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Abstract
The European gas market is implemented as an entry-exit system, which aims to decouple
transport and trading of gas. It has been modeled in the literature as a multilevel problem,
which contains a nonlinear flow model of gas physics. Besides the multilevel structure and
the nonlinear flow model, the computation of so-called technical capacities is another major
challenge. These lead to nonlinear adjustable robust constraints that are computationally
intractable in general. We provide techniques to equivalently reformulate these nonlinear
adjustable constraints as finitely many convex constraints including integer variables in the
case that the underlying network is tree-shaped. We further derive additional combinatorial
constraints that significantly speed up the solution process. Using our results, we can recast
the multilevel model as a single-level nonconvex mixed-integer nonlinear problem, which
we then solve on a real-world network, namely the Greek gas network, to global optimality.
Overall, this is the first time that the considered multilevel entry-exit system can be solved
for a real-world sized network and a nonlinear flow model.
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1 Introduction

The European gas market is organized as a so-called entry-exit system. This market structure
was introduced as a result of the European gas market liberalization [7,8] with the main goal
to decouple transport and trading of natural gas. To this end, the market system is split into
multiple levels, in which the transmission system operator (TSO) and gas traders interact
with each other. The traders book capacities at nodes in the network, typically for a longer
time period, e.g., months. They then nominate every day the amount of gas they want to
trade at this node. To determine the capacity that can be booked at a point, the TSO allocates
technical capacities in advance. These technical capacities are the main tool to decouple
the transport and trading of gas. To achieve this goal, the TSO has to guarantee that every
nomination below these technical capacities—i.e., infinitely many balanced load flows—can
be transported through the network. As a consequence, gas trading within these technical
capacities is no longer explicitly restricted by the actual transport of gas. The advantage of
this setup is that the traders can completely ignore the physical network and that they only
have to know the technical capacities that have been announced by the TSO.

The main goal that the entry-exit-system is meant to achieve is the “effective separation of
supply and production activities from network operations” [7]. On the other hand, the entry-
exit-system has some obvious drawbacks. By decoupling the different steps it is expected
that economic inefficiencies arise. It is, however, very difficult to quantify the welfare losses
of this system, which is the goal of the multilevel model studied in this paper. From a math-
ematical point of view, the allocation of technical capacities leads to a highly challenging
nonlinear adjustable robust problem, which is one of the major computational challenges of
the entry-exit market organization. For a general overview about adjustable robust optimiza-
tion, we refer to [1,36] and the references therein. We will show how one can overcome these
mathematical difficulties to analyze an entry-exit-system for a tree-shaped network with a
nonlinear gas flowmodel. Amultilevel mathematical model of an entry-exit-system has been
proposed in [14], where it is also shown that it can be reformulated as an equivalent bilevel
model under suitable assumptions. In a stylized way, the considered entry-exit system can
be described along four subsequent and interconnected levels. First, the TSO has to allocate
technical capacities to all nodes of the network. Afterward, the TSO and the gas traders sign
mid- to long-term booking contracts in which the traders buy node-specific capacity-rights
for the maximal injection or withdrawal of gas. The sum of these bookings at every node
of the network is bounded from above by the previously allocated technical capacities. On
the day-ahead market, the traders then nominate the amount of gas that they feed in or with-
draw under the condition that these amounts are below their booked quantities. Lastly, the
TSO operates the network such that the requested amount of gas is transported through the
network.

The model in [14] does not prescribe the physical model underlying the gas flow. For sim-
plified linear flowmodels, this model can be solved on stylized small and passive (but cyclic)
networks, i.e., networks without active elements such as compressor stations or (control)
valves; see [2]. Unfortunately, the techniques exploited in [2] cannot be applied to nonlinear
flow models. In this paper, we focus on solving the multilevel problem for a nonlinear flow
model. Since switching from a linear to a nonlinear flow model makes the computation of
technical capacities much more challenging, we need to restrict ourselves to only consider-
ing tree-shaped networks. Our results allow for the first time to solve a multilevel entry-exit
gas market model in a real-world sized network, namely a passive version of the Greek gas
network.
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Since even linear multilevel problems are highly challenging in general, see [17,20], and
since we additionally consider nonlinear flow models on top of the multilevel structure,
we need to make the following assumptions. First, the considered multilevel market model
in [14] is based on the assumption of perfect competition among gas traders. Including
strategic interaction is out of scope of this paper since strategic interaction alone leads to
computationally challenging models in this context; see, e.g., [13]. Second, many different
approaches exist for modeling gas physics. For a comprehensive overview see, e.g., the book
[26] and the survey article [28] as well as themany references therein.We assume that our gas
flowmodel represents a stationary potential-based flow and that the network does not contain
active elements such as compressor stations or control valves. These assumptions allow us
to consider the classic Weymouth equation for gas flows, which we formally introduce in
Sect. 2. However, our findings hold for any nonlinear potential-based flow model under mild
assumptions.

Let us note that the choice of modeling the gas physics directly influences the com-
putational complexity of computing technical capacities, bookings, and nominations. For
capacitated linear and linear potential-based flows, deciding the feasibility of a nomination is
in P; see [5,19,24]. However, it is NP-hard in case of active elements; see [34]. Deciding the
feasibility of a booking can be done in polynomial time for linear potential-based flows as
well as in tree-shaped and single-cycle networks in case of nonlinear potential-based flows;
see [21,22,29]. On the contrary, it is coNP-complete for capacitated linear flows, see [19],
and it is coNP-hard for nonlinear potential-based flows; see [35]. In [32], structural properties
such as (non-)convexity regarding the sets of feasible nominations and bookings are proven
w.r.t. different models of gas transport. Finally, the computation of maximal technical capac-
ities is NP-hard for capacitated linear and nonlinear potential-based flows even on trees; see
[31]. Consequently, solving the considered multilevel entry-exit model including nonlinear
flows poses a big challenge.

Our contribution is the following. We use the bilevel reformulation of the multilevel
entry-exit gas market model presented in [14] and derive, as in [2], an exact single-level refor-
mulation. In contrast to [2], we consider a nonlinear flowmodel of gas transport. The obtained
single-level reformulation is still computationally intractable since it contains infinitelymany
nonlinear adjustable robust constraints that model technical capacities. We then derive for
these constraints an equivalent finite-dimensional reformulation for the case of tree-shaped
networks. This reformulation provides nice properties such that it consists of finitely many
convex constraints including newly introduced integer variables. We further derive addi-
tional combinatorial constraints using the tree-shaped network structure that significantly
speed up the solution process. Overall, we obtain a finite-dimensional nonconvex mixed-
integer nonlinear single-level reformulation of the multilevel entry-exit gas market system.
We then apply our results to solve the entry-exit model for a real-world network, namely the
Greek gas network without active elements, to global optimality. Our computational results
demonstrate the effectiveness of our techniques since the majority of the instances can be
solved within 1h. We further show that the additional combinatorial constraints are of great
importance to achieve these short running times.

The remainder of this paper is structured as follows. In Sect. 2, we review the multi-
level model and its bilevel reformulation as given in [14]. We then present the single-level
reformulation in line with [2] and derive further model improvements in Sect. 3. Afterward,
we handle the nonlinear adjustable robust constraints regarding the technical capacities in
tree-shaped networks; see Sect. 4. In Sect. 5, we derive additional combinatorial constraints
for the computation of technical capacities that significantly speed up the solution process.
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Finally, we apply our findings to solve the entry-exit model for the real-world Greek gas
network without active elements in Sect. 6.

2 Amultilevel model of the entry-exit gas market system

In this section,webriefly review theoptimizationmodel of theEuropean entry-exit gasmarket
developed in [14]. Its structure is given by the European directive [7] and the subsequent
regulation [8] as a result of the European market liberalization. As in [14], we informally
describe the four decision steps that correspond to the timing of the considered entry-exit
market. We then go into more detail for the bilevel model that is the basis for our further
investigations. The four steps of the entry-exit gas market system can be briefly outlined as
follows:

(i) Allocation of technical capacities and specification of booking price floors by the TSO.
(ii) Booking of capacity rights by gas traders.
(iii) Nomination of gas within the booked capacities by gas traders at the day-ahead market.
(iv) Transport of the nominations by the TSO at minimum costs.

In Section 3 of [14], it is shown that the gas market model can be formulated as a bilevel
model. The upper level (4) represents the first and fourth step, in which the TSO takes
action. The lower level (5) corresponds to the second and third step, in which the gas traders
interact with each other. We note that for this model, the assumption of perfect competition
is essential. Otherwise, combining step 2 and 3 leads to a multi-leader multi-follower game,
which can be modeled as an equilibrium problem with equilibrium constraints; see, e.g., the
recent paper [13] in which the strategic setting is studied in detail. A visualization of this
bilevel reformulation is given in Figure 3 of [14].

In the following, we discuss the notation and motivate the objective functions and con-
straints of the bilevel model.

