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Abstract

This paper studies the relationship between optimal dynamic pricing for network goods and the coor-

dination of consumers’ adoption decisions. We show that based on risk dominance criterion, consumers

face the risk of coordination failure, and introductory pricing is optimal if the risk is higher in period 1

without network. We find that under threshold coordination, the impact of price on the network size

varies according to consumer beliefs. In pessimistic (optimistic) threshold coordination, the network

size expands (shrinks) as the price increases. Lowering (Raising) the price in period 2 implies a smaller

network size, so introductory (skim) pricing is optimal.

Keywords: Network Externalities, Dynamic Pricing, Coordination Game

1 Introduction

A good has network externalities when a consumer derives a higher utility from its adoption when more

consumers adopt the good. Goods with network externalities abound in the real world ranging from smart-

phones to online games. One important feature of a good with network externalities is the multiplicity of

equilibria in the adoption game played by potential consumers of any such good. More specifically, when a

consumer believes that other consumers adopt, he has high valuation of the good and hence will also adopt

the good for a given price. On the other hand, if a consumer believes that other consumers do not adopt, he

has low valuation of the good and will not adopt the good either. Turning to the supply side of the market,

one fundamental and unsettled question concerns the optimal pricing strategy of a firm selling such a good

over multiple rounds. Should it start with a low price to build a network base first and reap the benefit of

a large network later on through a higher price, or should it rather price high first and sell to consumers

∗I thank Masaki Aoyagi and the conference participants at Japanese Economic Association (Tokyo Keizai University) for
their valuable discussions and comments. This work was supported by JST SPRING, Grant Number JPMJSP2138.

†Graduate School of Economics, Osaka University; 1-7 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan. Email:
shirano@iser.osaka-u.ac.jp.
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with higher willingness to pay before raising the value of the good for consumers with lower willingness to

pay? The first type of pricing strategy is known as introductory pricing, whereas the second type is known

as skim pricing.1 Both are discussed in the literature as viable pricing strategies for the dynamic sale of

a network good. For example, Bensaid and Lesne (1996), Gabszewicz and Garcia (2008) and Hattori and

Zennyo (2018) show that the optimal strategy is introductory pricing whereas Mason (2000) and Laussel

et al. (2015) identify skim pricing as optimal.

In this paper, we formulate a stylized model of dynamic sale of network goods and study if and when either

of these two pricing strategies can be optimal in the monopoly and duopoly settings. Our key observation is

that there is a close relationship between how consumers coordinate in their adoption decisions and which

of introductory and skim pricing is optimal.

Our monopoly model is described as follows. A mass of consumers with private types adopt a network

good over two periods. Each consumer demands at most one unit of the good and decides strategically if

and when to adopt the good. Their private type represents the marginal impact of the network size on

their utility. In period 1, the monopolist sets the price and consumers respond by making a purchase or

waiting until period 2. In period 2, the monopolist sets the price based on the publicly observable period 1

history and the consumers who chose to wait in period 1 make purchase decisions. As mentioned above,

how consumers coordinate in their adoption decisions is a critical determinant of the monopolist’s optimal

pricing strategy. We consider the following two types of coordination behavior:

1. Payoff and risk dominance with binary consumer types.

2. Threshold coordination with continuous consumer types.

Under payoff dominance, the consumers adopt the good if and only if the payoff from coordinated adoption

is higher than that from no adoption. Under risk dominance, the consumers adopt the good if and only if the

payoff from the coordinated adoption is higher than that from no adoption by a certain margin. The payoff

margin is interpreted as the premium associated with the risk of coordination failures. Payoff dominance

is the limiting case of risk dominance as the payoff premium approaches zero. If the consumers require

a higher payoff premium, the monopolist must price lower in period 1 than in period 2 since there is no

existing network base in period 1, and a possible coordination failure is more serious than in period 2 where

the network base is already formed. This implies that introductory pricing is optimal when the consumers

require a higher coordination payoff premium. For the same reason, introductory pricing is optimal when

there are few high-type consumers even if the premium is not so high: Although the high-type consumers

having a high willingness to pay for the good are supposed to adopt in period 1, the coordination payoff

1See Besanko and Winston (1990), Du and Chen (2017), and Su (2007).
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generated by the high-type alone is not high in period 1, inducing the monopolist to lower its period 1 price.

On the other hand, when the coordination payoff premium is not high and there are sufficiently many high

type consumers, the monopolist finds it optimal to use skim pricing to focus on extracting surplus from the

high type consumers.

In our monopoly model of threshold coordination, consumer types are continuous and represent the

marginal impact of the network size on their utility as before. For any price offered by the monopolist, the

set of adopting consumers adjusts so that the marginal consumer type is just indifferent between adoption

and no adoption. In this setting, we find that there are two types of threshold coordination referred to

as pessimistic and optimistic threshold coordination. Pessimistic threshold coordination is one in which

consumers expect that only relatively high types of consumers adopt, leading to a higher marginal consumer

type; conversely, in optimistic threshold coordination, consumers expect that even relatively low types of

consumers adopt, leading to a lower marginal consumer type. If the threshold coordination is pessimistic in

both periods, introductory pricing is optimal. On the other hand, if the threshold coordination is optimistic

in both periods, skim pricing is optimal. The key observation here is the impact of price on the network

size. In the pessimistic case, the marginal consumer type decreases as the price increases so as to justify the

higher price with the larger network. If the monopolist lowers the price in period 2, it will imply a smaller

demand in period 2. From the period 1 perspective, this implies a smaller expansion in the network size

and discourages early adoption. Hence, skim pricing is never feasible. Conversely, in the optimistic case,

the marginal consumer type increases as the price increases as adopter becomes less attractive for lower

consumer types. Hence, a price increase leads to a smaller network. If the monopolist raises the price in

period 2, the network expansion in period 2 is smaller, and the value of the good in period 1 is lower. This

implies that introductory pricing is not optimal.

In our duopoly model, we adopt the threshold coordination framework described above and assume that

two firms A and B sell incompatible network goods A and B, respectively. Consumer types now represent the

relative preference for B over A with respect to the marginal impact of the network size on their utility. In

the duopoly model, we again demonstrate that both introductory pricing and skim pricing can be sustained

as pricing strategies in a symmetric equilibrium where both firms set the same prices. The logic, however,

is very different from the monopoly case. Consumers who adopt in period 2 benefit from the final network

size, regardless of the period 1 network. Therefore, the range of equilibrium prices in period 2 is independent

of the outcome in period 1. In symmetric equilibrium, for example, the adoption in period 2 is such that

each firm splits the market in half. This implies that although the period 1 price changes the network size

in period 1, it will have no impact in the adoption pattern in period 2. As a result, a range of period 1

prices is consistent with equilibrium. Some of these prices correspond to introductory pricing, whereas others
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correspond to skim pricing.

The paper is organized as follows. After the discussion of the related literature in Section 2, Section 3

describes the monopoly model in which consumers perceive risk in adoption. In Section 4, we proceed to

the model with threshold coordination, with Subsections 4.1 and 4.2 focusing the monopoly model and the

duopoly model, respectively. Section 5 concludes with a discussion.

