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Abstract
Meta-analytic structural equation modeling (MASEM) has become a widespread 
approach to meta-analyze the evidence in a field and to test a (theoretical) multivari-
ate model based on aggregated data. This editorial presents new tricks of the trade 
and discusses current issues surrounding MASEM that in our view are either insuffi-
ciently recognized in the MASEM literature or present new developments. The edi-
torial is organized in three parts, in which we discuss (a) the goals and causal under-
pinnings of a MASEM, (b) new possibilities to analyze effect size heterogeneities 
through moderator variables and (c) the use of statistical tests and p values.

JEL Classification C51 · C52

1 Introduction

MRQ aggregates empirical evidence about management issues in the form of (sys-
tematic) literature reviews, replications and meta-analyses. MRQ also strives to 
contribute to the methodological development of the management research field by 
discussing and advancing the state of the art of conducting literature reviews, replica-
tions, and meta-analyses. To this end, MRQ published several editorials (Block and 
Fisch 2020; Block and Kuckertz 2018; Fisch and Block 2018; Kuckertz and Block 
2021) and articles (Block et al. 2022a; Clark et al. 2021). This editorial extends the 
practical guide for a meta-analysis by Hansen et al. (2012) to a more experienced 
audience. It focuses on new developments regarding meta-analytical structural 
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equation modeling (MASEM1), which is an important and valuable approach for 
meta-analysts.

MASEM involves specifying and testing a structural equation model (SEM) based 
on a meta-analytically derived matrix of all correlations among several model vari-
ables (Viswesvaran and Ones 1995). Analogous to the application of SEM to primary 
data, MASEM has several strengths (Steinmetz et al. 2020). For instance, a MASEM 
allows representing and testing theories in their breadth (Brown and Peterson 1993), 
comparing competing models or theories that entail different implications for the data 
(Harrison et  al. 2006; Hom et  al. 1992), testing mediators as postulated processes 
underlying an effect (Shadish 1996), and adjusting for variables that act as confound-
ers (Pearl 1995; Tennant et al. 2020). An important benefit of a MASEM is that it can 
test models involving variables that were not included in each primary study.

While there is a substantial literature focusing on applications of MASEM in var-
ious fields (e.g., Chapman et al. 2005; Gonzalez-Mulé et al. 2017; Harrison et al. 
2006; Hom et al. 1992; Murayama and Elliot 2012), most methodological articles on 
MASEM focus on procedural or statistical issues, for instance, the formation of the 
meta-analytical correlation matrix (Beretvas and Furlow 2006; Cheung and Chan 
2005; Furlow and Beretvas 2005), the investigation of heterogeneity of effect sizes 
(Cheung 2008, 2018; Yu et  al. 2016, 2018), or multilevel procedures addressing 
effect sizes nested in primary studies (Wilson et al. 2016). Recently, several discus-
sions and new developments evolved in the SEM literature and the broader statisti-
cal literature, which are also of interest for MASEM applications. Our editorial dis-
cusses what these new developments imply for conducting a MASEM. The editorial 
is organized in three parts.

The first part concerns the goals of a MASEM as either a descriptive or a causal 
model. Our perception is that MASEM researchers are often not explicit enough 
about their underlying perspectives or goals. We discuss the inherent assumptions 
and challenges underlying a MASEM to be regarded as a causal model. This discus-
sion is inspired by the recent introduction of graph-theoretical approaches to causal 
inference (Pearl 2009) in the SEM literature stressing the role of causal assumptions 
inherent in any SEM (Bollen and Pearl 2013; Kline 2016; Thoemmes et al. 2018). 
So far, this discussion has not been spilled over to the MASEM literature. We pro-
vide a short general introduction to causal modeling and its general implications, 
followed by a discussion of its implications for MASEM. The goal of this part is to 
help researchers to take a stance when building their model and to judge the degree 
of support for the overall model as well as specific effects.

The second part concerns the consideration of effect size heterogeneity by analyz-
ing potential moderators. In the case of MASEM, this has traditionally been limited to 
categorical moderators (analyzed via multigroup MASEM). We discuss recent meth-
odological developments to investigate continuous moderators of MASEM effects. 
In addition, we briefly introduce two statistical approaches (i.e., location-scale mod-
els and generalized additive models), which enrich the meta-analytical toolbox. Such 
bivariate meta-analytical investigations are often part of a MASEM study.

1 We use the abbreviation MASEM for meta-analytical structural equation modeling as well as for 
denoting specific models.
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The third part concerns the use of statistical tests and p values in a MASEM or an 
additional bivariate meta-analysis. This part is inspired by discussions in psychology 
and related disciplines resulting from the replication crisis (Maxwell et  al. 2015) 
about statistical tests of parameters, the need to distinguish statistical from practi-
cal significance, the fallacy to conclude zero effects from non-significant test results 
(Lakens et al. 2018) or whether to use p values at all (Amrhein et al. 2019; Lakens 
2021; Savalei and Dunn 2015).

2  Part I: Descriptive versus causal perspectives on MASEM

MASEM applies SEM to aggregated data. As with any SEM, its application requires 
an explicit stance towards either a descriptive/predictive or an explanatory goal. The 
implications and challenges of choosing one goal over the other should be clear to 
both the meta-analyst and the recipient: in the predictive mode, a causally correct 
specification matters less. For instance, predictor-outcome relationships can be sub-
stantially confounded or even spurious and nonetheless informative in predictive 
terms. In addition, the agglomerated nature of any meta-analytical procedure (i.e., 
the “apples-oranges problem”) has fewer substantial implications when the goal of 
the meta-analysis is simply an overview of the aggregated or average associations. 
Yet, the interpretation of the results is limited to predictions and researchers should 
be careful not to interpret the results beyond their descriptive realm. In this regard, 
it is astonishing that in some fields, meta-analyses of bivariate correlations are 
regarded as the best available evidence and used when the research question requires 
a causal answer (Luthans 2011).