We first introduce some basic notation regarding the considered gas networks.Wemodel a
gas network as a directed and weakly connected graphG = (V , A)with nodes V and arcs A.
The set of nodes is partitioned into the set of entry nodes V+, at which gas is injected, the
set of exit nodes V−, at which gas is withdrawn, and the remaining inner nodes V0. We note
that the model allows for multiple gas traders i at any single node of the network, i.e., i ∈ Pu

for u ∈ V+ ∪ V−. Moreover, we consider multiple time periods t ∈ T of gas trading and
transport with |T | < ∞. Due to the general hardness of the multilevel model, we consider
stationary gas flow without active, i.e., controllable, elements such as valves or compressors.
In the upper level (4), the TSO allocates technical capacities qTC, specifies booking price
floors πbook, and is responsible to transport the gas in accordance with the nominations to
maximize the total social welfare in the considered market. The decision variables of the first
level are the technical capacities qTC, the booking price floors πbook, and the pressure and
flow variables (p and q , respectively) to express the state of the network for each time period
t ∈ T . Throughout this paper, we consider the optimistic notion of bilevel optimization.
Thus, the leader also optimizes over the optimal solutions of the lower-level problem, which
makes the bookings qbook and the nominations qnom variables of the upper-level problem as
well.

The objective function (4a) represents the total social welfare aggregated over the con-
sidered time periods T . Further, cvari are the variable production costs of a gas seller i ∈ Pu

at node u ∈ V+. For a gas buyer i ∈ Pu at node u ∈ V−, elastic demand is modeled by the
inverse demand function Pi,t . This function models the marginal price tolerance as a function

123



Journal of Global Optimization (2022) 82:627–653 631

of the demand. Using inverse demand functions is standard in such micro-economic settings;
see, e.g., the seminal textbook [23]. There it is also justified that these functions Pi,t are con-
tinuous and strictly decreasing, whichwe assume in the following for all i ∈ Pu, u ∈ V−, and
t ∈ T . We discuss the transportation costs after we have introduced the physical modeling
of the gas transport.

Next, we discuss the core regulatory constraint. Constraint (4d) ensures that all balanced
nominations that comply with the technical capacities, i.e.,

N (qTC) :=
⎧
⎨

⎩
qnom ∈ RV+∪V− : 0 ≤ qnom ≤ qTC,

∑

u∈V+
qnomu =

∑

u∈V−
qnomu

⎫
⎬

⎭
,

can be transported through the considered network. This is formalized by F(q̂nom), which
consists of the feasible transport solutions for q̂nom. Many different approaches for modeling
the set F(qnom) exist. As mentioned earlier, we consider stationary gas flow without active
elements such as (control) valves or compressor stations. We further focus on a nonlinear gas
transport model that is based on the Weymouth pressure loss equation. Note that our results
also hold for the general case of nonlinear potential-based flows, which we further explain
in Remark 2.1.

For every node u ∈ V of the gas network and time period t ∈ T , we denote the pressure
level at node u by pu,t with corresponding bounds

0 < p−
u ≤ pu,t ≤ p+

u < ∞. (1)

We further denote the flow on arc a ∈ A by qa,t . Note that arc flow qa,t can be negative if it
flows in the opposite direction w.r.t. the orientation of the arc. For every time period t ∈ T ,
the flows have to satisfy flow conservation at every node of the network, which is modeled
by

∑

a∈δout(u)

qa,t −
∑

a∈δin(u)

qa,t =
∑

i∈Pu

qnomu,t , u ∈ V+, t ∈ T ,

∑

a∈δout(u)

qa,t −
∑

a∈δin(u)

qa,t = −
∑

i∈Pu

qnomu,t , u ∈ V−, t ∈ T , (2)

∑

a∈δout(u)

qa,t −
∑

a∈δin(u)

qa,t = 0, u ∈ V0, t ∈ T .

Here, δout(u) represents the set of outgoing arcs and δin(u) the set of incoming arcs at node u.
We note that we need to impose different signs for the nominations of entries V+ and exits V−
in (2) to model that gas is injected or withdrawn since a nomination is a nonnegative vector.
For an arc a ∈ A and a time period t ∈ T , the corresponding flow qa,t links the pressure levels
at the incident nodes of arc a. This link is given by the following Weymouth-like pressure
loss law

p2u,t − p2v,t = �aqa,t
∣
∣qa,t

∣
∣ , a = (u, v) ∈ A, t ∈ T , (3)

where �a > 0 is an arc specific constant.
We finally turn to the modeling of the transportation costs ct for t ∈ T . Here, we model

transportation costs as proposed in [2]. As in the latter paper, we consider a passive network
without active elements. However, themajority of transportation costs consist of the operating
costs of active elements such as compressors. Usually, these transportation costs are driven
by the pressure losses in the network. In order to mimic cost-optimal transport in a passive
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network, the costs are given by the absolute squared pressure losses in the entire network

∑

t∈T
ct (p,q;qnom) =

∑

t∈T

∑

a=(u,v)

ctranst

∣
∣p2u,t − p2v,t

∣
∣ ,

where ctranst > 0 holds for t ∈ T . We note that using Constraints (3), we can equivalently
reformulate the transport costs as follows:

∑

t∈T
ct (p,q;qnom) =

∑

t∈T

∑

a=(u,v)

ctranst

∣
∣p2u,t − p2v,t

∣
∣ =

∑

t∈T

∑

a=(u,v)

ctranst �aq
2
a,t .

The transportation costs also appear in Constraint (4c). This constraint ensures that the
booking price floors are chosen such that they recover transportation costs and additional
investment costs C . Finally, the coupling between the upper and lower level is expressed in
Constraint (4f).

In the lower level (5), gas traders buy capacity rights, so-called bookings qbook, that
determine the maximum amount of gas that can be nominated. All traders then nominate
their individual load of gas that is only bounded above by the chosen booking. The goal of
every trader is to maximize its own profit, i.e., the trader books a capacity right that later
leads to a surplus maximizing nomination. In doing so, the traders are only restricted by the
technical capacities and booking price floors determined by the TSO in the first level. Note
that the gas buyers and sellers do not take into account flow balance equations as well as any
other physical or technical restrictions of the transport network. This is a defining aspect of
the entry-exit system. It is touted as one of its features that buyers and sellers of gas do not
have to care about the state of the network when making their trading decisions—except for
the bookings that limit the nominations.

The interplay of booking and nominating can be modeled as a multi-leader multi-follower
game. This game is difficult to analyze (see [13]) and, hence, is not usable in our context.
Under a number of assumptions (as discussed in [14]), however, the solution of the game can
be expressed as the solution of an optimization problem. We use the strongest assumption
considered in [14], i.e., we assumeperfect competition both in the booking and the nomination
process on the day-ahead markets for both buyers and sellers. This allows to rewrite both
the model of the booking and the day-ahead markets as mixed nonlinear complementarity
problems (MNCP). These MNCPs are equivalent to optimization problems and can then be
aggregated into a single optimization problem.

The single optimization problem can be interpreted as follows: The objective (5a) maxi-
mizes the welfare of all traders, that is, the surplus of the buyers minus the generation costs of
the sellers, and minus the booking costs of all traders. The constraints make sure that book-
ings stay within the technical capacities (5b), nominations stay within the bookings (5c), and
that all nominations are balanced (5d).

In summary, we obtain the bilevel model

max
qTC,πbook,p,q,

qbook,qnom

ϕ(qnom, p) =
∑

t∈T

⎛

⎝
∑

u∈V−

∑

i∈Pu

∫ qnomi,t

0
Pi,t (s)ds −

∑

u∈V+

∑

i∈Pu

cvari qnomi,t

⎞

⎠ (4a)

−
∑

t∈T

∑

a=(u,v)∈A

ctranst

∣
∣p2u,t − p2v,t

∣
∣− C

s.t. 0 ≤ qTCu , 0 ≤ πbook
u , u ∈ V+ ∪ V−, (4b)
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∑

u∈V+∪V−

∑

i∈Pu

πbook
u qbooki =

∑

t∈T

∑

a=(u,v)∈A

ctranst

∣
∣p2u,t − p2v,t

∣
∣+ C, (4c)

∀q̂nom ∈ N (qTC) : F(q̂nom) �= ∅, (4d)

(p,q) ∈ F(qnom), i.e., (p,q) satisfies (1)–(3), (4e)

(qbook, qnom) ∈ argmax(5), (4f)

where the lower level is given by

max
qbook,qnom

∑

t∈T

⎛

⎝
∑

u∈V−

∑

i∈Pu

∫ qnomi,t

0
Pi,t (s)ds −

∑

u∈V+

∑

i∈Pu

cvari qnomi,t

⎞

⎠ (5a)

−
∑

u∈V+∪V−

∑

i∈Pu

πbook
u qbooki

s.t.
∑

i∈Pu

qbooki ≤ qTCu , u ∈ V+ ∪ V−, (5b)

0 ≤ qnomi,t ≤ qbooki , i ∈ Pu, u ∈ V+ ∪ V−, t ∈ T , (5c)
∑

u∈V−

∑

i∈Pu

qnomi,t −
∑

u∈V+

∑

i∈Pu

qnomi,t = 0, t ∈ T . (5d)

In general, bilevel problems are nonconvex. Further, they are strongly NP-hard even in
case of linear bilevel problems; see [17,20]. In addition, the upper level of the considered
problem is very challenging itself as we briefly outline in the following. First, the upper level
contains nonsmooth terms in the objective function, which also appear in (4c). Moreover,
Constraint (4c) contains nonconvex bilinear terms πbook

u qbooki . Additionally, considering a
nonlinear flow model for gas transport leads to nonconvex constraints in (4e). Finally, and
most critical, (4d) is a nonlinear adjustable robust constraint, which, in general, is compu-
tationally intractable. From the point of view of robust optimization, Constraint (4d) is an
adjustable robust constraint with uncertainty set N (qTC). For a detailed explanation regard-
ing the connection of computing technical capacities, respectively deciding the feasibility
of a booking, and adjustable robustness, we refer to Remark 2.6 in [22]. For the considered
nonlinear flowmodel, already deciding its feasibility is coNP-hard; see [35]. Due to the inher-
ent difficulty of the problem, we focus on tree-shaped networks. This allows us to obtain a
finite-dimensional reformulation of the nonlinear adjustable robust constraint (4d) in Sect. 4.
Moreover, this reformulation has some nice properties such that it is a convex mixed-integer
model.