2 Related Literature

This paper contributes to two strands of literature as summarized in Table 1.

paper Model
monopoly

/duopoly

network

effect

strategic

consumer

consumer

type
pricing

adoption

criterion

Keser et al.
(2012)

static D NS N/A homogeneous N/A network size

Ruffle et al.
(2010)

static D NS N/A homogeneous N/A network size

Griva and Vet-
tas (2011)

static D NS N/A continuous N/A threshold

Caillaud and
Jullien (2003)

static D NS N/A homogeneous DC
iterative

deletion

Bensaid and
Lesne (1996)

dynamic M S Yes continuous IP preexisting base

Makhdoumi
et al. (2017)

dynamic M S Yes continuous IP preexisting base

Gabszewicz and
Garcia (2008)

dynamic M S No continuous IP preexisting base

Xie and Sirbu
(1995)

dynamic D S No continuous IP preexisting base

Mason (2000) dynamic M S Yes continuous SP preexisting base

Fudenberg and
Tirole (2000)

dynamic M NS No discrete IP payoff dominance

Hattori and
Zennyo (2018)

dynamic M NS Yes homogeneous IP payoff dominance

Laussel et al.
(2015)

dynamic M NS Yes continuous SP threshold

Cabral (2011) dynamic D NS No continuous IP probabilistic

Belleflamme
and Toule-
monde (2009)

dynamic M NS No homogeneous DC
iterative

deletion

This paper dynamic M & D NS Yes
discrete &

continuous

IP &

SP

payoff and risk dominance

& threshold coordination

Table 1: M=monopoly, D=duopoly, S=stationary, NS=non-stationary, IP=introductory pricing, SP=skim
pricing, DC=divide-and-conquer. The network effect is stationary if consumers do not consider network
expansion after their own adoption. Consumers are strategic if they may defer adoption until the next
period. Network size: Consumers adopt a technology with a smaller network size requirement. Threshold:
Consumers adopt if and only if their type is above some threshold. Iterative deletion: All consumers adopt
the good of incumbent by repeating pessimistic expectations. Preexisting base: Consumer choice is based on
the preexisting network size. Payoff dominance: Consumers choose the equilibrium that yields the highest
payoff. Probabilistic: Consumers make probabilistic choices about which goods to adopt based on future
network size and price expectations.
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First, it contributes to the literature on the adoption game of network goods under different assumptions

on consumer coordination. The literature on network effects includes Keser et al. (2012) and Ruffle et al.

(2010), who analyze which of the two equilibria, one in which all consumers adopt technology A and the

other in which all adopt B, prevails. They consider the minimum network size as a criterion for the adoption

of either technology and find that the adoption of technology with a lower value prevails. Griva and Vettas

(2011) considers a continuum of consumer types and derives multiple equilibra in a static setting.2 Compared

with these papers, our model considers coordination based on the payoff criterion in a dynamic setting.

Second, the present paper contributes to the literature on the optimal pricing strategy of a firm selling network

goods. Bensaid and Lesne (1996), Gabszewicz and Garcia (2008), and Xie and Sirbu (1995) demonstrate

the optimality of introductory pricing, while Mason (2000) finds skim pricing to be optimal. These papers

focus on the “stationary network effect,” meaning that consumers do not experience the externality effect of a

network formed after their own adoption.3 In contrast, our paper assumes a “non-stationary network effect,”

implying that consumers benefit from the network formed both before and after their own adoption. Laussel

et al. (2015) finds that skim pricing is optimal in a model where a firm sells a network good along with a

complementary good that enhances the value of the network good. Fudenberg and Tirole (2000) studies the

role of introductory pricing as a way to discourage potential entry, while Hattori and Zennyo (2018) considers

introductory pricing as a means to convince consumers with the expectations that the current network size

will continue.4 In Cabral (2011), firms compete on prices to attract new consumers, and a firm with a larger

network sets a higher price. Although formally a static pricing strategy, a divide-and-conquer strategy in

a two-sided market is similar to introductory pricing, as studied in a monopoly model by Belleflamme and

Toulemonde (2009) and duopoly models by Caillaud and Jullien (2001, 2003).

Our paper extends the adoption game with a coordination problem to a dynamic setting. In contrast

to previous studies such as Bensaid and Lesne (1996), Gabszewicz and Garcia (2008), Makhdoumi et al.

(2017), Mason (2000) and Xie and Sirbu (1995), our model assumes that the good is durable and yields

utility over two periods once adopted. Additionally, unlike Fudenberg and Tirole (2000) and Cabral (2011),

our model assumes strategic consumers who choose the timing of adoption. Under these assumption, we

show the impact of consumer coordination as a key driver on dynamic pricing strategies.

2See also Economides (1996), Grilo et al. (2001), and Tolotti and Yepez (2020).
3See Long (2015).
4In Hattori and Zennyo (2018), the consumer is referred as naive consumer. See Cabral (2011, 2019).
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3 Payoff versus Risk Dominance

We begin with the discussion of different types of consumer coordination in a monopoly model. A monopolist

firm sells a network good to a mass of consumers over two periods. Each consumer has type θ which represents

a marginal impact of the network size on his utility. Let Θ = {θℓ, θh} be the set of consumer types and

assume that θh > θℓ > 0. Let λ ∈ (0, 1) be the proportion of type θh consumers. Consumers demand at most

one unit of the good and make strategic adoption decisions. Specifically, they decide if and when to adopt.

Given a price pt quoted by the monopolist in period t = 1, 2, the utility of a type θ consumer adopting the

good in period 1 is given by

(θ + v) (n1 + δn2)− p1,

where nt is the size of adoption in period t, also referred to as the network size, δ ∈ (0, 1) is a discount factor,

and v > 0 is a constant. The first term represents the utility from consuming the network good: Consumers

benefit not only from the current network but also from the network formed after their adoption. The future

network benefit is discounted by δ. Similarly, the utility of a type θ consumer adopting the good in period 2

is given by

δ {(θ + v)(n1 + n2)− p2} .

The utility is zero if a consumer does not adopt in either period. The monopolist has zero marginal cost of

production, and its profit function is given by

π(p) = p1n1 + δp2n2.

The game proceeds as follows: In period 1, the monopolist sets price p1, and consumers decide whether

to adopt the good or not. Once a consumer adopts the good, he does not make any further decision. In

period 2, the network size for period 1 becomes public, and the monopolist sets price p2. Consumers who

did not adopt in period 1 then decide whether to adopt or not.

The monopolist determines the price pt in period t from the set R+, whereas each consumer chooses

his action dt in period t from the set D = {A, ∅}, where A and ∅ represent adoption and no adoption,

respectively. We can interpret d1 = ∅ as the decision to wait until period 2. A period 1 history h = (p1, n1)

consists of the price in period 1 as well as the network size in period 1. The set of period 1 history is

denoted by H = R+ × [0, 1]. The strategy of the monopolist consists of its price p1 in period 1 as well as

its price p2 as a function of the period 1 history h ∈ H. On the other hand, each consumer’s strategy is a

mapping s1 : Θ× R+ → D that determines his period 1 choice as a function of his type and period 1 price
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and a mapping s2 : Θ × R+ × H → D that determines his period 2 choice as a function of his type and

period 2 price as well as the period 1 history. Since consumers demand at most one unit of the good, s2 = ∅

if s1 = A.

We will define payoff dominant equilibrium (PDE) and risk dominant equilibrium (RDE) as follows.

Given a price p, each type of consumer faces the problem shown in Tables 2 and 3, where the numbers

represent the consumer’s payoff corresponding to his choice. For example, the top left cell of Table 2 shows

the payoff of a type θh consumer when he and all other type θh consumers adopt. Let α be a proportion of

other consumers of the same type who adopt. Then, payoff dominant equilibrium (PDE) and risk dominant

equilibrium (RDE) are defined as follows:

θh adopts Neither type adopts

Adopt (θh + v)λ− p −p

Don’t 0 0

Table 2: Type θh

Both θh and θℓ adopts θh adopts

Adopt θℓ + v − p (θℓ + v)λ− p

Don’t 0 0

Table 3: Type θℓ

Definition 1. The strategy profile where every type θh consumer adopts and no type θℓ consumer adopts

is payoff dominant equilibrium (PDE) if

p ≤ (θh + v)λ

and is α-risk dominant equilibrium (RDE) if

(θh + v)αλ− p ≥ 0 ⇔ α ≥ p

(θh + v)λ
.

