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Abstract
The paradoxical full-surplus-extraction (FE) result, which can impair

the mechanism design paradigm, is a long-standing concern in the litera-
ture. We tackle this problem by experimentally testing the performance of
an FE auction, which is a second-price (2P) auction with lotteries. In the FE
treatment, overbid amounts given entry increased and entry rates decreased
through rounds, thus FE failed. By contrast, most subjects learned value
bidding in the 2P treatment. To identify the causes of failure in the FE,
we take an evolutionary-game approach. The FE auction with risk-neutral
bidders has exactly two symmetric equilibria, either value bidding with full
or partial entry, and only the partial-entry equilibrium is (evolutionarily or
asymptotically) stable. Replicator dynamics with vanishing trends well ex-
plain observed dynamic bidding patterns. Together, these findings suggest
that the FE outcome is not robust to trial-and-error learning by bidders.

Keywords: Full surplus extraction, Crémer–McLean auction, auction experiment,
evolutionary stability, perturbed replicator dynamics.
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1 Introduction

Full-surplus-extraction (FE) auctions designed by Crémer and McLean (1988,
CM) are regarded as unrealistic. CM proved that these auctions allow a seller of
an item to extract full surplus on average from risk-neutral bidders with private
information. This FE result holds true if there is a (generically satisfied) statis-
tical dependence among bidders’ private values. Nonetheless, Börgers (2015, p.
124) argue that “one should view the Crémer–McLean result as a paradox rather
than a guidance to the construction of mechanisms that could work in practice.”1

Moreover, CM themselves concluded that “Economic intuition and informal evi-
dence (we know of no way to test such a proposition) suggest that this result is
counterfactual, and several explanations can be suggested.” The purpose of this
study is to experimentally test whether FE auctions perform as predicted by CM
and investigate any underlying cause if full surplus extraction fails.

The most serious problem with the FE result is that an auction rule depends
on the commonly known joint distribution of values. As CM pointed out, the
seller should not only know the true distribution, but also share this information
with bidders in a credible way. An experimental approach, however, removes these
hurdles because we can construct a common prior distribution and present it to
subjects in the laboratory. Specifically, we consider a two-bidder environment with
a positive correlation between their private values. This distribution produces a
“surplus-extracting lottery” for each bidder, which is simple in the sense that the
prize is monotonically decreasing in the opponent’s bid.2 In a second-price (2P)
auction using this lottery, value bidding is a dominant strategy given entry, and
risk-neutral bidders always break even if both bid their values. The seller can thus
extract full surplus in the full-entry equilibrium of this FE auction. In our main
treatment, labelled FE, subjects play this auction game.3

The second problem raised by CM is that the FE result relies on bidders’
risk neutrality. For risk-averse bidders in the FE auction, value bidding is still
dominant given entry, but the best response to value bidding is to opt out. The
full-entry equilibrium is then lost. We address this problem by introducing another
treatment, labelled PE (partial extraction), in which the lottery function is shifted
upward when compared with the FE. In other words, the seller pays “risk premia”

1See Milgrom (2004, p. 165) and Carroll (2019, p. 142) for similar arguments.
2We employ a compound distribution as in Carroll (2019), which allows us to characterize

the lottery.
3Strictly speaking, we add a unit point to the lottery to endow the full-entry equilibrium with

strictness.
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for entry.4 The fixed amount of premia is selected such that the seller’s expected
revenue in the auction is nearly equal to that in a 2P (or ascending-clock) auction
with the optimal reserve price, given value bidding in both auctions.5 This revenue
equivalence implies that if the actual average revenue in PE is lower than the
expected revenue, then the PE auction is useless for the seller in practice. We also
elicited subjects’ risk preferences using multiple price lists (Laury and Holt, 2005)
to investigate whether they have effects on entry decisions.

Our between-subjects experiment involves three treatments, FE, PE, and 2P,
with each treatment having 20 auction rounds. Applying group matching (Tan,
2020), we randomly divide subjects into groups of size 6, with random pairing
within a group in each round. 2P is a control treatment in which a pair of subjects
plays the 2P auction game with neither a lottery nor reserve price. In experiments
on 2P auctions, overbidding (i.e., bidding higher than values) has been frequently
observed (Kagel and Levin, 2016). This behavior has been explained by, among
others, spite motives (Bartling and Netzer, 2016; Cooper and Fang, 2008; Morgan
et al., 2003; Nishimura et al., 2011; Tan, 2020) and cognitive limitations (Breit-
moser and Schweighofer-Kodritsch, 2022; Li, 2017; Schneider and Porter, 2020).
To control these confounding factors as much as possible in all three treatments,
we apply several methods proposed in the auction experiment literature.

First, to control social preferences, we use the amended random payment
scheme developed by Lim and Xiong (2021) in their English-auction experiment
on jump bidding. Under this scheme, one payment round is randomly chosen
for each subject, who is uninformed about this round until the end of a session.
The ingenuity of this scheme is that each subject is informed about whether each
round is the current opponent’s payment round. Subjects with social preferences
should thus care only about their own material payoffs in opponents’ nonpayment
rounds. Without any control, spite motives would cause overbidding as in previ-
ous experiments, and even worse, spite might be encouraged by the lotteries in FE
and PE, where the opponent’s prize is decreasing in own bid. Therefore, we adopt
this scheme to induce selfish preferences in opponents’ nonpayment rounds. We
focus on bidding data in these rounds in the statistical analysis unless otherwise
stated.

4Alternatively, we could adopt a binary lottery procedure (Roth and Malouf, 1979) to induce
risk-neutral preferences. However, evidence on its performance in auction experiments (Rietz,
1993; Walker et al., 1990) is mixed. Selten et al. (1999) also showed that this procedure was
counterproductive in their lottery-choice experiment.

5There is sufficient evidence that subjects immediately follow value bidding in ascending-
clock auctions with private values. See, e.g., Kagel et al. (1987), Li (2017), and Breitmoser and
Schweighofer-Kodritsch (2022).
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The second method is the ascending-clock presentation developed by Breit-
moser and Schweighofer-Kodritsch (2022) for the alleviation of cognitive problems.
Under this feedback method, a pair of subjects watches an “ascending price” after
they submit sealed bids. Breitmoser and Schweighofer-Kodritsch (2022) provide
experimental evidence that this method greatly reduces the deviations from value
bidding in the 2P auction. Moreover, in FE and PE, we cannot resort to a dy-
namic ascending-clock format as in Li (2017), because the clock stops as soon as a
bidder drops out, and hence, the loser’s lottery prize is not well-defined. For these
reasons, we adopt the static format with an ascending-clock presentation in all
three treatments. We also elicit subjects’ cognitive abilities by using the cognitive
reflection test (Frederick, 2005; Toplak et al., 2014) to investigate the relationships
with bidding behavior, following Schneider and Porter (2020).

Our experimental results show that the FE auction does not perform as pre-
dicted by the full-entry equilibrium. The seller’s average revenues in the experi-
ment are ranked as follows: full surplus > FE ≈ PE > 2P. Full surplus extraction
thus failed in FE. In 2P, most subjects bid their values in most rounds, and many
others who underbid in early rounds learn value bidding through rounds. This is
in stark contrast to bidding behavior in FE and PE, in which the average over-
bid amount conditional on entry increased and the entry rate decreased through
rounds.

The question is where the subjects were going in FE and PE. To respond,
we take an evolutionary-game approach (Fudenberg and Levine, 1998; Weibull,
1997). Given subjects are randomly paired in each group, we analyze the symmet-
ric equilibria in the auction game. First, the FE auction with risk-neutral bidders
has the other equilibrium named the partial-entry equilibrium, in which bidders
opt out if values are low, and opt in more often as values become higher, with
value bidding given entry. Second, the partial-entry equilibrium is evolutionarily
stable—whereas the full-entry equilibrium is asymptotically unstable in replicator
dynamics. Hence, the former is a unique stable state to which the interior paths
can converge. These replicator dynamics are approximations of reinforcement-
learning processes as shown by Börgers and Sarin (1997). The partial-entry equi-
librium also changes continuously with the bidders’ risk preference, which allows
participants to learn these equilibria.

Our clustering analysis suggests that in the second half of FE, two clusters of
subjects (42%) exhibited behavior in line with the partial-entry equilibria, while
another cluster (30%) bid their values with full entry, and two clusters (19%)
overbid with full or partial entry. Remarkably, FE had some extreme overbidders,
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who often bid the maximum amount. In the replicator dynamics, some paths
from the interior (e.g., uniform) initial states explain the decrease in entry rates
in FE. It is, however, difficult to explain the increase in overbids because over-
bidding is a dominated strategy for rational and selfish bidders and hence, should
approach “extinction.” The fact that irrational overbidders coexist with rational
value bidders in later rounds is not consistent with selection pressure.

We approach this problem by incorporating vanishing trends toward overbid-
ding and value bidding into the dynamics. We find the perturbed dynamics well
explain the dynamic bidding patterns in FE as well as PE and 2P. Indeed, overbid-
ding in FE and PE leads to a further decrease in entry rates because this behavior,
together with the CM lotteries, deters entry. In 2P, overbidding has no such effect.
Given the estimated parameters, a predicted long-run state for FE is close to a
partial-entry equilibrium for slightly risk-averse bidders. In this equilibrium, the
seller earns slightly less than in the 2P auction with the optimal reserve price.
This underperformance finding provides a clue about why CM auctions are not
used in practice within a conventional game theory framework.

Related Literature By extending an insightful example of Myerson (1981),
Crémer and McLean (1985, 1988) designed FE mechanisms in interdependent- and
private-values environments with risk-neutral agents. CM characterized, for each
of Bayesian and dominant incentive compatibility, the joint value distributions that
guarantee full surplus extraction. In this study, we apply their result for dominant
incentive compatibility. Their Bayesian implementation result was extended to a
general environment with continuum-type spaces by McAfee and Reny (1992),6

who wrote the following famous passage:

Although the paper develops tools for solving mechanism design problems with

correlated information, the results (full rent extraction) cast doubt on the value of

the current mechanism design paradigm as a model of institutional design.

This pessimistic opinion is supported by the fact that arbitrarily small amounts
of correlation result in full rent extraction. Heifetz and Neeman (2006) and Chen
and Xiong (2013a), with different concepts of genericity, then proved nongenericity
and genericity results on full surplus extraction in infinite-dimensional spaces of
priors (e.g., the collection of all priors on the universal type space), respectively.

6More recently, Mezzetti (2007) proposed two-stage FE mechanisms in environments with in-
dependent types but interdependent values. Noda (2019) constructed FE mechanisms in general
dynamic environments by using intertemporal correlations of agents’ types.
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Although these two studies reached opposite conclusions, they shared the same
motivation—the evaluation of the validity of mechanism design paradigm. Chen
and Xiong (2013a, p. 826) argue that the classical model as in CM remains subject
to the “full-surplus-extraction critique.” Our experiment, with only a single joint
value distribution, is not designed to empirically study genericity problems. As
CM suggested, it may be impossible to test their generic implementation results
even experimentally.

To establish genericity, Chen and Xiong (2013a) showed that CM auctions are
robust to common priors about types. Pham and Yamashita (2024), however,
reveal that CM auctions are not robust to heterogeneity in priors. As shown by
Pham and Yamashita (2024), even slight perturbations of bidders’ priors from
the true prior about values can drastically change interim beliefs and equilibria
in CM auctions, and the equilibrium revenues in CM (and other) auctions are no
higher than the optimal dominant-strategy mechanism (e.g., the 2P auction with
the optimal reserve price).7 Our experimental design should ensure that the prior
distribution is common knowledge among subjects. In addition, interim beliefs
are explicitly displayed to subjects. Our evolutionary analysis with experimental
evidence indicates that even in this clean environment, CM auctions have another
non-robustness problem—namely, instability with respect to bidders’ trial-and-
error learning.

Although CM recognized the problem of multiple equilibria, they regarded
the full-entry value-bidding equilibrium as focal and focused on partial implemen-
tation. Nonetheless, the instability of this equilibrium implies that their view
might be optimistic. Full implementation of the FE outcome has been studied by
Maskin and Riley (1980), Brusco (1998), Matsushima (2007), and Chen and Xiong
(2013b). Our experiment has no treatment for their mechanisms because they are
more complicated than CM auctions (or are experimentally infeasible). We defer
experiments on these full-implementation mechanisms to future research.

The partial-entry equilibrium revenue in the FE treatment is decreasing in
the degree of bidders’ risk aversion. Relatedly, the effects of risk aversion on
rent extraction have been theoretically studied. Robert (1991) proved that if
bidders are risk averse (or have limited liability), then the seller’s optimal revenue
is continuous in value distributions, especially at independent distributions. The
optimal auction with risk-averse bidders and correlated values was characterized

7See Chung and Ely (2007) for some foundations of dominant-strategy mechanisms. How-
ever, these foundations are weakened by Börgers (2017), which constructed a mechanism that
“dominates” the optimal dominant-strategy mechanism.
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by Eső (2005). The auction rule depends not only on the value distribution but
also on bidders’ risk preferences. Hence, to experimentally test its performance,
one needs to elicit subjects’ risk preferences in advance.