Remark 2.1 We note that our results, especially the computation of the technical capacities
in Sect. 4, are also valid for the general case of potential-based flows. This means that we
can generally replace Constraints (1) and (3) by the potential-based flow model

0 < π−
u ≤ πu,t ≤ π+

u < ∞, u ∈ V , t ∈ T ,

πu,t − πv,t = φa(qa,t ), a = (u, v) ∈ A, t ∈ T ,

where φa is a continuous, strictly increasing, and odd (i.e.,φa(−qa,t ) = −φa(qa,t )) function.
The latter is rather natural in the context of utility networks. We note that the freedom of
modeling φa is large and it ranges from simple linear models to sophisticated nonlinear ones.
On the one hand, this allows to apply our results to many different gas transport models. In
particular, this includes the case of non-horizontal pipes; see [26]. On the other hand, we

123



634 Journal of Global Optimization (2022) 82:627–653

can also apply our results to many other different network types such as water, hydrogen, or
lossless DC power flow networks, if the physics is appropriately modeled; see [15].

In the next section, we reformulate the presented bilevel as a single-level problem and
present further model improvements.

3 Reduction to a single level problem

Since the bilevel model (4) with lower level (5) contains nonlinearities in the upper and
lower level and since the linking variables qTC and πbook are continuous, we replace the
convex lower level by its necessary and sufficient first-order optimality conditions to obtain
a single-level problem. This is in line with [2], where the multilevel problem is considered
for a linear potential-based flow model. We can adapt the single-level reformulation of [2]
since the lower level is independent of the considered gas flow model.

To obtain concave-quadratic upper- and lower-level objective functions w.r.t. the upper-
or lower-level variables, we make the following assumption.

Assumption 1 All inverse market demand functions are linear and strictly decreasing, i.e.,
Pi,t (qnomi,t ) = bi,t qnomi,t + ai,t with ai,t > 0 and bi,t < 0 for all i ∈ Pu, u ∈ V−, t ∈ T .

This assumption is rather standard in multilevel modeling of energy markets; see, e.g.,
[2,11,12] and the many references therein. Since the lower-level (5) then is a concave-
quadratic maximization problem with a linearly constrained feasible region, its KKT
conditions are both necessary and sufficient; see, e.g., [3]. We now replace the lower level (5)
by its KKT conditions, i.e., the stationarity conditions

−πbook
u − βu +

∑

t∈T
γ +
i,t = 0, i ∈ Pu, u ∈ V+ ∪ V−, (6a)

ai,t + bi,t q
nom
i,t + γ −

i,t − γ +
i,t − δt = 0, i ∈ Pu, u ∈ V−, t ∈ T , (6b)

−cvari + γ −
i,t − γ +

i,t + δt = 0, i ∈ Pu, u ∈ V+, t ∈ T , (6c)

primal feasibility (5b)–(5d), nonnegativity

βu ≥ 0, u ∈ V+ ∪ V−, (7a)

γ −
i,t , γ

+
i,t ≥ 0, i ∈ Pu, u ∈ V+ ∪ V−, t ∈ T , (7b)

of inequality multipliers, and complementary slackness conditions

βu

⎛

⎝qTCu −
∑

i∈Pu

qbooki

⎞

⎠ = 0, u ∈ V+ ∪ V−, (8a)

γ −
i,t q

nom
i,t = 0, i ∈ Pu, u ∈ V+ ∪ V−, t ∈ T , (8b)

γ +
i,t

(
qbooki − qnomi,t

) = 0, i ∈ Pu, u ∈ V+ ∪ V−, t ∈ T . (8c)

Then, the bilevel problem (4) can be reformulated as the single-level problem
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max
s

ϕ(qnom, p) (9a)

s.t. upper-level feasibility: (4b)–(4e), (9b)

lower level: (5b)–(5d), (6)–(8), (9c)

where s = (qTC, πbook, qbook, qnom, p,q, β, γ −, γ +, δ).1

3.1 Linearization of KKT complementarity conditions

Using the standard big-M method, see [9], we now linearize the nonconvex complementarity
constraints (8). To this end, bounds for the primal and dual variables are necessary.

For the dual variables, we adopt the values of [2], which are independent from the chosen
gas flow model. To this end, we introduce the following notation:

amin
t := min{ai,t : i ∈ Pu, u ∈ V−},

amax
t := max{ai,t : i ∈ Pu, u ∈ V−},
cvarmin := min{cvari : i ∈ Pu, u ∈ V+},
cvarmax := max{cvari : i ∈ Pu, u ∈ V+}.

Furthermore, we need the following assumptions.

Assumption 2 For every t ∈ T , it holds amin
t ≥ cvarmin and a

max
t ≥ cvarmax.

The intuition behind this assumption is that every player can participate in the market in
every time period: The gas buyer with smallest willingness to pay can still receive gas from
the seller with the smallest variable costs. The assumption can be easily checked a priori.
Furthermore, we assume that the network is designed in such a way that trading takes place
in every time period.

Assumption 3 For every time period t ∈ T , there exists a node u ∈ V+ ∪ V− with i ∈ Pu so
that qnomi,t > 0 holds.

A violation of this assumption in reality would mean that there is no gas trading in the entire
market at all for a certain time period. That this takes place is very unrealistic—thus, the
assumption itself should always hold in practice.

For the following we use Lemmas 2–4 of [2], by which we obtain upper bounds for the
booking price floors and bounds for the dual variables.

Lemma 3.1 ([2], Lemmas 2–4) There exists an optimal solution of (9) with

0 ≤ γ −
i,t ≤ 2(amax

t − cvarmin), i ∈ Pu, u ∈ V+ ∪ V−, t ∈ T , (10a)

0 ≤ γ +
i,t ≤ amax

t − cvarmin, i ∈ Pu, u ∈ V+ ∈ V−, t ∈ T , (10b)

0 ≤ βu ≤
∑

t∈T
(amax

t − cvarmin), u ∈ V+ ∪ V−, (10c)

πbook
u ≤

∑

t∈T
(amax

t − cvarmin), u ∈ V+ ∪ V−. (10d)

1 We note that in the specification of z all entries of the vector have to be transposed, but for ease of notation
we do not carry this out and maintain this convention in the remainder of the paper.
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We now provide bounds for certain primal variables of the bilevel problem (4), respec-
tively its single-level reformulation (9).We further present additional feasible constraints that
tighten these bounds. As previously mentioned, these bounds are necessary for the lineariza-
tion of the complementarity conditions (8). To this end, we first prove properties regarding
nominations, bookings, and technical capacities in an optimal solution, see Lemmas 3.2–3.4,
that enable us to a priori bound the technical capacities; see Lemma 3.5.

From Lemma 3.1 and Corollary 1 in [2], we obtain that an optimal solution exists in which
the booking of a player equals its maximum nomination.

Lemma 3.2 (Corollary 1 of [2]) There exists an optimal solution of the bilevel problem (4)
satisfying (10) and

max
t∈T

{
qnomi,t

} = qbooki (11)

for all i ∈ Pu, u ∈ V+ ∪ V−.

Using this result, we now prove that an optimal solution exists in which the bookings
equal the technical capacities.

Lemma 3.3 There exists an optimal solution of the bilevel problem (4) satisfying (10), (11),
and

qTCu =
∑

i∈Pu

qbooki (12)

for all u ∈ V+ ∪ V−.

Proof From Lemma 3.2 it follows that a solution z = (qTC, πbook, qbook, qnom, p,q) of (4)
satisfying (10) and (11) exists. We now set z̃ = (q̃TC, πbook, qbook, qnom, p,q) with q̃TCu =
∑

i∈Pu
qbooki for u ∈ V+ ∪ V−.

The feasible region of the lower level (5) w.r.t. z is a relaxation of the feasible region of (5)
w.r.t. z̃ since

0 ≤
∑

i∈Pu

qbooki = q̃TCu ≤ qTCu , u ∈ V+ ∪ V−,

holds. However, due to the latter inequalities, (qbook, qnom) is feasible for (5) w.r.t. z̃. We
further note that the corresponding lower-level objective functions are equal. Consequently,
the optimal solution (qbook, qnom) of the lower-level (5) w.r.t. z is also optimal for (5) w.r.t.
z̃.

Furthermore, z̃ satisfies the upper level constraints (4b)–(4f). We note that (4d) is valid
due to q̂nom ∈ N (q̃TC) ⊆ N (qTC). Thus, z̃ is a bilevel feasible point of (4). Moreover, qTC is
not present in the upper-level objective function and hence, the optimal values corresponding
to z and to z̃ are equal. Consequently, z̃ is an optimal solution of (4). ��
Note that, despite the two last results, it is not possible to eliminate nominations, bookings,
or technical capacities from the model since they are decided on at different levels of our
multilevel model.