The strategy profile where both types of consumer adopt is PDE if

p ≤ θℓ + v

and is RDE if

(θℓ + v){λ+ α(1− λ)} − p ≥ 0 ⇔ α ≥ p− (θℓ + v)λ

(θℓ + v)(1− λ)
.

Note that the above definition of RDE is based on the comparison of the two coordination payoffs and,

hence, is different from the standard definition based on both the coordination and miscoordination payoffs.5

When network externalities are involved in the payoff, the probability can be regarded as the network size.

Adoption involves the risk of a coordination failure. If a player believes that the network size is small, the

5See Harsanyi and Selten (1988) and Van Huyck et al. (1990)
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risk will be high. The RDE expresses the fact that an inefficient “no-adoption” equilibrium will be chosen if

the risk is perceived to be high. Conversely, extremely low risk, α → 1, implies payoff dominance.

3.1 Coordination based on payoff dominance

We derive a separating equilibrium in which type θh consumers adopt in period 1 and type θℓ consumers

adopt in period 2 based on the payoff dominance criterion. Consider a period 1 history h ∈ H along which

mass µ ≤ λ of type θh consumers adopt in period 1. A type θh consumer believes that even a type θℓ

consumer may adopt in period 2. If so, he should adopt in period 2. Hence, each consumer believes that

type thetah consumers will adopt in period 2. For a given price p2 in period 2, the utility of a type θℓ

consumers is θℓ+v−p2 if he adopts when all consumers adopt and 0 if he does not adopt when only type θh

consumers adopt. Thus, a type θℓ consumer adopts in period 2 if p2 ≤ θℓ + v and the optimal price in

period 2 is p∗2 = θℓ + v.6

In period 1, for a given price p1 in period 1, the utility of a type θh consumer is (θh+v){λ+δ(1−λ)}−p1

if he adopts when only other type θh consumers adopt. On the other hand, if he waits until period 2,

then all remaining consumers will adopt in period 2, and his utility is δ(θh + v − p∗2). Thus, a type θh

consumer adopts in period 1 if p1 ≤ (θh + v){λ + (1 − δ)} + δp∗2(h0) and the optimal price in period 1

is p∗1 = (θh + v){λ+ (1− δ)}+ δp∗2(h0).

In the separating equilibrium, type θh consumers adopt in period 1 and type θℓ consumers adopt in

period 2, and the prices in each period are given by

pPDE
1 = (1− δ)(θh + v)λ+ δ(θℓ + v) and pPDE

2 = θℓ + v.

We obtain the following proposition regarding the pricing strategy in the separating equilibrium.

Proposition 1. When consumers coordinate based on the payoff dominance criterion, the monopolist uses

introductory pricing if (θh+ v)λ < θℓ+ v and skim pricing if (θh+ v)λ > θℓ+ v in the separating equilibrium

in which θh adopts in period 1 and θℓ adopts in period 2.

The equilibrium price in period 1 is the average discounted sum of the benefit each type of consumer

derives from the network when he adopts, and the equilibrium price in period 2 is the benefit a type θℓ

consumer derives from the network. Since waiting is more costly to type θh than type θℓ, type θh consumers

will adopt the good earlier than type θℓ consumers. If the proportion of type θh consumers is small, then

the network benefit he receives upon adoption in period 1 is reduced, so their incentive to wait becomes

6See the Appendix for the formal description of the equilibrium.
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stronger. Therefore, the monopolist must price lower in period 1. Conversely, if the proportion of θh is large,

the monopolist sets a higher price in period 1 and extract the surplus from type θh consumers.

3.2 Coordination based on risk dominance

In this section, we derive a separating equilibrium when consumers coordinate based on the risk dominance

criterion and compare it with the result in the previous section on payoff dominance. Consider a period 1

history h ∈ H along which mass µ ≤ λ of type θh consumers adopt the good in period 1. As with

Subsection 3.1, a type θh consumer in period 2, if any, will adopt as long as type θℓ adopts. On the other

hand, type θℓ consumers are at the risk of a coordination failure. Let β be the proportion of type θℓ consumers

who adopt. A type θℓ consumer adopts in period 2 if

δ [(θℓ + v){λ+ β(1− λ)} − p2] ≥ 0 ⇔ p2 ≤ (θℓ + v)λ+ (θℓ + v)β(1− λ).

Thus, the optimal price in period 2 is p∗2 = (θℓ + v)λ + (θℓ + v)β(1 − λ). We can interpret β as the risk,

where a lower β indicates a higher risk of a coordination failure. The right-hand side of the inequality

on the right represents the network benefit enjoyed by type θℓ when he expects type θh adopts but only

fraction β of type θℓ adopts. If there is no such risk, i.e. β = 1, the network benefit is θℓ + v. Thus, the

difference (θℓ+v)(1−λ)(1−β) can be understood as the premium associated with the risk of a coordination

failure. If the payoff from the coordinated adoption is large enough to offset the risk, the type θℓ will adopt.

In other words, when adoption involves risk, consumers require a high coordination payoff premium.

Type θℓ consumers will not adopt in period 1 because the period 1 price is set so that type θh consumers

would be indifferent between adoption and no adoption. Expecting the period 2 outcome above, if a type θh

consumer waits until period 2, his payoff is δ (θh + v − p∗2). Let α be the proportion of type θh consumers

who adopt in period 1. A type θh consumer adopts in period 1 if

(θh + v){αλ+ δ(1− αλ)} − p1 ≥ δ{(θh + v)− p∗2}

⇔ p1 ≤ (1− δ)(θh + v)αλ+ δ{(θℓ + v)λ+ (θℓ + v)β(1− λ)}.

Hence, the price in the separating equilibrium in each period is given by

pRDE
1 = (1− δ)(θh + v)αλ+ δ{(θℓ + v)λ+ (θℓ + v)β(1− λ)} and

pRDE
2 = (θℓ + v)λ+ (θℓ + v)β(1− λ).
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Without risk of a coordination failure, the network benefit for type θh consumer is (θh+v){λ+δ(1−λ)}.

Hence, the premium associated with the risk is (1 − δ)(θh + v)(1 − α)λ. As in period 2, consumers require

a coordination payoff premium in order to adopt. The extent of the premium, however, varies depends on

the discount factor. When the discount factor is small, the benefit of the network formed in period 2 is

discounted, which means that the loss due to coordination failure is higher. As a result, a higher premium

is required in such cases.

Proposition 2. When consumers coordinate based on the risk dominance criterion, the monopolist uses

introductory pricing if α(θh+ v)λ < (θℓ+ v)λ+β(θℓ+ v)(1−λ) and skim pricing if α(θh+ v)λ > (θℓ+ v)λ+

β(θℓ + v)(1− λ).

The equilibrium price in period 1 is the average discounted sum of the benefit each type of consumer will

receive from the expected network upon adoption. On the other hand, the equilibrium price in period 2 is

the benefit a type θℓ consumer derives from the expected network. The second period has a network base

formed in period 1, but no network base exists in period 1. Therefore, adopting in period 1 is more risky, so if

consumers are more pessimistic, which means that α and β are low, introductory pricing prevails to mitigate

the risk. On the other hand, if consumers are more optimistic and perceive less risk, both introductory

and skim pricing can be optimal depending on the proportion of type θh consumers. If the proportion of

type θh consumers is small, even if the risk is low, the benefit derived from the period 1 network is also small.

Introductory pricing is optimal in such a case. Conversely, if the proportion of type θh consumers is large,

the benefits derived from the period 1 network is large and type θh has high willingness to pay. Therefore,

the monopolist extracts surplus from them through skim pricing.

In the extreme case, when consumers perceive no risk of a coordination failure, α and β equal 1, and

pRDE equals pPDE. This implies that risk dominance is equivalent to payoff dominance in the limit.

4 Threshold coordination

We now suppose that the consumer type θ is uniformly distributed over Θ = [0, 1]. This allows the same

model to be used to analyze the monopoly and duopoly cases.