Matters differ, in contrast, if the researcher intends to interpret the coefficients 
causally. The conditions and assumptions, however, under which causal interpreta-
tions rest are insufficiently considered. In this respect, MASEM shares the fate of 
general SEM that over time experienced a shift from a causal towards a descriptive 
or predictive perspective.2 This shift has resulted in models regarded as merely rep-
resenting one of several options to describe a pattern of correlations among the vari-
ables (Bollen and Pearl 2013; Pearl 2012).

2 While the historical roots of SEM clearly focused on causality (Pearl 2012; Wright 1921), SEM has 
experienced a shift towards data-centered descriptive models. From this perspective, a ‘good’ (i.e., 
acceptable) model is one that adequately describes the data (and not the one that correctly represents 
the causal assumptions). The reasons for this shift are manifold. Among others, they include the domi-
nance of researchers with a primarily statistical perspective, criticisms of the often naive interpretation of 
parameters, or the long lasting influence of positivist views on the social sciences (see in particular Pearl 
and MacKenzie 2018). Associated with this shift was a change towards a non-causal language regarding 
the key concepts (e.g., “covariance structure analysis”, “relationships”, “regression effect”), goals (i.e., 
prediction, description, explanation of variance), and evaluation criteria (i.e., “acceptable” data fit). Only 
recently, causal theorizing has slowly started to re-emerge, strongly influenced by the attempts to incor-
porate graph theory (Elwert 2013; Pearl 2009; Pearl et al. 2016; Rohrer 2018) into SEM and the publi-
cation or update of influential textbooks introducing a change in the perspective on SEM (Kline 2016; 
Mulaik 2009; Shipley 2004).
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Generally, three challenges exist to view a MASEM as a causal model. These 
concern (a) the potential of conceptual and causal heterogeneity due to aggregating 
data reflecting different concepts and causal structures, (b) the necessity to reflect 
upon causal assumptions, expressed by the set of estimated and fixed coefficients, 
as well as the testable implications of these assumptions, and (c) the necessity and 
opportunities of generating a causal identification strategy by incorporating control 
variables and instrumental variables into the model. As a background for the discus-
sion, we briefly introduce graph theory (Pearl 2009) that has gained prominence in 
the social sciences and is a basis to consider and express causal assumptions.

2.1  Introduction to graph theory

In graph theory, a causal model is represented as a graph consisting of nodes rep-
resenting constructs and edges reflecting assumed causal effects. By represent-
ing a causal model as a graph, the researcher specifies a set of claims about causal 
effects as well their absence (i.e., constraints). The latter is achieved by leaving out 
a causal link in the graph. The omission of a link represents the strong assumption 
(Bollen and Pearl 2013) of a non-existing effect similar to the exclusion restriction 
in econometrics (Angrist and Pischke 2015). Although the set of causal assumptions 
is not directly testable, the overall model provides implications for the data in terms 
of covariances and conditional independencies. The latter means that depending on 
the structure of the model, two variables become uncorrelated once other variables 
are statistically controlled for. These conditional independencies denote the testable 
implications of the model. A statistical chi-square test summarizes all testable impli-
cations and tests whether the data (i.e., the covariance matrix) deviate statistically 
from the model-implied covariance matrix, which results from the set of estimated 
effects and constraints. Contrary to predictive regression-type models, this depend-
ence of the estimated parameters on the underlying causal assumptions gives causal 
meaning to the effects and clarifies the conditional nature of any causal conclusion as 
well as the relevance of critically testing the implications of the model (Bollen and 
Pearl 2013; Robles 1996). When it comes to the specification of a meta-analytical 
SEM, however, the literature lacks a discussion about the applicability of these theo-
retical notions and the challenges involved in regarding a MASEM as a causal model.

2.2  The challenge of conceptual and causal heterogeneity

Meta-analyses aggregate results for specific concepts to a broader class of con-
structs guided by some theoretical inclusion rationale. For instance, a meta-analysis 
focusing on predictors of overall firm performance would aggregate various distinct 
performance measures such as profit margin, return on assets, or return on invest-
ment to an umbrella performance construct. Such an aggregation, however, induces 
conceptual heterogeneity referred to as the “apples-oranges-problem” in the meta-
analytical literature (Borenstein et al. 2009). In a MASEM, interpreting the effects 
resulting from averaging the effects of distinct concepts can at least be difficult or 
worse, nonsensical.
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Another challenge concerns causal heterogeneity (Anoke et  al. 2019; Athey 
and Imbens 2016; Pearl 2017), which is especially relevant for MASEM. Causal 
heterogeneity traditionally means that individuals differ in their responsiveness 
to a treatment while the average treatment effect represents the average across 
all individuals. In a MASEM, causal heterogeneity not only results from the 
aggregation of populations with different causal structures but also from the 
aggregation of concepts embedded in varying causal structures. For example, a 
MASEM may involve studies using a set of variables that reflect a full mediation 
structure versus a partial mediation versus a confounder or common cause struc-
ture. Causal heterogeneity can lead to a model misfit and can result in biased 
estimates. The bias increases with a larger number of different aggregated causal 
structures. Causal heterogeneity is a well-known problem in large sample SEM 
applications (Lubke and Muthén 2005; Muthén 1989) and occurs when a single 
SEM is estimated in a heterogeneous sample stemming from several populations. 
To summarize, MASEM researchers should carefully evaluate the extent of con-
ceptual and causal heterogeneity in their sample of primary studies and should 
critically reflect whether conceptual or causal homogeneity can be justified.