Using the latter result, we now introduce additional constraints that bound the technical
capacity of a node.

Lemma 3.4 There exists an optimal solution of the bilevel problem (4) that satisfies (10)–(12)
as well as the inequalities

qTCu ≤ |Pu |
∑

v∈V−
qTCv , u ∈ V+ (13a)
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qTCu ≤ |Pu |
∑

v∈V+
qTCv , u ∈ V−. (13b)

Proof FromLemma3.3 it follows that an optimal solution of (4) exists that satisfies (10)–(12).
Let t ∈ T be an arbitrary time period and i ∈ Pu an arbitrary player at node u ∈ V+ ∪ V−.
From Constraint (5c), we obtain qnomi,t ≤ qbooki . Furthermore, from Constraint (5d) it follows

qnomi,t ≤
∑

v∈V−

∑

j∈Pv

qnomj,t

in case of a gas seller at u ∈ V+ and

qnomi,t ≤
∑

v∈V+

∑

j∈Pv

qnomj,t

in case of a gas buyer at u ∈ V−. Moreover, a time period l ∈ T with qnomi,l = qbooki exists
due to Lemma 3.2. From this and Lemma 3.3, we obtain

qnomi,t ≤ qnomi,l = qbooki ≤
∑

v∈V−

∑

j∈Pv

qnomj,l ≤
∑

v∈V−

∑

j∈Pv

qbookj =
∑

v∈V−
qTCv

in case of u ∈ V+ and

qnomi,t ≤ qnomi,l = qbooki ≤
∑

v∈V+

∑

j∈Pv

qnomj,l ≤
∑

v∈V+

∑

j∈Pv

qbookj =
∑

v∈V+
qTCv

in case ofu ∈ V−. Consequently, the claim follows fromsummingup the previous inequalities
w.r.t. i ∈ Pu and again using Lemma 3.3. ��

We note that the Constraints (13) can be valuable for finding good upper bounds of the
technical capacities since gas networks usually contain a small number of entry nodes and
very few single players at the nodes. We finally introduce upper bounds for the technical
capacity of a node, which depend on the pressure bounds and which can be computed a
priori.

Lemma 3.5 There exists an optimal solution of the bilevel problem (4) satisfying (10)–(13)
as well as the constraints

qTCu ≤ |Pu |
⎛

⎝
∑

(u,v)∈δout(u)

√

(p+
u )2 − (p−

v )2

�(u,v)

+
∑

(v,u)∈δin(u)

√

(p+
u )2 − (p−

v )2

�(v,u)

⎞

⎠ (14a)

=: M+
u , u ∈ V+,

qTCu ≤ |Pu |
⎛

⎝
∑

(u,v)∈δout(u)

√

(p+
v )2 − (p−

u )2

�(u,v)

+
∑

(v,u)∈δin(u)

√

(p+
v )2 − (p−

u )2

�(v,u)

⎞

⎠ (14b)

=: M−
u , u ∈ V−.

Proof From Lemma 3.4, it follows that an optimal solution of (4) exists that satisfies
(10)–(13). Let u ∈ V+. Then, for any feasible point (qnom, q, p) of (1)–(3) and time
period t ∈ T , it follows

q(u,v),t ≤
√

((p+
u )2 − (p−

v )2)/�(u,v), (u, v) ∈ δout(u),
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−q(v,u),t ≤
√

((p+
u )2 − (p−

v )2)/�(v,u), (v, u) ∈ δin(u).

Due to this and (2), it follows
∑

i∈Pu

qnomi,t =
∑

a∈δout(u)

qa,t −
∑

a∈δin(u)

qa,t ≤ 1

|Pu |M
+
u .

Consequently, from this, (11), and (12), it follows

qTCu =
∑

i∈Pu

qbooki =
∑

i∈Pu

max
t∈T

{
qnomi,t

} ≤ M+
u .

Analogously, one can show (14b). ��
Now, we have derived bounds for the booking price floors, see Lemma 3.1, as well as

for the bookings, respectively technical capacities, see Lemma 3.5. These bounds are very
important for handling the bilinear terms πbook

u qbooku in Constraint (4c). Later on, we handle
these bilinear terms with the help of Gurobi [16], which uses McCormick envelopes [25]
and spatial branching. For the latter, bounds for πbook

u and qbooku are necessary.
Moreover, we now can equivalently replace the complementarity constraints (8) by using

the standard big-M method. Consequently, we obtain a single-level problem that is larger than
the bilevel problem (4) with additional continuous and binary variables and constraints. We
note that this single-level problem contains nonsmooth and nonconvex terms in the objective
function as well as in Constraint (4c).

We emphasize that the obtained single-level reformulation is still computationally
intractable since it contains the infinitely many nonlinear adjustable robust constraints (4d)
that model technical capacities. We now tackle these constraints in the next section and show
that we can model their feasible region by finitely many convex constraints including integer
variables.

4 Handling technical capacities in trees

In this section, we provide a finite-dimensional model for the infinitely many nonlinear
adjustable robust constraints (4d) for the case of tree-shaped networks. Since these adjustable
robust constraints are very challenging, especially for the considered nonlinear gas transport
model (1)–(3), we assume that the graph G is a tree throughout this section.

We first introduce some necessary notation, which is mainly taken from [31]. Using
directed graphs to represent gas networks is a modeling choice that allows to interpret
the direction of flows. However, the flow in a gas network is not influenced by the direc-
tion of the arcs. Thus, for u, v ∈ V , we introduce so-called flow-paths P := P(u, v) =
(V (u, v), A(u, v)) in which V (u, v) ⊆ V contains the nodes of the path from u to v in the
undirected version of the graph G and A(u, v) ⊆ A contains the corresponding arcs of this
path. Consequently, a flow-path can be interpreted as an undirected path that additionally
contains for each arc its direction in the original network G = (V , A). The latter allows us
to determine the flow direction for an arc. For another pair of nodes u′, v′ ∈ V , we say that
P(u′, v′) is a flow-subpath of P(u, v) if P(u′, v′) ⊆ P(u, v), i.e., V (u′, v′) ⊆ V (u, v) and
A(u′, v′) ⊆ A(u, v), holds and if P(u′, v′) is itself a flow-path.

We now focus on tree-shaped networks and thus, the flow-path between two nodes is
unique. For modeling reasons, we partition the arcs of a given flow-path P(u, v) into
A→(u, v) and A←(u, v). The set A→(u, v) contains all arcs of P(u, v) that are directed
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from u to v, i.e., an arc (u′, v′) ∈ A→(u, v) satisfies P(v′, v) ⊂ P(u′, v). The remaining
arcs of the flow-path P(u, v) are contained in A←(u, v). We note that for a fixed node pair
these arc sets are unique due to the tree structure of the graph. We can also compute them
for every flow-path a priori by depth-first search.

Finally, for a tree-shaped network and arc a = (u, v) ∈ A, we now introduce two sub-
graphs that are later used to determine the maximal flow on an arc. If we delete arc a
in G, then the tree decomposes into two sub-trees. We define the sub-tree including node u
as Gu = (V (u,v)

u , A(u,v)
u ) and the other sub-tree, which contains v, as Gv = (V (u,v)

v , A(u,v)
v ).

Due to this construction, V (u,v)
v = V \ V (u,v)

u holds.
The outline to derive a finite-dimensional reformulation of the computational intractable

nonlinear adjustable constraint (4d) is as follows. We first state a known characterization for
technical capacities that enables us to verify the feasibility of technical capacities by solving,
for each pair of nodes, a nonlinear optimization problem to global optimality.We then exploit
monotonicity properties of these nonlinear problems together with certain flow properties in
tree-shaped networks to model the corresponding optimal value functions by finitely many
convex constraints including newly introduced binary variables.

From Theorem 10 in [21], it follows that we can verify the feasibility of given technical
capacities by solving a nonlinear optimization problem for each pair of nodes (w1, w2) ∈ V 2.
One of these nonlinear problems computes the maximal pressure difference between the
considered nodes w1 and w2 within the given technical capacities and is composed of

�(w1,w2)(q
TC) := max

qnom,q,p
p2w1

− p2w2
(15a)

s.t.
∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa =
∑

i∈Pu

qnomi , u ∈ V+, (15b)

∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = −
∑

i∈Pu

qnomi , u ∈ V−, (15c)

∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = 0, u ∈ V0, (15d)

p2u − p2v = �aqa |qa | , a = (u, v) ∈ A, (15e)

qnom ∈ N (qTC). (15f)

We note that Constraints (15b)–(15e) are the same as Constraints (2) and (3) except that they
do not depend on the specific time step anymore since the technical capacities are determined
once for all time steps.

It is shown in Theorem 10 of [21] that feasible technical capacities can be characterized by
constraints on themaximumpressure difference between all pairs of nodes, i.e., by constraints
on the objective value of (15).