Finally, there are a few experimental studies of surplus extraction. Nishimura
(2022) experimentally compared two CM auctions: the 2P and 1P (first-price) auc-
tions with CM lotteries. In the 2P-CM auction, overbidding persisted throughout
all rounds. However, the overbid amount slightly decreased through rounds in
the 1P-CM auction. Although this tendency toward value bidding is of interest,
this experiment is simpler than the current approach, particularly as no bidder
had an opt-out option. For public goods problems, Krajbich et al. (2009) and
Krajbich et al. (2017) experimentally tested the performance of their “neuromet-
rically informed mechanisms.” In this novel mechanism, each agent’s tax payment
depends on an ex post signal correlated with their payoff type, as in Riordan
and Sappington (1988). These nonmanipulable signals are interpreted as noisy
neural measures of subjects’ preferences provided by neurometric technologies.8

The neurometrically informed mechanisms, which are efficient, dominant incen-
tive compatible, and interim individually rational, performed surprisingly well in
their experiments. In contrast with their mechanisms, a bidder’s lottery prize in
the FE auction depends on the opponent’s bid, not on its own neural signal. This
additional strategic interaction between bidders may account for the underperfor-
mance of the FE auction.

The remainder of the paper is organized as follows. Section 2 presents our
theoretical framework with predictions and Section 3 demonstrates our experi-
mental design. Section 4 shows the experimental results and Section 5 analyzes
the dynamics of bidding strategies. Section 6 discusses future research directions.
Several lemmas and proofs are presented in Appendix A. The Supplementary Ma-
terial (SM) to this paper contains some additional information, including English
language translations of the instructions for the experiment.

2 Theoretical Framework

In this section, we construct an auction model following CM to derive the-
oretical predictions for our experiment. We provide a partial characterization
of the set of symmetric equilibria and refine them applying stability concepts in

8Krajbich et al. (2009) actually used functional magnetic resonance imaging (fMRI) to obtain
signals of subjects’ induced values, while Krajbich et al. (2017) used computers to simulate noisy
signals as if they were generated by a neurometric technology.
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evolutionary-game theory. We also illustrate how stable equilibria in the experi-
mental setting change with bidders’ risk attitude.

2.1 Model

There are two bidders competing for a single item auctioned by a seller.
Each bidder i ∈ {1, 2} has a value vi for the item. The set of values is V :=

{v1, v2, ..., vn} ⊂ R++ with n ≥ 2. Bidders have the same von Neumann–Morgenstern
utility function u : R → R over surpluses (or profits) with u(0) = 0. We assume
that u is strictly increasing.

Bidders’ values (ṽ1, ṽ2) are jointly distributed on V 2 according to the following
compound distribution:9 With probability ρ ∈ (0, 1), bidders have a common value
ṽ distributed according to a full-support probability mass function p on V . With
the remaining probability 1− ρ, they have values (w̃1, w̃2) that are independently
and identically distributed according to the mass function p on V . Hence, the
parameter ρ is the correlation coefficient between ṽ1 and ṽ2. We also denote by w̃

a random variable with distribution p.
The auction rule is defined as follows. The set of sealed bids is B := V ∪ {0}.

Any positive bid bi > 0 infers entry (opt in). The opt-out bid bi = 0 always gives
bidder i zero profit. We append the following (full-extraction) lottery l0 : B → R
to the 2P auction:

l0(b) :=
1− ρ

ρ
((1− ρ)E [max{w̃i − w̃j, 0}]− E [max{b− w̃, 0}]) (1)

for each b ∈ V , and l0(0) := 0. The item is sold in the same way as in the 2P
auction. In addition, any bidder i who opts in obtains a lottery prize l0(b) that
depends on the opponent j’s bid b. We assume v1 < l0(v

1) for simplicity, which
holds if v1 is close to zero.

This is a Vickrey–Clarke–Groves mechanism, so that value bidding bi = vi

(weakly) dominates non-value bidding bi ∈ V \ {vi}. Moreover, the lottery allows
the seller to extract full surplus on average from risk-neutral bidders who bid their
values, and each bidder i then breaks even as follows:

E [v −min{v, ṽj}+ l0(ṽj) | ṽi = v] = 0 (2)

for each v ∈ V . The breakeven conditions (2) indeed pin down the lottery l0 as
the function (1) (Lemma 1). Note that the lottery l0 is strictly decreasing on V .

9Random variables are denoted with tildes.
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The prize l0(b) is positive (i.e., a bonus) if the opponent’s positive bid b is low,
and negative (i.e., a penalty) if b is high. As entry can entail losses, risk-averse
bidders may rationally choose to opt out. We therefore introduce a more general
lottery l : B → R defined as l(b) := l0(b) + π for b ∈ V and l(0) := 0, where the
fixed amount π ≥ 0 is called a premium.

The auction game proceeds as follows: First, values (ṽ1, ṽ2) are realized ac-
cording to the compound distribution. Each bidder i privately knows the realized
value vi. Second, each bidder i submits a sealed bid bi ∈ B. Third, a bidder i

with the higher bid bi > bj wins the item at price bj. If the tie b1 = b2 > 0 occurs,
then either bidder wins the item at price b1 with equal probability. If b1 = b2 = 0,
the item is unsold. Finally, each bidder i has a utility u(xi), where the ex post
surplus or profit xi is determined as follows: xi = vi − bj + l(bj) if i opts in and
wins, xi = l(bj) if i opts in but loses, and xi = 0 if i opts out.

A (behavioral) strategy is denoted by σ ∈ ∆(B)V , where σ(v, b) is the prob-
ability with which a bidder with value v submits bid b. Let Uσ(v, b) denote the
interim utility of a bidder with value v bidding b given the opponent’s strategy σ.
Specifically, Uσ(v, 0) = 0 and

Uσ(v, b) = E

[∑
b′≤b

u(v − b′ + l(b′))
σ(ṽj, b

′)

1 + I(b′ = b)
+
∑
b′≥b

u(l(b′))
σ(ṽj, b

′)

1 + I(b′ = b)
| ṽi = v

]

for b > 0, where I is the indicator function. With some abuse of notation, we also
define Uσ(v, σ′) :=

∑
b U

σ(v, b)σ′(v, b) and U(σ′, σ) := E [Uσ(ṽi, σ
′)] for i’s own

strategy σ′. Our main focus is on the symmetric Bayesian Nash equilibrium, that
is, a strategy σ such that U(σ, σ) ≥ U(σ′, σ) for each strategy σ′. We simply call
this an equilibrium.

2.2 Equilibrium and Stability

This subsection is devoted to the equilibrium and stability analyses. As already
mentioned, value bidding is dominant given entry. Moreover, every equilibrium σ

requires bidders with any risk preference to do so (i.e., σ(v, v)+σ(v, 0) = 1). Using
this fact, we often identify an equilibrium with the opt-out strategy z ∈ [0, 1]V such
that a bidder with value v submits b = 0 and b = v with probabilities z(v) and
1− z(v), respectively.

Given the opponent’s opt-out strategy z, we denote by U z(v) a bidder’s interim
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utility from value bidding:

U z(v) = E [u(v)z(ṽj) + u(v −min{v, ṽj}+ l(ṽj))(1− z(ṽj)) | ṽi = v] . (3)

This utility is increasing in the opt-out probability z(vj) if and only if the exter-
nality l(vj)−min{v, vj} from the opponent’s entry is nonpositive. Hence, bidders’
entry decisions are strategic substitutes (as in the “hawk–dove” game) if each bid-
der i has a high value vi > l(vi), and strategic complements (as in the “stag–hunt”
game) if each i has a low value vi < l(vi). This result is key to understanding our
theoretical and experimental results. If bidders are risk neutral with u(x) ≡ x,
then the breakeven condition (2) leads to the following equation:

U z(v) = ρ(v − l(v))z(v) + (1− ρ)E[(min{v, w̃} − l(w̃))z(w̃)] + π. (4)

We classify equilibria z into the two categories: the full-entry equilibrium if
z(v) = 0 for each v ∈ V , and a partial-entry equilibrium if z(v) > 0 for some v ∈ V .
Given the premium π is nonnegative, the full-entry equilibrium exists, provided
bidders are risk neutral (or risk loving). The following theorem provides a partial
characterization of the set of equilibria for risk-neutral bidders. In particular, the
game with π = 0 has exactly two equilibria.

Theorem 1. Suppose that bidders are risk neutral. Then, there exists a threshold
π > 0 of premium with the following properties: (i) If π < π, then the auction
game has a unique equilibrium zc among those z that satisfy z(v) > 0 for some
v > l(v). If π = 0, then zc is the unique partial-entry equilibrium. (ii) If π ≥ π,
then every equilibrium z satisfies z(v) = 0 for each v > l(v).

The partial-entry equilibrium zc itself is characterized in the proof. It has a
cutoff value vc > l(vc) such that zc(v1) = · · · = zc(vc−1) = 1 > zc(vc) > · · · >
zc(vn) > 0. Hence, bidders always break even in this equilibrium. Indeed, the
indifference between opt in and opt out for high values implies that bidders with
low values v < l(v) would suffer a loss U zc(v) < 0 from entry. Roughly speaking,
mixed entry for bidders with high values v ≥ vc follows from the fact that entry
decisions are strategic substitutes. Recall that the unique symmetric equilibrium
in the hawk–dove game is also mixed.

We then argue that the full-entry equilibrium for low premia is implausible
from the perspective of evolutionary-game theory (Fudenberg and Levine, 1998;
Weibull, 1997). Following Selten (1983), we first define a (direct) evolutionarily
stable strategy (ESS) as an equilibrium σ such that U(σ, σ) = U(σ′, σ) for σ′ ̸= σ

10



implies U(σ, σ′) > U(σ′, σ′). Equivalently, an ESS is a behavioral strategy σ such
that, for each σ′ ̸= σ, there exists a number εσ′ ∈ (0, 1] with U(σ, εσ′+(1−ε)σ) >

U(σ′, εσ′+(1−ε)σ) for all ε ∈ (0, εσ′). Here, σ is called an incumbent, σ′ a mutant,
and εσ′ an invasion barrier of σ against σ′. We next define the replicator dynamics
as the system of n(n+ 1) differential equations:

σ̇(v, b) = p(v) (Uσ(v, b)− Uσ(v, σ)) σ(v, b) (5)

for each v ∈ V and b ∈ B, where the dot denotes the time derivative, with the
time variable being omitted. The state space is given by ∆(B)V . A strategy σ is
referred to as an asymptotically stable strategy (ASS) if the population state σ is
asymptotically stable in the replicator dynamics (5).10 We can verify that every
ESS is an ASS, by applying standard methods with a so-called Lyapunov function
(Weibull, 1997, Proposition 3.10).

Remark 1. In the 2P auction (i.e., l(b) ≡ 0), value bidding is the unique ESS
for bidders with any risk preference. This is because value bidding is the unique
best response to itself for bidders with v > v1, and any mutant σ′ with non-value
bidding by v = v1 earns less against itself than value bidding σ does against σ′

(i.e., U(σ′, σ′) < U(σ, σ′)).

We now obtain the following (in)stability results for the full-entry equilibrium:

Theorem 2. Suppose that bidders are risk neutral. Let σ denote the full-entry
equilibrium. (i) If π = 0, then σ is not an ASS. (ii) If π > 0, then σ is an ESS.
The highest invasion barrier εσ′(π) of the incumbent σ against each mutant σ′ ̸= σ

is increasing in premium π on R++, and εσ′(π) → 0 as π → 0 for some mutant
σ′.

The proof of Theorem 2 is simple and summarized as follows. If π = 0, then
the opt-out bid spreads in the subpopulation of each value v < l0(v) (i.e., the
strategic complements region) given value bidding in the subpopulation of each
value v > l0(v) (i.e., the strategic substitutes region). If π > 0, then the full-entry
equilibrium is strict, and hence, an ESS. However, the decrease in premium π

10The model (5) is a model for the agent normal form where selection of bids takes place
within the “subpopulation” of each value v. We can also consider standard replicator dynamics
for the normal form. In the latter model for our auction game, the state space is the set ∆(BV )
of mixed strategies, where BV is the set of pure strategies. Any result presented in this paper
that a strategy is an ASS (or not an ASS) still holds in the dynamics for the normal form of our
auction game. Moreover, the normal-form dynamics cause computational problems in estimation
reported in Section 5 since |BV | = (n + 1)n is large. Therefore, we employ the more tractable
model (5). See Amann and Possajennikov (2009) for these two dynamics in Bayesian games.
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lowers the invasion barrier against mutants because the full-entry incumbent then
loses any relative advantage. In particular, the invasion barrier against a mutant
that opts in if v < l0(v) and otherwise opts out converges to zero as π → 0. An
important implication for our experiment is that given low premia π, the full-entry
equilibrium may collapse if a few bidders with low values opt out of the auction.

The instability of the full-entry equilibrium shifts our attention toward partial-
entry equilibria. However, the auction game with positive premia π has multiple
partial-entry equilibria in general, as in the stag-hunt game with three symmetric
equilibria. As a benchmark, we introduce a minimal-entry equilibrium that has
the lowest entry probability 1−E[z(ṽi)] among all equilibria z. This benchmark is
useful for a treatment with high premia. To characterize this equilibrium for risk-
neutral bidders, we construct an opt-out strategy zd as follows: we first define zd

given any cutoff value vd so that zd(v) := 1 if v < vd and zd(v) := 0 otherwise, and
then choose the highest one among all cutoff values vd that satisfy U zd(v) < 0 if
v < vd and U zd(v) ≥ 0 otherwise.11 The next theorem characterizes the minimal-
entry equilibrium.

Theorem 3. Suppose that bidders are risk neutral. Let π denote the threshold
of premium in Theorem 1. (i) If π < π, then the partial-entry equilibrium zc in
Theorem 1 is the unique minimal-entry equilibrium. (ii) If π ≥ π, then the strategy
zd is the unique minimal-entry equilibrium. If π > π, then it is an ESS.