2.3  The challenge of causal assumptions and testable implications

A causal model not only involves the specification of hypothesized effects but 
also of zero-effects. In addition, researchers routinely fix error covariances 
between a respective endogenous variable and an outcome variable to zero, 
which reflects the causal assumption of nonconfounding (i.e., there is no influ-
ence of an unmeasured variable on both variables). The role of these constraints 
is essential as they result in the testable implications of a model and allow dis-
tinguishing and choosing between alternative models.

For instance, a simple full mediation model implies several constraints that 
express the causal assumptions of the researcher about the data generating pro-
cess (e.g., no direct effect, no confounding of all three pairs of variables and 
no reverse effects). This model has one testable implication, namely, the condi-
tional independence of the explanatory variable and the outcome variable given 
the mediator. A successful test of this implication represents a contrast to alter-
native models with a direct effect of the explanatory on the outcome variable (in 
both directions), confounding of the mediator-outcome link, and a reverse effect 
of the outcome variable on the mediator. In contrast, a failed test may indicate 
a failure to meet one or several of these assumptions. Whereas the constraints 
allow testing the model, an increased saturation of a model by estimating many 
effects not only implies less (or no) testable implications but also increases the 
number of statistically equivalent models. For instance, a partial mediation 
model has no testable implications and hence, none of the discussed alternatives 
can be differentiated from the target model (Kline 2015; Thoemmes 2015). Even 
more importantly, while the full mediation structure has only four equivalent 
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models, the partial mediation structure has several dozens (Kline 2015). Box 1 
provides a brief description of the background of testable implications.

Box 1: A Brief Description of the Background on Testable Implications of Causal 
Models

While the presented mediation model is a simple example, more complex models follow the same 
principles that are defined by the d-separation rules (Pearl, 2009) and the path tracing rules (Sewall, 
1934). These rules describe characteristics of a path (i.e., any causal or non-causal link between any 
two variables) in a model—that is, correlations and conditional independencies. The path tracing rules 
simply state that any path creates a correlation between the variables unless at least one variable lying 
within the path is a common effect of other variables in the path. For instance, assume the path A → B 
→ C ← D. According to the path tracing rules, A and C are correlated but A is uncorrelated with D as 
C is a common effect (or collider) in this path. Two things should be noted. First, two variables will 
often be linked by several paths, each probably implying and adding up to the overall correlation. As
an example, B and D may be linked by a further mediator Z which, consequently, creates a correlation
between A and D (via Z). Hence, each path has to be considered separately with regard to its correlation-
inducing characteristics. Second, a variable can only ocurr once in a single path to avoid cycles.

In addition, the d-separation rules define whether two variables suddenly become uncorrelated
once on or more variables lying on the same path are statisticaly controlled, stratified, or otherwise 
conditioned on. With regard to the example provided above, A and C become uncorrelated once B is 
controlled but in contrast, A and D become correlated once C is controlled. Both scenerios are denoted 
as path blocking of an open (i.e., correlation-inducing) path versus path opening of a closed (i.e., not 
correlation-inducing) path. The latter case explains such phenomena as supressor effects (Kim, 2019)
or selection bias (Elwert & Winship, 2014). The former scenerio provides the basis for effectively block 
biasing paths created by confounders which we will discuss in the next section.

As models consist of a set of paths, a respective model may have several, one, or no testable 
implication depending on the level of saturation. These implications can either be tested in isolation 
(e.g., with partial correlations) or with the model chi-square test which provides an overall omnibus test 
of all implications. Because it is sometimes difficult to manually derive all testable implications of a 
model, the open source software DAGitty (www.dagitty.net, also contained in the R dagitty package, 
see Textor et al., 2016) can be used to create a path diagram of the target model and that prints all 
testable implications of this model.

Adopting such an explicit reflection on constraints and, hence, testable implications 
contrasts with common practices to discard a model’s chi-square test due to the statis-
tical power that is especially substantial when testing a highly-powered meta-analyt-
ical model. In this regard, researchers often conduct the “converse error” (McIntosh 
2007, p. 1619), whereby the true statement that a trivial specification error leads to a 
significant test in a large sample is wrongly converted to the belief that a significant 
test in a large sample reflects a trivial specification error. While we realize that gaining 
a non-significant chi-square test may be difficult, especially in a MASEM, we likewise 
recommend to (a) reflect the testable implications and their underlying causal assump-
tions and (b) reconsider potential specification errors and alternative models that may 
lead to the observed misfit. For instance, Steinmetz et al. (2020) present the results 
of a meta-analytical mediation model and conclude that the effect of the mediator on 
the outcome variable has a more solid basis than the effects within the set of the two 
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antecedents of the mediator because a reversal of the outcome-mediator effect (e.g., 
A → B ← C instead of A → B → C) would have been in conflict with the fitting full 
mediation model. Box 2 presents an overview of Steinmetz et al.’s (2020) discussion 
and illustrates the application of the mentioned principles.
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2.4  The challenge of developing a causal identification strategy

Auxiliary variables in the form of control variables or instruments are important for 
any empirical model (and thus, MASEM). They represent the researcher’s causal 
identification strategy and are considered “to strip an observed association of all its 
spurious components” (Elwert 2013, p. 247). Unfortunately, the decision to include 
specific auxiliary variables into the model is often based on vague impressions 
about the role of the variables or simply the customs of the respective field. Graph 
theory (Pearl 2009) offers a theoretical framework to decide whether a particular 
auxiliary variable should be included into the model. Depending on its role, includ-
ing a respective control variable may even introduce a bias. The assumed role of 
the auxiliary variable, thus, is part of the overall set of causal assumptions underly-
ing the estimation of the model parameters. A number of conceptual and empirical 
articles provide procedures and guidelines for the consideration of control variables 
(Ferguson et al. 2020; Tennant et al. 2020; Vahratian et al. 2005).3 Based on this lit-
erature, we provide guidelines for MASEM researchers to decide which variables to 
include into the model, which also serves as basis for discussing the limitations and 
implications of the study. The latter allows researchers to formulate more precise 
and informative limitations going beyond the often vague statement that the esti-
mates of the MASEM should not be taken too seriously.