Lemma 4.1 (Theorem 10 in [21]) Let G = (V , A) be a graph and qTC ∈ R
V+∪V−
≥0 . Then, qTC

satisfies Constraint (4d) if and only if for each node pair (w1, w2) ∈ V 2 the corresponding
optimal value of (15) satisfies

�(w1,w2)(q
TC) ≤ (p+

w1
)2 − (p−

w2
)2. (16)

We note that this characterization allows us to replace the nonlinear adjustable robust con-
straint (4d) by (16). For tree-shaped networks, it is further proven in [21] that the optimal
value function �w1,w2(q

TC) can be modeled by exploiting the following flow bounds that
depend on given technical capacities.
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Lemma 4.2 (Lemma 3.2 in [31]) Let G = (V , A) be a tree, qTC ∈ RV+∪V− technical
capacities, qnom ∈ N (qTC) a nomination, and q its unique flow given by (2). Then, for every
arc a = (u, v) ∈ A, the flow qa is bounded by

ξ−
a (qTC) := −min

⎧
⎪⎨

⎪⎩

∑

w∈V+∩V (u,v)
v

qTCw ,
∑

w∈V−∩V (u,v)
u

qTCw

⎫
⎪⎬

⎪⎭
≤ qa,

qa ≤ min

⎧
⎪⎨

⎪⎩

∑

w∈V+∩V (u,v)
u

qTCw ,
∑

w∈V−∩V (u,v)
v

qTCw

⎫
⎪⎬

⎪⎭
=: ξ+

a (qTC).

(17)

Moreover, it is shown in [21], respectively in Lemmas 3.4 and 3.5 of [31] by using an
alternative proof technique, that these flow bounds are tight for all arcs of a given flow-path.
Consequently, the optimal value function�w1,w2(q

TC) can be explicitly expressed as follows,
which has been shown in Corollary 19 in [21] in a slightly modified setting.

Lemma 4.3 (Corollary 19 in [21]) Let G = (V , A) be a tree, qTC ∈ RV+∪V− technical
capacities, and w1, w2 ∈ V . Then,

�w1,w2(q
TC) =

∑

a∈A→(w1,w2)

�aξ
+
a (qTC)

2 +
∑

a∈A←(w1,w2)

�aξ
−
a (qTC)

2
(18)

holds, where ξ+
a (qTC) and ξ−

a (qTC) are the upper and lower arc flow bounds given by (17).

This explicit representation of the optimal value function �w1,w2(q
TC) allows us to simplify

the characterization for technical capacities of Lemma 4.1.

Corollary 4.4 Let G = (V , A) be a graph and qTC ∈ R
V+∪V−
≥0 . Then, qTC satisfies Con-

straint (4d) if and only if for each node pair (w1, w2) ∈ V 2 the constraint

∑

a∈A→(w1,w2)

�aξ
+
a (qTC)

2 +
∑

a∈A←(w1,w2)

�aξ
−
a (qTC)

2 ≤ (p+
w1

)2 − (p−
w2

)2 (19)

is fulfilled, where ξ+
a (qTC) and ξ−

a (qTC) are the upper and lower arc flow bounds given
by (17).

We now can replace the nonlinear adjustable robust constraint (4d) that models feasible
technical capacities by our simplified characterization (19). To do so, we present a model
for this simplified characterization (19) that consists of finitely-many convex constraints
including newly introduced integer variables. For stating the model, we first need to bound
the technical capacities. From Lemma 3.5, it follows that an optimal solution of the bilevel
problem (4) exists such that the technical capacity of a node is bounded above by M+

u for all
u ∈ V+ and by M−

u for all u ∈ V−. Consequently, we can bound the aggregated technical
capacities of all entries, respectively exits, by

M+ :=
∑

u∈V+
M+

u ≥
∑

u∈V+
qTCu , (20a)

M− :=
∑

u∈V−
M−

u ≥
∑

u∈V−
qTCu . (20b)
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We note that the bilinear terms of the following model can be reformulated by using big-
Ms, which we describe later. Our convex mixed-integer model of (19) is given as follows:

h̄+
(u,v) =

∑

w∈V+∩V (u,v)
u

qTCw , (u, v) ∈ A, (21a)

h̄−
(u,v) =

∑

w∈V−∩V (u,v)
v

qTCw , (u, v) ∈ A, (21b)

h̄+
(u,v) − h̄−

(u,v) ≤ M+ x̄(u,v), (u, v) ∈ A, (21c)

q̄(u,v) = h̄+
(u,v)(1 − x̄(u,v)) + h̄−

(u,v) x̄(u,v), (u, v) ∈ A, (21d)

h+
(u,v) =

∑

w∈V+∩V (u,v)
v

qTCw , (u, v) ∈ A, (21e)

h−
(u,v) =

∑

w∈V−∩V (u,v)
u

qTCw , (u, v) ∈ A, (21f)

h+
(u,v) − h−

(u,v) ≤ M+x (u,v), (u, v) ∈ A, (21g)

q
(u,v)

= h+
(u,v)(1 − x (u,v)) + h−

(u,v)x (u,v), (u, v) ∈ A, (21h)

q̄2a ≤ f̄a, a ∈ A, (21i)

q2
a

≤ f
a
, a ∈ A, (21j)

∑

a∈A→(u,v)

�a f̄a +
∑

a∈A←(u,v)

�a f a ≤ (p+
u )2 − (p−

v )2, (u, v) ∈ V 2, (21k)

xa, x̄a ∈ {0, 1} , qTCv ≥ 0, a ∈ A, v ∈ V . (21l)

Constraints (21a)–(21d) and (21e)–(21h) ensure that q̄ is at least as large as the upper flow
bound ξ+

a (qTC) and q is at least the absolute value of the lower flow bound ξ−
a (qTC);

see Lemma 4.2. The negative sign of the lower flow bound is directly modeled in Con-
straints (21k). Constraints (21i) and (21j) result from amodeling choice. They allow tomodel
the flow linearly in Constraints (21k), which reduces the number of convex constraints.

We now show the correctness of (21). To this end, we first prove that any feasible point
of the original bilevel problem (4) satisfying Lemma 3.5 can be extended to a feasible point
of (21). Afterward, we prove that every feasible point of (21) is also feasible for the adjustable
robust constraint (4d) of the bilevel problem (4). We abbreviate a feasible point of (21) by z,
i.e.,

z =
(
f̄ , f , q̄,q,

h−
, h̄

−
, h

+
, h̄

+
, x , x̄,q

TC
)

.

Lemma 4.5 Let G = (V , A) be a tree and qTC ∈ R
V+∪V−
≥0 be part of an optimal solution

of (4) satisfying Lemma 3.5. Then, qTC can be extended to a feasible point z of (21).

Proof Constraints (21a), (21b), (21e), and (21f) are uniquely determined byqTC. Further, they
are feasible because the corresponding variables are not bounded. Due to the construction of
M+ by (20a) and (20b), we can set for a ∈ A the variable x̄a , respectively xa , to 1 if the left-
hand side of (21c), respectively (21g), is positive and otherwise to 0. Due to this assignment,
q̄a is uniquely determined and equals the upper flow bound ξ+

a (qTC); see (17). Further, q
a
is

unique and equals the absolute value of the lower flow bound ξ−
a (qTC); see (17). We now set

f̄a = q̄2a , respectively f
a

= q2
a
, for a ∈ A and thus, Constraints (21i) and (21j) are satisfied.
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Finally, we have to check the feasibility of Constraints (21k). For doing so, we consider
an arbitrary node pair (u, v) ∈ V 2. From the previous construction it follows that (21k)
simplifies to

∑

a∈A→(u,v)

�a f̄a +
∑

a∈A←(u,v)

�a f a =
∑

a∈A→(u,v)

�aξ
+
a (qTC)

2 +
∑

a∈A←(u,v)

�aξ
−
a (qTC)

2

≤ (p+
u )2 − (p−

v )2.

The feasibility of the last inequality follows from Corollary 4.4 and the feasibility of the
considered technical capacities qTC for (4d). Consequently, the constructed point is feasible
for (21). ��

We now prove that a feasible point of (21) is also feasible to the adjustable robust con-
straint (4d).

Lemma 4.6 Let G = (V , A) be a tree and let z be a feasible point of (21). Then, qTC

satisfies (4d).

Proof We contrarily assume that qTC does not satisfy Constraint (4d). Thus, from Corol-
lary 4.4 it follows that there is a node pair (w1, w2) ∈ V 2 violating (19), i.e.,

∑

a∈A→(w1,w2)

�aξ
+
a (qTC)

2 +
∑

a∈A←(w1,w2)

�aξ
−
a (qTC)

2
> (p+

w1
)2 − (p−

w2
)2. (22)

Due to Constraints (21a)–(21d), it follows

ξ+
a (qTC)2 ≤ q̄2a ≤ f̄a, a ∈ A→(u, v), ξ−

a (qTC)2 ≤ q2
a

≤ f̄a, a ∈ A←(u, v).

Consequently, from this and the feasibility of (21k) for z, it follows
∑

a∈A→(w1,w2)

�aξ
+
a (qTC)

2 +
∑

a∈A←(w1,w2)

�aξ
−
a (qTC)

2

≤
∑

a∈A→(w1,w2)

�a f̄ +
∑

a∈A←(w1,w2)

�a f ≤ (p+
w1

)2 − (p−
w2

)2,

which is a contradiction to (22). ��
Combining the previous results proves that we can model the infinitely many adjustable

robust constraints (4d) by the finitely many Constraints (21).

