if the bilevel game is repeatedly
played so that past pairs of leader decisions and respective responses of the follower
can be observed and collected. The obtained set of pairs of decisions can then be
used as training data to train a neural network that learns the best-response function
of the follower.

The downside of this approach is that the input-output mapping of the neural net-
work can again not be stated using a closed-form expression. This leads to the field
of optimization under black-box constraints [23]. Fortunately, there is some recent
research on deep neural networks with specific activation functions that shows that
the input-output mapping of the neural network is Lipschitz continuous and that
Lipschitz constants can actually be computed using specifically chosen semidefi-
nite programs [11, 22]. This paves the way for applying the Lipschitz optimization
method proposed in Schmidt et al. [25], see Schmidt et al. [26] as well, in order
to solve the single-level reformulation of the bilevel problem with unknown lower
level in which the optimal response of the follower is replaced by the mapping that
describes the input-output behavior of the trained neural network. In the Lipschitz-
based approach, the only nonlinearity, which is the one given by the input-output
mapping of the neural network, is outer-approximated using the Lipschitz constant
of the mapping. This outer approximation is tightened from iteration to iteration,
leading to a union of polyhedra that form a relaxation of the graph of the nonlinear-
ity, which enables the application of powerful state-of-the-art mixed-integer solvers.

The main contribution of this short note is the combination of the recent results
about the Lipschitz continuity of special neural networks with recent publications
on Lipschitz optimization. By carrying this out in a careful way and by slightly
adapting the method proposed in Schmidt et al. [25], we obtain a convergent algo-
rithm for this highly challenging situation. We further illustrate the applicability of
our approach in a case study based on academic bilevel instances from the literature.

Although there have been some applications of bilevel optimization problems for
machine learning (see, e.g., Table 1 in Khanduri et al. [17]), this is, to the best of our
knowledge, the first paper that uses neural networks to solve general bilevel optimi-
zation problems. The only other paper we are aware of following this idea is the one
by Vlah et al. [27], who apply deep convolutional neural networks to classic bilevel
bidding problems in power markets. However, they focus on the specific application

1085

1 3

Using neural networks to solve linear bilevel problems with…

and the specific type of network and its training. In contrast, we focus on the general
mathematical idea of replacing unknown lower levels with neutral networks.
Furthermore, the work by Borrero et al. [7] presents a sequential learning method
for linear bilevel problems under incomplete information. Provided that the strategic
players interact with each other multiple times, the authors develop feedback
mechanisms to update the missing information for the lower-level objective.
Nevertheless, this way to address uncertainty and learning clearly differs from our
neural-network based approach. The main idea of this short paper is to give a proof of
concept for the proposed method and we, thus, make some simplifications such as that
we only consider linear bilevel problems with a scalar upper-level variable and without
coupling constraints. We discuss these assumptions in more detail in Sect. 2 and how
the setting can be generalized in Sect. 6. Let us finally comment on that our approach
is related to other methods for solving bilevel optimization problems that rely on using
optimal-value or best-response functions (see, e.g., Lozano and Smith [20] and the
references therein). However, our approach is different since we do not work with these
functions themselves but with surrogates that we obtain from training a neural network.

The remainder of the paper is structured as follows. In Sect. 2, we introduce the class
of bilevel problems that we consider and pose the main assumptions that are required
in what follows. Afterward, in Sect. 3, we then review the recent literature about
computing Lipschitz constants for deep neural networks, which is a prerequisite for
the overall solution approach discussed in Sect. 4. Section 5 contains the case studies
that illustrate the applicability of our approach for small instances from the literature.
Finally, we conclude in Sect. 6 and discuss some topics for future research.

2 � Problem statement

We consider linear bilevel problems of the general form

 where Ψ(x) is the set of optimal solutions of the x-parameterized problem

with c ∈ ℝ
nx , d, f ∈ ℝ

ny , A ∈ ℝ
m×nx , C ∈ ℝ

�×nx , D ∈ ℝ
�×ny , a ∈ ℝ

m , and b ∈ ℝ
� .

Problem (1) is called the upper-level or leader’s problem. The decision variables of

(1a)min
x∈X,y

c⊤x + d⊤y

(1b)s.t. Ax ≥ a,

(1c)x ≤ x ≤ x̄, x ∈ ℝ
nx ,

(1d)y ∈ Ψ(x),

(2a)min
y∈Y

f ⊤y

(2b)s.t. Cx + Dy ≥ b,

1086	 I. Molan, M. Schmidt

1 3

the leader are x ∈ ℝ
nx . Problem (2) is called the lower-level or follower’s problem

and has the decision variables y ∈ ℝ
ny . Note that we consider the optimistic bilevel

problem. Hence, the leader also optimizes over y if the lower-level problem is not
uniquely solvable. The set Ω ∶= {(x, y) ∈ X × Y ∶ (1b), (1c), (2b)} is called the
shared constraint set and the set F ∶= {(x, y) ∈ Ω ∶ y ∈ Ψ(x)} is called the bilevel
feasible set. With Fx , we denote its projection onto the x variables. For what follows,
we make the ensuing assumptions.

Assumption 1 

	 (i)	 The upper-level decision x ∈ ℝ
nx is scalar, i.e., nx = 1.

	 (ii)	 For all upper-level decisions x for which Ψ(x) is non-empty, we have |Ψ(x)| = 1 .
Hence, if the lower level is feasible and bounded, then it has a unique optimal
solution y. Consequently, we can write y = Ψ(x) instead of y ∈ Ψ(x).

	 (iii)	 The solution-set mapping Ψ(⋅) is Lipschitz continuous.

According to Assumption 1, Ψ(x) is a singleton, leading to a one-to-one corre-
spondence between follower’s optimal responses and the upper-level decisions.
Moreover, the mapping Ψ(⋅) is polyhedral, i.e., its graph is a finite union of poly-
hedra; see Theorem 3.1 in Dempe [9]. Furthermore, the bilevel feasible set is con-
nected because we have no coupling constraints and, thus, Ψi(x) is a Lipschitz con-
tinuous and piecewise linear function in x for all i ∈ [ny] ∶= {1,… , ny}.