4.1 Monopoly

As mentioned above, adoption incentive depends critically on the expected size of adoption by others. Price

changes have a significant impact on these expectations. In the monopoly model, we consider an equilibrium

in which consumers’ coordination behavior in response to a price change is punitive in the sense that the
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firm loses its customer base after any deviation from the equilibrium price. Specifically, for an equilibrium

price profile p∗ = (p∗1, p
∗
2) and prices p′1 ̸= p∗1 and p′2 ̸= p∗2, the consumer’s strategy is given by

s∗1(θ, p
′
1) = s∗2(θ, p

′
2, h) = ∅ ∀θ ∈ Θ, ∀h ∈ H.

Observing a price deviation, consumers with punitive response coordinate to wait until period 2 in period 1

and not to adopt in period 2. This coordination behavior presents the worst-case scenario after a deviation

for the monopolist, and minimizes his incentive to deviate from the equilibrium price. Consequently, it

supports the widest range of potential equilibrium prices.

Suppose θ > θ′ and compare the consumer’s strategy when he has type θ and when he has type θ′. If θ′

adopts in a given period in equilibrium, then θ will also adopt in that period. Since θ has a higher valuation

for the good than θ′, θ receives higher utility from adoption than θ′ in both periods. If θ′ adopts in period 2,

θ also adopts if he has not already done so. Waiting is more costly to type θ than type θ′. Therefore, if

θ′ adopts in period 1, θ also adopts in period 1 without waiting until period 2. This implies that the set

of consumer types is divided into three intervals in equilibrium: From right to left, the first interval is the

set of consumers who adopt in period 1, the second is the set of consumers who adopt in period 2, and the

third is the set of consumers who do not adopt in either period. Note that the third interval is empty if the

market is fully covered. We consider a threshold coordination equilibrium (TCE) defined as follows:

Definition 2. An SPE is a threshold coordination equilibrium (TCE) if there exist θ∗1 and θ∗2 such that

0 ≤ θ∗2 < θ∗1 < 1 for the equilibrium price profile (p∗1, p
∗
2) and type θ ∈ [θ∗1 , 1] adopts in period 1, θ ∈ [θ∗2 , θ

∗
1)

adopts in period 2, and θ ∈ [0, θ∗2) does not adopt.

By definition, positive measures of consumer types adopt the good in both periods in TCE.

The period 1 history h reveals the distribution of consumers remaining in period 2. Let θ1(h) be the

lowest type who adopted in period 1 for a period 1 history h = (p1, n1), n1 = 1− θ1(h). Thus, consumers in

the interval [0, θ1(h)) remain in period 2. Given a period 2 price p2, there exists a type θ2 such that he is

indifferent between adoption in period 2 and no adoption:

δ {(θ2 + v)(1− θ2)− p2} = 0 ⇔ θ2 =
1− v

2
±
√

(1 + v)2

4
− p2.

The two values with different signs in the second term are two threshold values.

Expecting the equilibrium price p∗2 and threshold value θ∗2 in period 2, a type θ1 consumer is indifferent

11



between adopting in period 1 and waiting until period 2 for a period 1 price p1:

(θ1 + v) {1− θ1 + δ(θ1 − θ∗2)} − p1 = δ {(θ1 + v)(1− θ∗2)− p∗2}

⇔ θ1 =
1− v

2
±
√

(1 + v)2

4
− p1 − δp∗2

1− δ
.

Similar to the threshold value in period 2, there can be two threshold values in period 1 with different signs

of the second term.

For a given price profile p = (p1, p2), if the sign of the square root term of each threshold value is positive,

then the period 1 network size is smaller than in the negative case, and the final network size is smaller than

in the negative case. We therefore refer to the case where the sign is positive as pessimistic and the case

where it is negative as optimistic.

Proposition 3. When v < 1, the optimal pricing strategy of the monopolist is introductory pricing in case

(i), and skim pricing in case (ii). In case (iii), both introductory and skim pricing can be optimal depending

on parameter. The prices and threshold values in the threshold coordination equilibrium (TCE) are as

follows:

(i) Pessimistic in both periods

p∗1 ∈
{
p1 : δp∗2 < p1 < p∗2

}
, p∗2 ∈

{
p2 : (θ∗1 + v)(1− θ∗1) < p2 ≤ (1 + v)2

4

}
,

θ∗1 =
1− v

2
+

√
(1 + v)2

4
− p∗1 − δp∗2

1− δ
, and θ∗2 =

1− v

2
+

√
(1 + v)2

4
− p∗2.

(ii) Optimistic in both periods

p∗1 ∈
{
p1 : p∗2 < p1 ≤ δp∗2 + (1− δ)

(1 + v)2

4

}
, p∗2 ∈

{
p2 : v ≤ p2 ≤ (1 + v)2

4

}
,

θ∗1 =
1− v

2
−
√

(1 + v)2

4
− p∗1 − δp∗2

1− δ
, and θ∗2 =

1− v

2
−
√

(1 + v)2

4
− p∗2.

(iii) Pessimistic in period 1 and optimistic in period 2

p∗1 ∈
{
p1 : δp∗2 < p1 ≤ δp∗2 + (1− δ)

(1 + v)2

4

}
, p∗2 ∈

{
p2 : v ≤ p2 ≤ (1 + v)2

4

}
,

θ∗1 =
1− v

2
+

√
(1 + v)2

4
− p∗1 − δp∗2

1− δ
, and θ∗2 =

1− v

2
−
√

(1 + v)2

4
− p∗2.

When v > 1, the optimal pricing strategy of the monopolist is introductory pricing, and the prices and

12



threshold values in TCE are as follows:

p∗1 ∈
{
p1 : δp∗2 < p1 < p∗2

}
, p∗2 ∈

{
p2 : (θ∗1 + v)(1− θ∗1) < p2 ≤ v

}
,

θ∗1 =
1− v

2
+

√
(1 + v)2

4
− p∗1 − δp∗2

1− δ
, and θ∗2 =

1− v

2
+

√
(1 + v)2

4
− p∗2.

In TCE, threshold values satisfy 0 ≤ θ∗2 < θ∗1 < 1. If the network effect is small (v < 1), so both optimistic

and pessimistic threshold values are valid, resulting in three possible TCE: (i) pessimistic in both periods,

(ii) optimistic in both periods and (iii) pessimistic in period 1 and optimistic in period 2. If thresholds

are pessimistic in both periods, the marginal consumer type is high, and a price increase leads to a higher

demand. If the monopolist offers a lower price in period 2, the network does not expand much in period 2,

reducing the incentive to adopt in period 1. Therefore, skim pricing is not optimal, and introductory pricing

is optimal. Conversely, if thresholds are optimistic in both periods, a higher price results in a lower demand.

In this case, a higher price in period 2 reduces the incentive to adopt in period 1 due to smaller expansion

in the network size in period 2. Therefore, introductory pricing is not optimal, and skim pricing is optimal.

If the threshold values are pessimistic in period 1 and optimistic in period 2, only relatively few consumer

types adopt in period 1, and relatively more consumer types adopt in period 2. This means that θ∗1 > θ∗2

tends to hold more easily, making both introductory and skim pricing consistent with TCE. If v is large

(v > 1), consumers can enjoy a large enough network effect to adopt. Consequently, the optimistic threshold

value is not consistent with TCE. Since only the pessimistic threshold value is valid, introductory pricing is

optimal just as in the case of pessimistic thresholds when v < 1.

4.2 Duopoly

We now turn to a duopoly model. Two firms, A and B, sell incompatible network goods, A and B, respec-

tively, to a mass of consumers. Firm A is located at 0, and firm B is located at 1. Each consumer demands

at most one unit of either good. The consumer’s type θ represents a relative preference for good B over A.