Theorem 4.7 Let G = (V , A) be a tree. Then, every optimal solution of the bilevel prob-
lem (4), where we replaced (4d) by (21), is an optimal solution of the bilevel problem (4).
Moreover, every optimal solution of (4) that additional satisfies the conditions of Lemma 3.5
can be extended to an optimal solution of (4), where we replaced (4d) by (21).

Proof The claim follows from Lemmas 3.5, 4.5, and 4.6 . ��
Remark 4.8 We note that we can easily include lower q−

a and upper q+
a arc flow bounds for

all arcs a ∈ A by
q−
a ≤ −q

a
≤ q+

a , q−
a ≤ q̄a ≤ q+

a .

Since in Model (21) the variable q
a
equals the absolute value of the lower arc flow

bound ξ−
a (qTC) and since q̄a equals the upper arc flow bound ξ+

a (qTC) given by Lemma 4.2,
this ensures that the flow stays in the a priori given flow bounds. We abstract from flow
bounds in our model, since the consideration of pressure levels allows to bound the flow by
Constraints (21k).
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Model (21) contains bilinear terms in Constraints (21d) and (21h). Since these bilinear
terms are products of a binary variable and a nonnegative and bounded variable, we can
reformulate them using big-Ms. We note that the upper bounds for h+

(u,v) and h̄+
(u,v) are

given by (20a) and for h̄−
(u,v) and h−

(u,v) by (20b). The bilinear constraints (21d) can thus be
reformulated as

q̄(u,v) = ȳ+
(u,v) + ȳ−

(u,v), (23a)

ȳ+
(u,v) ≥ 0, ȳ+

(u,v) ≤ M+(1 − x̄(u,v)), ȳ+
(u,v) ≥ h̄+

(u,v) − M+ x̄(u,v), (23b)

ȳ−
(u,v) ≥ 0, ȳ−

(u,v) ≤ M− x̄(u,v), ȳ−
(u,v) ≥ h̄−

(u,v) − M−(1 − x̄(u,v)). (23c)

In analogy, we can reformulate the bilinear constraints (21h) by

q
(u,v)

= y+
(u,v)

+ y−
(u,v)

, (24a)

y+
(u,v)

≥ 0, y+
(u,v)

≤ M+(1 − x (u,v)), y+
(u,v)

≥ h+
(u,v) − M+x (u,v), (24b)

y−
(u,v)

≥ 0, y−
(u,v)

≤ M−x (u,v), y−
(u,v)

≥ h−
(u,v) − M−(1 − x (u,v)). (24c)

For ease of notation in the following lemma, (21*) denotes (21) where we replaced Con-
straints (21d) and (21h) by (23) and (24).

Lemma 4.9 A vector qTC ∈ R
V+∪V−
≥0 is feasible for (21) if and only if it is feasible for (21*).

Proof We can extend every feasible solution of (21) to satisfy (23) and (24). To do so,
we choose ȳ+, ȳ−, y+, and y+ as small as possible. Consequently, (23a) and (24a) equal
Constraints (21d) and (21h). Thus, the extended solution satisfies (21*).

From the construction of (23) and (24) it follows that the flows q̄ and q obtained in (23a)
and (24a) are at least as large as the flows obtained in (21d) and (21h). From this and the fact
that �aqa |qa | is increasing for all a ∈ A, it follows that every feasible point of (21*), is also
feasible for (21). ��

After reformulating the bilinear terms in (21) by the discussed linearizations, we can
model the adjustable robust Constraint (4d) by the finitely many constraints

(21a)–(21c), (21e)–(21g), (21i)–(21l), (23), (24). (25)

For the considered nonlinear flow model, which is based on the Weymouth pressure loss
equation, the presented model of the technical capacities is a convex mixed-integer model.
This is surprising since the Weymouth pressure drop model is itself nonconvex. The convex
mixed-integer reformulation is obtained by using additional binary variables to model the
maximum flow in a pipe and by exploiting that, for the considered gas transport model,
the pressure drop �aqa |qa | is quadratic for every pipe a ∈ A if the direction of the arc
flow qa is known. The model further consists only of polynomially many (in the number of
nodes of the network) constraints and variables. Finally, we note that this model can also be
generalized to potential-based flow models as explained in Remark 2.1. To do so, we only
have to replace (21k) by

∑

a∈A→(u,v)

φa(q̄a) +
∑

a∈A←(u,v)

φa(qa) ≤ π+
u − π−

v , (u, v) ∈ V 2,

where φ is the potential loss function as introduced in Remark 2.1. We further can neglect
Constraints (21i) and (21j), which result from a modeling choice to reduce the number of
convex constraints. For general potential-based flows, the obtained model is not necessarily
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convex anymore since general potential loss functions may not depend quadratically on the
arc flow, e.g., in case of water networks.

5 Additional combinatorial constraints

In this section, we present valid combinatorial constraints for (21), respectively (25), that
speed up the solution process, which we will analyze later in Sect. 6. We prove the results
w.r.t. Model (21), but they can be shown in analogy for Model (25). We note that these
additional constraints do not influence the set of feasible technical capacitiesmodeled by (21).

Wefirst prove that for every feasible point z of (21), a feasible pointwith the same technical
capacities qTC always exists such that the right-hand sides of Constraints (21c) and (21g)
are minimal, i.e., a binary variable is zero if the corresponding left-hand side is non-positive.
Here, �x� denotes rounding up the value x .

Lemma 5.1 Let G = (V , A) be a tree and let z be a feasible point of (21) with technical
capacities qTC. Then, a feasible point z̃ with the same technical capacities qTC exists such
that for arc (u, v) ∈ A the corresponding binaries are given by

˜̄x(u,v) = max

{

0,

⌈
1

M+ (h̄+
(u,v) − h̄−

(u,v))

⌉}

, (26a)

x̃ (u,v) = max

{

0,

⌈
1

M+ (h+
(u,v) − h−

(u,v))

⌉}

. (26b)

Proof Let be z = ( f̄ , f , q̄,q,
h−

, h̄
−
, h

+
, h̄

+
, x , x̄,qTC) a feasible point of (21). We assume that

an arc (u, v) ∈ A exists such that, w.l.o.g.,

1 = x̄(u,v) > 0 = max

{

0,

⌈
1

M+ (h̄+
(u,v) − h̄−

(u,v))

⌉}

holds. We now set x̄(u,v) = 0. Consequently, q̄(u,v) possibly decreases according to Con-
straint (21d). The remaining point stays feasible since Constraints (21a), (21b), (21e)–(21h),
(21j), and (21l) are not affected by this modification. Furthermore, Constraint (21i) is still
fulfilled since we only possibly decreased q̄(u,v) and thus, (21k) is satisfied. We also note that
Constraint (21c) is satisfied due to the choice of M+ ≥ 0.

Repeating the previous procedure for x̄ and x shows the claim. ��
With the help of the latter result, we now present additional combinatorial constraints regard-
ing the binary variables that explicitly use the network structure. The intuition behind these
constraints can be sketched as follows: From Lemma 5.1 it follows that an optimal solution
for model (21) exists such that for an arc a = (u, v) ∈ A, the variable q̄a represents the
maximal arc flow of a, i.e.,

q̄(u,v) = min

⎧
⎪⎨

⎪⎩

∑

w∈V+∩V (u,v)
u

qTCw ,
∑

w∈V−∩V (u,v)
v

qTCw

⎫
⎪⎬

⎪⎭
= min

{
h̄+

(u,v), h̄
−
(u,v)

}
.

This means that q̄a equals the minimum flow that can be sent via (u, v) by entries in V (u,v)
u ,

which is the sub-tree that includes node u and is obtained by removing arc (u, v), and of the
flow that can be received by exits in V (u,v)

v . If the entries in V (u,v)
u can supply more flow than
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the exits in V (u,v)
v can receive, i.e.,

q̄(u,v) = min

⎧
⎪⎨

⎪⎩

∑

w∈V+∩V (u,v)
u

qTCw ,
∑

w∈V−∩V (u,v)
v

qTCw

⎫
⎪⎬

⎪⎭
=

∑

w∈V−∩V (u,v)
v

qTCw = h̄−
(u,v),

then x̄(u,v) = 1 holds. Considering now for an outgoing arc (v, l) the variable q̄(v,l) only

possibly increases the number of entries that can supply flow via (v, l), i.e., V (u,v)
u ⊂ V (v,l)

v ,
and possibly reduces the number of exits that can receive flow via arc (v, l), i.e., V (v,l)

l

⊂ V (u,v)
v . Consequently, the value of q̄(v,l) is again determined by the exits, i.e., q̄(v,l) = h̄−

(v,l),
and, thus, x̄(v,l) = 1 holds. This shows a correspondence between the binary variables using
the given network structure and is the key for the following combinatorial constraints. In
analogy to the above, we can derive further constraints for the binaries x corresponding to
the lower flow variables q .

Lemma 5.2 Let G = (V , A) be a tree and z a feasible point of (21) that satisfies (26). Then,
the inequalities

x̄(u,v) ≤ x̄(v,l), (v, l) ∈ δout(v), (27a)

x (v,l) ≤ x (u,v), (v, l) ∈ δout(v), (27b)

x̄(u,v) ≤ x (l,v), (l, v) ∈ δin(v), (27c)

are satisfied for a = (u, v).