Lower-level uniqueness is particularly important when it comes to training a
neural network to learn the optimal response of the follower for a given upper-level
decision. It ensures that, during supervised learning, there is only a single output y
to be learned for a given input x. The assumption of a scalar leader’s decision can be
generalized and is mainly taken for the ease of presentation. We will discuss this in
more detail in our conclusion in Sect. 6.

3 � Using neural networks to approximate the follower’s response

Stating the bilevel problem (1) relies on the knowledge about an explicit formulation
for the lower-level problem (2). In the case in which the follower’s problem (2) is not
known by the leader but past pairs (x, y) of leader and follower decisions are avail-
able, we propose using this historical data to learn the optimal response y = Ψ(x) of
the follower using neural networks.

Such (x, y)-pairs naturally arise in many applications. For instance, for pricing mod-
els, the upper-level variable x is the price set by the leader for a certain good and y is
the amount of this good bought by the follower. Both the price and the bought goods
can be observed and collected to obtain (x, y)-pairs to train a neural network. Simi-
lar situations appear in many other fields such as in bilevel optimization for market
design, transportation, or security. Obviously, it is required that the game modeled by
the bilevel problem is played repeatedly so that large enough training sets can be col-
lected over time.

1087

1 3

Using neural networks to solve linear bilevel problems with…

In what follows, we use a neural network to learn Ψ(⋅) , which will then replace the
lower level and turn the bilevel model into the single-level problem

where gi is the function corresponding to the neural network for the ith follower’s
response yi , i ∈ [ny] . Thus, we assume gi(x) ≈ Ψi(x) . In what follows, we exploit
some recent results from the literature to show that gi is Lipschitz continuous and
that Lipschitz constants can indeed be computed. This property of the used neural
networks is vital for the decomposition method we use to solve Problem (3); see
Sect. 4.

3.1 � Lipschitz constants of neural networks

In this paper, we use the LipSDP-Neuron method published in Fazlyab et al. [11] to
compute Lipschitz constants of the neural network functions gi , i ∈ [ny] . That is, we
compute a constant Li ≥ 0 that satisfies

and for all i ∈ [ny] . The main idea in Fazlyab et al. [11] is to replace the nonlin-
ear activation functions at the nodes of a neural network by so-called incremental
quadratic constraints, which then allows to state the problem of estimating Lipschitz
constants as a semidefinite program (SDP). It is worth noting that the most complex
and, hence, the most accurate version of LipSDP in Fazlyab et al. [11] is shown to be
wrong in Pauli et al. [22]. Thus, we use the second of the three versions of LipSDP,
namely LipSDP-Neuron.

We now describe the quadratic constraints that we use to replace all activation func-
tions 𝜙(x) = [𝜑(x1),… ,𝜑(xn)]

⊤ ∶ ℝ
n
→ ℝ

n in a network layer, where the same slope-
restricted function � ∶ ℝ → ℝ is applied to each component of � . Here and in what
follows, we call a function � slope-restricted w.r.t. 0 ≤ 𝛼 < 𝛽 < ∞ if

holds for all x, y ∈ ℝ . This definition states that the slope of the line connecting any
two points x and y on the graph of � is bounded by � and � . It is easy to see that the
Rectified Linear Unit (ReLU) activation function defined as �(x) ∶= max{0, x} is
slope-restricted with � = 0 and � = 1 ; see Goodfellow et al. [13]. Furthermore, if the
activation function � is slope-restricted w.r.t. [�, �] = [0, 1] , then so is the vector-
valued function �(x) = [�(x1),… ,�(xn)] , which contains all activation functions in
a network layer [12], if we apply the definition in (4) component-wise.

(3a)min
x,y

cx + d⊤y

(3b)s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ ℝ,

(3c)gi(x) = yi, i ∈ [ny],

|gi(x1) − gi(x2)| ≤ Li|x1 − x2| for all x1, x2 ∈ ℝ

(4)� ≤
�(y) − �(x)

y − x
≤ �

1088	 I. Molan, M. Schmidt

1 3

The following lemma shows that the slope property (4) can be written as a
quadratic constraint. We use the notation �n for the set of all symmetric n × n
matrices.

Lemma 1  (Based on Lemma 1 in Fazlyab et al. [11]) Suppose � ∶ ℝ → ℝ is slope-
restricted w.r.t. � and � . Moreover, we define the set

of diagonal matrices T with nonnegative entries. Then, for any T ∈ Tn , the function
𝜙(x) = [𝜑(x1),… ,𝜑(xn)]

⊤ ∶ ℝ
n
→ ℝ

n satisfies the quadratic constraint

for all x, y ∈ ℝ
n.

The statement of the lemma above is based on Lemma 1 in Fazlyab et al. [11]
and has been modified according to the corrections published in Pauli et al. [22].
There, the authors give a counterexample that shows that the original lemma in
Fazlyab et al. [11] is wrong. To be more specific, they show that there exists a
matrix T built according to the definition of the set Tn given in Fazlyab et al. [11]
that violates (6).

Assuming that all activation functions � ∶ ℝ → ℝ are the same, a feed-forward
neural network f (x) ∶ ℝ

n0 → ℝ
�+1 can be written compactly as

where x = [(x0)⊤,… , (x�)⊤]⊤ is the concatenation of the input values at every layer
of the network, � is the number of layers, xi ∈ ℝ

ni for all i ∈ {1,… ,�} , � is the
vector-valued function, which applies the activation function � to every entry of the
input vector, and

holds, where Wi is the weight matrix connecting layer i with layer i + 1 , and Ini is the
ni × ni identity matrix. The next theorem is the central result in Fazlyab et al. [11]

(5)Tn ∶=

{
T ∈ �

n ∶ T =

n∑
i=1

𝜆iieie
⊤
i
, 𝜆ii ≥ 0

}

(6)
(

x − y

𝜙(x) − 𝜙(y)

)⊤ [
−2𝛼𝛽T (𝛼 + 𝛽)T

(𝛼 + 𝛽)T − 2T

](
x − y

𝜙(x) − 𝜙(y)

)
≥ 0

(7)Bx = �(Ax + b) and f (x) = Cx + b� ,

(8)
A =

⎡
⎢⎢⎢⎣

W0 0 … 0 0

0 W1 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … W𝓁−1 0

⎤
⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎣

0 In1 0 … 0

0 0 In2 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … In𝓁

⎤
⎥⎥⎥⎦
,

C =
�
0 … 0 W𝓁

�
, b =

�
(b0)⊤,… , (b𝓁−1)⊤

�⊤

1089

1 3

Using neural networks to solve linear bilevel problems with…

and shows that the Lipschitz constant of a neural network is the solution of an SDP
in which the matrix T defined in Lemma 1 serves as a decision variable.