We can expect that the partial-entry equilibrium zc in Theorem 1 is also an
ESS, recalling that a mixed-strategy equilibrium in the hawk–dove game is evo-
lutionarily stable. There are, however, multiple subpopulations in the hawk–dove
region v > l(v) in general. Although this prevents us from showing a general
result, we have confirmed that the partial-entry equilibrium zc is an ESS in our
experimental setting. This is shown in the next subsection.

2.3 Stable Equilibria in the Experimental Setting

This subsection illustrates stable equilibria in our experimental setting. The
environmental conditions are specified as follows: the set of values is given by V =

{100, 200, ..., 10000}, the correlation coefficient by ρ = 1/3, and the probability
mass function by p(v) ≡ 1/100. The full surplus is E[max{ṽ1, ṽ2}] = 6161. The
full-extraction lottery (1) is given by l0(v) = 2222 − (v/100)((v/100) − 1) and
the threshold in Theorem 1 by π ≈ 159. The premium is set at either π = 1 or

11At least one such value vd (e.g., v1) exists.
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π = 991. We now claim that if π = 1, the minimal-entry equilibrium zc is the
unique ESS (and ASS) among all partial-entry equilibria:12

Claim 1. Suppose that bidders are risk neutral. In our experimental setting with
π = 1, (i) the minimal-entry equilibrium zc in Theorem 3 is an ESS, and (ii) no
other partial-entry equilibrium is an ASS.

Finally, we show how the minimal-entry equilibria zc and zd in Theorem 3
change with bidders’ risk attitude. We assume that bidders have a constant-
absolute-risk-aversion (CARA) utility function u defined as follows:

u(x) :=
1− exp(−rx)

r
(6)

for each r ̸= 0 and u(x) := x for r = 0. Given the low premium π = 1 and some
CARA parameters r, Figure 1 illustrates partial-entry equilibria that are “con-
nected” to the minimal-entry equilibrium zc for risk-neutral bidders. Similarly,
given the high premium π = 991 and some r, Figure 2 illustrates partial-entry
equilibria that are connected to the minimal-entry equilibrium zd. Table 1 sum-
marizes aggregate equilibrium outcomes.
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Figure 1: Partial-entry equilibrium z for Each CARA Parameter r. Note: The
premium is π = 1. The entry probability is 1− z(v). The equilibrium for r = 0 is
the minimal-entry equilibrium zc in Theorem 3 (i) with the cutoff vc = 2100.

12For π = 0, we can confirm that zc is an ESS by using the same way as Claim 1 (i).
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Figure 2: Partial-entry equilibrium z for Each CARA Parameter r. Note: The
premium is π = 991. The entry probability is 1− z(v). The equilibrium for r = 0
is the minimal-entry equilibrium zd in Theorem 3 (ii) with the cutoff vd = 600.

Table 1: Aggregate outcomes for each equilibrium z in Figures 1 and 2.

π = 1 π = 991

CARA Seller’s Social Bidder’s Entry Seller’s Social Bidder’s Entry
Parameter r Revenue Surplus Profit Prob. Revenue Surplus Profit Prob.
−0.00005 6316 6087 −114 0.83 4179 6161 991 1.00

0 5968 5968 0 0.74 4456 6155 849 0.95
0.00005 5010 5728 359 0.70 4574 6116 771 0.89
0.0001 4143 5450 653 0.66 3979 5947 984 0.86
0.0002 2818 4858 1019 0.61 2741 5493 1375 0.79
0.0003 1941 4292 1175 0.58 1814 5013 1599 0.75
0.0005 1014 3460 1222 0.54 716 4231 1757 0.69
0.001 276 2555 1139 0.51 −202 3259 1748 0.64

Note: The aggregate outcomes are evaluated as ex ante expected values. The seller’s ex ante

revenue is E[(1 − z(ṽ1))(1 − z(ṽ2))(min{ṽ1, ṽ2} + l(ṽ1) + l(ṽ2))]. The ex ante social surplus

from trade is E[(1 − z(ṽ1))((1 − z(ṽ2))max{ṽ1, ṽ2} + 2(1 − z(ṽ1))z(ṽ2)ṽ1)]. This surplus does

not include risk premia for non-risk-neutral bidders. Each bidder’s ex ante profit is half the

difference between the social surplus and the seller’s revenue. The ex ante entry probability is

1− E[z(ṽi)].

Figures 1 and 2 illustrate that the entry probability 1−z for risk-averse bidders
is nonmonotonic in their values. In particular, it is decreasing for high values. The
intuition for this result is as follows: a risk-averse bidder i with a high value v with
l(v) < 0 is reluctant to opt in because the opponent, who has the same value v

with high probability ρ+(1−ρ)p(v) = 51/150, bids the value v given entry, which
in turn causes bidder i the ex post loss u(l(v)) < 0 from entry. As bidders become
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extremely risk averse (i.e., r → ∞), this partial-entry equilibrium converges to
the opt-out strategy z such that z(v) = 0 if l(v) ≥ 0, and z(v) = 1 if l(v) < 0.
As shown by Table 1, the seller’s ex ante revenue rapidly declines as the bidders
become more risk averse. This is because high-value bidders opt out more often,
and thus the seller fails to collect high lottery penalties.

3 Experimental Design

This section presents the procedure used in our experiment. As explained in
Section 1, we control for confounding factors as much as possible by applying
several methods developed in the auction experiment literature.

3.1 Procedure

Our between-subjects experiment consists of three treatments: full extraction
(FE), partial extraction (PE), and second price (2P). Given the environmental
parameters V, ρ, p in Section 2.3, each treatment is defined as follows: First, each
pair of subjects in FE and PE plays the auction game in Section 2.1 with the
premium π = 1 and π = 991, respectively. The premium π = 1 is the lowest
integer amount that endows the full-entry equilibrium with evolutionary stability,
but this amount is so low that its invasion barrier against mutants is also low, as
shown by Theorem 2. The very small premium also provides risk-averse subjects
only weak incentives to opt in. By contrast, the premium π = 991 is sufficiently
high for entry. We chose this amount so that the seller’s ex ante revenue in the
full-entry equilibrium is about equal to the dominant-equilibrium revenue (4179)
in the 2P auction with the optimal reserve price (3800). Next, 2P is a benchmark
treatment in which each pair of subjects plays the 2P auction game with neither
lottery nor reserve price.

Each session has 20 auction rounds. We adopt the following group matching
(Tan, 2020) as a matching rule: subjects are randomly divided into groups of 6 at
the beginning of a session, and 3 pairs randomly formed within a group in each
round. This rule allows us to regard each group as a unit of independent obser-
vation in the statistical analysis. We use this rule to obtain sufficient statistical
power when testing our theoretical hypotheses, and at the same time, mitigate
any repeated-game effect as much as possible. Each group corresponds to a single
population in the evolutionary-game model of Section 2.2 although the population
size is not so large.
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Each session proceeded as follows: First, subjects with instruction handouts
watched a video explaining the rules of the experiment.13 The instructions an-
nounced that the initial endowment for each subject is JPY 3,000 (equal to USD
23 at the time of the experiment). Second, each subject chose one lottery for each
problem in gain and loss domains. The multiple price lists (MPL) are shown by
Table 1 in the SM (Holt and Laury, 2002; Laury and Holt, 2005). Third, subjects
played 2 practice rounds of the auction game, in which their opponents’ bids were
predetermined to be 5000 and 0. Fourth, subjects had a comprehension quiz about
the rule of the experiment. Each group could not proceed until all group members
correctly answered all questions. Fifth, subjects played 20 rounds of the game.
The unit of profit in the game was called a point. The exchange rate was JPY 1
per 10 points in a payment round. Sixth, subjects took the cognitive reflection test
(CRT), in which they answered 7 questions in Table 3 in the SM (Frederick, 2005;
Toplak et al., 2014). Each subject obtained JPY 60 per correct answer. Finally,
the session ended with a questionnaire that asked gender, age, and how they had
made their entry and bidding decisions.

The experiment was programmed in oTree (Chen et al., 2016). Figures 2–4
in the SM are screenshots of the bidding and result pages. The joint distribution
of values ṽ1 and ṽ2 was shown to subjects in a table (Figure 1 in the SM). The
bidding page also displayed the conditional probability of the opponent’s value vj

given bidder i’s own value vi. The probability is equal to ρ+(1−ρ)p(vj) = 51/150

if vj = vi, and (1− ρ)p(vj) = 1/150 if vj ̸= vi. We gave this additional description
because subjects may not update beliefs according to Bayes’ rule, while it may
help them correctly calculate interim profits (or utilities). Subjects in FE and
PE could check the graph of the lottery l and use a calculator that displays the
lottery prize for each bid (Figure 3 in the SM).14 The result page displayed the
following items: winner, value vi, bid bi, the opponent’s bid bj, price min{bi, bj},
profit vi −min{bi, bj} (if i won), lottery prize l(bj), and total profit xi.15 On the
bidding page, subjects could check the results of previous rounds.

To minimize the effect of social preferences on bids, we used the amended
random payment scheme developed by Lim and Xiong (2021). Under this scheme,
one payment round t ∈ {1, ..., 20} is randomly chosen for each subject, who is
uninformed about t until the end of a session. Each subject is, however, informed
about whether each round is the current opponent’s payment round (Figure 2 in

13Appendix D in the SM provides an English language translation of the instructions in FE.
14To avoid any framing effect, the lottery prize l(bj) for bidder i was referred to as the profit

adjustment (or change).
15The lottery prize and total profit were displayed only in FE and PE.

16



the SM). Subjects with social preferences should then care only about their own
material payoffs in opponents’ nonpayment rounds. We focus on these rounds in
the data analysis unless otherwise stated.

Furthermore, to alleviate cognitive problems, we applied the ascending-clock
presentation developed by Breitmoser and Schweighofer-Kodritsch (2022). Under
this feedback method, a pair of subjects watches an “ascending price” after they
submit sealed bids. Specifically, on the result page (Figure 4 in the SM), the black
bar becomes longer until it reaches the second-highest bid. We adopted a static
auction format with this ascending-clock presentation in all three treatments.

3.2 Administrative Details

The experiment was conducted at the laboratories of Osaka and Kansai Uni-
versities in Japan in 2023. In total, 367 subjects (students at Osaka and Kansai
Universities) participated in our experiment. They were recruited from the sub-
ject pools of the ISER at Osaka University and the RISS at Kansai University
through the ORSEE system (Greiner, 2015). Given our matching rule prescribes
that the group size is 6, the remaining subjects in each session, if any, joined
a group with computerized bidders. The total number of subjects who joined
human-only groups was 330. We focus on these subjects in the statistical anal-
ysis. The numbers of sessions, groups, and subjects in each treatment, together
with summary of subjects’ characteristics, are shown in Table 2.16 See Table 4 in
the SM for details of the sessions.

Each session lasted approximately 80 minutes on average, including 12 (FE
and PE) or 10 (2P) minutes for the instruction. The average total payment per
subject was JPY 3,499. The highest and lowest payments were JPY 4,720 and JPY
1,930, respectively. Our samples are well-balanced across treatments. For every
treatment pair and each item, Table 2 presents a p-value from the Wilcoxon rank-
sum test of the null hypothesis that subjects’ characteristics in the two treatments
come from the same distribution.17 In the quiz, subjects made fewer mistakes in
2P than in FE and PE (p = 0.0114 for FE vs. 2P; p = 0.0261 for PE vs. 2P).
This is a natural result as the rule of FE (or PE) is more difficult than that of

16Following the preregistration, we exclude data as outliers for subjects (2 in FE, 2 in PE, and
3 in 2P) who cumulatively made 20 or more mistakes in the comprehension quiz. Due to machine
troubles, subjects in 2 sessions (8 groups) of FE could not watch the instruction video. However,
they could hear the video and observe their instruction handouts. There seems to be no essential
difference in bidding behavior between sessions with and without these complications (Figures
5 and 6 and Table 5 in the SM). Therefore, we include the data from these two sessions.

17All statistical tests in this paper are two sided.
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2P, and the former treatment has 10 problems in the quiz while the latter has 8
problems.

Table 2: Treatments.

FE PE 2P FE vs. PE FE vs. 2P PE vs. 2P
# of Sessions 8 5 5
# of Groups 27 14 14
# of Subjects 162 84 84
Gender Male 45.6% 45.2% 57.1%

Female 47.5% 51.1% 38.0%
Other 2.4% 0% 3.5%
No Answer 4.3% 3.5% 1.1%

Age 21.4 21.5 21.2 0.6104 0.7025 0.4574
# of Safe Choices (Gain) 5.7 5.9 5.7 0.5915 0.9028 0.5105
# of Safe Choices (Loss) 6.0 5.8 5.8 0.3721 0.6520 0.7359
CRT Score 5.3 5.2 5.5 0.4500 0.3558 0.1201
# of Mistakes in Quiz 4.0 4.2 3.5 0.9752 0.0114 0.0261

Note: This table summarizes information about the treatments. For each treatment, the

table details the gender composition, and the average age, numbers of safe choices in the

MPL, CRT score, and number (cumulative total) of mistakes in the comprehension quiz.

The last three columns show the exact p-values of the Wilcoxon rank-sum tests for each

treatment pair.

The histograms for subjects’ characteristics are shown by Figure 7 in the SM.
In every treatment, the mode categories of risk attitudes are risk aversion and
risk neutrality in the gain and loss domains, respectively.18 Table 2 in the SM
also shows the range of CARA parameters given the number of safe choices in the
MPL. The CARA parameters in Table B.II are comparable with those in Figures
1 and 2 given the exchange rate was JPY 1 per 10 points.