Proof Applying Lemma 5.1, a feasible point ( f̄ , f , q̄,q,
h−

, h̄
−
, h

+
, h̄

+
, x , x̄,qTC) for (21) exists

that satisfies (26).
We first consider Inequality (27a). If x̄(u,v) = 0 holds, then (27a) is redundant since

x̄(v,l) ∈ {0, 1}. We now assume that x̄(u,v) = 1 holds. Consequently,

1 = x̄(u,v) =
⌈

1

M+ (h̄+
(u,v) − h̄−

(u,v))

⌉

holds and thus,
h̄+

(u,v) > h̄−
(u,v) ≥ 0

is satisfied. From (v, l) ∈ δout(v) it follows

V (u,v)
u ⊂ V (v,l)

v , V (v,l)
l ⊂ V (u,v)

v , (28)

where V (u,v)
u , respectively V (v,l)

v , contains the nodes of the connected component that
includes u, respectively v, and is created by removing arc (u, v), respectively (v, l). From
this as well as Constraints (21a) and (21b), it follows

h̄+
(v,l) ≥ h̄+

(u,v) > h̄−
(u,v) ≥ h̄−

(v,l) ≥ 0,

and consequently, x̄(v,l) = 1 is satisfied due to (21c).
We now consider (27b). If x (v,l) = 0 holds, then (27b) is redundant since x (u,v) ∈ {0, 1}.

Thus, we now assume that x (v,l) = 1 holds. Due to (26),

1 = x (v,l) =
⌈

1

M+ (h+
(v,l) − h−

(v,l))

⌉
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holds and, thus,
h+

(v,l) > h−
(v,l) ≥ 0

is satisfied. From (v, l) ∈ δout(v) it again follows (28). This, as well as Constraints (21e)
and (21f), lead to

h+
(u,v) ≥ h+

(v,l) > h−
(v,l) ≥ h−

(u,v) ≥ 0,

and consequently, x (u,v) = 1 is satisfied due to (21g).
We finally consider (27c). If x̄(u,v) = 0 holds, then (27c) is redundant since x (l,v) ∈ {0, 1}.

Thus, we now assume that x̄(u,v) = 1 holds. Due to (26),

1 = x̄(u,v) =
⌈
1

M
(h̄+

(u,v) − h̄−
(u,v))

⌉

holds and, thus,
h̄+

(u,v) > h̄−
(u,v) ≥ 0

is satisfied.
From (l, v) ∈ δin(v), it follows

V (u,v)
u ⊂ V (l,v)

v , V (l,v)
l ⊂ V (u,v)

v

and thus, from (21a), (21b), (21e), and (21f) it follows

h+
(l,v) ≥ h̄+

(u,v) > h̄−
(u,v) ≥ h−

(l,v) ≥ 0.

From this and Constraint (21g) it follows x (l,v) = 1. ��
Consequently, the adjustable robust constraint (4d) can be modeled by (21), respectively

(25), and the additional Constraints (27a)–(27c). In the following computational study, we
demonstrate the impact of the presented combinatorial constraints w.r.t. running times.

6 Computational results

We now apply our results to solve the considered multilevel model of the European entry-exit
gas market systemwith a nonlinear flowmodel in tree-shaped networks. To this end, we solve
the model for a passive version of the Greek gas network, i.e., the network corresponds to
the Greek gas network excluding its single compressor station and its single control valve.
This is the first time that the considered entry-exit gas market model can be solved for a real-
world sized network. For our computations, we consider the single-level reformulation (9)
with linearized complementarity constraints, the additional constraints (12) and (13), the
handling of the technical capacities (25), and the additional combinatorial constraints (27).
For the latter, we also analyze their explicit effect on the running times. We further note that
we can a priori exclude Constraints (1) and (3) since the flow is uniquely determined by (2)
in tree-shaped networks.

6.1 Physical and economic data

For our computational analysis, we consider the GasLib 134 (version 2) network; see [33].
TheGasLib 134 represents theGreek gas network, withmore than 7000km of pipes. It further
is the largest publicly available tree-shaped gas network and, thus, we focus on this network
in our computational study. Since the integration of active elements is currently out of scope,
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Table 1 Economic data for exit demands functions Pi,t (q
nom
i,t ) = bi q

nom
i,t + ai,t with ai,t =

max j∈Pu ,u∈V+{cvarj } + hi,t , where the integer hi,t (in e/(1000Nm3/h)) is uniformly sampled in the given

intervals and bi is given in e/(1000Nm3/h)2

hi,0 hi,1 hi,2 hi,3 bi

[5, 20] [31, 50] [51, 60] [31, 40] −2

we bypass the single compressor station and single control valve of the GasLib 134 network.
Moreover, we slightly adapt the lower pressure bounds of the GasLib 134 network by setting
all lower pressure bounds of at least 37.5bar to 32.5bar. This ensures that the intersection of
the lower and the upper pressure bound intervals is non-empty, i.e.,

⋂
u∈V+∪V−[p−

u , p+
u ] �= ∅.

The latter is a necessary condition for the existence of a feasible nomination in a passive
network. In total, the network consists of 134 nodes, which contain 3 entries, 45 exits, and
86 inner nodes, and 133 pipes, which contain 47 short pipes2 and 86 pipes. Each pipe a ∈ A
is characterized by its length La , diameter Da , and roughness ka . Further, we assume that
all pipes are horizontal. For each pipe a ∈ A, we compute the pressure loss coefficient �a

of the considered Weymouth model (1)–(3) according to (2.25) in [10], i.e.,

�a =
(
4

π

)2

λa
RsTmLazm,a

D5
a

.

Here, Rs is the specific gas constant, Tm a constant mean temperature, λa is the friction factor
of pipe a ∈ A computed using the formula of Nikarudse, and zm,a is themean compressibility
factor of a pipe a ∈ A computed by the formula of Papay and an a priori estimation of the
mean pressure; see Chapters [10,30] for the explicit formulas and additional explanations.

We now turn to the modeling of the economic data. The considered time horizon consists
of four time periods t ∈ T that model the seasons summer (t = 0), autumn (t = 1),
winter (t = 2), and spring (t = 3). In line with [2], we assume a single player per node.
We model the variable production costs cvari of the three existing entries as follows. For
entry node_80, we set cvarnode_80 = 112e/(1000Nm3/h) and then increase this value by 5%
for production costs of the remaining entries. In a simplified way, this roughly represents the
current situation regarding production costs in the Greek gas network. For the linear demand
functions of the exit nodes, we assume

Pi,t (q
nom
i,t ) = biq

nom
i,t + ai,t with ai,t = max

j∈Pu ,u∈V+

{
cvarj

}
+ hi,t ,

where the integer hi,t is uniformly sampled in certain intervals; see Table 1. This construc-
tion explicitly ensures that Assumption 2 is satisfied. We note that ai,t is lowest in the
summer (t = 0) and highest in the winter (t = 2). After fixing the previous values, we
consider exogenous network costs C ∈ {0,5000, 10 000, . . . , 30 000} e and the transport
costs ctranst ∈ {0.1, 0.2, . . . , 1.0}e/bar2. Additionally, for the instances with C = 15, 000e,
we vary the intercepts ai,t by adding a “shift” in {−10,−5, 0, 5, 10} e/(1000Nm3)/h. In
total, we obtain 110 instances.

We note that all these values have to be seen w.r.t. the considered time horizon of 1h per
time period. Moreover, extrapolating the results for the time horizon of a whole year shows

2 Although the presented theory is stated for the case of pipes with positive pressure loss coefficient �a > 0,
it is no harm to consider short pipes with �a = 0 since gas pressure levels are not influenced by including
short pipes.
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that the total gas consumption of the base case, i.e., C = 15 000e and cvar = 0.5e/bar2

deviates by less than 1.4% from the total gas consumption of approximately 5.1 billion m3

in Greece for 2019; see [4]. Additionally, the investment costs and variable costs are chosen
such that the sum of the latter corresponds to 6.5% of the market volume.

6.2 Computational setup

All optimization problems have been implemented in Python 3 using Pyomo 5.6.8, see [18],
and have been solved with Gurobi 9.0.1, see [16]. In doing so, we used Gurobiwith standard
settings except for the following adaptions. We set the parameter NumericFocus to 3 and
the parameter NonConvex to 2. Thus, Gurobi tackles the nonlinear bilinear terms of Con-
straint (4c) by spatial branching. For the computations, we used the Kaby Lake nodes with
Xeon E3-1240 v6 CPUs and 32GB RAM of the computer cluster [27] and set a time limit
of 24h. The necessary big-Ms are computed as presented in Sects. 3.1 and 4. Additionally,
we used the upper flow bounds of the GasLib 134 network to tighten these big-Ms.

We now briefly discuss some statistics of the considered model. Our single-level model
consists of 3599 variables, which contain 698 binary variables, and of 22 085 constraints,
which contain 267 quadratic constraints. The presolve of Gurobi roughly halves the number
of constraints but hardly influences the other statistics including the number of quadratic con-
straints. We note that before presolve we have 266 combinatorial constraints (27). In the next
section, we discuss the numerical results in detail and explicitly analyze the computational
speed up of the combinatorial constraints.