Figure 1 shows a comprehensive generic graph representing all classes of vari-
ables with their varying causal links to either the explanatory variable X or the out-
come variable Y or both. Depending on its role, a variable has to be used as a con-
trol variable or must not be controlled to avoid bias of an otherwise unbiased effect. 
We note, however, that the figure represents a simplistic representation of all classes 
of variables and practical choices may differ when these variables are embedded in 
more complex structures.

The first class of variables concern confounders (class C1) that act as common 
causes of both X and Y (Elwert 2013). Depending on the sign of the target effect 
and the effects of C1, ignoring C1 will downward or upward bias the target effect. In 
the extreme case, the existence of a confounder will lead to a spurious target effect 
where in fact no effect exists. If C1 is not or cannot be measured or coded, there are 
two options. The first is the possibility to identify variables of class C2 (“surrogate 
confounders”, see Tennant et al. 2020) that mediate the effect of C1 either on Y (as 
depicted in the figure) or X. Adjusting for C2 will—in graph-theoretical parlance—
block the confounding path (Pearl 2012, see Box 1).

The second option is rather unknown in the SEM literature but the standard 
approach in econometrics (Angrist and Krueger 2001; Wooldridge 2012), namely 
the identification of instrumental variables. In Fig. 1, these are the variables of 
class W1 and W2. Instruments are variables which (a) are strongly related to X 
(relevance criterion), (b) have no direct effect on Y (exclusion restriction), and 

3 As a practical help, the DAGitty software allows specifying a model including presumed auxiliary var-
iables and their expected role. Therefore, DAGitty will inform the researcher which auxiliary variables 
actually allow identifying the effect and whether this is possible at all.
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(c) do not correlate with the error term and, hence, with omitted further causes 
of Y. Whereas econometricians traditionally analyze instruments with a two-
stage-least-squares regression, instruments can also be incorporated in a SEM or 
MASEM (Maydeu-Olivares et  al. 2019) and thereby enhance the estimation of 
the target effect if not all variables of class C1 or C2 can be considered. As Fig. 1 
illustrates, being “related” to X can mean that the instrument either is a cause 
of X (i.e., W1) or shares a common cause (i.e. in the case of W2 sharing W1 as 
common cause).

Three further issues should be noted: first, simply adjusting for an instrument 
will lead to an amplification of a confounding bias of the X–Y effect and should be 
avoided (Ding et al. 2017; Steiner and Kim 2016). Second, even if W1 or W2 has an 
effect on Y, thus invalidating the exclusion restriction, adjusting for a mediator of 
this effect will turn the variable into a valid conditional instrument (Van Der Zander 
et al. 2015). Third, considerations of the role of variables as potential instruments 
are conducted on a theoretical level, not ensuring that the instrument can effectively 
be used in a finite sample with potentially limited statistical power or weak effect 
size (Bound et  al. 1995). This difference reflects the importance of distinguishing 
between issues of causal identification and statistical estimation (Morgan and Win-
ship 2007). For instance, W2 may principally be considered an instrument but the 
sample estimate of the relationship with X may be too low to actually employ it as 
such.

In contrast to these classes of auxiliary variables that have to be controlled or 
considered as instruments, the variables belonging to the remaining classes in 
Fig. 1 should not be included as controls. The variables of class M are mediators 
that transmit the effect of X on Y. Simply adjusting for M will block the indirect 
effect and give a biased impression of the total effect of X on Y (overcontrol bias, 
see Elwert 2013). However, adjusting for M may be a fruitful approach to rule out 
alternative pathways that are not the focus of the theoretical argument underlying 
a hypothesized effect. As a prominent example, experimental researchers have to 
rule out that the treatment effect is due to demand characteristics—that is, cues 
provided by the context of the experiment that inform participants what the goal 
of the experiment is (Orne 1962). From an SEM perspective, hence, measuring 

Fig. 1  Classes of potential auxiliary variables. Note. X = Independent variables, Y = dependent or out-
come variable, C = confounders or surrogate confounders, W = instruments, S = selection factors or col-
liders, Z = variables with several plausible causal roles
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and controlling for demand characteristics would reveal whether there is an indi-
rect as well as a remaining direct effect. It should be noted that including M in a 
MASEM as an explicit mediator achieves all goals, that is, the estimation of the 
indirect and direct effects. However, it is the unreflected use of M as a control 
variable (i.e., specified as a common cause of X and Y or a covariate of X) that is 
disadvantageous.

The variables of class S1 represent selection factors (Elwert and Winship 2014). 
While selection effects are a danger for any empirical study and concern survey 
studies as well as interventions (in the form of attrition bias), controlling for a vari-
able that is caused by the outcome will bias the effect of X on Y. Again, including 
S1 as a further outcome in the MASEM will not bias the effect as no adjustment of 
the target effect occurs. Variables of S2 are common outcomes of X and Y and rep-
resent colliders. Controlling for a collider will introduce bias.