Theorem 2  (Theorem 2 in Fazlyab et al. [11]) Consider an �-layer and fully con-
nected neural network given by (7). Let n =

∑�

k=1
nk be the total number of hidden

neurons and suppose that the activation functions are slope-restricted w.r.t. � and � .
Define Tn as in (5), A and B as in (8), and consider the matrix inequality

with

If (9) holds for some (�, T) ∈ ℝ≥0 × Tn , then ‖f (x) − f (y)‖2 ≤
√
�‖x − y‖2 holds for

all x, y ∈ ℝ
n0.

As a result of Theorem 2, a Lipschitz constant for multi-layer networks can be
computed by solving

where (�, T) ∈ ℝ+ × Tn are the decision variables. Furthermore, M(�, T) is linear
in � and T and the set Tn is convex. Hence, Problem (10) is a semidefinite program.

4 � Solution approach

The neural network constraint (3c) turns model (3) into a challenging problem. In
particular, for complex and large neural networks, it cannot be expected to get a
closed-form expression for gi , i ∈ [ny] , that has reasonable properties required for
optimization. In any case, the resulting constraints will be nonlinear, nonconvex, and
nonsmooth. However, we can evaluate these constraints and we can compute their
Lipschitz constants. Thus, it is reasonable to make the following assumption.

Assumption 2  An oracle is available that evaluates gi(⋅) for all i ∈ [ny] and all gi are
globally Lipschitz continuous on x ≤ x ≤ x̄ with known global Lipschitz constant Li.

(9)M(𝜌, T) =

[
A

B

]⊤ [
−2𝛼𝛽T (𝛼 + 𝛽)T

(𝛼 + 𝛽)T − 2T

] [
A

B

]
+ R ⪯ 0

R =

⎡
⎢⎢⎢⎢⎢⎣

−𝜌In0 0 … 0 0

0 0 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 0 0

0 0 … 0 (W𝓁)⊤W𝓁

⎤
⎥⎥⎥⎥⎥⎦

.

(10)min
�,T

� s.t. M(�, T) ⪯ 0, T ∈ Tn,

1090	 I. Molan, M. Schmidt

1 3

To solve Problem (3), we use the decomposition method published in Schmidt et al. [25]
but modify it slightly so that we can apply it to our setting. We assume Lipschitz con-
tinuity of the problematic nonlinearities and use the corresponding Lipschitz constants
to build a mixed-integer linear problem (MILP) that is a relaxation of the original
model (3). We refine this relaxation in every iteration until a satisfactory solution is
found or until the problem is shown to be infeasible. A satisfactory solution is formally
defined to be an �-feasible point, i.e., a point that solves

where � ≥ 0 a user-specified tolerance. Note that this relaxation of Problem (3) only
affects the nonlinear functions gi , i ∈ [ny].

4.1 � Core ideas and notation

The main idea of the decomposition method is to relax the graphs of gi with help of a
set Ωi . The set Ωi is given by linear constraints built around gi using the corresponding
Lipschitz constant Li . The resulting relaxation Ωi is then refined in each iteration k such
that Ωk

i
 can be written as a union of polytopes

which converges towards the graph of gi for k → ∞ . The union of polytopes is
uniquely defined in each iteration k by a set of points on the x-axis,

where xk,j
i

∈ ℝ are scalar values for j ∈ {0} ∪ Jk
i
= {0} ∪ {1,… , |Jk

i
|} and

Note that while xi are scalar, the index i indicates that the sets Xi can develop dif-
ferently from each other, specifically to every i ∈ [ny] . In other words, the relaxa-
tions of gi can be refined individually in each iteration k. This relaxation Ωk

i
 of gi is

improved by adding a new point xk,j
i

 to Xk
i
 . The polytopes of the union mentioned

above are given by

(11a)min
x,y

cx + d⊤y

(11b)s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ ℝ,

(11c)|gi(x) − yi| ≤ �, i ∈ [ny],

Ωk
i
=
⋃
j∈Jk

i

Ωk
i
(j),

X
k
i
∶=

{
x
k,0

i
, x

k,1

i
,… , x

k,|Jk
i
|

i

}
,

x
i
=∶ x

k,0

i
< x

k,1

i
< ⋯ < x

k,|Jk
i
|

i
∶= x̄i.

1091

1 3

Using neural networks to solve linear bilevel problems with…

for j ∈ Jk
i
 . Visually speaking, (12) states that the polytopes Ωk

i
(j) are all quadrila

terals with two vertices xk,j−1
i

 and xk,j
i

 on the graph of gi ; see Fig. 1. To understand
how a point is added to Xi , we discuss the two problems solved in each iteration of
the algorithm.