A consumer with a higher θ derives higher utility from B and lower utility from A. Consumers can choose

which good to adopt and when to adopt it. Given prices pt and qt quoted by firms A and B, respectively, in

period t, the utilities of a type θ consumer adopting A and B in period 1 are respectively given by

(1− θ + v)(nA
1 + δnA

2 )− p1 and (θ + v)(nB
1 + δnB

2 )− q1,

where nf
t is the network size of firm f in period t. The utility function is identical to the one used in the

monopoly model, and a consumer adopting one good does not benefit from the network of the other good.

13



Similarly, the utilities of a type θ consumer adopting A and B in period 2 are respectively given by

δ
{
(1− θ + v)(nA

1 + nA
2 )− p2

}
and δ

{
(θ + v)(nB

1 + nB
2 )− q2

}
.

The utility is zero if the consumer does not adopt either good. Each firm has zero marginal cost of production,

and the profit functions of firms A and B are respectively given by

πA((p1, q1), (p2, q2), n
A) = p1n

A
1 + δp2n

A
2 and πB((p1, q1), (p2, q2), n

B) = q1n
B
1 + δq2n

B
2 .

Firms A and B simultaneously choose prices pt and qt, respectively, in period t from the set R+, whereas

each consumer chooses his action dt in period t from the set D = {A,B, ∅}. A period 1 history h =

((p1, q1), n1) consists of the price profile in period 1 as well as a pair n1 = (nA
1 , n

B
1 ) ∈ [0, 1]2 of network size

of each firm in period 1. Denote the set of period 1 histories by H = R2
+× [0, 1]2. The strategies of firm A(B)

consist of the price p1(q1) in period 1 as well as the price p2(q2) as a function of the period 1 history h ∈ H.

On the other hand, the strategy of each consumer is a mapping s1 : Θ×R2
+ → D that determines his period 1

choice as a function of his type θ and period 1 price profile (p1, q1) and a mapping s2 : Θ×R2
+×H → D that

determines his period 2 choice as a function of his type θ, period 2 price profile (p2, q2), and the period 1

history h ∈ H. Since consumers demand at most one unit of either good, s2 = ∅ if s1 ̸= ∅.

As in the monopoly model, we consider punitive coordination following a price deviation: Let p∗ = (p∗1, p
∗
2)

and q∗ = (q∗1 , q
∗
2) be equilibrium price profiles of firms A and B.

s1(θ, (p1, q1)) =


A if p1 = p∗1 and q1 ̸= q∗1 ,

B if p1 ̸= p∗1 and q1 = q∗1 ,

∅ if p1 ̸= p∗1 and q1 ̸= q∗1 ,

and

s2(θ, (p2, q2), h) =


A if p2 = p∗2 and q2 ̸= q∗2 ,

B if p2 ̸= p∗2 and q2 = q∗2 ,

∅ if p2 ̸= p∗2 and q2 ̸= q∗2 ,

∀θ ∈ Θ, ∀h ∈ H.

With punitive response, a price deviation by either one firm causes consumers to coordinate on the other

firm.

As in the monopoly model described in Subsection 4.1, consider the consumer’s strategy when θ < θ′.

In equilibrium, θ′ never adopts A before θ and θ never adopts B before θ′. These imply that the set of

consumer types is divided into four intervals in equilibrium when the market is fully covered: From left to
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right, the first interval is the set of consumers who adopt A in period 1, the second is the set of consumers

who adopt A in period 2, the third is the set of consumers who adopt B in period 2, and the fourth is the

set of consumers who adopt B in period 1. We define a threshold coordination equilibrium in the duopoly

model as follows:

Definition 3. An SPE is a threshold coordination equilibrium(TCE) if there exist x∗, y∗ and z∗ such that

0 < x∗ < z∗ < y∗ < 1 for the equilibrium price profile and type θ ∈ [0, x∗] adopts A in period 1, θ ∈ (x∗, z∗]

adopts A in period 2, θ ∈ (z∗, y∗) adopts B in period 2, and θ ∈ [y∗, 1] adopts B in period 1.

The strategy in period 2 depends on period 1 history. For any period 1 history h ∈ H, let x(h) be the

highest type who adopts A in period 1 and y(h) be the lowest type who adopts B in period 1, respectively,

consumers in the interval (x(h), y(h)) remain in period 2. Given a price profile (p2(h), q2(h)) in period 2,

there exists a type z(h) who is indifferent between adoption in period 2 and no adoption:

δ{(1− z(h) + v)z(h)− p2(h)} = δ{(z(h) + v)(1− z(h))− q2(h)}

⇔ z(h) =
1

2
+

p2(h)− q2(h)

2v
∀h ∈ H.

If (p∗2, q
∗
2) is the equilibrium price profile in period 2, then the threshold value z∗ ∈ (x∗, y∗) and the utility

of type z∗ must be non-negative. Thus the equilibrium price profile in period 2 is given as follows:

(p∗2, q
∗
2) ∈

{
(p2, q2) : v(2x

∗ − 1) < p2 − q2 < v(2y∗ − 1) and
(p2 − q2)

2

v2
+ 2(p2 + q2) ≤ 1 + 2v

}
.

In Figure 1, we present the equilibrium price profile in period 2. For z∗ ∈ (x∗, y∗), it must satisfy v(2x∗−1) <

p∗2 − q∗2 < v(2y∗ − 1). Furthermore, for type z∗’s utility to be non-negative, it must satisfy
(p∗

2−q∗2 )
2

v2 +2(p∗2 +

q∗2) ≤ 1 + 2v. Therefore, the region (a) corresponds to the equilibrium price profile in period 2. In the

duopoly model, unlike the monopoly model, the presence of the other firm reduces the potential market size

of each firm. For example, when firm A builds a network of size x∗ in period 1, the maximum network firm B

can build is 1 − x∗. This implies that as firm A builds a large network in period 1, the willingness to pay

for B decreases, making it impossible for firm B to set a high price in period 2.

Expecting the equilibrium price profile in period 2 shown above, for a period 1 price profile (p1, q1), a

type x is indifferent between adopting A in periods 1 and 2, and type y is indifferent between adopting B in

periods 1 and 2:

x =
1 + v

2
−
√

(1 + v)2

4
− p1 − δp∗2

1− δ
and y =

1− v

2
+

√
(1 + v)2

4
− q1 − δq∗2

1− δ
.
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v

v

(1− y∗ + v)y∗

(x∗ + v)(1− x∗)

v(2y∗ − 1) > p2 − q2

v(2x∗ − 1) < p2 − q2

q2

p2

(p2−q2)
2

v2 + 2(p2 + q2) ≤ 1 + 2v(a)

Figure 1: By z∗ ∈ (x∗, y∗), the equilibrium price profile in period 2 must be v(2x∗ − 1) < p2 − q2 and

v(2y∗−1) > p2− q2. Furthermore, since the utility of type z∗ is non-negative, (p2−q2)
2

v2 +2(p2+ q2) ≤ 1+2v.

Since 0 < x∗ < z∗ < y∗ < 1 must be satisfied in equilibrium for the threshold value profile (x∗, y∗, z∗), the

equilibrium price profile in period 1 is given as follows:

(p∗1, q
∗
1) ∈

(p1, q1) :
δp∗2 < p1 < δp∗2 + (1− δ)

{
−d∗2

2 +2v2d∗
2+(1+2v)v2

4v2

}
and

δq∗2 < q1 < δq∗2 + (1− δ)
{

−d∗2
2 −2v2d∗

2+(1+2v)v2

4v2

}
 ,

where d∗2 ≡ p∗2 − q∗2 .