Finally, the researcher may sometimes be uncertain about how the relationship 
between a potential control variable Z and either X or Y or both can be causally 
represented (symbolized as circles instead of arrow heads or origins). A potential 
avenue in such a scenario could be to run the model with and without controlling for 
Z. As a practical help, Fig. 2 presents a decision tree containing all critical questions 
a researcher has to answer when deciding whether to include a variable as a control 
variable or not. Apart from reflecting on the potential role of an already focused 
variable, a strategy is to start considering potential causes of X and then move for-
ward from there. It should be noted, however, that the figure represents most but not 
all scenarios, for instance, situations in which one variable is a confounder as well as 
a collider.

Fig. 2  Decision process 
underlying the consideration of 
auxiliary variables
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Box 3: Critical Decisions when Considering Potential Auxiliary Variables

Figure 2 describes the theory-based considerations when deciding whether a variable should be 

adjusted for (i.e., used as a control variable) or used as an instrumental variable or whether it should be 

discarded either to avoid a bias or because the variable is irrelevant. As an example, a mediator variable 

should be discarded as a potential control variable simply as the answer to the first question is “yes” 

(i.e., the variable is an outcome of X). A second example would be that of a surrogate confounder (C2 

in Figure 1): C2 is neither affected by X nor Y; it has no effect on X but its relationship with X results 

from the common influence of a determinant of X (i.e, C1 in Figure 1). As it has an effect on Y, C2 is 

involved in a non-causal, biasing path linking X with Y. Hence, C2 has to be adjusted for to block this 

path. As with Figure 1, we emphasize that the flowchart represents most common but not all possible 

scenarios. An example for the latter is when a variable is both a confounder and a collider (in different  

paths). We, hence, recommend to create a full graph involving the relevant variables and their inter-

relationships.

Once control variables have been identified, the question arises how to incor-
porate them into the model—especially if the model contains several target vari-
ables in a more complex system. One possibility is that the researcher specifies only 
those effects of the control variable on its expected outcomes variables and fixes all 
other effects to zero. The other scenario is to estimate all effects of the control vari-
able on all model variables in the SEM. The advantage of the first approach is that 
the approach is parsimonious and represents a strong match with the researcher’s 
theoretical assumptions. However, the approach adds new constraints to the already 
existing constraints concerning the target variables. While this is overall beneficial 
as it increases the testable implications, failure and misfit may be due to specifica-
tion errors in the structure of the control variables. The second scenario will block 
the biasing effects of all considered confounders but makes it more difficult to notice 
specification problems by means of a misfit. A good compromise is to start theo-
retically considering a full set of effects of the control variables and then disregard 
those that are theoretically unlikely (Ferguson et al. 2020). We emphasize that this 
is done in the specification phase of the project and should not be confused with the 
bad practice to estimate all effects and then eliminate non-significant coeffcients.

3  Part II: Analyses of heterogeneity in MASEM effects and bivariate 
meta‑analyses

The analysis of heterogeneity is an important goal of any meta-analysis. While tra-
ditional approaches towards analyzing heterogeneity for complete MASEMs were 
restricted to subgroup analysis and a multigroup approach where the groups refer to 
levels of a categorical moderator, the approach by Jak and Cheung (2020) allows to 
analyze continuous moderators. However, even this approach assumes the linearity 
of the moderator effect (e.g., the effect size of interest linearly decreases or increases 
with the level of the moderator variable). Recently, two approaches have been intro-
duced to meta-analysis and incorporated in the R package metafor (Viechtbauer 
2010), namely the application of nonlinear meta regression analysis by means of 
generalized additive models (Wood 2017) and location-scale models (Viechtbauer 
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and López‐López 2021). While these two approaches focus on bivariate correlations 
(and not MASEM parameters), they should help to understand the heterogeneity of 
target relationships.

3.1  Testing moderators of MASEM effects

When the focus is on singular effect sizes, for instance, on standardized mean differ-
ences or correlation coefficients, researchers usually employ a subgroup analysis or 
meta-regression. In a subgroup analysis, one conducts a separate meta-analysis for 
each category of a categorical moderator (e.g., student samples vs. employee sam-
ples) and the results are compared in a descriptive way or by means of a statisti-
cal difference test. In contrast, a meta-regression includes continuous or categorical 
moderators (as dummies) which allows to estimate their effects while controlling 
for other moderators and avoiding the reduction in sample size inherent in subgroup 
analysis (Thompson and Higgins 2002).

While the analysis of moderators is straightforward in these singular-effect-size 
scenarios, things are more complicated in case of a MASEM. For categorical mod-
erators, one approach is to separate studies according to the levels of the modera-
tor and run the MASEM in each of the sub-samples. For instance, Steinmetz et al. 
(2021) conducted a MASEM in several sub-samples (e.g., student samples vs. broad 
samples) and found little differences in the structural effects. Such an approach, 
however, requires that all possible pairs of correlations are available in the sub-sam-
ples, which is often not the case.

Whereas such a sub-sample analysis is possible with categorical moderators, it 
is not recommended in the case of continuous moderators. Creating artificial sub-
groups or subsamples along some cut off points (e.g., a dichotomization along a 
median split) leads to a loss of information and, thus, power resulting from grouping 
diverse studies or populations into seemingly homogeneous subgroups (MacCallum 
et al. 2002). A common solution to this problem is to estimate the MASEM for the 
total sample of studies, and then to analyze moderators in a meta-regression analy-
sis with the bivariate correlation coefficient (instead of the structural effect) as the 
dependent variable.