4.2 � The master problem

The master problem (M(k)) is solved in each iteration over the sets Ωk
i
 . The problem is

formally given by

with � = (x, y) and �i ∶= (x, yi) . Note that �i is not the ith entry in � , since
� ∈ ℝ

1+ny is the vector containing x and y while �i ∈ ℝ
2 contains x and yi . If the

solution �k with xk ∈ ℝ and yk ∈ ℝ
ny of (M(k)) is �-feasible, then Problem (3) is

approximately solved. According to Schmidt et al. [25], the master problem (M(k))
can be modeled as the mixed-integer linear problem

(12)

Ωk
i
(j) =

{
(x, yi) ∈ ℝ

2 ∶ x
k,j−1

i
≤ x ≤ x

k,j

i
,

yi ≤ gi
(
x
k,j−1

i

)
+ Li

(
x − x

k,j−1

i

)
,

yi ≥ gi
(
x
k,j−1

i

)
− Li

(
x − x

k,j−1

i

)
,

yi ≤ gi
(
x
k,j

i

)
+ Li

(
x
k,j

i
− x

)
,

yi ≥ gi
(
x
k,j

i

)
− Li

(
x
k,j

i
− x

)}

min
𝜔

cx + d⊤y

s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ ℝ, (M(k))

𝜔i ∈ Ωk
i
, i ∈ [ny],

Fig. 1   Left: The subproblem is solved on the set Ω̃k

i
 , which is bounded by the dashed, vertical lines.

Right: The feasible set of the master problem in iteration k + 1 , after x̃
i
 has been added to Xk

i
 . The dashed

lines depict the old feasible set

1092	 I. Molan, M. Schmidt

1 3

The constraint �i ∈ Ωk
i
 , i ∈ [ny] , in (M(k)) is modeled here using big-M constraints.

The binary variables z in (13i) and (13h) ensure that only one polytope is active for
all i ∈ [ny].

4.3 � The subproblem

On the other hand, if the solution �k is not �-feasible, the relaxation Ωk
i
 of the graph

of gi needs to be refined. This is achieved by solving a subproblem to find a point on
the graph of gi , which is as close as possible to the solution �k

i
∈ Ωk

i
 of the master

problem (M(k)). We then use this point to refine the relaxation.
Our subproblem differs from the original method described in Schmidt et al. [25].

There, an optimization problem over nonlinearities and other linear constraints is
solved. This is not possible in the setting we consider here, or is at least extremely
challenging, due to the nonconvex and nonsmooth nature of neural networks.

The subproblem is solved only for the particular polytope Ωk
i
(jk
i
) ⊂ Ωk

i
 with

�k
i
∈ Ωk

i
(jk
i
) . That is, we look for a point on the graph of gi , which is contained

in Ωk
i
(jk
i
) . Additionally, the feasible set of the subproblem is further reduced to only

allow for a solution in an inner-approximation of the respective polytope. This way
we ensure that newly found points do not accumulate at an already existing value
in Xk

i
 . For a given j ∈ Jk

i
 , this subset is defined as

(13a)min
𝜔

cx + d⊤y

(13b)s.t. Ax ≥ a, x ≤ x ≤ x̄, x ∈ ℝ,

(13c)−M
(
1 − z

k,j

i

)
+ x

k,j−1

i
≤ x ≤ x

k,j

i
+M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
,

(13d)yi ≤ gi
(
x
k,j−1

i

)
+ Li

(
x − x

k,j−1

i

)
+M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
,

(13e)yi ≥ gi
(
x
k,j−1

i

)
− Li

(
x − x

k,j−1

i

)
−M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
,

(13f)yi ≤ gi
(
x
k,j

i

)
+ Li

(
x
k,j

i
− x

)
+M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
,

(13g)

yi ≥ gi
(
x
k,j

i

)
− Li

(
x
k,j

i
− x

)
−M

(
1 − z

k,j

i

)
, i ∈ [ny], j ∈ Jk

i
, (13h)

∑
j∈Jk

i

z
k,j

i
= 1, i ∈ [ny],

(13i)z
k,j

i
∈ {0, 1}, i ∈ [ny], j ∈ Jk

i
.

Ω̃k
i
(j) = Ωk

i
(j) ∩ Ω̂k

i
(j),

1093

1 3

Using neural networks to solve linear bilevel problems with…

with

and dk,j
i

= x
k,j

i
− x

k,j−1

i
 is the length of the corresponding segment on the x-axis. The

constant 0.25 can be replaced by any value in (0, 0.5). The left plot in Fig. 1 indi-
cates the set Ω̂k

i
 with vertical dashed lines.

To solve the subproblem, we sample points x̃i on the x-axis segment corre-
sponding to Ω̃k

i
(jk
i
) and evaluate gi at these points. Then, the solution of the sub-

problem is given by the computed point 𝜔̃i ∶= (x̃i, gi(x̃i)) that is closest to the solu-
tion �k

i
= (xk, yk

i
) of the master problem w.r.t. the Euclidean distance; see Fig. 1.

In other words, we choose from a finite set of points in Ω̃k
i
(jk
i
) the one that is on

the graph of gi and as close as possible to the solution �k
i
 of (M(k)). Note that

we solve the subproblem only for those i ∈ [ny] that are not �-feasible, i.e., if
|gi(xk) − yk

i
| > 𝜀 holds.

The solution x̃k
i
 of the subproblem is added to the set Xk

i
 and thus refines the

relaxation of gi ; see Fig. 1 (right). While xk in �k
i
 is the solution of (M(k)) and thus

shared by all i ∈ [ny] , the solution x̃k
i
 of the subproblem unique to i ∈ [ny].

4.4 � Algorithm and convergence properties

The Lipschitz decomposition method is formally given in Algorithm 1. There, the
master problem (M(k)) is solved in each iteration k and the algorithm checks if the
solution �k is �-feasible. If this is not the case for all i ∈ [ny] , the polytope Ωk

i
(jk
i
)

containing the solution �k
i
 is identified using the index of the variables zk,j

i
 in the

MILP (13) for all �-infeasible i ∈ [ny] . Then, a new point 𝜔̃k
i
= (x̃k

i
, ỹk

i
) is found on

a subset �Ωk
i
(jk
i
) ⊂ Ωk

i
(jk
i
) and x̃k

i
 is added to Xk

i
 , refining the approximation of gi .

Notice that while x is scalar, the index i in x̃k
i
 signals that the new point found on

the x-axis in iteration k is specific to the relaxation of function gi . Moreover, the
number of points in Xk

i
 is at most k in every iteration, which means that |Jk

i
| ≤ k for

all i ∈ [ny].