4 Experimental Results

In this section, we report the experimental results and compare them with
the theoretical predictions derived in Section 2. According to the stability results
in Theorems 2 and 3 with Claim 1, the main predictions for FE and PE are

18In the gain domain, 93% (FE), 95% (PE), and 92% (2P) of subjects correctly switched
lottery choices at most once. In the loss domain, 95% (FE), 97% (PE), and 95% (2P) did so.
There was no irrational subject who chose the safe (risky) lottery in the last problem in the gain
(loss) domain.
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the minimal-entry equilibria zc and zd in Figures 1 and 2, respectively—and the
full-entry equilibrium. The full-entry equilibrium in FE, however, is implausible
because of the low invasion barrier against mutants as shown by Theorem 2 (ii).
From Remark 1, the unique prediction for 2P is the full-entry equilibrium. In
Section 4.1, we report results on the seller’s revenue, which provide suggestive
evidence against the full- and minimal-entry equilibria in FE. We then investigate
subjects’ bidding behavior in Section 4.2 and classify them according to their
behavior in Section 4.3.

4.1 Seller’s Revenue

We begin with auction performances for the seller.19 Figure 3 plots the seller’s
average realized and equilibrium revenues. The realized revenues were 5370, 4980,
and 3461 points in FE, PE, and 2P, respectively. Given the realized values in the
experiment, the full-entry equilibrium revenues are 6308, 4311, and 3982 points in
FE, PE, and 2P, respectively. Similarly, the minimal-entry equilibrium revenues
are 6113 and 4580 points in FE and PE, respectively.20 The realized revenue in
FE is thus lower than the full- and minimal-entry equilibrium revenues by around
15% and 12%, respectively.

We then test the equilibrium hypotheses about the seller’s revenue. The
first hypothesis is the full-entry equilibrium. For each treatment, we conduct
a Wilcoxon matched-pairs signed-rank test of the null hypothesis that the realized
and equilibrium revenues come from the same distribution. The exact p-values are
given by p = 0.0121 for FE, p = 0.1040 for PE, and p = 0.0040 for 2P respectively.
Second, let us consider the minimal-entry equilibria in FE and PE as predictions.
The exact p-values from the signed-rank tests are p = 0.0340 for FE and p =

0.3910 for PE, respectively.
We also evaluate average treatment effects on revenues. For every treatment

pair, we conduct a Wilcoxon rank-sum test of the null hypothesis that the realized
revenues in these two treatments come from the same distribution. The exact
p-values are p = 0.5408 for FE vs. PE, p = 0.0002 for FE vs. 2P, and p = 0.0088
for PE vs. 2P, respectively.

19We have revised the preregistered plan for the statistical analysis. See Appendix C in the
SM for details.

20Note that in PE, the full-entry revenue is less than the minimal-entry revenue because the
latter equilibrium prevents low-value bidders’ entry with high prizes for opponents (Figure 2).
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entry equilibria are given by Theorem 3. The unit of observation is a group. The
capped spikes represent 95% confidence intervals.

4.2 Bidding Behavior

The results in Section 4.1 suggest that the performance in FE is worse than in
the full- and minimal-entry equilibria. To identify the causes of this underperfor-
mance, we investigate how subjects made bidding decisions in FE and the other
two treatments.

In panel data analysis, let bit ∈ B and vit ∈ V denote subject i’s bid and value
in round t ∈ {1, 2, ..., 20}, respectively. Subject i’s overbid amount and deviation
(from value bidding) given entry are measured as bit−vit and |bit−vit| with bit > 0,
respectively.

Figure 4 illustrates the time series of average overbid amounts given entry and
entry rates. Figure 4a shows that the average overbid amount increases through
rounds in every treatment. A crucial difference between the treatments is that the
amount deviates from zero in FE and PE, while it approaches zero from below in
2P. This trend away from underbidding toward value bidding is similar to those in
the 2P ascending-clock-presentation treatments of Breitmoser and Schweighofer-
Kodritsch (2022, Fig. 3). Figure 4b shows that the entry rate decreases through
rounds in FE and PE, while it approaches one in 2P. The entry rates in FE and PE
are around 0.7 in the final round. These rates are compatible with some equilibria
for risk-averse bidders (Table 1), but the departure from value bidding given entry
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Figure 4: Time Series of Average Overbid Amounts Given Entry and Entry Rates.

is not.
We now conduct more rigorous analysis to examine the determinants of bidding

behavior. Specifically, we report the regression results of multilevel mixed-effects
models for each treatment. Each model in Tables 3–5 has group- and subject-
level random effects. We include bidding data in opponents’ payment rounds to
examine whether and how subjects changed behavior in these rounds.21

Table 3 presents tobit models in which the bids bit in entry rounds, censored at
the upper limit of 10000, are regressed on several explanatory variables. A robust
result is that subjects with higher values bid higher (p < 0.0001 in all treatments).
Subjects also raise their bids through rounds in FE and 2P (p = 0.0024 in FE;
p = 0.3884 in PE; p < 0.0001 in 2P), and become more aggressive as their last
opponents bid higher in FE and PE (p < 0.0001 in FE; p = 0.0010 in PE) although
the impacts are small in magnitude. The coefficients on the opponent-payment-
round dummy are all negative (p = 0.1474 in FE; p = 0.0666 in PE; p = 0.1200 in
2P), contrary to the spite hypotheses, but the standard errors of the coefficients are
relatively high. It then appears that subjects have heterogeneous social preferences
as some subjects bid higher in opponents’ payment rounds while others bid lower
in these same rounds. Table 4, which presents linear regression models for the
deviations |bit − vit| in entry rounds, indeed shows that the deviations are larger
in opponents’ payment rounds (p = 0.0004 in FE; p = 0.0013 in PE; p = 0.0015
in 2P). The deviations increase by around 700–1100 points in these rounds. This
table also shows that the deviations decrease through rounds in PE and 2P (p =

0.0001 in PE; p < 0.0001 in 2P). There is no such declining trend in FE.
21When reporting any effect in the analysis, we present a p-value from the z-test of the null

hypothesis that the associated coefficient is zero. The z-statistic is defined as the estimate divided
by the robust standard error clustered at the group level.
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Table 3: Tobit regression models for bids.

Dependent Variable Bid (in Entry Round)
Treatment FE PE 2P

Value 0.74 (0.03) 0.70 (0.03) 0.90 (0.15)
Round 53.67 (17.74) 18.83 (21.83) 39.27 (9.21)

Last Opponent’s Bid 0.06 (0.01) 0.08 (0.02) −0.003 (0.01)
Opponent’s Payment Round −587.64 (405.63) −840.39 (458.15) −738.78 (475.19)

# of Mistakes in Quiz −73.10 (53.03) −49.01 (52.28) −27.31 (29.06)
CRT Score 74.09 (95.20) 24.63 (117.08) −144.75 (71.82)

Male 115.62 (320.99) −633.48 (358.23) −199.55 (215.07)
Constant 1221.51 (595.44) 2240.16 (580.80) 863.26 (393.76)

Var. of Group Random Effect 356992 117437 179579
Var. of Subject Random Effect 3739427 2084651 769620

Var. of Residual 5478177 5433625 1853798
Log Pseudolikelihood −17453 −9970 −12571

# of Observations 2267 1264 1489

Note: Bid = bit > 0. Value = vit. Round = t > 1. Last opponent’s bid = bjt−1, where

subject j is i’s opponent in round t− 1. Opponent’s payment round = 1 if t is a payment

round for the current opponent, and 0 otherwise. Male = 1 if subject i is male, and = 0

otherwise. Robust standard errors that are clustered at the group level are shown in

parentheses. Var. denotes a variance.

Table 4: Linear regression models for deviations from value bidding.

Dependent Variable Deviation (in Entry Round)
Treatment FE PE 2P

Round 12.53 (10.93) −35.36 (9.26) −42.81 (9.75)
Last Opponent’s Bid 0.01 (0.01) 0.03 (0.02) −0.005 (0.01)

Opponent’s Payment Round 1152.42 (326.77) 740.68 (230.27) 1129.32 (356.40)
# of Mistakes in Quiz 23.39 (29.66) 35.68 (33.13) 33.35 (30.51)

CRT Score 86.22 (49.99) −88.42 (61.75) −39.41 (63.68)
Male 31.48 (208.61) −41.13 (279.51) 50.48 (191.32)

Constant 793.17 (303.74) 2235.32 (361.91) 1298.53 (394.39)
Var. of Group Random Effect 64148 76888 16585
Var. of Subject Random Effect 1318473 656056 833219

Var. of Residual 3243918 3261763 1447716
Log Pseudolikelihood −20362 −11332 −12773

# of Observations 2267 1264 1489

Note: Deviation = |bit − vit| with bit > 0. The note of Table 3 is also applied.
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Table 5: Linear regression models for entry decisions.

Dependent Variable Entry Dummy × 100
Treatment FE PE 2P
Value / 102 1.17 (0.10) 1.29 (0.22) 0.41 (0.14)

Value × Value / 104 −0.006 (0.0009) −0.008 (0.001) −0.002 (0.001)
Round −0.81 (0.13) −0.84 (0.15) 0.01 (0.09)

Last Opponent’s Bid / 104 −8.15 (1.73) −5.61 (2.03) 1.93 (1.55)
Opponent’s Payment Round 7.15 (3.16) 7.02 (2.91) −4.38 (3.80)

# of Safe Choices (Gain) −2.44 (0.97) −1.06 (1.31) 0.15 (0.31)
# of Safe Choices (Loss) −1.14 (1.58) 1.97 (1.09) −0.76 (0.38)

# of Mistakes in Quiz 0.58 (0.55) −0.23 (0.43) 0.13 (0.20)
CRT Score −0.55 (1.18) −2.19 (0.51) 0.83 (0.60)

Male −3.29 (3.56) −5.37 (4.21) 0.94 (1.84)
Constant 72.44 (14.30) 66.51 (11.54) 82.27 (8.23)

Var. of Group Random Effect 5.06 / 1013 34 1.62 / 1010

Var. of Subject Random Effect 416 136 24
Var. of Residual 1177 1032 262

Log Pseudolikelihood −13797 −7298 −5949
# of Observations 2755 1482 1406

Note: Entry Dummy = I(bit > 0). The note of Table 3 is also applied.

Table 5 presents linear models in which the entry dummy I(bit > 0) is regressed
on several variables. We include the squared term of the values as some equilibrium
entry probabilities shown in Figures 1 and 2 are nonmonotonic in value. The
estimated coefficients on vit and v2it imply that the entry rates reach their peak
at around v = 9750 (FE), v = 8062 (PE), and v = 10250 (2P). In FE and PE,
subjects are less likely to opt in through rounds (p < 0.0001 in both) and as the
last opponents bid higher (p < 0.0001 in FE; p = 0.0057 in PE). In FE, and as
expected, more risk-averse subjects (in the gain domain) are less likely to opt in
(p = 0.0117). In PE, subjects with higher CRT scores are less likely to opt in (p
< 0.0001).

4.3 Subject Clusters

Subjects’ bidding behavior in FE and PE is highly heterogeneous. To explore
the types of strategies used in each treatment, we classify subjects into clusters
by applying the method of k-means clustering (Hastie et al., 2009; Macqueen,
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1967).22 Here, we are interested in the bidding behavior of subjects who learned
group members’ behavior, at least to some extent. For this reason, we focus on
bidding data in the second half of the experiment (i.e., rounds 11–20). As we
see below, even in these later rounds, no single equilibrium can explain subjects’
behavior in FE (and PE).

Our clustering procedure is described as follows. For each subject i, we denote
by T ′

i ⊂ {11, 12, ..., 20} the set of opponents’ nonpayment rounds and by Ti :=

{t ∈ T ′
i | bit > 0} the subset of entry rounds. If subject i chose entry in at most

one round (i.e., |Ti| ≤ 1), then this subject is classified into cluster 0 (“infrequent-
entry” cluster). Let us then suppose that subject i chose entry more than once (i.e.,
|Ti| > 1). To define a feature vector of this subject, we combine multiple estimates
given the pure or behavioral strategy in the auction game is high dimensional.
For subject i, we obtain the OLS estimates (β̂0, β̂1) and (γ̂0, γ̂1, γ̂2) from two linear
regression models:

bit = β0 + β1vit + εit, t ∈ Ti,

I(bit > 0) = γ0 + γ1vit + γ2v
2
it + ηit, t ∈ T ′

i ,

where the errors εit and ηit are independently and identically distributed. These
formulations follow the regression models in Tables 3 and 5.23 We also calcu-
late subject i’s average overbid amount ô := 1

|Ti|
∑

t∈Ti
(bit − vit) in entry rounds

and entry rate ê := |Ti|/|T ′
i |. Subject i thus has a 7-dimensional feature vector

(β̂0, β̂1, γ̂0, γ̂1, γ̂2, ô, ê).24 Finally, for each treatment, the k-means algorithm classi-
fies subjects into k clusters to (locally) minimize within-cluster variances of feature
vectors, where the number k of clusters is specified by us. We set k = 8 for FE
and k = 5 for PE and 2P, including cluster 0.

Figure 5 presents the clustering result for FE. Cluster 4 includes value bidders,
who almost always chose bids close to their values, with some noisy bidders. This
cluster accounts for 30% of subjects. The bidding patterns in clusters 2 and 3
are qualitatively consistent with some partial-entry equilibria in Figure 1. The

22Clustering approaches based on machine learning algorithms have been successfully intro-
duced into the experimental economics literature. To organize high-dimensional behavioral data,
Fréchette et al. (2022) used the k-means algorithm and Romero and Rosokha (2023) a clustering
algorithm called affinity propagation.