Proposition 4. In the duopoly model, firm A uses introductory pricing if (1 − x∗ + v)x∗ < p∗2 and skim

pricing if (1−x∗ + v)x∗ > p∗2, and firm B uses introductory pricing if (y∗ + v)(1− y∗) < q∗2 and skim pricing

if (y∗ + v)(1− y∗) > q∗2 . The price profiles in each period and threshold values in the threshold coordination

equilibrium (TCE) are as follows:

(p∗1, q
∗
1) ∈

(p1, q1) :
δp∗2 < p1 < δp∗2 + (1− δ)

{
−d∗2

2 +2v2d∗
2+(1+2v)v2

4v2

}
and

δq∗2 < q1 < δq∗2 + (1− δ)
{

−d∗2
2 −2v2d∗

2+(1+2v)v2

4v2

}
 ,

(p∗2, q
∗
2) ∈

{
(p2, q2) : v(2x

∗ − 1) < p2 − q2 < v(2y∗ − 1) and
(p2 − q2)

2

v2
+ 2(p2 + q2) ≤ 1 + 2v

}
,

x∗ =
1 + v

2
−
√

(1 + v)2

4
− p∗1 − δp∗2

1− δ
, y∗ =

1− v

2
+

√
(1 + v)2

4
− q∗1 − δq∗2

1− δ
, and z∗ =

1

2
+

d∗2
2v

,

where d∗2 = p∗2 − q∗2 .
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From the threshold values x∗ and y∗, we know p∗1 = (1 − δ)(1 − x∗ + v)x∗ + δp∗2 and q∗1 = (1 − δ)(y∗ +

v)(1 − y∗) + δq∗2 . As in the monopoly model, the equilibrium price of each firm in period 1 is the average

discounted sum of the benefit the lowest type who adopts in period 1 derives from the period 1 network

size and the equilibrium price in period 2. However, unlike in the monopoly model, both introductory and

skim pricing can be optimal. Figure 2 shows the range of price profiles in symmetric equilibrium (p∗1 = q∗1

and p∗2 = q∗2). The threshold values must be such that 0 < x∗ < z∗ < y∗ < 1, and the equilibrium price

p1 = q1

p2 = q2

45◦

(1) p∗1 > δp∗2

(2) p∗1 < δp∗2 +
(1−δ)(1+2v)

4

(1−δ)(1+2v)
4

1+2v
4

(3) p∗2 ≤ 1+2v
4

skim

pricing

introductory

pricing

Figure 2: Symmetric equilibrium

profiles lie between (1) and (2) and to the left of (3), which ensures that type z∗’s utility is non-negative.

The region above the 45-degree line corresponds to skim pricing and the region below the line corresponds

to introductory pricing. This is understood as follows: As seen, the range of symmetric equilibrium prices

in period 2 is independent of the set of remaining consumers in period 2. Consumers who adopt in period 2

benefit from the final network size only, regardless of the period 1 network size. Therefore, the period 2 price

must be set so that the consumer’s utility, who is indifferent between adopting A in period 2 and B, is non-

negative. In the symmetric equilibrium, the market eventually adjusts so that each firm splits the market

in half. The utility of type z∗ = 1
2 is, therefore, 1

2 (
1
2 + v) and does not depend on the outcome of period 1.

Suppose then that we consider moving x∗ = 1−y∗ while fixing p∗2 = q∗2 . Since the period 1 equilibrium price

is increasing in x∗ = 1 − y∗, more adoptions in period 1 (higher x∗ = 1 − y∗) imply a higher equilibrium

price p∗1 = q∗1 in period 1. Since p∗1 = q∗1 is related to p∗2 = q∗2 through a discount factor δ, the range of the

period 1 equilibrium prices covers both regions above and below the period 2 equilibrium prices. In other
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words, since the period 2 equilibrium price is insulated from the period 1 history, the period 1 outcome in

equilibrium simply reflects the relationship between the size of adoption and the price level in that period

for each good separately. In the model of threshold coordination, the positive relationship between these

two is not unique, and hence the period 1 price can be higher or lower than the period 2 price.

5 Conclusion

There are multiple equilibria in the adoption game of network goods depending on how consumers coordinate

their decisions. Our analysis considers coordination based on payoff and risk dominance for binary types as

well as pessimistic and optimistic thresholds with continuous types and shows how consumer coordination

determines the optimal dynamic pricing strategy.

Under risk dominance, consumers are aware of the risk of a coordination failure. Consumers adopt when

there is a coordination payoff premium associated with the risk. Since the network base already exists in

period 2 but not in period 1, adoption is riskier in period 1 than in period 2. Therefore, if consumers

perceive the risk to be high, the monopolist uses introductory pricing to give consumers a payoff premium

for coordination. Payoff dominance is consistent when risk is sufficiently low.

Under threshold coordination, the impact of price changes on demand is influenced by consumers’ expec-

tations regarding network size. In the monopoly model, if consumers have pessimistic expectations, a higher

price increases demand. A higher price in period 2 implies network expansion in that period, so introductory

pricing is optimal. Conversely, if consumers have optimistic expectations, a higher price results in decreased

demand. If the monopolist sets a higher price in period 2, the network size will not expand much, reducing

the incentive to adopt in period 1, so introductory pricing is not optimal, but rather skim pricing is optimal.

On the other hand, in the duopoly model, both introductory pricing and skim pricing can be optimal. In

symmetric equilibrium, each firm shares half the market. Since only the final network size is important for

consumers who adopt in period 2, the range of equilibrium period 2 price is independent of the outcome

in period 1. More adoption in period 1 implies a higher equilibrium price in period 1, and the equilibrium

price in period 1 exceeds a given equilibrium price in period 2, i.e., skim pricing. On the other hand, less

adoption in period 1 implies a lower equilibrium price in period 1, and the equilibrium price in period 1 is

lower than that in period 2, i.e., introductory pricing.

Our analysis assumes that all consumers are homogeneous in terms of their expectations about the

network size. However, information asymmetry can cause heterogeneity in expectations, as discussed in

Cabral (2019). Coordination behaviors can be different with such heterogeneity and firms’ optimal pricing

needs adjustment. This topic would be worth exploring in future research.
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Appendix A. Payoff dominance and proof of Proposition 1

In period 2, we assume that each consumer believes that type θh consumers adopt. Consider a period 1

history h ∈ H along which mass µ ≤ λ of type θh consumers adopt. The utility of a type θℓ consumer is

δ(θℓ+v−p2) if he adopts when all consumers adopt and 0 if he does not adopt when only type θh consumers

adopt. Hence, the strategy of type θℓ is given by

s2(θℓ, p2, h) =


A if p2 ≤ θℓ + v,

∅ if p2 > θℓ + v,

∀h ∈ H.

Thus, the optimal price in period 2 is pPD
2 = θℓ + v. In period 1, we assume that each consumer believes

that type θℓ consumers do not adopt. The utility of type θh consumer is (θh + v){λ + δ(1 − λ)} − p1 if he

adopts when only type θh consumers adopt and δ(θh + v − pPD
2 ) if he does not adopt when nobody adopts.

Hence, the strategy of type θh is given by

s1(θh, p1) =


A if p1 ≤ (1− δ)(θh + v)λ+ δpPD

2 ,

∅ if p1 > (1− δ)(θh + v)λ+ δpPD
2 .

Thus, the optimal price in period 1 is pPD
1 = (1− δ)(θh + v)λ+ δ(θℓ + v). Taking the difference between the

price in period 1 and 2, we can obtain

pPD
1 − pPD

2 = (1− δ){(θh + v)λ− (θℓ + v)}.

Thus, pPD
1 < pPD

2 if (θh + v)λ < θℓ + v and pPD
1 > pPD

2 if (θh + v)λ > θℓ + v.