We remark that the new point x̃k
i
 found by the subproblem splits the original

quadrilateral Ωk
i
(jk
i
) into two smaller ones; see Fig. 1. For the two new polytopes,

we use the notations Ωk
i
(jk
1
) and Ωk

i
(jk
2
) . Hence, the union of polytopes Ωk+1

i
 that

approximates gi in iteration k + 1 is given by

and we have the following lemma.

Ω̂k
i
(j) =

{
(x, yi) ∈ ℝ

2 ∶ x
k,j−1

i
+

1

4
d
k,j

i
≤ x ≤ x

k,j

i
−

1

4
d
k,j

i

}

Ωk+1
i

= Ωk
i
(jk
1
)
⋃

Ωk
i
(jk
2
)
⋃

j≠jk
i
∈Jk

i

Ωk
i
(j)

1094	 I. Molan, M. Schmidt

1 3

Lemma 3  (See Lemma 4 in Schmidt et al. [25]) There exists a constant 𝛿 > 0
depending only on � and L such that as long as Algorithm 1 does not terminate in
Line 5 or 9, there exists a constant 𝛿k > 𝛿 for every k with

Theorem 4  (See Theorem 1 in Schmidt et al. [25]) There exists a K < ∞ such that
Algorithm 1 either terminates with an approximate globally optimal point �k or with
the indication of infeasibility in an iteration k ≤ K.

Similarly to Theorem 1 in Schmidt et al. [25], Theorem 4 follows from the fact
that, according to Lemma 3, the volume of Ωk

i
 decreases by a positive value �k in

each iteration that is uniformly bounded away from zero.
However, due to the fact that Ωi is refined in each iteration to better approxi-

mate gi , the master problem (M(k)) grows linearly over the course of the iterations,
leading to one additional binary variable zk,j

i
 and some additional linear constraints.

Consequently, the computational effort increases in every iteration.

Vol

(
Ωk

i
(jk
1
)
)
+ Vol

(
Ωk

i
(jk
2
)
)
= Vol

(
Ωk

i
(jk
i
)
)
− �k.

1095

1 3

Using neural networks to solve linear bilevel problems with…

5 � Case study

In this section, we illustrate the applicability of Algorithm 1 on the basis of a set of
exemplary case studies. We first discuss some implementation details and then pre-
sent the results of the algorithm.

5.1 � Implementation details

We now explain how we generate the (x, y)-pairs for the considered instances. We
also discuss the used neural networks and their training, the sampling of points for
the subproblem, and how we verify the solutions obtained with our algorithm.

We generate the (x, y)-pairs as follows. First, we solve the high-point relaxation of
the bilevel problem but with a different objective function in which we either mini-
mize or maximize the upper-level variable x to get the set Fx . Then, we equidistantly
sample in this interval and solve the parametric lower-level problem for the given
values of x, obtain the lower-level problem’s solution y, and store the point (x, y)
with y = Ψ(x) in our data set. The resulting data set entirely consists of bilevel fea-
sible points. The obtained (x, y)-pairs are then used to train neural networks to learn
the optimal follower’s response. Note that using the modified high-point relaxation
to obtain the x-interval used for sampling is not possible in reality if the lower-level
problem is not known. However, a generation procedure would not be required in
reality at all since the set of (x, y)-pairs for training the neural networks consist of
observed data from the past.

The lower-level problem of every instance is then assumed to be unknown.
Instead, for every considered problem, the optimal follower’s response for a given
leader’s decision x, i.e., Ψi(x) , is learned with feed-forward neural networks with
ReLU activation functions at every node, for all i ∈ [ny] ; see, e.g., Goodfellow et al.
[13]. The functions learned with ReLU networks are inherently piecewise linear and,
thus, Lipschitz continuous. Moreover, for all instances the weights of the network
are updated via the Adam optimizer [24]. We vary the learning rate, the number of
epochs, and the network architecture depending on the instance at hand.

The bilevel feasible set F and its projection Fx onto the x-variables also depend
on the unknown lower level. Hence, we attempt to deduce F and Fx from the avail-
able (x, y)-pairs. Due to the fact that the interval [x, x̄] with x ≤ x ≤ x̄ can be larger
than Fx , we do not use x and x̄ to initialize Ωi ; see (12). Instead, we use the closed
interval generated by the smallest and the largest x-values in the available training
set as a proxy for Fx.

Given the trained networks gi , we solve the master problem and, subsequently,
the subproblems as described in Sect. 4. To solve the subproblem, we evaluate the
functions gi at p = 100 points on the corresponding x-axis segment. If s points have
already been evaluated on this segment in earlier iterations, then only p − s new
equidistantly distributed points (x, gi(x)) are computed.

Finally, Algorithm 1 stops with the indication that Problem (3) is infeasible or
with an �-feasible solution, where � = 10−5 is used in our experiments. The solution

1096	 I. Molan, M. Schmidt

1 3

computed by our algorithm is compared with the solution obtained by solving the
mixed-integer KKT reformulation with sufficiently large big-M constants; see, e.g.,
Kleinert et al. [18].

We implemented the LipSDP-Neuron method using the cvxpy 1.1.13 package and
the SDP solver MOSEK 9.3.20. All occurring linear or mixed-integer linear prob-
lems (in particular, (M(k))) are solved using Gurobi 9.5.1. All neural networks have
been trained using the Python library torch 1.11.0. All computations have been exe-
cuted on a Intel© CoreTMi7-10510U CPU with 8 cores of 1.8 GHz each and 32 GB
RAM.

5.2 � Discussion of the results

We apply the Lipschitz decomposition method to 6 instances of linear bilevel prob-
lems from the literature. All instances have a scalar upper-level decision variable x
so that Assumption 1 is satisfied. For all 6 instances we use 60% of the (x, y)-pairs
for training and the rest for validation. Alternative proportions of training and
validation set sizes could be used as well if appropriate. Furthermore, given that
Ψi(⋅), i ∈ [ny] , is piecewise linear in our context, rather small data sets are often
already enough to find good solutions for the considered instances.

Table 1 shows the training set sizes, the configurations of the neural networks, and
the used learning rates. Table 2 contains the corresponding Lipschitz constants com-
puted for the networks described in the previous table as well as the time required to
compute them. Finally, Table 3 displays the solutions obtained with Algorithm 1 (as
well as the required number of iterations) next to the ones computed by solving the
KKT reformulation. All computation times are given in seconds.