23We have chosen these simple models because the number of observations for each subject is
at most ten. The use of the probit or the Heckman selection model requires much more variation
in entry decisions.

24Subjects’ feature vectors are standardized so that each coordinate has zero mean and unit
variance within each treatment.
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Figure 5: Subject Clusters in FE. Note: A capital C stands for cluster. These
clusters (excluding cluster 0) are consecutively numbered according to the average
overbid amount in entry rounds within each cluster. For each cluster, the per-
centage and the number in parentheses show the proportion of subjects and the
average profit in rounds 16–20, respectively. Triangle and plus symbols denote
bids in rounds 11–15, and circle and cross symbols bids in rounds 16–20. The
45-degree line shows value bidding.
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subject-level data (Figures 8 and 9 in the SM) also suggest that subjects in these
clusters had their own “threshold values” v at which they changed entry decisions.
Clusters 2 and 3 together account for 42% of subjects and Clusters 5–7, which
together account for 19%, have many overbidders with full or partial entry. In
particular, cluster 7 includes 4 extreme overbidders who always bid the maximum
amount. As shown in Figure 5, the average profits of clusters 5–7 in rounds 16–20
are negative. Cluster 1 has underbidders.
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Figure 6: Subject Clusters in PE and 2P. Note: The note of Figure 5 is applied.

Figure 6a illustrates the clusters in PE. Cluster 3 includes value bidders, with
some subjects who opted out when their values were relatively high. This behavior
is in accordance with partial-entry equilibria for risk-averse bidders (Figure 2).
This cluster accounts for 38% of subjects. Clusters 1 and 2, which together account
for 39%, are similar to clusters 2 and 3 in FE, respectively. The subjects in these
two clusters in PE might have their own threshold values v for entry decisions
(Figures 10 and 11 in the SM). Their thresholds are, however, so high that the
partial-entry equilibria in Figure 2 cannot explain their entry decisions. Cluster
4, which accounts for 22% of subjects, includes some noisy overbidders.

Finally, Figure 6b depicts the clusters in 2P. The clustering result is simple:
74% of subjects are value bidders in cluster 4, 20% are underbidders in clusters
1–3, and 6% are overbidders in cluster 5. Almost all subjects in 2P always chose
entry in rounds 11–20.
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5 Dynamics of Bidding Strategies

Finally, we analyze the dynamics of the bidding strategies. As some clusters in
FE and PE earned negative profits as shown by Figures 5 and 6a, subjects might
be still learning strategies, even in later rounds. We explain their bidding behavior
using a model of perturbed replicator dynamics. This model then provides long-
run predictions about their behavior.

5.1 Perturbed Replicator Dynamics

Our clustering analysis for FE reveals that some subjects exhibited behavior
in line with the full- or partial-entry equilibria, while others presented overbidding
behavior. Altogether, Figure 5 shows that a majority of bids are on the “letter Z.”
Indeed, extreme overbidding b = 10000, value bidding b = v and opting out b = 0

account for 15%, 14% and 29% of all bids in rounds 16–20 of FE, respectively. The
standard replicator dynamics (5) have difficulty in explaining this mixed bidding
pattern for several reasons.

Most importantly, overbidding is a dominated strategy for selfish bidders with
any risk preference, and hence, should approach “extinction.” Specifically, Uσ(v, v) ≥
Uσ(v, b) holds for each value v, non-value bid b ∈ V \ {v} and strategy σ, and
the inequality is strict if σ(v, b) = 1. Hence, this non-value bid b ̸= v vanishes
from the subpopulation of v in the limit t → ∞ along every interior solution path
to the replicator dynamics (5).25 Of course, “irrational” overbidding can prevail
during early periods in the dynamics, but this may not coexist with the “rational”
strategy of value bidding given entry. Recall also that we adopted the amended
random payment scheme to induce selfish preferences.

Secondly, the equilibria in Figure 1 require bidders with low values to opt out
with probability one, while subjects with low values chose entry too often. In
particular, this is the case with clusters 4 (value bidders) and 7 (overbidders) in
Figure 5.

We approach this problem by incorporating trends toward (extreme) overbid-
ding and (full-entry) value bidding into the replicator dynamics (5). To implement
this idea, we perturb the dynamics as follows:

σ̇(v, b) = p(v) [(1− δ(t)) (Uσ(v, b)− Uσ(v, σ)) σ(v, b) + δ(t) (θ(v, b)− σ(v, b))] ,

(7)

25We can prove this extinction result by applying Proposition 3.2 of Weibull (1997) to our
dynamics.
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where δ(t) ∈ [0, 1) denotes an error rate at time t and θ ∈ ∆(B)V is a strategy
defined as θ(v, 10000) = λ and θ(v, v) = 1 − λ given a weight parameter λ. In
words, the fractions δ(t)λ and δ(t)(1 − λ) of the subpopulation of v exogenously
change bids from their current bids to b = 10000 and b = v, respectively, while the
original selection takes place in the other fraction 1−δ(t). Our formulation follows
Gale et al. (1995), but has a crucial difference from their perturbed replicator
dynamics in that they mainly focused on random drift (i.e., uniform noise), which
here corresponds to θ ≡ 1/|B|.26 This is why we adopt the term “trend” rather
than “drift,” which reminds us of random genetic drift in biology. We do not insist
that the trends toward overbidding and value bidding are actually perpetual. We
regard the exogenous changes of bids as näıve and temporary behavior. In Section
5.2, we discuss possible reasons for these trends in our experiment. Here, let us
assume that the error rate is strictly decreasing in time and will vanish as follows:

δ(t) := εe−ηt

for some initial error rate ε ∈ [0, 1) and decay rate η > 0.
For estimation, we next introduce a discrete-time version of the perturbed

replicator dynamics. In particular, we apply the reinforcement-learning model of
Börgers and Sarin (1997). This model is suitable for our experiment, in which sub-
jects receive less feedback about opponents’ strategies. As explained in Appendix
E in the SM, this learning process is stochastic, and the expected movement of
the state is determined by the following system of n(n + 1) difference equations
given an initial state σ(0) ∈ ∆(B)V :

σv
b (t+ τ)− σv

b (t)

τp(v)
= (1− δ(t))

(
Uσ(t)(v, b)− Uσ(t)(v, σ(t))

)
σv
b (t) + δ(t) (θvb − σv

b (t))

(8)

at each time t ∈ {0, τ, 2τ, ...}, where σv
b and θvb denote σ(v, b) and θ(v, b) respec-

tively. As the step size τ goes to zero, the model (8) converges to the continuous-
time model (7).27

We are interested in time t at which the state σ(t) well fits the data in rounds
16–20. To avoid overfitting, we basically assume that the initial state σ(0) is

26Their purpose is to show that small noises can stabilize imperfect Nash equilibria in ulti-
matum bargaining. See also Binmore and Samuelson (1999) for the role of evolutionary drift in
equilibrium selection.

27Moreover, Börgers and Sarin (1997) proved that any actual state of their stochastic learn-
ing process converges in probability to the associated state in the continuous-time replicator
dynamics.
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uniform.28 Nevertheless, the opt-out bid can be distinguished from positive bids.
We therefore parameterize the initial state using a weight α ∈ [0, 1] such that
σv
b (0) := α/2 + (1 − a)/101 if b = 0 and σv

b (0) := α/200 + (1 − a)/101 if b > 0.
The value α = 1 implies that random decisions are made at “two stages,” while
there is no such distinction between b = 0 and b > 0 if α = 0. Our design of the
bidding page (Figure 2 in the SM) enhances the former possibility. We also assume
that bidders have the CARA utility function (6) with a parameter r. Given our
learning model follows Börgers and Sarin (1997), a positive affine transformation
is applied to the utility function u so that u(x) ∈ (0, 1) for all profit levels x in
the experiment. See Appendix E in the SM for details.

Our model thus contains five parameters (α, ε, λ, r, t) to be estimated using
a maximum-likelihood method. We set η = 0.001 as it turns out that lower
decay rates provide better fit.29 With the bidding data in rounds 16–20 of each
treatment, we conduct a grid search over parameter values in the note of Table 6
to find a combination that maximizes the log-likelihood (LL):∑

i∈N

∑
s∈Ti

ln σ(vis, bis)(t), (9)

where σ is the solution path to the discrete-time dynamics (8) given the initial
state σ(0), N the set of subjects in a treatment, and Ti ⊂ {16, 17, ..., 20} the
set of nonpayment rounds for subject i’s opponents. The estimates are presented
in Table 6, which also shows the estimates for three restricted models.30 The
full model provides the best fit (and the unperturbed model the worst fit) for
every treatment according to the Akaike information criterion (AIC) and Bayesian
information criterion (BIC).

28This approach has a flavor like the logit solution (Goeree et al., 2016), which traces back to
completely random behavior.

29We also set τ = 10. As τ is larger, learning is faster. We chose this large step size to speed
up computation.

30The CARA estimates r̂ in 2P are relatively high. This may be because 2P had many
underbidders (Figure 6b). Note that, for a bidder with a concave (convex) utility function,
underbidding is a less (more) costly mistake than overbidding due to loss aversion (loving).
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Table 6: Maximum likelihood estimates for the replicator dynamics.

Treatment Model α̂ ε̂ λ̂ r̂ t̂ LL AIC BIC

FE

Full 0.2 0.007 0.7 0.0001 8440 −2295 4603 4631
Restricted (λ = 1) 0.1 0.004 1 0.0001 10530 −2485 4981 5005
Restricted (λ = 0) 1 0.006 0 0 1920 −2631 5272 5296

Unperturbed (ε = 0) 0.8 0 — 0 2330 −2836 5679 5693

PE

Full 0.4 0.005 0.8 0.0001 11520 −1298 2608 2632
Restricted (λ = 1) 0.4 0.003 1 0.0001 13130 −1383 2776 2796
Restricted (λ = 0) 1 0.003 0 0.00005 3600 −1426 2862 2882

Unperturbed (ε = 0) 1 0 — 0.00005 4630 −1518 3042 3054

2P

Full 0.2 0.003 0.1 0.0003 28470 −851 1715 1739
Restricted (λ = 1) 0.1 0.001 1 0.0002 45570 −1371 2752 2772
Restricted (λ = 0) 0.1 0.006 0 0.0002 11900 −874 1759 1779

Unperturbed (ε = 0) 0.1 0 — 0.00025 47990 −1398 2802 2814

Note: The estimated parameter values for the full model maximize the LL (9) over the following

sets: α ∈ {0.1m | m = 0, 1, ..., 10}, ε ∈ {0.001m | m = 0, 1, ..., 10}, λ ∈ {0.1m | m = 0, 1, ..., 10},

r ∈ {0.00005m | m = −6,−5, ..., 6} and t ∈ {0, τ, 2τ, ..., 5000τ} given the step size τ = 10

and the decay rate η = 0.001. The estimates for each restricted model maximize the LL over

the associated subsets. The table also displays LL, AIC and BIC values. The numbers of

parameters for the full, restricted, and unperturbed models are six (α, ε, λ, r, t and η), five (α,

ε, r, t and η), and three (α, r, and t), respectively.

5.2 Predicted Dynamics

Using the estimated parameters of the full models, we now analyze the pre-
dicted dynamics. For each treatment, let us call the estimated time t̂ in Table 6
the medium run and its fiftyfold 50t̂ the long run. The long run is so long that the
computed solution path to the dynamics (8) given the other estimates (α̂, ε̂, λ̂, r̂) in
Table 6 achieves enough convergence. This distinction between time spans follows
Binmore and Samuelson (1999, p. 367).

Figures 7 and 8 demonstrate observed and estimated bidding behavior in the
medium run and predicted behavior in the long run. We can observe from these
figures that the medium-run state σ(t̂) fits the data well. Moreover, the predicted
time series shown by Figure 9 are qualitatively similar to the observed series in
Figure 4. It should be emphasized that we did not use the bidding data in early
rounds to obtain the estimates in Table 6. As an exercise, we then estimated
time t at which the LL for bidding data in rounds 1–15 is maximized given the
estimates (α̂, ε̂, λ̂, r̂) in Table 6. As explained in the note accompanying Figure
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9, the estimated time for each treatment is prior to the medium run t̂. We can
see from this figure that the predicted time series (lines) also explain the data
in rounds 1–15 (hollow symbols) fairly well. The result of this exercise validates
to some extent our model of the perturbed replicator dynamics with vanishing
trends.

The medium-run states σ(t̂) for FE and PE are not close to the equilibria given
the CARA estimate r̂ = 0.0001 (Figures 1 and 2). First, the entry rate curves are
more “flattened”, as shown by Figure 7. Second, there are many extreme overbids,
as shown at the middle of Figure 8. These two results are caused by the exogenous
trends with the CM lotteries. To illustrate, let us consider the subpopulation of
v = 6000. The trend of overbidding enhances “entry deterrence,” imposing the
severe lottery penalty l(10000) on the entire population. The maximum bid thus
keeps spreading. Overbidding, however, harms the subpopulation itself, and hence,
selection fosters opt out. In the subpopulation of a low value, say, v = 100, the
high entry rates (0.3–0.4) are primarily due to the trend of value bidding. Extreme
overbidding is too costly for low-value bidders.