In a recent article, Jak and Cheung (2020) presented an approach that allows test-
ing for categorical or continuous moderators of the structural effects of the MASEM 
instead of the bivariate correlations. Their approach works by integrating study-
specific correlation matrices and effects with the estimation of the overall MASEM 
based on the average correlation matrix. Further, the consideration of the study spe-
cific matrices allows testing the interaction between the study-specific effects and 
the moderator.4

4 To ease the diffusion and applicability of the approach, Jak and Cheung provide an open-source shiny 
app that can be run online (via https:// sjak. shiny apps. io/ webMA SEM/) or locally on the researcher’s 
computer after downloading and running the code of the software R provided on https:// osf. io/ x8y7f/. 
Shiny apps establish an interactive application with a graphical interface that allow researchers to import 
data sets and run procedures—in our case the overall MASEM and moderator analyses.

https://sjak.shinyapps.io/webMASEM/
https://osf.io/x8y7f/
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A benefit of this approach is its characteristic as a random effect model that allows 
to reflect true differences between the primary studies and to isolate them from mere 
sampling errors. Missing variables (and, thus, missing correlations among them) in 
the primary studies are considered by estimating the model with a full information 
maximum likelihood estimator (Allison 2003), assuming that the mechanism caus-
ing missing correlations is either missing completely at random or missing at ran-
dom. That is, the missingness of the correlation should not be caused by the size of 
that correlation (see an easy graph-theoretical introduction to missing data in Thoe-
mmes and Mohan 2015). In such a scenario, the missingness is non-random and the 
application of the approach induces biases.

The most important limitation of the approach by Jak and Cheung (2020) is the 
impossibility to consider multiple effect sizes per study (Wilson et al. 2016). Multi-
ple effect sizes occur when several specific effect sizes are coded as representing the 
same umbrella construct. For instance, there are multiple ways to conceptualize firm 
performance (e.g., profit margin, return on assets). If a primary study uses several of 
these variables but the meta-analyst intends to analyze relationships on an aggregate 
and overall performance level, then the meta-analyst faces the problem of how to 
treat these multiple effect sizes. In the current debate on how to deal with multiple 
observations per study, using all available correlations but considering the nested 
structure of the data (e.g., via multilevel modeling) is favored (see a short discussion 
in Hansen et al. 2012). The approach by Jak and Cheung so far does not allow inte-
grating a multilevel perspective (but this is planned in the near future).5

3.2  Meta regressions with generalized additive models (GAMs)

Generalized additive models (GAMs) are a progression from generalized linear 
models, that again generalize the traditional linear model with Gaussian errors to 
several types of distributions (e.g., Poisson, Binomial, Gamma). GAMs build on 
these type of approaches by generalizing the functional relationship between two 
variables to nonlinear functions of one or several predictor variables. While nonlin-
ear effects can be incorporated into linear models by introducing polynomials, such 
an approach has limitations (Wood 2017). Most notably, real data often do not con-
cur with the strict functional form implied by the polynomial, which leads to mis-
fit, a lack of power, and bias. GAMs enable fitting nonlinear smoothing functions, 
whose exact form is estimated from the data and, thus, is not determined ex ante by 
the researcher.

In a meta-analytical context, the use of a meta-GAM would allow to estimate 
whether the relationship between the predictors and the effect size is nonlinear or 
whether a linear relationship would be sufficient. In the case of a nonlinear mod-
erator effect, GAMs have a stronger statistical power to reject the null of a zero 

5 In the meantime, researchers could first estimate an overall MASEM (under the assumption of struc-
tural homogeneity) with a multilevel approach (Wilson et al. 2016) and then estimate a moderator model 
by using within-study composites. While this is clearly not optimal, it allows testing for moderator 
effects, which will represent the average effect across the multiple effect sizes aggregated. In addition, 
the comparison of both approaches will allow evaluating the relevance of the multilevel approach.
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moderator effect. More importantly, some nonlinear (e.g., curvilinear) relationships 
will not be detected with a linear model even when the statistical power is strong.

3.3  Location‑scale models

Location-scale (LS) models are a “new trick for the trade” recently added to the 
meta-analyst’s toolbox (Viechtbauer and López‐López 2021). LS models come into 
play when one of the core assumptions of the linear model (and thus, meta-regres-
sion) fails. Whereas the standard linear model assumes homoscedasticity in order to 
estimate standard errors, which are the basis for statistical tests and the computation 
of confidence intervals, LS models are appropriate when heteroscedasticity varies as 
a function of the same or other predictors of the meta-regression model.

LS models consist of two parts. The location part focuses on the outcome of any 
linear model—that is, the conditional mean of the outcome variable modelled as a 
function of the predictors. A nonzero estimate in this part would signal that the effect 
size constantly increases or decreases with the predictor. The scale-part, in contrast, 
focuses on the conditional variance. A nonzero estimate in this part would signal 
that the variance of effect sizes across studies systematically increases or decreases 
with the predictor. Both components are integrated in one analytical approach and 
may concern the same or different predictors for both components. A potential (ficti-
tious) example in the meta-analytical field could be a moderator effect of the GDP 
of a country on both the mean level of a relationship between two target variables 
as well as their variance across studies. The location part of the LS model would 
answer the question whether the relationship constantly increases or decreases with 
increasing GDP—the scale part would reveal whether studies in countries with 
lower GDP have a stronger variation compared to countries with higher GDP (e.g., 
due to resource constraints). Hence, LS models can be a fruitful approach to enlarge 
the tools available to analyse the heterogeneity of study results.