5.2.1 � The performance of Algorithm 1

As discussed in Sect. 4.4, the computational effort of solving the master problem
naturally increases over the course of the iterations. This can also be seen clearly
in Fig. 2 for 4 exemplarily chosen instances. Furthermore, the computed Lipschitz
constants determine the volume of the polytopes Ωk

i
 , i ∈ [ny] . Thus, according to

Lemma 3 and Theorem 4, the convergence of Algorithm 1 directly depends on the
constants Li.

One way to keep Algorithm 1 most efficient is to compute Lipschitz constants Li
that are as small as possible. To illustrate this, we consider the instance [21]

where Ψ(x) is the set of optimal solutions of the x-parameterized linear lower-level
problem

(14a)max
x,y

F(x, y) = −x − 2x

(14b)s.t. y ∈ Ψ(x),

1097

1 3

Using neural networks to solve linear bilevel problems with…

(15a)max
y

f (x, y) = y

(15b)s.t. − x + 2.5y ≤ 3.75,

(15c)x + 2.5y ≥ 3.75,

(15d)2.5x + y ≤ 8.75,

(15e)x, y ≥ 0,

(15f)x, y ∈ ℝ.

Table 1   Basic information about
the instance-specific neural
networks

All networks are trained for 200 epochs and have training losses
close to zero. The learning rates are rounded to three decimals

Instance Training Network Learning
Set size Architecture Rate

Bard [1] 30 [1, 15, 10, 15, 1] 0.055
Bialas and Karwan [5] 30 [1, 20, 10, 20, 1] 0.049
Clark and Westerberg [8] 30 [1, 10, 15, 10, 1] 0.023
Haurie et al. [16] 30 [1, 10, 15, 10, 1] 0.049
Liu and Hart [19] 30 [1, 20, 10, 20, 1] 0.094
Moore and Bard [21] 30 [1, 5, 5, 1] 0.074

Table 2   Lipschitz constants
as computed with the LipSDP-
Neuron method using MOSEK
9.3.20; see Sect. 3

Instance Lipschitz constant Computation time

Bard [1] 5.77 0.049
Bialas and Karwan [5] 7.69 0.052
Clark and Westerberg [8] 0.98 0.045
Haurie et al. [16] 7.3 0.059
Liu and Hart [19] 21.65 0.081
Moore and Bard [21] 3.02 0.022

Table 3   Algorithm 1 solves the instances above using the networks in Table 1 and the corresponding
Lipschitz constants in Table 2

Instance Solution of Solution of Nr. of Comp.
KKT reform. Algorithm 1 Iterations Time

Bard [1] (7.2, 1.6) (7.07, 1.54) 12 0.3
Bialas and Karwan [5] (16, 11) (15.67, 10.34) 55 2.23
Clark and Westerberg [8] (19, 14) (18.63, 13.76) 33 1.42
Haurie et al. [16] (12, 3) (11.79, 3.15) 49 4.44
Liu and Hart [19] (4, 4) (3.92, 3.67) 58 3.22
Moore and Bard [21] (0, 1.5) (0, 1.4999) 31 1.21

1098	 I. Molan, M. Schmidt

1 3

Fig. 2   The computational effort of Algorithm 1 grows linearly in the number of constraints in each itera-
tion. The x-axis shows the number of iterations required by Algorithm 1

1099

1 3

Using neural networks to solve linear bilevel problems with…

The optimal solution of Problem (14) is (0, 1.5). As explained in Sect. 5.1, we
use the smallest and the largest x-values in the available data set to initialize [x, x̄] ,
which is required in Line 1 of Algorithm 1. For this instance, the unknown lower
level is substituted by a neural network that has 2 hidden layers with 5 nodes each
and is trained on a set of 30 points. The learning rate is approximately 0.074.
Using the trained network’s weights, we compute a Lipschitz constant of
about 3.02. Finally, Algorithm 1 finds the approximate solution (0, 1.4999) in
1.21 seconds and 31 iterations for � = 10−5.

Table 4 captures how different Lipschitz constants influence the computation
time and the number of iterations of Algorithm 1 when applied to Problem (14).
For all computations, we keep the tolerance � = 10−5 . This table clearly shows
that the algorithm performs better, the closer the used Lipschitz constant is to the
true value of 2.5.

Moreover, constants smaller than 2.5 seemingly perform even better. For
instance, using 0.5, Algorithm 1 finds a solution in only 10 iterations. Neverthe-
less, using values smaller than the Lipschitz constant of function gi(⋅) can poten-
tially lead to false infeasibilities reported by the algorithm.

5.2.2 � The accuracy of Algorithm 1

According to (11), an �-feasible solution of an instance is �-close to the graph of all
functions gi(⋅) . This does not mean that it is also necessarily close to the true opti-
mal response Ψi(⋅) , i ∈ [ny] . Consequently, the accuracy of the method depends on
the ability of the neural network to approximate the true optimal responses as good
as possible.

Figure 3 illustrates the importance of a good approximation. There you can see
in the bottom plot that the �-feasible solution, in this case (0.03, 1.67), obtained for
instance (14), is �-close to (0.03, g(0.03)) but not to (0.03,Ψ(0.03)).

In this context, it is also interesting that we observed that larger training sets can
lead to better solutions. Table 5 shows how the computed Lipschitz constants and
the solutions obtained for the instance in Bard [1] change with increasing data sets.

Table 4   Computation times in
dependence of the Lipschitz
constant

The second row corresponds to the Lipschitz constant obtained with
LipSDP-Neuron, and the third one to the true Lipschitz constant of
Ψ(⋅) for instance (14)

Lipschitz con-
stant

Iterations Computation
time

Solution

5 65 3.67 (0, 1.4999)
3.02 31 1.08 (0, 1.4999)
2.5 33 1.06 (0, 1.5)
1.5 20 0.45 (0, 1.4999)
0.5 10 0.13 (0, 1.4999)
0.1 – – –

1100	 I. Molan, M. Schmidt

1 3

For this instance, the true solution is (7.2, 1.6). Due to the fact that the solution is
located at an extreme point of Fx , the accuracy of Algorithm 1 directly depends on
the proxy for Fx in this specific example.