What are the causes of these trends toward overbidding and value bidding
in the first place? The trend of value bidding might be created by ascending-
clock presentation used in our experiment. In FE and PE, this presentation might
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induce some subjects to näıvely follow value bidding with full entry. We now
identify several reasons for the trend of overbidding. The first is strategic. As
already mentioned, overbidding can enhance entry deterrence in FE and PE. The
negative effects of the last opponent’s bid in Table 5 provide evidence for this
argument. It is likely that subjects who counted overbidding as effective in entry
deterrence were inclined to do so. However, overbidding might not contribute their
profits as suggested by the negative average profits of overbidding clusters (Figures
5 and 6a). The second is behavioral. The positive effects of the last opponent’s bid
in Table 3 suggest (indirect) reciprocal behavior within each group in FE and PE.
Although we used the amended random payment scheme to control spite, some
subjects might have motives for causing their opponents anxiety by overbidding.
Moreover, the regression results in Tables 3 and 5 suggest that subjects’ bidding
and entry decisions in 2P are not affected by the last opponents’ bid amounts. This
clear distinction between the treatments implies that the CM lotteries played a key
role for the observed trend of overbidding, irrespective of whether the underlying
reason is strategic or behavioral.

These trends virtually vanish in the long run. As shown by Figures 7 and 8, the
predicted long-run states in FE and PE are close to the partial-entry equilibria
given the CARA estimate r̂ = 0.0001 (Figures 1 and 2). This suggests that
the middle-run state σ(t̂) for each treatment lies in the basin of attraction of this
partial-entry equilibrium in the original dynamics (5), albeit the basin of attraction
of the full-entry equilibrium in PE is relatively large. The seller’s ex ante revenues
in those partial-entry equilibria are 4143 in FE and 3979 in PE (Table 1). These
revenues are less than 4179, which is the revenue in the 2P auction with the
optimal reserve price (Section 3.1). This underperformance provides some clue
about why CM auctions are not used in practice.

6 Discussion

We conducted a controlled laboratory experiment to investigate whether CM
auctions perform as predicted by theory and found evidence against the full surplus
extraction. The perturbed replicator dynamics with vanishing trends predict that
in the long run for FE treatment, the seller will earn slightly less than in the
2P auction with the optimal reserve price. While we considered a single joint
distribution of values in our experiment, examining how the degree (or sign) of
value correlation changes subjects’ behavior in FE auctions would be a fruitful
direction for future research. On one hand, if the correlation coefficient ρ is close
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to one, then bidders have almost common values. In the limit, the lottery (1) is
always zero, and thus the FE auction is equivalent to the standard 2P auction,
which may perform well with the aid of ascending-clock presentation. Conversely,
if the correlation coefficient ρ is close to zero, then bidders have almost independent
values. In this case, the lottery (1) imposes very high penalties if the opponent
submits high bids, and hence bidders seldom choose entry in the partial-entry
equilibrium characterized by Theorem 1 (i). Therefore, we expect that the seller’s
revenue is low in this case.

We also argued that the underperformance of the FE auction may be caused
by the (evolutionary and asymptotical) instability of the full-entry value-bidding
equilibrium. While we proved the instability in the specific environment, we con-
jecture that this result holds true in more general environments. Although we
leave more formal analysis to future research, for expositional purposes, let us
suppose that there are two ex-ante symmetric (risk-neutral) bidders, and consider
the 2P auction with CM lotteries. Because the full-surplus-extraction lotteries
must sometimes give positive prizes (i.e., bonuses) to provide full-entry incentives,
a mutant strategy that opts out (opts in) when values are lower (higher) than the
lottery prizes for the opponent earns more than the incumbent strategy, as shown
by Theorem 2 (i). Hence, it spreads in the single population of bidders.

A Lemmas and Proofs

The proofs of lemmas are provided in Appendix F in the SM.

Lemma 1. A function l0 : V → R satisfies equation (2) for each v ∈ V if and
only if l0 satisfies equation (1) for each b ∈ V .

Lemma 2. Fix any opt-out strategy z for risk-neutral bidders. (i) If z(v′) > 0 for
some v′ > l(v′), then U z(v′) > U z(v) for each v ≤ l(v). (ii) If z(v) > 0 for some
v < l(v), then U z(v) < U z(v′) for each v′ ≥ l(v′).

Lemma 3. Fix any symmetric equilibrium z for risk-neutral bidders. Then: (i)
z is decreasing on {v ∈ V | v ≥ l(v)}. (ii) z(vn) < 1. (iii) If z(vm) = 0 for
some vm ≥ l(vm), then z(v) = 0 and U z(v) = U z(vm) ≥ 0 for each v > l(v). (iv)
U z(v) ≤ π for each v ∈ V .

Proof of Theorem 1. As preliminaries, we define the threshold π > 0 as the unique
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solution to the equation

π = (1− ρ)
∑

w≤l0(w)+π

p(w)(l0(w) + π − w). (10)

The uniqueness is shown as follows: The right side of (10) is strictly increasing
in π. It is continuous in π, and positive at π = 0. Its left derivative with respect
to π at π > 0 is given by (1 − ρ)

∑
w−l0(w)<π p(w) < 1. Hence, the right and left

sides of (10) have a single-crossing point π > 0. We see from equation (4) that
equation (10) is the breakeven condition U z(v) = 0 for any v ≥ l(v) when high
values w > l(w) opt in and low values w ≤ l(w) opt out.

(i) Suppose π < π. We characterize the equilibrium in the statement by using
several necessary conditions. Let z be an equilibrium such that z(v) > 0 for some
v > l(v). Lemma 3 (ii) and (iii) then imply z(vn) ∈ (0, 1). Lemma 2 (i) also
implies that if v ≤ l(v), then U z(v) < U z(vn) = 0 and z(v) = 1. Together with
these facts, it follows from Lemma 3 (i) that there exists a cutoff c ≤ n with
vc > l(vc) such that z(v) = 1 if v < vc, and z(v) ∈ (0, 1) if v ≥ vc. Hence, z is a
solution to the following system of n linear equations:

z(v′) = 1, (11)

ρ (v − l(v)) z(v) + (1− ρ)
∑
w∈V

p(w) (min{v, w} − l(w)) z(w) = −π (12)

for each v′ ∈ {v1, ..., vc−1} and v ∈ {vc, ..., vn}. Note that equation (12) is equiva-
lent to U z(v) = 0 from equation (4). Also, U z(vc−1) ≤ 0 is necessary for preventing
the entry of vc−1. In the following four steps, we construct a unique equilibrium
with such a cutoff c.

Step 1: Fix any integer c ≤ n with vc > l(vc). We find a unique solution
zc ∈ Rn to the system of n linear equations (11) and (12). Let P denote the
cumulative distribution function of p. By using the equation

ρ(l(vm)− l(vm+1)) = (1− ρ)P (vm)(vm+1 − vm)

for each m < n and subtracting equation (12) for v = vn−1 from that for v = vn,
we obtain

zc(vn−1) =
ρ(vn−1 − l(vn−1)) + (vn − vn−1)

ρ(vn−1 − l(vn−1))
zc(vn).

More generally, a similar calculation yields the following for each m with c ≤ m <
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n:

zc(vm) =
ρ(vm − l(vm)) + (ρ+ (1− ρ)P (vm+1))(vm+1 − vm)

ρ(vm − l(vm))
zc(vm+1)

+
(1− ρ)(vm+1 − vm)

ρ(vm − l(vm))

∑
k≥m+2

p(vk)zc(vk). (13)

Note that the coefficient on zc(vm+1) is greater than one and that on zc(vk) is
positive given vm > l(vm). Hence, zc is strictly decreasing on {v | v ≥ vc} if
zc(vn) > 0, and increasing on {v | v ≥ vc} if zc(vn) ≤ 0.

Proceeding recursively, we can represent zc(vm) for each m ≥ c as a lin-
ear function of zc(vn) with a positive slope. We then substitute these values
(zc(vc), zc(vc+1), ..., zc(vn−1)) (with zc(v) = 1 for each v < vc) into equation (12)
for v = vn. In the resulting equation, the coefficient on zc(vn) is positive. Solving
this equation with respect to zc(vn) yields a unique solution zc ∈ Rn given the
cutoff c.

For any pair of two vectors zc, zc−1 ∈ Rn characterized in this way, we denote
ζc(v) := zc(v)− zc−1(v) for each v ∈ V and use the next equation:

U zc(v)− U zc−1

(v)

= ρ (v − l(v)) ζc(v) + (1− ρ)
∑

w≥vc−1

p(w) (min{v, w} − l(w)) ζc(w), (14)

where the equality follows from zc(w) = zc−1(w) = 1 for each w < vc−1.
Step 2: We find an integer c ≤ n that satisfies vc > l(vc), zc(vc) ∈ (0, 1)

and U zc(vc−1) ≤ 0. First, we claim that vc > l(vc) implies zc(vc) > 0. Indeed,
if zc(vc) ≤ 0, then zc(vc) ≤ · · · ≤ zc(vn) ≤ 0 from step 1, and U zc(vn) < 0

from equations (4) and (10) with zc(v1) = · · · = zc(vc−1) = 1 and π < π. This
contradicts equation (12) for v = vn (i.e., U zc(vn) = 0).

Second, we assert that the lowest integer c with vc > l(vc) satisfies U zc(vc−1) <

0. Indeed, our first claim with step 1 then implies that zc(v) is positive for each
v ≥ vc. Hence, equation (4) with (vc−1 − l(vc−1))zc(vc−1) ≤ 0 implies U zc(vc−1) <

U zc(vc) = 0.
Third, we claim that the highest integer c with U zc(vc−1) ≤ 0 is a required

integer. As this integer c satisfies vc > l(vc) and zc(vc) > 0 from our second
and first claims, it remains to show zc(vc) < 1. To derive a contradiction, we
suppose zc(vc) ≥ 1. This occurs only if c < n from equations (3) and (12). Then,
ζc+1(vc) = 1 − zc(vc) ≤ 0. Hence, ζc+1(w) ≥ 0 for each w ≥ vc+1 because if not,
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then ζc+1(w) < 0 for each w ≥ vc+1 from step 1, and 0 = U zc+1
(vn) < U zc(vn) = 0

from equations (12) and (14), which is a contradiction. Using these inequalities
for ζc+1 with (14), we obtain

U zc+1

(vc) = U zc+1

(vc)− U zc(vc) ≤ U zc+1

(vc+1)− U zc(vc+1) = 0.

This contradicts the hypothesis that c is the highest integer with U zc(vc−1) ≤ 0.
Step 3: We show that the vector zc in step 1 given the cutoff c in step 2 is a

partial-entry equilibrium. The vector zc is indeed an opt-out strategy because it
follows from step 1 with zc(vc) ∈ (0, 1) that zc(v) ∈ (0, 1) if v ≥ vc, and zc(v) = 1

if v < vc. Moreover, any bidder has no incentive to deviate from zc, because
U zc(v) = 0 for each v ≥ vc from equation (12), U zc(vc−1) ≤ 0, and U zc(v) < 0 for
each v < vc−1 from equation (4) with zc−1(v) = 1.

Step 4: We show that the auction game has no other equilibrium z that
satisfies z(v) > 0 for some v > l(v). To show this, fix any equilibrium with this
property. As shown in step 1, this equilibrium is characterized as the vector zm

given some cutoff m ≤ n such that vm > l(vm), zm(vm) ∈ (0, 1) and U zm(vm−1) ≤
0. Given the cutoff c in step 2 is defined as the highest integer with U zc(vc−1) ≤ 0,
we have m ≤ c.

To derive a contradiction, suppose m < c. As the latter cutoff is higher,
zc−1(vc−1) ≤ zm(vc−1) < 1 from equation (13). Hence, ζc(vc−1) = 1−zc−1(vc−1) >

0 and ζc(w) < 0 for each w ≥ vc. Together with these inequalities, equation (14)
implies

U zc(vc−1) = U zc(vc−1)− U zc−1

(vc−1) > U zc(vc)− U zc−1

(vc) = 0,

which contradicts U zc(vc−1) ≤ 0. Therefore, m = c and zm ≡ zc.

Finally, we show that if π = 0 (and therefore l = l0), then this equilibrium
zc is the unique partial-entry equilibrium. To show this, fix any equilibrium z.
If z(vn) > 0, then z ≡ zc from the former result. Next, we consider the case of
z(vn) = 0. Lemma 3 (iii) then implies that z(v) = 0 if v > l0(v). We thus obtain

U z(vn) = (1− ρ)
∑

w<l0(w)

p(w)(w − l0(w))z(w) ≥ 0.

Hence, z(w) = 0 if w < l0(w). If z(w) > 0 for w = l0(w), then U z(v1) =

(1− ρ)p(w)(v1− l0(w))z(w) < 0, which contradicts U z(v1) ≥ 0. We thus conclude
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that z ≡ 0 (i.e., the full-entry equilibrium) in this case.
(ii) Suppose π ≥ π. Fix any equilibrium z. To derive a contradiction, suppose

z(v) > 0 for some v > l(v). Then, U z(v) ≤ 0 since z is an equilibrium. Now,
since π ≥ π, the premium π is weakly higher than the right side of equation (10).
Hence, equation (4) with l = l0 + π and (v − l(v))z(v) > 0 implies U z(v) > 0,
which contradicts U z(v) ≤ 0.