6.3 Discussion of numerical results

The scope of this section is twofold: We first discuss the numerical results w.r.t. running
times. Here, we focus on the computational benefit of the combinatorial constraints (27) of
Sect. 5. Afterward, we exemplarily show the effects of modifying the economic data on the
output of the four-level gas market model for the Greek gas network to shed some light on
the sensitivity of the model and the solution approach.

For our discussion of the computational results, we consider 110 instances as described in
Sect. 6.1. The running times are summarized in Table 2. Overall, we can solve 107 out of 110
instances to global optimality for the considered four-level gas market model within the time
limit. More specifically, we solve 90 of the 110 instances within 1h. One of the key compo-
nents to achieve this performance is ourmodeling of the adjustable robust constraints (4d) and
the additional combinatorial constraints (27). The running times significantly increase if these
combinatorial constraints are excluded; see Table 2. This leads to the results that 23 instances
could not be solved in the time limit of 24h if the additional combinatorial constraints are
neglected. The significant computational speed up of these constraints is underlined by the
fact that the minimum running times without them is larger than the median, receptively
nearly equal to the third quartile, of the running times including these constraints. Moreover,
only 4 of the 110 instances can be solved in 1h if the additional constraints are excluded.

We further analyze the computational benefit of the combinatorial constraints with the
help of log-scaled performance profiles as proposed in [6]. Figure 1 shows the log-scaled
performance profiles w.r.t. running times (left) and w.r.t. nodes explored in the branch-and-
bound algorithm of Gurobi (right) for all 110 instances. To do so, we separately solved the
considered model with the combinatorial constraints (27) and without them. In line with
Table 2, the left profile shows that including the combinatorial constraints clearly dominates
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Table 2 Number of solved
instances (out of 110 instances)
and statistics for the running
times (always taken only for all
instances solved to optimality)

No. of
solved

Comb-cons
107

w/o comb-cons
87

Time (s) Time (s)

Minimum 251.65 2069.42

1st Quartile 670.65 9790.43

Median 1070.32 17685.29

Mean 2868.59 26193.49

3rd Quartile 2127.64 41813.73

Maximum 32833.46 83639.78

Fig. 1 Log-scaled performance profiles of running times (left) and of nodes explored in the branch and bound
algorithm (right) for all 110 instances

w.r.t. running times. This is mainly explained by the right performance profile in Fig. 1,
which compares the number of nodes that are explored during the branch-and-bound solution
process. Including the combinatorial constraints significantly reduces the number of explored
nodes, which leads to the observed speed up of the solution process.

Finally, we now turn to the analysis of the sensitivity of the approach w.r.t. changes in
the economic input data. To this end, we consider a base instance with fixed exogenous
investment costs C = 15 000e and variable transport costs cvar = 0.5e/bar2. Then, we
adjust the intercepts of the demand functions ai,t for all i ∈ Pu, u ∈ V , t ∈ T , by adding a
constant, which we call “shift”. Table 3 shows that increasing, respectively decreasing, the
demand mainly affects the nominated amount of gas in the summer period (t = 0). The
remaining time periods are only slightly affected by demand changes. Moreover, a decrease
of the demand affects the nominations more than an increase of the demand. On the one
hand, this indicates that for time periods t ∈ {1, 2, 3} the network already operates near to its
maximal capacity since an increased demand only slightly leads to higher nominations. On
the other hand, the demand in time periods t ∈ {1, 2, 3}, especially the winter period t = 2,
is nearly inelastic since an decrease of the demand only leads to a small decrease of the
nominated amount of gas. Moreover, the sum of all booked capacities is nearly the same.
This can be explained by the almost inelastic demand of the winter period since, usually, the
booking is determined by the period with highest demand, i.e., it is determined in winter.
Although the total booked capacity is almost not affected by the change of the demand, the
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Table 3 For all i ∈ Pu , u, t ∈ T , the intercepts ai,t vary by adding “shift” in e/(1000Nm3/h). The
remaining values denote the corresponding relative changes of the bookings qbook, and nominations qnom

w.r.t. the base case marked in bold

shift ‖qbook‖1
‖qbookbase ‖1

qbookv

qbookbase,v
in . . .

‖qnom0 ‖1
‖qnombase,0‖1

‖qnom1 ‖1
‖qnombase,1‖1

‖qnom2 ‖1
‖qnombase,2‖1

‖qnom3 ‖1
‖qnombase,3‖1

−10 0.99 [0.88, 1.20] 0.42 0.90 1.00 0.86

−5 1.00 [0.93, 1.12] 0.71 0.97 1.00 0.96

0 1.00 [1.00, 1.00] 1.00 1.00 1.00 1.00

5 1.01 [0.97, 1.08] 1.18 1.01 1.01 1.02

10 1.01 [0.95, 1.13] 1.24 1.02 1.01 1.02

booked capacity at the single nodes clearly differs; see third column of Table 3. Thus, the
overall solution of the four-level optimization problem is clearly affected by demand changes;
see Table 3. We illustrate these changes w.r.t. the bookings in Fig. 2. The figure shows that
uniformly increasing the demand of all exits decreases the booked capacities in the south and
leads to larger booked capacities in the middle, respectively north, of the network. This is
possibly based on a combination of the larger willingness to pay of the exits and the transport
capacity of the network. There are more exits in the south than in the north and, thus, the
network probably already operates at its maximum especially in the south. Consequently, an
increased willingness to pay at the demand nodes makes it more attractive for the TSO to
reduce the technical capacities in the south and increase them in the north. This results in
larger bookings in the north and smaller bookings in the south.

7 Conclusion

This paper provides optimization techniques that enable us to solve a multilevel model of the
European entry-exit gas market system, see [14], with a nonlinear flow model for real-world
sized and tree-shaped networks. In line with the literature [2,14], this multilevel model can
be equivalently reformulated to a bilevel problem and, on top of that, to a nonconvex and
nonsmooth mixed-integer nonlinear single-level problem. This reformulation is independent
of the considered flow model. The core difficulty of this single-level reformulation are the
nonlinear adjustable robust constraints, by which the TSO computes the technical capaci-
ties of the network. These constraints alone make the considered problem computationally
intractable in general. However, under the assumption of passive networks, i.e., no active
elements such as compressor stations are considered, we derived a finite-dimensional refor-
mulation of these nonlinear adjustable robust constraints for the case of tree-shaped networks.
Moreover, we strengthened this reformulation by additional combinatorial constraints. The
latter significantly increase the performance of our model as demonstrated by the numerical
results. Further, the presented reformulation can also be generalized to other potential-based
flow models under very mild assumptions. The reformulation has some nice properties such
that it only uses convex constraints including newly introduced integer variables. This enables
us to solve the multilevel model of the European entry-exit gas market system with a non-
linear flow model for a real-world sized network, namely the Greek gas network without
active elements, to global optimality. This is the first time that this multilevel model can
be solved for a real-world sized network since even for simplified linear flow models the
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Fig. 2 Relative changes of the bookings, i.e.,qbookv /qbookbase,v , for the case shift = 10 and the base case (shift = 0)
in the Greek gas network. Entries are denoted by blue squares, inner nodes by small black diamonds, exits
with positive relative change by green circles, and exits with negative relative change by orange circles

latter can only be solved for stylized small (but cyclic) networks so far in the literature. The
computational tractability of our approach is demonstrated by our computational study, in
which the majority of the instances can be solved within 1h.

Nevertheless, there still are many possibilities for future research. Both from a mathe-
matical as well as application point of view, it would be of interest to see if the results can
be further developed so that one can also cope with active elements or general, i.e., cyclic,
networks. From an economic point of view, our results can be directly applied to analyze
economic effects such as social welfare losses for real-world sized networks and nonlinear
flow models.
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36. Yanıkoğlu, I., Gorissen, B.L., den Hertog, D.: A survey of adjustable robust optimization. Eur. J. Oper.
Res. 277.3, 799–813 (2019). https://doi.org/10.1016/j.ejor.2018.08.031

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s11081-019-09447-0
https://doi.org/10.1007/s11081-019-09447-0
https://doi.org/10.1002/net.22003
https://doi.org/10.1002/net.22003
https://doi.org/10.1051/ro/1977110202431
https://doi.org/10.1007/BF01580665
https://doi.org/10.1137/1.9781611973693
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/woody-cluster/
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/woody-cluster/
https://doi.org/10.1016/j.apenergy.2015.03.017
https://doi.org/10.1016/j.apenergy.2015.03.017
https://doi.org/10.1007/s10589-019-00085-x
https://doi.org/10.1137/1.9781611973693.ch5
https://doi.org/10.1137/1.9781611973693.ch5
https://doi.org/10.1007/s10479-020-03725-2
https://doi.org/10.1007/s10288-019-00411-3
https://doi.org/10.3390/data2040040
http://www.optimization-online.org/DB_HTML/2020/05/7803.html
http://www.optimization-online.org/DB_HTML/2020/05/7803.html
https://doi.org/10.1016/j.ejor.2018.08.031

	Global optimization for the multilevel European gas market system with nonlinear flow models on trees
	Abstract
	1 Introduction
	2 A multilevel model of the entry-exit gas market system
	3 Reduction to a single level problem
	3.1 Linearization of KKT complementarity conditions

	4 Handling technical capacities in trees
	5 Additional combinatorial constraints
	6 Computational results
	6.1 Physical and economic data
	6.2 Computational setup
	6.3 Discussion of numerical results

	7 Conclusion
	Acknowledgements
	References