Appendix B. Risk dominance and proof of Proposition 2

In period 2, we assume that each consumer believes that type θh consumers adopt. Consider a period 1

history h ∈ H along which mass µ ≤ λ of type θh consumers adopt. For a type θℓ consumer, his utility

when other type θℓ consumers adopt and do not is as shown in Table 4. Let β be the proportion of type θℓ

Both θh and θℓ adopt θh adopts

Adopt θℓ + v − p2 (θℓ + v)λ− p2

Don’t 0 0

Table 4: Utility of a type θℓ consumer
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consumers who adopt. Given β, the utility of a type θℓ consumer is β(θℓ + v− p2) + (1− β){(θℓ + v)λ− p2}

if he adopts, and his utility is 0 if he does not adopt. Hence, the strategy of type θℓ is given by

s2(θℓ, p2, h) =


A if p2 ≤ (θℓ + v)λ+ β(θℓ + v)(1− λ),

∅ if p2 > (θℓ + v)λ+ β(θℓ + v)(1− λ).

∀h ∈ H.

Thus, the optimal price in period 2 is pRD
2 = (θℓ + v)λ+ β(θℓ + v)(1− λ). In period 1, we assume that each

consumer believes that type θℓ consumers do not adopt. For a type θh consumer, his utility when other

type θh consumers adopt and do not is as shown in Table 5. Let α be the proportion of type θh consumers

θh adopts Neither type adopts

Adopt (θh + v){λ+ δ(1− λ)} − p1 δ(θh + v)− p1

Don’t δ(θh + v − pRD
2 ) δ(θh + v − pRD

2 )

Table 5: Utility of a type θh consumer

who adopt. Given α, if a type θh consumer adopts, his utility is given by

α{(θh + v){λ+ δ(1− λ)} − p1}+ (1− α){δ(θh + v)− p1},

and if he does not adopt, his utility is δ(θh + v − pRD
2 ). Hence, the strategy of type θh is given by

s1(θh, p1) =


A if p1 ≤ (1− δ)α(θh + v)λ+ δpRD

2 ,

∅ if p1 > (1− δ)α(θh + v)λ+ δpRD
2 .

Thus, the optimal price in period 1 is pRD
1 = (1 − δ)α(θh + v)λ + δpRD

2 . Taking the difference between the

price in period 1 and 2, we can obtain

pRD
1 − pRD

2 = (1− δ)
[
α(θh + v)λ−

{
(θℓ + v)λ+ β(θℓ + v)(1− λ)

}]
.

Thus, pRD
1 < pRD

2 if α(θh + v)λ < (θℓ + v)λ+ β(θℓ + v)(1− λ) and pRD
1 > pRD

2 if α(θh + v)λ > (θℓ + v)λ+

β(θℓ + v)(1− λ).
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Appendix C. Proof of Proposition 3

Let θ1 be a type such that adoption in period 1 is indifferent to adoption in period 2 and θ2 be a type such

that adoption in period 2 is indifferent to no adoption. Note that n1 = 1− θ1 and n2 = θ1 − θ2.

(θ1 + v){1− θ1 + δ(θ1 − θ2)} − p1 = δ{(θ1 + v)(1− θ2)− p2}

⇔ θ1 =
1− v

2
±
√

(1 + v)2

4
− p1 − δp2

1− δ
and

δ{(θ2 + v)(1− θ2)− p2} = 0

⇔ θ2 =
1− v

2
±
√

(1 + v)2

4
− p2.

For TCE, the prices must be such that these thresholds satisfy 0 ≤ θ2 < θ1 < 1. There exists two thresh-

olds for each period according to the sign of the second term, and there are four possible combinations of

thresholds (θ1, θ2) that can be the TCE. In the following, the sign + is referred to as pessimistic and the

sign − as optimistic, and the combinations are denoted as (Pessimistic,Pessimistic), (Optimistic,Optimistic),

(Pessimistic,Optimistic), and (Optimistic,Pessimistic). Before considering each case, note that each radicand

is non-negative in the TCE:

(1 + v)2

4
− p∗1 − δp∗2

1− δ
≥ 0 ⇔ p∗1 − δp∗2 ≤ (1− δ)

(1 + v)2

4
and (1)

(1 + v)2

4
− p∗2 ≥ 0 ⇔ p∗2 ≤ (1 + v)2

4
. (2)

From now on, we consider each case. First, we assume v < 1.

(i) (Pessimistic,Pessimistic)

Let θ1 = 1−v
2 +

√
(1+v)2

4 − p1−δp2

1−δ and θ2 = 1−v
2 +

√
(1+v)2

4 − p2. Since v < 1 and the radicand is non-

negative, θ∗2 ≥ 0 always holds. For any period 1 history consisting of period 1 price p1 and threshold θ1,

the threshold in period 2 must be θ∗2 < θ1 in TCE:

θ∗2 < θ1 ⇔ p∗2 > (θ1 + v)(1− θ1). (3)

For the threshold in period 1, θ∗2 < θ∗1 < 1 must be satisfied in TCE:

θ∗2 < θ∗1 < 1 ⇔ δp∗2 < p∗1 < p∗2. (4)
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From (1), (2), (3) and (4), the TCE is

p∗1 ∈
{
p1 : δp∗2 < p1 < p∗2

}
, p∗2 ∈

{
p2 : p∗1 < p2 ≤ (1 + v)2

4

}
,

θ∗1 =
1− v

2
+

√
(1 + v)2

4
− p∗1 − δp∗2

1− δ
, and θ∗2 =

1− v

2
+

√
(1 + v)2

4
− p∗2.

Thus, p∗1 < p∗2.

(ii) (Optimistic,Optimistic)

Let θ1 = 1−v
2 −

√
(1+v)2

4 − p1−δp2

1−δ and θ2 = 1−v
2 −

√
(1+v)2

4 − p2. For any period 1 history consisting

of period 1 price p1 and threshold θ1, the threshold in period 2 must be 0 ≤ θ∗2 < θ1 in TCE:

0 ≤ θ∗2 < θ1 ⇔ v ≤ p∗2 < (θ1 + v)(1− θ1). (5)

For the threshold in period 1, since v < 1 and the radicand is non-negative, θ∗1 < 1 always holds. The

threshold in period 1 must be θ∗2 < θ∗1 in TCE:

θ∗2 < θ∗1 ⇔ p∗2 < p∗1. (6)

From (1), (2), (5) and (6), the TCE is as follows:

p∗1 ∈
{
p1 : p∗2 < p1 ≤ δp∗2 + (1− δ)

(1 + v)2

4

}
, p∗2 ∈

{
p2 : v ≤ p2 ≤ (1 + v)2

4

}
,

θ∗1 =
1− v

2
−
√

(1 + v)2

4
− p∗1 − δp∗2

1− δ
, and θ∗2 =

1− v

2
−
√

(1 + v)2

4
− p∗2.

Thus, p∗1 > p∗2.

(iii) (Pessimistic,Optimistic)

Let θ1 = 1−v
2 +

√
(1+v)2

4 − p1−δp2

1−δ and θ2 = 1−v
2 −

√
(1+v)2

4 − p2. For any period 1 history consisting

of period 1 price p1 and threshold θ1, the threshold in period 2 must be 0 ≤ θ∗2 < θ1 in TCE:

0 ≤ θ∗2 < θ1 ⇔ v ≤ p∗2 < (θ1 + v)(1− θ1). (7)

For the threshold in period 1, since the radicand is non-negative, θ∗1 > θ∗2 always holds unless p1 =
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p2 = (1+v)2

4 . The threshold in period 1 must be θ∗1 < 1 in TCE:

θ∗1 < 1 ⇔ p∗1 > δp∗2. (8)

From (1), (2), (7) and (8), the TCE is as follows:

p∗1 ∈
{
p1 : δp∗2 < p1 ≤ δp∗2 + (1− δ)

(1 + v)2

4

}
, p∗2 ∈

{
p2 : v ≤ p2 ≤ (1 + v)2

4

}
,

θ∗1 =
1− v

2
+

√
(1 + v)2

4
− p∗1 − δp∗2

1− δ
, and θ∗2 =

1− v

2
−
√

(1 + v)2

4
− p∗2.