Proof of Theorem 2. (i) Suppose π = 0. Let us consider a pure opt-out strategy
z such that z(v) = 1 for some v < l0(v) and z(v) = 0 for each v ≥ l0(v). Equation
(4) implies that a bidder with any value v incurs a loss U z(v) < 0 from value
bidding when matching with this pure strategy z. The replicator dynamics (5)
then imply that, on the subset {σ ∈ ∆(B)V | σ(v, v) + σ(v, 0) = 1 and σ(v, v) ∈
(0, 1) if v < l0(v), σ(v, v) = 1 if v ≥ l0(v)} of states, the proportion of value
bidders in the subpopulation of any value v < l0(v) is strictly decreasing because
σ̇(v, v) = p(v)Uσ(v, v)(1 − σ(v, v))σ(v, v) < 0. Thus, the full-entry equilibrium is
asymptotically unstable in the dynamics (5).

(ii) Suppose π > 0. Let z denote the full-entry equilibrium. Given a risk-
neutral bidder with any value v obtains the positive interim profit U z(v) = π > 0,
value bidding is the unique best response to itself. The full-entry equilibrium is
thus evolutionarily stable.

Let σ denote the full-entry equilibrium, and fix any mutant σ′ ̸= σ. Let
εσ′(π) ∈ (0, 1] be the highest invasion barrier of σ against σ′. For each ε ∈
(0, εσ′(π)), the terms of π in the utilities U(σ, εσ′ + (1− ε)σ) for the incumbent σ
and U(σ′, εσ′ + (1− ε)σ) for the mutant σ′ are given by

((1− ε) + εE[1− σ′(ṽj, 0)]) π,

((1− ε)E[1− σ′(ṽi, 0)] + εE[(1− σ′(ṽi, 0))(1− σ′(ṽj, 0))]) π

respectively. As the former is not lower than the latter, the barrier εσ′ is increasing
in π.

We now consider the mutant σ′ such that σ′(v, 0) = 1 for each v < l0(v) and
σ′(v, v) = 0 for each v ≥ l0(v). With equation (4), some algebra shows that

εσ′(π) =
Pr[ṽi < l0(ṽi)]π∑

vi<l0(vi)

∑
vj<l0(vj)

Pr[ṽi = vi, ṽj = vj] (l0(vj) + π −min{vi, vj})

if the right side is lower than one, and εσ′(π) = 1 otherwise. Thus, the highest
invasion barrier εσ′(π) of σ against the mutant σ′ converges to zero as π → 0.
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Proof of Theorem 3. (i) Fix any equilibrium z. If z(v) > 0 for some v > l(v),
then z is the partial-entry equilibrium zc from Theorem 1 (i). If z(v) = 0 for
each v > l(v), then z(v) = 0 < zc(v) ∈ (0, 1) for each v ≥ vc > l(vc) ≥ l(v)

and z(v) ≤ 1 = zc(v) for each v < vc. Thus, zc is the unique minimal-entry
equilibrium.

(ii) By construction, the opt-out strategy zd is an equilibrium. Fix another
equilibrium z. We show that z(v) ≤ zd(v) for each v ∈ V , and hence, zd is the
unique minimal-entry equilibrium. It follows from Theorem 1 (ii) that z(v) =

zd(v) = 0 for each v > l(v). Let m be the lowest integer such that z(v) = 0

for each v ≥ vm. To derive a contradiction, suppose vd < vm. We now consider
the opt-out strategy z′ such that z′(v) = 1 if v < vm and z′(v) = 0 if v ≥ vm.
Equation (4) then implies that U z′(v1) < · · · < U z′(vm−1) ≤ U z(vm−1) ≤ 0, where
the last inequality follows from z(vm−1) > 0. Equation (4) also implies

U z′(vm) = U z′(vm+1) = · · · = U z′(vn) = (1− ρ)
∑

w≤vm−1

p(w) (w − l(w)) + π ≥ 0,

where the last inequality follows from equation (10) with w ≤ vm−1 ≤ l(vm−1) ≤
l(w) and π ≥ π. This contradicts the construction of the strategy zd with the
cutoff vd.

Suppose now π > π. Equation (10) then implies that U zd(v) > 0 for each
v ≥ vd. Given U zd(v) < 0 for each v < vd by construction, the minimal-entry
equilibrium zd is strict, and hence, an ESS.

Lemma 4. Every ASS z with z(v) = 0 for each v ≥ l(v) satisfies z(v) ∈ {0, 1}
for each v < l(v).

Proof of Claim 1. (i) The minimal-entry equilibrium zc satisfies U zc(v) < 0 for
each v < vc−1. This strict inequality also holds for v = vc−1 in the experimental
setting with π = 1. This implies that any mutant σ′ is a best response to the
incumbent σ equivalent to zc only if σ′(v, 0) = 1 for each v < vc. We now define
the quadratic function

f(z) := E [(1− zc(ṽi))U
z(ṽi)]− E [(1− z(ṽi))U

z(ṽi)] = E [(z(ṽi)− zc(ṽi))U
z(ṽi)]

on Z := {z ∈ [0, 1]V | z(v) = 1 ∀v < vc}. The minimal-entry equilibrium zc is an
ESS if and only if f(z) > 0 for each mutant opt-out strategy z ∈ Z with z ̸= zc.

Given zc is an equilibrium with zc(v) ∈ (0, 1) for each v ≥ vc, the first-order
condition ∂f

∂zv
(zc) = 0 is satisfied for each v ≥ vc, where zv := z(v). Let H denote
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the Hessian matrix of f with respect to (zv)
vn

v=vc . The diagonal and off-diagonal
elements of H are given by

∂2f

∂z2v
= p(v)p(v)(1− ρ)(2v − 2l(v)) + p(v)ρ(2v − 2l(v))

∂2f

∂zv∂zw
= p(v)p(w)(1− ρ)(2min{v, w} − l(v)− l(w))

for each v, w ≥ vc with v ̸= w, respectively. If zc minimizes f , then H should be
positive semidefinite. We can indeed show that H is positive definite, and hence, f
is strictly convex on Z. From Sylvester’s criterion (Gilbert, 1991), the symmetric
matrix H is positive definite if and only if all principal minors of H are positive.
We can show by direct computations that H satisfies the latter condition in the
experimental setting with π = 1. Thus, f(z) > 0 for each z ∈ Z with z ̸= zc, so
that zc is an ESS.

(ii) Fix another partial-entry equilibrium z ̸= zc. Theorem 1 (i) with π < π

implies that z(v) = 0 for each v > l(v). As the FE treatment has no value v with
v = l(v), we can find a value v < l(v) with z(v) > 0. To derive a contradiction,
suppose that z is an ASS. Lemma 4 then implies z(v) = 1. A bidder with value
v1 should then opt out because

U z(v1) ≤ (1− ρ)p(v)(v1 − l(v)) + π =
1

150
(100− l0(v)) +

149

150
< 0, (15)

where the first inequality follows from equation (4), and the last inequality from
l0(v) ≥ l0(1800) > 1800. A bidder with value vn should then opt out because

U z(vn) ≤ (1− ρ)p(v1)(v1 − l(v1)) + π < 0,

where the last inequality follows from (15) with p(v) = p(v1) and l(v) ≤ l(v1).
This contradicts z(vn) = 0.
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Auction: Round 3/20
This is not the payment round for the current opponent.
(The opponent will know it at the end of the experiment.)

Your current value: 9000 points
(Conditional on this, the opponent's value is also 9000 with probability 51

150
, and it is another one with probability 1

150
 for each.)

You can check previous results and rules by clicking the following menu items:

Please choose either opt-in or opt-out, and your bid (if you opt in).

Opt-in Opt-out

100 points   10000 points

Your current bid: 5000 points

Previous results

Rule of the experiment

Rule of the profit adjustment

Debug info

vars_for_template

const_lot 2222

fixed 3000

image 'my_folder/profit_change.jpg'

list [[2, 'なし', 7800, '0（不参加）', '0（不参加）', 0, 0, 0, 0cu], [1, 'なし', 7700, '0（不

参加）', '0（不参加）', 0, 0, 0, 0cu]]

lottery_procedure False

num_rounds_prod 20

rate 0.1

Figure 2: Screenshot of the Bidding Page. Note: In 2P, there is no menu item for
the rule of the profit adjustment (i.e., CM lottery). The default bid is 5000. The
current bid is automatically submitted after 45 seconds pass. In the experiment,
the captions on this page were displayed in Japanese.
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When you enter Bidder B's bid and click the button, the change in Bidder A's profit is displayed below.
(If Bidder B is your opponent, Bidder A is you. If Bidder B is you, Bidder A is your opponent.)

Calculation Button

The change in Bidder A's profit ＝ -7677 points

(If either Bidder A or B opts out, this profit change is zero.)

Rule of the profit adjustment

Bidder B's bid 10000

Figure 3: Rule of the Profit Adjustment (CM Lottery). Note: In the experiment,
the captions on this page were displayed in Japanese.
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Auction Result: Round 3/20
The auction result is as follows.

Please wait until the time passes.

   

①Winner ②Your
value

③Your
bid

④Opponent's
bid

⑤Price
＝ minimum of ③ and ④

⑥Profit
＝ ②－⑤
(when you win)

⑦Change in profit

(depends on ④)

⑧Your
total profit

＝ ⑥＋⑦

You 9000 5000 4000 4000 5000 663 5663 points

0 points

Your bid
5000

Your value
9000

Opponent's bid
4000

Time left to complete this page: 0:12

Figure 4: Screenshot of the Result Page. Note: In 2P, the last two columns (the
change in profit and the total profit) are not displayed. Subjects must wait until
15 seconds pass. In the experiment, the captions on this page were displayed in
Japanese.

4



Table 1: MPL for the elicitation of risk attitudes in the gain and loss domains.

Choice Lottery A (Safe) Lottery B (Risky)
Problem Prob. Payoff Prob. Payoff Prob. Payoff Prob. Payoff

1 10% 200 90% 160 10% 385 90% 10
2 20% 200 80% 160 20% 385 80% 10
3 30% 200 70% 160 30% 385 70% 10
4 40% 200 60% 160 40% 385 60% 10
5 50% 200 50% 160 50% 385 50% 10
6 60% 200 40% 160 60% 385 40% 10
7 70% 200 30% 160 70% 385 30% 10
8 80% 200 20% 160 80% 385 20% 10
9 90% 200 10% 160 90% 385 10% 10
10 100% 200 0% 160 100% 385 0% 10

Choice Lottery A (Safe) Lottery B (Risky)
Problem Prob. Payoff Prob. Payoff Prob. Payoff Prob. Payoff

1 10% −200 90% −160 10% −385 90% −10
2 20% −200 80% −160 20% −385 80% −10
3 30% −200 70% −160 30% −385 70% −10
4 40% −200 60% −160 40% −385 60% −10
5 50% −200 50% −160 50% −385 50% −10
6 60% −200 40% −160 60% −385 40% −10
7 70% −200 30% −160 70% −385 30% −10
8 80% −200 20% −160 80% −385 20% −10
9 90% −200 10% −160 90% −385 10% −10
10 100% −200 0% −160 100% −385 0% −10

Note: This table shows the multiple price lists (MPL). Each subject chooses either lottery A

or B for all choice problems in 3 × 2 minutes. At the end of a session, one problem in each

domain is randomly selected and the lottery chosen in this problem is drawn by a computer.

The unit of payoff is JPY.
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Table 2: CARA parameters given the number of safe choices in
the MPL.

# of Safe Range of CARA Parameters
Choices Gain Domain Loss Domain

0 r < −0.0093 NA (Irrational)
1 −0.0093 < r < −0.0055 r < −0.0119

2 −0.0055 < r < −0.0030 −0.0119 < r < −0.0078

3 −0.0030 < r < −0.0009 −0.0078 < r < −0.0051

4 −0.0009 < r < 0.0010 −0.0051 < r < −0.0029

5 0.0010 < r < 0.0029 −0.0029 < r < −0.0010

6 0.0029 < r < 0.0051 −0.0010 < r < 0.0009

7 0.0051 < r < 0.0078 0.0009 < r < 0.0030

8 0.0078 < r < 0.0119 0.0030 < r < 0.0055

9 0.0119 < r 0.0055 < r < 0.0093

10 NA (Irrational) 0.0093 < r

Note: This table shows the range of constant-absolute-risk-aversion

(CARA) parameters given the number of safe lotteries chosen by a de-

cision maker who correctly switches lottery choices at most once in the

MPL. The CARA utility function is defined as u(y) = (1−exp(−ry))/r

(if r ̸= 0) and u(y) = y (if r = 0) for monetary payoffs y ∈ R.
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Table 3: Questions in the CRT.

Question Answer
1 A book and a pen cost 1,100 yen in total. The book

costs 1,000 yen more than the pen. How much does the
pen cost?

50 yen

2 If it takes 5 machines 5 minutes to make 5 widgets, how
long would it take 100 machines to make 100 widgets?

5 minutes

3 In a lake, there is a patch of lily pads. Every day, the
patch doubles in size. If it takes 48 days for the patch
to cover the entire lake, how long would it take for the
patch to cover half of the lake?

47 days

4 If Taro can drink one barrel of water in 6 days, and
Hanako can drink one barrel of water in 12 days, how
long would it take them to drink one barrel of water
together?

4 days

5 Jiro received both the 15th highest and the 15th lowest
mark in the class. How many students are in the class?

29 students

6 A man buys a pig for 6,000 yen, sells it for 7,000 yen,
buys it back for 8,000 yen, and sells it finally for 9,000
yen. How much has he made?

2,000 yen

7 Saburo decided to invest 800,000 yen in the stock market
one day early in 2008. Six months after he invested, on
July 17, the stocks he had purchased were down 50%.
Fortunately for Saburo, from July 17 to October 17, the
stocks he had purchased went up 75%. At this point,
Saburo has:

c

a. broken even in the stock market, b. is ahead of where
he began, c. has lost money.