4  Part III: Statistical tests

4.1  Statistical significance versus practical significance

Apart from the test of the overall model, the individual effect sizes matter. Research-
ers typically report the average estimated effect size, the associated standard error, 
and test whether the estimate is statistically different from zero. Yet, due to the high-
powered meta-analytic data, solely focusing on statistical significance creates the 
problem of statistically significant albeit practically trivial estimates. Consequently, 
relying on null-hypothesis testing as a test of a theoretically based hypothesis and 
practically relevant effect is only partially informative, particularly with large sam-
ples of primary studies. In one of our own recent MASEMs (Block et al. 2022b), 
involving sample sizes of over N = 100,000 firms, for instance, resulted in standard-
ized effects of β = 0.01 being significant on an alpha level of 0.05.
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In addition to issues of triviality and practically insignificant results, there is a 
large literature on typical problems associated with using significance tests. These 
issues include, among others, the difficulties to correctly interpret the p value (see 
next section), the application of a mindless ritual including using a fixed alpha level 
or the tendencies to interpret very small p values as a form of effect size in itself 
(Gigerenzer 2004). Based on these criticisms and despite the value of null-hypothe-
sis testing (Lakens 2021; Savalei and Dunn 2015), statisticians have recommended 
placing more emphasis on the confidence intervals. Likewise, scientific associa-
tions such as the American Psychological Association have recommended their use 
explicitly for decades (APA 2002; Wilkinson 1999). Acknowledging the widespread 
emphasis that researchers routinely also misinterpret confidence intervals (Hoekstra 
et al. 2014) as the interval including the true parameter with a 0.95 probability,6 a 
recent study by Amrhein et al. (2019) recommended interpreting and using it as a 
compatibility interval, that is, the range of parameters being compatible with the 
data. Such an interpretation and its increased emphasis especially in meta-analyses 
has the following advantages.

First, confidence intervals reflect the implicit characteristics of any estimation 
process resulting in an estimate surrounded by tremendous uncertainty. The confi-
dence interval clearly communicates this uncertainty and may create caution on the 
side of the researcher when interpreting the results. We realize that existing studies 
investigating the interpretation of confidence intervals present mixed results for this 
claim (Savalei and Dunn 2015) but nonetheless recommend using the interval in 
this regard. Second, relying on the confidence interval increases the value of meta-
analyses and their updates (Lakens et  al. 2016), as increasing the empirical basis 
for the target coefficient will increase its precision and reduce uncertainty. As meta-
analysts, we have experienced several times a rejection of a meta-analysis study, as 
reviewers doubted its usefulness in cases where primary studies had found support 
for their hypothesis. Focusing on a confidence interval would clarify the substantial 
increase in precision when meta-analysing results of primary studies.

Finally, while we still think that null hypothesis testing has its merits, having a 
highly powered meta-analysis will lead to small coefficients becoming significant. 
Hence, issues of practical versus statistical significance become prevalent and 
require the interpretation of coefficients with regard to the application of choice. For 
instance, some small coefficients may be practically insignificant with regard to their 
causal or predictive role but can gain significance on a time-related or hierarchically 
aggregated level. An example for a time-related aggregation is that estimated effects 
always reflect some timely interval. Even if these effects are small, aggregating sev-
eral of the time spans can result in a substantial long-term effect in cases where the 
effects accumulate. Such an aggregation, however, depends on the dynamic charac-
teristics of both cause and effect and makes longitudinal studies and meta-analyses 

6 Such an interpretation contradicts frequentist statistics and would regard the interval as fixed but the 
parameters as a randomly (from sample to sample) varying variable. However, the opposite is true and 
the parameter is a fixed entity while the estimated interval is the randomly varying entity. Hence, it is 
not the parameter which has a probability to be in the interval but the interval which has a probability of 
including the parameter.
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valuable. An example for a hierarchical aggregation is a study showing estimated 
effects that represent the role of a variable for the average individual unit. While 
this estimated effect on the unit level may be negligible, the implications for a set of 
many units (e.g., a whole industry) can be substantial due to the aggregation across 
these units. This is comparable with a low effect of a drug on a person but a sub-
stantial relevance across a large number of individuals in a society. The key issue 
is however, the difference between the levels of analysis and researchers should be 
careful not to commit an atomistic or ecological fallacy.

4.2  Testing the null hypothesis (somewhat)

An ongoing problem when interpreting the results of statistical tests in primary 
studies or meta-analyses is how to interpret a non-significant coefficient. The most 
prevalent interpretation is that the effect is zero or there is no mean difference 
between the analysed groups (Lakens 2017) whereas the adequate perspective 
would be that the study only could not find enough evidence to reject the H0 of 
a null effect. Likewise, it sometimes occurs that the researcher explicitly states a 
null hypothesis. For instance, when analyzing the relation between management 
rank, knowledge, and performance, Hunton et al. (2000) formulated the hypothesis 
that “among manager-level managerial accountants, there will be no relationship 
between technical (managerial accounting) knowledge and job performance” (p. 
754). Testing for exact values of a coefficient, however, is impossible as the p val-
ues of significance always reflect the integral of the sampling distribution equal or 
larger a test criterion (e.g., the critical z value of 1.968 that reflects a probability 
of 0.05 being equal or larger than this value under the true effect of z = 0).