6 � Conclusion

In many practical situations, the leader of a bilevel optimization problem is not
aware of an explicit formulation of the follower’s problem. To cope with this
issue, we proposed a method that uses neural networks to learn the follower’s
optimal reaction from past bilevel solutions. After training of the network, we
compute Lipschitz constants for the learned functions and use a Lipschitz decom-
position method to solve the reformulated, single-level problem with neural-net-
work constraints.

Fig. 3   Two neural networks
trained on the same set with
different learning rates. Conse-
quently, the learned function g
(blue curves) is different and
Algorithm 1 computes two
different solutions (blue stars)
for instance (14) using these
functions

1101

1 3

Using neural networks to solve linear bilevel problems with…

This short paper should serve as a proof of concept for the ideas sketched above.
However, many aspects can be improved. First of all, the assumption of a scalar
leader’s decision seems rather strong. Very recently, a follow-up paper [14] of
Schmidt et al. [25] appeared, in which a similar Lipschitz decomposition method
is developed that can tackle the multi-dimensional case. This method can now be
used to also consider bilevel optimization problems with an unknown follower prob-
lem and multiple decision variables of the leader. Second, we restricted ourselves
in this paper to the case in which we have no coupling constraints. Fortunately, it is
rather straightforward to use Algorithm 1 also for linear bilevel problems with cou-
pling constraints as well. Even if the bilevel feasible set is disconnected due to the
presence of coupling constraints, the follower’s optimal response function Ψi(⋅) is
learned to be a piecewise linear function by the corresponding neural network. Due
to the fact that solutions are found at vertices of the feasible set, at least one feasible
point is always available to serve as solution, even if the line connecting two points
is not bilevel feasible. On the other hand, this is getting more complicated if nonlin-
ear bilevel problems are considered. Hence, the setting of nonlinear problems with
coupling constraints is a topic of future research. Third, the overall idea should be
reasonable also in the mixed-integer case, at least if no coupling constraints are pre-
sent. Fourth, there has been some recent work [6] on the relation between multilevel
mixed-integer linear optimization problems and multistage stochastic mixed-integer
linear optimization problems with recourse. Hence, it might be possible to exploit
these relations to carry over learning-based techniques for two-stage stochastic opti-
mization to bilevel optimization. Fifth and finally, it would be very interesting to see
an application of the concept discussed in this paper to a real-world situation, which
is, however, out the of the scope of this short paper.

Acknowledgements  The authors thank the DFG for their support within RTG 2126 “Algorithmic
Optimization”.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

Table 5   Lipschitz constants and
solutions in dependence of the
size of the training set for the
instance in Bard [1]

Training set size Lipschitz constant Solution

6 5.04 (6.5, 1.25)
12 6.64 (6.87, 1.43)
30 5.77 (7.07, 1.54)
60 6.35 (7.01, 1.5)
120 8.43 (7.17, 1.58)

1102	 I. Molan, M. Schmidt

1 3

directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Bard, J.F.: Optimality conditions for the bilevel programming problem. Naval Res. Logist. Q.
31(1), 13–26 (1984). https://​doi.​org/​10.​1002/​nav.​38003​10104

	 2.	 Beck, Y., Ljubic, I., Schmidt M.: A Survey on Bilevel Optimization Under Uncertainty. Techni-
cal report. http://​www.​optim​izati​on-​online.​org/​DB_​HTML/​ 2022/​06/​8963.​html (2022)

	 3.	 Besançon, M., Anjos, M. F., Brotcorne, L.: Near-optimal Robust Bilevel Optimization. arxiv:​
1908.​04040​pdf (2019)

	 4.	 Besançon, M., Anjos, M.F., Brotcorne, L.: Complexity of near-optimal robust versions of mul-
tilevel optimization problems. Optim. Lett. 15, 2597–2610 (2021). https://​doi.​org/​10.​1007/​
s11590-​021-​01754-9

	 5.	 Bialas, W.F., Karwan, M.H.: Two-level linear programming. Manag. Sci. 30(8), 1004–1020
(1984)

	 6.	 Bolusani, S., Coniglio, S., Ralphs, T.K., Tahernejad, S.: A unified framework for multistage mixed
integer linear optimization. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization: Advances and
Next Challenges, pp. 513–560. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-​030-​52119-6_​
18

	 7.	 Borrero, J.S., Prokopyev, O.A., Sauré, D.: Learning in sequential bilevel linear programming. In:
INFORMS Journal on Optimization. https://​doi.​org/​10.​1287/​ijoo.​2021.​0063 (2022)

	 8.	 Clark, P., Westerberg, A.: A note on the optimality conditions for the bilevel programming prob-
lem. In Naval Research Logistics (NRL) 35(5), 413–418 (1988). https://​doi.​org/​10.​1002/​1520-​
6750(198810)​35:​5<​413::​AID-​NAV32​20350​505>3.​0.​CO;2-6

	 9.	 Dempe, S.: Foundations of Bilevel Programming. Springer, Berlin (2002)
	10.	 Dempe, S.: Bilevel Optimization: theory, algorithms, applications and a bibliography. In: Dempe, S.,

Zemkoho, A. (eds.) Bilevel Optimization: Advances and Next Challenges, pp. 581–672. Springer,
Berlin (2020). https://​doi.​org/​10.​1007/​978-3-​030-​52119-6_​20

	11.	 Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accurate estimation of
lipschitz constants for deep neural networks. In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett.
Vol. 32. Curran Associates, Inc. (2019). https://​proce​edings.​neuri​ps.​cc/​paper/​2019/​file/​95e15​33eb1​
b20a9​77777​49fb9​4fdb9​44-​Paper.​pdf

	12.	 Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis of neural net-
works via quadratic constraints and semidefinite programming. IEEE Trans. Autom. Control 67(1),
1–15 (2022). https://​doi.​org/​10.​1109/​TAC.​2020.​30461​93