Thus, it can be p∗1 < p∗2 or p∗1 > p∗2.

(iv) (Optimistic,Pessimistic)

Let θ1 = 1−v
2 −

√
(1+v)2

4 − p1−δp2

1−δ and θ2 = 1−v
2 +

√
(1+v)2

4 − p2. Since v < 1 and the radicand is non-

negative, θ∗2 ≥ 0 always holds. For any period 1 history consisting of period 1 price p1 and threshold θ1,

the threshold in period 2 must be θ∗2 < θ1 in TCE:

θ∗2 < θ1 ⇔ p∗2 > (θ1 + v)(1− θ1). (9)

For the threshold in period 1, since v < 1 and the radicand is non-negative, θ∗1 < 1 always holds.

Taking the difference between θ1 and θ2,

θ1 − θ2 = −

(√
(1 + v)2

4
− p1 − δp2

1− δ
+

√
(1 + v)2

4
− p2

)
.

Since the radicands are non-negative, no price profile satisfies θ1 > θ2.

Second, we assume v ≥ 1. Then, since 1−v
2 ≤ 0, the second terms of θ1 and θ2 must be positive. Let

θ1 = 1−v
2 +

√
(1+v)2

4 − p1−δp2

1−δ and θ2 = 1−v
2 +

√
(1+v)2

4 − p2. For any period 1 history consisting of period 1

price p1 and threshold θ1, the threshold in period 2 must be 0 ≤ θ∗2 < θ1 in TCE:

0 ≤ θ∗2 < θ1 ⇔ v ≥ p∗2 > (θ1 + v)(1− θ1). (10)

For the threshold in period 1, θ∗2 < θ∗1 < 1 must be satisfied in TCE:

θ∗2 < θ∗1 < 1 ⇔ δp∗2 < p∗1 < p∗2. (11)
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From (1), (2), (10) and (11), the TCE is as follows:

p∗1 ∈
{
p1 : δp∗2 < p1 < p∗2

}
, p∗2 ∈

{
p2 : (θ∗1 + v)(1− θ∗1) < p2 ≤ v

}
,

θ∗1 =
1− v

2
+

√
(1 + v)2

4
− p∗1 − δp∗2

1− δ
, and θ∗2 =

1− v

2
+

√
(1 + v)2

4
− p∗2.

Appendix D.Proof of Proposition 4

We show that ACE if and only if

(p∗1, q
∗
1) ∈

(p1, q1) :
δp∗2 < p1 < δp∗2 + (1− δ)

{
−d∗2

2 +2v2d∗
2+(1+2v)v2

4v2

}
and

δq∗2 < q1 < δq∗2 + (1− δ)
{

−d∗2
2 −2v2d∗

2+(1+2v)v2

4v2

}
 ,

(p∗2, q
∗
2) ∈

(p2, q2) :
v(2x∗ − 1) < p2 − q2 < v(2y∗ − 1) and

(p2−q2)
2

v2 + 2(p2 + q2) ≤ 1 + 2v

 , and

x∗ =
1 + v

2
−
√

(1 + v)2

4
− p∗1 − δp∗2

1− δ
, y∗ =

1− v

2
+

√
(1 + v)2

4
− q∗1 − δq∗2

1− δ
, and

z∗ =
1

2
+

d∗2
2v

, where d∗2 = p∗2 − q∗2 .

Since (⇒) is already shown in the main text, only (⇐) is shown. These sets of equilibrium prices are obtained

by the following two conditions: 0 < x∗ < z∗ < y∗ < 1 and the utility of type z∗ is non-negative. If firm A

deviates from the equilibrium price p∗1 in period 1 or p∗2 in period 2, it loses all of its demand for that

period to firm B. In other words, if firm A deviates in period 1, then x = y = 0, this is a contradiction to

0 < x∗ < y∗, while if firm A deviates in period 2, then z = x∗, this is a contradiction to x∗ < z∗. The same

holds true for firm B.

Suppose that x∗ = 1+v
2 −

√
(1+v)2

4 − p∗
1−δp∗

2

1−δ , y∗ = 1−v
2 +

√
(1+v)2

4 − q∗1−δq∗2
1−δ , and z∗ = 1

2 +
d∗
2

2v , where
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d∗2 = p∗2 − q∗2 . For any type θ consumer, his utility is given by



(1− θ + v){x∗ + δ(z∗ − x∗)} − p∗1 if adopt A in period 1,

δ{(1− θ + v)z∗ − p∗2} if adopt A in period 2,

(θ + v){(1− y∗) + δ(y∗ − z∗)} − q∗1 if adopt B in period 1,

δ{(θ + v)(1− z∗)− q∗2} if adopt B in period 2,

0 if no adoption.

The utility when adopting A is decreasing in θ, while the utility when adopting B is increasing in θ. Let

∆F
12(θ) be a difference in utility of a type θ between adopting F = A,B in periods 1 and 2.

∆A
12(θ) = (1− δ)(1− θ + v)x∗ − p∗1 + δp∗2,

∆B
12(θ) = (1− δ)(θ + v)(1− y∗)− q∗1 + δq∗2 ,

implying that ∆A
12(θ) is decreasing in θ and ∆B

12(θ) is increasing in θ. When θ = x∗, ∆A
12(x

∗) = 0, and

when θ = y∗, ∆B
12(y

∗) = 0. Thus, for type θ ∈ [0, x∗], adopting A in period 1 is better than adopting A in

period 2, and for type θ ∈ [y∗, 1], adopting B in period 1 is better than adopting B in period 2. Let ∆22(θ)

be a difference in utility of a type θ between adopting A in periods 2 and adopting B in period 2.

∆22(θ) = δ{−θ − v + (1 + 2v)z∗ − p2 + q2},

implying that ∆22(θ) is decreasing in θ. When θ = z∗, ∆22(z
∗) = 0. Thus, for type z∗, adopting A in

period 2 is indifferent to adopting B in period 2, and its utility then is given by

1

4

[
(1 + 2v)−

{
d∗2
v2

+ 2(p∗2 + q∗2)

}]
.

Since 1+2v ≥ d∗
2

v2 +2(p∗2+q∗2), its utility is non-negative. For type θ ∈ [0, z∗], adopting A in period 2 is better

than adopting B in period 2, and for type θ ∈ (z∗, 1], adopting B in period 2 is better than adopting A

in period 2. Since 0 < x∗ < z∗ < y∗ < 1, for type θ ∈ [0, x∗], adopting A in period 1 is optimal; for

type θ ∈ (x∗, z∗], adopting A in period 2 is optimal; for type θ ∈ (z∗, y∗), adopting B in period 2 is optimal;

and for type θ ∈ [y∗, 1], adopting B in period 1 is optimal.
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By the threshold values x∗ and y∗, we can obtain

p∗1 = (1− δ)(1− x∗ + v)x∗ + δp∗2 and q∗1 = (1− δ)(y∗ + v)(1− y∗) + δq∗2 .

Taking the difference between the price in period 1 and 2 for each firm,

p∗1 − p∗2 = (1− δ){(1− x∗ + v)x∗ − p∗2}, and

q∗1 − q∗2 = (1− δ){(y∗ + v)(1− y∗)− q∗2}.

Therefore, for firm A, p∗1 < p∗2 if (1 − x∗ + v)x∗ < p∗2, that is, introductory pricing is optimal, p∗1 > p∗2 if

(1 − x∗ + v)x∗ > p∗2, that is, skim pricing is optimal, whereas for firm B, q∗1 < q∗2 if (y∗ + v)(1 − y∗) < q∗2 ,

that is, introductory pricing is optimal, q∗1 > q∗2 if (y∗ + v)(1− y∗) > q∗2 , that is, skim pricing is optimal.
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