Nonetheless, concluding a null effect based on empirical analyses is theoretically 
and practically fruitful (Stanton 2020). A practical solution to the aforementioned 
impossibility to test an exact zero-effect is to test its equivalence with zero (Lakens 
2017; Lakens et al. 2018), which means that the researcher specifies an interval around 
zero that can be regarded as equivalent to zero from a theoretical or practical perspec-
tive (Wellek 2002). Such an interval requires the researcher to clarify what counts as 
meaningful. An equivalence test is conducted with the TOST (two-one-sided-tests) 
procedure initially developed by Schuirmann (1987). In this approach, the researcher 
specifies the aforementioned interval around the null effect, with the lower (θlow) and 
upper bound (θhigh) marking the boundaries of this interval that contain irrelevant 
values of θ. Then, two compound one-sided H0 tests are performed; one testing the 
alternative hypothesis that the true effect size θ is statistically smaller than θhigh (H0: 
θ ≥ θhigh) and the other that the observed effect size is statistically larger than θlow (H0: 
θ ≤ θlow). If the compound test results in a p value smaller than the decision criterion 
(e.g., p = 0.05), then the true effect size must lie between both boundaries and can be 
considered equivalent to zero with an overall type I error probability of 0.05.

Lakens notes that equivalence tests that test some pre-described area lead to 
more substantial hypotheses than classical hypothesis tests, in which the conclu-
sion is merely “nonzero”. It should, however, be noted that the practical usefulness 
of equivalence tests rises and falls with the sample sizes and their consequential 
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statistical power and will result in a non-significant result in  situations where 
the true effect size is very close to zero. This fact however, highlights the TOST 
approach as an ideal approach for meta-analyses, where, due to the large sample 
size, trivial mean effect sizes may become statistically significant. However, even if 
the procedure is conducted in studies with a moderate sample size, non-significant 
results will increase the researcher’s sensitivity towards the role of power for inter-
preting classical non-significant effects. Consequently, erroneous conclusions of a 
zero effect based on a non-significant classical test will be avoided.

Box 4: The TOSTER Package in R

Lakens (2017) has created the R package “TOSTER” that contains a number of functions for 

different kinds of effect sizes (e.g., correlations, Cohen’s D) in which the measured effect size, standard 

error, and boundaries of the interval are fed in. The functions perform a classical null-hypothesis test as 

well as an equivalence test and report p-values and confidence intervals of both. Naturally, the choice 

of the boundary is critical and has to be informed by practical and theoretical criteria (see Stanton, 2020, 

for a discussion). Often, however, theoretical and practical issues can depart because theoretically small 

and irrelevant effect sizes can nonetheless be practically relevant, especially when considering a timely 

or hierarchically aggregated form (as discussed in the former section). One disadvantage--especially 

from the perspective of conducting a MASEM--is that the package does not allow to test the null 

equivalence of a regression or structural coefficient. This, however, can be bypassed by calculating the 

partial correlation coefficient from the meta-analytic correlation coefficients and applying TOSTER to 

this coefficient. Partial correlation coefficients can be computed in the R software by means of the 

partial.r-function in the psych-package (Revelle, 2022). Knowledge which variables to include in the 

conditioning set, again, can be based on the d-separation rules discussed earlier (Shipley, 2004).

4.3  Bayesian approaches towards meta‑analyses

While null-hypothesis significance testing (NHST) is the standard in most disci-
plines, the use of Bayesian statistics, either as an addition or as an alternative, is on 
the rise. And whereas statisticians arguing for one or the other approach routinely 
engaged in heated debates, practical researchers were either unaware of these dis-
cussions or, due to the lack of easily applicable software solutions, refrained from 
applying such approaches. Since the latter has considerably changed in the last 
years, applying a Bayesian approach to regression (Kruschke et al. 2012; Winter and 
Bürkner 2021) or meta-analysis (Anderson and Maxwell 2016; Williams et al. 2018) 
has become possible for applied researchers. One suitable, comprehensive, and thus 
powerful approach has been provided in form of the brms package that is run within 
the open source software R (Bürkner 2017; Nalborczyk et al. 2019).

Bayesian meta-analyses can be applied as a means to estimate the subjec-
tive probability resulting from updating prior beliefs with new data for a range of 
effect sizes. Bayesian methods rely on Bayes’ theorem in probability theory (Bayes 
1763) and proceed in three steps: First, a priori beliefs (from theory or prior empiri-
cal research) about the relationship of interest are formulated (the prior). Next, a 
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probability of occurrence of the data given the prior is assumed (the likelihood func-
tion). Then, data are used to update the prior. The result is the posterior distribution, 
which is a probability density function of the effect size of interest. Hence, Bayesian 
meta analysis does not simply provide a point estimate or a confidence interval but 
rather an entire distribution function showing how likely an effect is. With Bayesian 
analysis, it is thus possible to make statements in terms of likely or unlikely effects, 
which is not possible with NHST but very intuitive for practitioners. In addition, 
especially when it comes to updates of former meta-analyses, Bayesian approaches 
have specific advantages. The results of the former meta-analysis can be used as a 
prior and the result of the Bayesian meta-analysis with the updated data tells the 
researcher whether the estimated relationships have changed (substantially) and an 
update was necessary. It should be noted, however, that even though focusing on the 
posterior distribution and defined ranges of values and their probability is attrac-
tive, such a focus comes at the cost of sacrificing a clearly defined error rate that the 
researcher is willing to accept.

5  Conclusion

In this editorial, we discussed several new developments in the meta-analytical field 
and the broader applies statistical literature with a focus on MASEM and accompa-
nying bivariate meta-analytical investigations. As with any empirical approach, clar-
ifying the epistemological goals of the analysis is most central, in particular whether 
the goal of the MASEM is descriptive, predictive or causal. With a causal goal, a 
meta-analysis of experimental primary studies are the optimal approach and golden 
standard. With non-experimental studies, a MASEM has advantages over the mere 
aggregation of correlation coefficients. For this case, our editorial presents a number 
of challenges, opportunities, and practical guidelines along the “new tricks of the 
trade” to improve the validity and quality of the MASEM.
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