	13.	 Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. https://​mitpr​ess.​mit.​edu/​
books/​deep-​learn​ing (2016)

	14.	 Grübel, J., Krug, R., Schmidt, M., Wollner, W.: A successive linear relaxation method for MINLPs
with multivariate lipschitz continuous nonlinearities with applications to bilevel optimization and
gas transport. Technical report. arxiv:​2208.​06444 (2022)

	15.	 Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming.
SIAM J. Sci. Stat. Comput. 13(5), 1194–1217 (1992). https://​doi.​org/​10.​1137/​09130​69

	16.	 Haurie, A., Savard, G., White, D.: A note on: an efficient point algorithm for a linear two-stage opti-
mization problem. Oper. Res. 38(3), 553–555 (1990). https://​doi.​org/​10.​1287/​opre.​38.3.​553

	17.	 Khanduri, P., Zeng, S., Hong, M., Wai, H.-T., Wang, Z., Yang, Z.: A Near-Optimal Algorithm for
Stochastic Bilevel Optimization via Double-Momentum. arxiv:​2102.​07367 (2021)

	18.	 Kleinert, T., Labbé, M., Ljubic, I., Schmidt, M.: A survey on mixed- integer programming tech-
niques in bilevel optimization. EURO J. Comput. Optim. 9, 100007 (2021). https://​doi.​org/​10.​
1016/j.​ejco.​2021.​100007

	19.	 Liu, Y.-H., Hart, S.M.: Characterizing an optimal solution to the linear bilevel programming prob-
lem. Eur. J. Oper. Res. 73(1), 164–166 (1994). https://​doi.​org/​10.​1016/​0377-​2217(94)​90155-4

	20.	 Lozano, L., Smith, J.C.: A value-function-based exact approach for the bilevel mixed-integer pro-
gramming problem. Oper. Res. 65(3), 768–786 (2017). https://​doi.​org/​10.​1287/​opre.​2017.​1589

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/nav.3800310104
http://www.optimization-online.org/DB_HTML/%202022/06/8963.html
http://arxiv.org/abs/1908.04040pdf
http://arxiv.org/abs/1908.04040pdf
https://doi.org/10.1007/s11590-021-01754-9
https://doi.org/10.1007/s11590-021-01754-9
https://doi.org/10.1007/978-3-030-52119-6_18
https://doi.org/10.1007/978-3-030-52119-6_18
https://doi.org/10.1287/ijoo.2021.0063
https://doi.org/10.1002/1520-6750(198810)35:5<413::AID-NAV3220350505>3.0.CO;2-6
https://doi.org/10.1002/1520-6750(198810)35:5<413::AID-NAV3220350505>3.0.CO;2-6
https://doi.org/10.1007/978-3-030-52119-6_20
https://proceedings.neurips.cc/paper/2019/file/95e1533eb1b20a97777749fb94fdb944-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/95e1533eb1b20a97777749fb94fdb944-Paper.pdf
https://doi.org/10.1109/TAC.2020.3046193
https://mitpress.mit.edu/books/deep-learning
https://mitpress.mit.edu/books/deep-learning
http://arxiv.org/abs/2208.06444
https://doi.org/10.1137/0913069
https://doi.org/10.1287/opre.38.3.553
http://arxiv.org/abs/2102.07367
https://doi.org/10.1016/j.ejco.2021.100007
https://doi.org/10.1016/j.ejco.2021.100007
https://doi.org/10.1016/0377-2217(94)90155-4
https://doi.org/10.1287/opre.2017.1589

1103

1 3

Using neural networks to solve linear bilevel problems with…

	21.	 Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5),
911–921 (1990)

	22.	 Pauli, P., Koch, A., Berberich, J., Kohler, P., Allgöwer, F.: Training robust neural networks using
Lipschitz bounds. IEEE Control Syst. Lett. 6, 121–126 (2022). https://​doi.​org/​10.​1109/​LCSYS.​
2021.​30504​44

	23.	 Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison
of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013). https://​doi.​org/​10.​1007/​
s10898-​012-​9951-y

	24.	 Ruder, S.: An overview of gradient descent optimization algorithms (2016). arxiv:​1609.​04747
	25.	 Schmidt, M., Sirvent, M., Wollner, W.: A decomposition method for MINLPs with Lipschitz

continuous nonlinearities. Math. Program. 178(1), 449–483 (2019). https://​doi.​org/​10.​1007/​
s10107-​018-​1309-x

	26.	 Schmidt, M., Sirvent, M., Wollner, W.: The cost of not knowing enough: mixed-integer optimiza-
tion with implicit lipschitz nonlinearities. In: Optimization Letters (2021). https://​doi.​org/​10.​1007/​
s11590-​021-​01827-9 (Forthcoming)

	27.	 Vlah, D., Šepetanc, K., Pandžic, H.: Solving Bilevel Optimal Bidding Problems Using Deep Convo-
lutional Neural Networks. (2022) https://​doi.​org/​10.​48550/​ARXIV.​2207.​05825

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/LCSYS.2021.3050444
https://doi.org/10.1109/LCSYS.2021.3050444
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10898-012-9951-y
http://arxiv.org/abs/1609.04747
https://doi.org/10.1007/s10107-018-1309-x
https://doi.org/10.1007/s10107-018-1309-x
https://doi.org/10.1007/s11590-021-01827-9
https://doi.org/10.1007/s11590-021-01827-9
https://doi.org/10.48550/ARXIV.2207.05825

	Using neural networks to solve linear bilevel problems with unknown lower level
	Abstract
	1 Introduction
	2 Problem statement
	3 Using neural networks to approximate the follower’s response
	3.1 Lipschitz constants of neural networks

	4 Solution approach
	4.1 Core ideas and notation
	4.2 The master problem
	4.3 The subproblem
	4.4 Algorithm and convergence properties

	5 Case study
	5.1 Implementation details
	5.2 Discussion of the results
	5.2.1 The performance of Algorithm 1
	5.2.2 The accuracy of Algorithm 1

	6 Conclusion
	Acknowledgements
	References