Note: This table shows the cognitive reflection test (CRT). Each subject answers all

questions in 6 minutes, obtaining JPY 60 per correct answer. In the experiment,

these questions were displayed in Japanese. See Harada et al. (2018) for a Japanese

version.
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Table 4: Sessions.

Treatment Session # Date # of Groups # of Subjects University

FE

1 January 23, 2023 2 12 Osaka
2 January 24, 2023 4 24 Osaka
3 January 24, 2023 3 18 Osaka
4 March 7, 2023 3 18 (22) Osaka
5 January 26, 2023 4 24 (25) Kansai
6 January 26, 2023 4 24 Kansai
7 January 30, 2023 3 18 (23) Kansai
8 January 30, 2023 4 24 Kansai

PE

1 January 23, 2023 2 12 (15) Osaka
2 January 25, 2023 2 12 (17) Osaka
3 March 6, 2023 3 18 (22) Osaka
7 January 27, 2023 4 24 (25) Kansai
8 January 27, 2023 3 18 (22) Kansai

2P

1 January 26, 2023 3 18 (20) Osaka
2 January 26, 2023 2 12 (16) Osaka
3 March 6, 2023 3 18 (22) Osaka
7 January 27, 2023 2 12 Kansai
8 January 30, 2023 4 24 Kansai

Note: This table shows the date, the numbers of (human-only) groups and subjects,

and the university for each session. The numbers of subjects in parentheses include

those who joined groups with computerized bidders. The two sessions with machine

troubles mentioned in footnote 16 of the paper are sessions 5 and 6 for FE.
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Figure 5: Bids by Value in FE. Note: The left and right scatter plots show bids by
value in the FE sessions without and with the troubles in the instruction (footnote
16 of the paper), respectively.
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respectively.
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Table 5: Regression models with the trouble dummy for FE.

Dependent Variable
Bid Deviation Entry Dummy

(in Entry Round) (in Entry Round) × 100
Value / 102 74.76 (3.39) 1.17 (0.10)

Value × Value / 104 −0.006 (0.0009)
Round 53.62 (17.75) 12.52 (10.94) −0.81 (0.13)

Last Opponent’s Bid / 104 693.70 (149.34) 170.38 (118.41) −8.12 (1.73)
Opponent’s Payment Round −588.78 (405.31) 1153.56 (326.62) 7.14 (3.16)

# of Safe Choices (Gain) −2.38 (0.94)
# of Safe Choices (Loss) −1.18 (1.60)

# of Mistakes in Quiz −71.64 (54.20) 22.21 (29.79) 0.56 (0.54)
CRT Score 54.39 (91.25) 94.93 (52.06) −0.31 (1.20)

Male 79.45 (328.23) 46.49 (200.42) −3.03 (3.58)
Trouble in Instruction −593.96 (431.51) 241.99 (274.99) 4.80 (3.71)

Constant 1517.30 (586.08) 671.57 (339.74) 69.52 (14.48)
Var. of Group Random Effect 285235 53507 1.7 / 107

Var. of Subject Random Effect 3739201 1319039 412
Var. of Residual 5477131 3243698 1177

Log Pseudolikelihood −17452 −20361 −13796
# of Observations 2267 2267 2755

Note: We introduce a trouble dummy (footnote 16 of the paper) into the models in Tables

3–5 of the paper. The three models in this table use data in FE because the trouble

occurred only in this treatment. Bid = bit > 0. Value = vit. Deviation = |bit − vit| with

bit > 0. Entry Dummy = I(bit > 0). Round = t > 1. Last Opponent’s Bid = bjt−1,

where subject j is i’s opponent in round t − 1. Opponent’s Payment Round = 1 if t is

a payment round for the current opponent, and 0 otherwise. Male = 1 if subject i is

male, and = 0 otherwise. Trouble in Instruction = 1 if the session has a trouble in the

instruction, and = 0 otherwise. Robust standard errors clustered at the group level are

shown in parentheses. Var. denotes a variance.
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Figure 8: Bids by Subjects in FE. Note: Each cluster ID is followed by a participant
ID number.
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Figure 10: Bids by Subjects in PE. Note: Each cluster ID is followed by a partic-
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C Preregistered Analyses

In this appendix, we conduct statistical analyses according to the preregistered
plan, and explain why and how the original plan is revised in the paper.1

In the preregistration, we specified three outcome variables as the key depen-
dent variables. The first one is an overbid amount for each subject in each round
(conditional on entry). The second one is a bid deviation from value bidding for
each subject in each round (conditional on entry). The third one is the entry
dummy for each subject in each round.

Table 6: Treatment effects on bidding decisions.

Dependent Variable
Overbid Deviation Entry Dummy

(in Entry Round) (in Entry Round) × 100
PE 194.39 (205.81) 114.16 (169.03) 6.36 (2.68)
2P −618.68 (203.28) −858.16 (153.21) 22.26 (1.73)

Constant 336.76 (140.49) 1568.75 (111.54) 74.67 (1.55)
Var. of Group Random Effect 99477 56469 2.64 / 1011

Var. of Subject Random Effect 1540254 979837 278
Var. of Residual 3812768 2563453 1123

Log Pseudolikelihood −45490 −44485 −30518
# of Observations 5021 5021 6132

Note: Overbid = bit−vit with bit > 0. Deviation = |bit−vit| with bit > 0. Entry Dummy

= I(bit > 0).
1The experiment was preregistered at AsPredicted.org (#119225, https://aspredicted.

org/55gs-7f5r.pdf).
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Table 7: Treatment effects on bidding decisions (with control variables).

Dependent Variable
Overbid Deviation Entry Dummy

(in Entry Round) (in Entry Round) × 100
PE 127.76 (203.26) 92.06 (173.56) 7.79 (2.71)
2P −738.19 (203.72) −848.59 (153.75) 23.15 (1.80)

Value / 102 0.40 (0.03)
Round 26.21 (8.50) −16.56 (6.96) −0.60 (0.09)

Last Opponent’s Bid / 104 507.13 (109.30) 153.79 (91.17) −5.15 (1.26)
Opponent’s Payment Round −603.12 (241.07) 1052.77 (188.73) 3.78 (2.14)

# of Safe Choices (Gain) −1.70 (0.62)
# of Safe Choices (Loss) −0.54 (0.86)

# of Mistakes in Quiz −48.51 (23.42) 28.27 (18.30) 0.10 (0.31)
CRT Score −48.99 (47.99) 9.59 (33.58) −0.77 (0.61)

Male −164.15 (152.74) −3.49 (128.97) −3.25 (2.04)
Constant 438.03 (270.43) 1523.68 (224.83) 80.98 (7.97)

Var. of Group Random Effect 96952 55285 4.32 / 1010

Var. of Subject Random Effect 1548973 1048596 262
Var. of Residual 4160288 2737016 965

Log Pseudolikelihood −45689 −44641 −27666
# of Observations 5020 5020 5643

Note: Overbid = bit − vit with bit > 0. Deviation = |bit − vit| with bit > 0. Entry

Dummy = I(bit > 0). Value = vit. Round = t > 1. Last Opponent’s Bid = bjt−1,

where subject j is i’s opponent in round t− 1. Opponent’s Payment Round = 1 if t is a

payment round for the current opponent, and 0 otherwise. Male = 1 if subject i is male,

and = 0 otherwise.

Following the preregistration, we demonstrate the estimated average treatment
effects on these outcome variables in Table 6, using the multilevel mixed-effects
linear regression models with group- and subject-level random effects.2 Here, we
exclude data in opponents’ payment rounds. In FE, the overbid amount given
entry is 336.76 points (p = 0.0165). The overbid amount and deviation given
entry are larger in FE than in 2P (p = 0.0023 for the overbid amount; p <

0.0001 for the deviation). The overbid amount and deviation given entry are
smaller in FE than in PE (p = 0.3449 for the overbid amount; p = 0.4994 for
the deviation). The entry rate is lower in FE than in PE and 2P (p = 0.0176 for
FE vs. PE; p < 0.0001 for FE vs. 2P). The three linear models in Table 7 have
several control variables specified in the preregistration. Here, we include data in

2When reporting any effect in this appendix, we present a p-value from the z-test of the null
hypothesis that the associated coefficient (or constant) is zero. The z-statistic is defined as the
estimate divided by the robust standard error clustered at the group level.
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opponents’ payment rounds to examine the effects on bidding decisions. These
models demonstrate similar treatment effects as follows: The overbid amount and
deviation given entry are larger in FE than in 2P (p = 0.0002 for the overbid
amount; p < 0.0001 for the deviation). The overbid amount and deviation given
entry are smaller in FE than in PE (p = 0.5296 for the overbid amount; p = 0.5958
for the deviation). The entry rate is lower in FE than in PE and 2P (p = 0.0040
for FE vs. PE; p < 0.0001 for FE vs. 2P).

In Section 4.1 of the paper, we have used the seller’s realized revenues, in-
stead of subjects’ decision variables, to test equilibrium hypotheses. Moreover,
we include the minimal-entry equilibrium as another hypothesis for each of FE
and PE (Figure 3 of the paper). The reason for this inclusion is that, in FE, this
equilibrium is more plausible than the full-entry equilibrium from the perspective
of evolutionary game theory, as shown by Theorem 2 and Claim 1 of the paper.

In Section 4.2 of the paper, we have changed the models in Table 7 into those in
Tables 3–5 of the paper. The first change is that we use models by treatment. This
is because the effects of some control variables are essentially different between
the treatments (e.g., the round effects on the deviation in Table IV). Second, we
replace the overbid amount with the bid, and adopt tobit models in which the
bids in entry rounds, censored at the upper limit of 10000, are regressed on values
with other control variables (Table III). As shown in the paper (e.g., Figures 5
and 6a), both FE and PE had overbidders who bid the maximum amount 10000.
This suggests that the upper limit might be constraints for them. Hence, we use
the tobit models to obtain less biased estimates. Third, we introduce the squared
term of the values for entry decisions (Table V) because the entry probabilities in
partial-entry equilibria for risk-averse bidders are nonmonotonic in values (Figures
1 and 2 of the paper).

D English Translation of the Instruction for FE

We now explain the rules of the experiment. Please watch the video until
the end. This is an “auction” experiment. Participants will be asked to play an
“auction game” with others under the experimental rules. The experiment will be
conducted on a website. The items up for auction are hypothetical. There will be
two bidders, competing as a pair. Monetary rewards will be provided according to
the experimental results. The initial reward is 3,000 yen, and the reward amount
will increase or decrease depending on the results. The profits and losses that
occur in the game are referred to as “points.”
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Now, we explain the rules for each round of the auction. First, the “value” of
each item for each bidder will be determined stochastically. A bidder who wins
an auction will earn points based on their value of the item. The value ranges
from 100 to 10,000 points, in increments of 100 points. The probability of each
combination of values for the two bidders is shown on the next page.

In this table,3 the numbers on the left represent Bidder A’s values, while the
numbers on the top represent Bidder B’s values. The values range from 100 to
10,000 points, in increments of 100 points. Some parts of the table are omitted.
The probability of each cell along the diagonal is 51 out of 15,000, while the prob-
ability of any other cell is 1 out of 15,000. This means that the likelihood of both
bidders having the same value is relatively high. For example, the probability that
both bidders have a value of 100 is 51 out of 15,000. Meanwhile, the probability
that Bidder A has a value of 100 and Bidder B has a value of 10,000 is 1 out of
15,000. The sum of the fractions in the white cells adds up to 1, or 100%.

Each participant is only informed of their own value and not the opponent’s
value. Each participant will then decide whether to opt in the auction and, if they
choose to opt in, the amount they wish to bid. Bids can range from 100 to 10,000
points, in increments of 100 points. If a participant chooses to opt out, their bid
will be 0 points. In that case, their profit will also always be 0 points.

After both participants have submitted their bids, the price will automatically
rise from 0 points, stopping at the lower of the two bids. This final price is
the “winning price.” The participant who submitted the higher bid becomes the
“winner.” In the event of equal bids, the winner is determined randomly. If both
participants choose to opt out, there is no winner. The winning bidder earns a
“winning profit.” The winning profit is determined by subtracting the winning
price from the winner’s value.

Finally, if both participants opt in the auction, each participant’s profit will
also be adjusted depending on the opponent’s bid, regardless of the participant’s
own bid or whether the participant won the auction. The adjustment is made
according to the formula displayed on the screen:

Your profit change = 2223− Opponent’s bid
100

×
(

Opponent’s bid
100

− 1

)
Although the formula is complicated, you can check it during the experiment.
However, if either you or your opponent opts out of the auction, this profit ad-

3The table is shown in Figure 1.
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justment will be 0 points.
Additionally, the profit adjustment is represented by a graph.4 In this graph,

the horizontal axis represents the opponent’s bid, while the vertical axis repre-
sents the change in your profit. As you can see from the graph, the higher the
opponent’s bid, the fewer points you earn. You can also check this graph during
the experiment.

Now, we explain how groups and competing pairs are determined. In the
beginning, each participant will be randomly assigned to a group of six. These
groups will remain fixed for the duration of the experiment. If there are not
enough participants, computers will join to form groups of six. Participants will
be informed if computers are included in their group. If a computer participates,
its bidding behavior will be displayed on the screen. Each group will play 20
rounds of auction games. The competing pair for each auction will be randomly
selected within the group for each round.

Next, we explain how rewards from the auction are determined. For each
participant, one of the 20 rounds will be randomly selected as the round that
determines their reward. The reward from the auction is calculated as follows:
The total profit from the selected round is multiplied by 0.1 to determine the
performance-based reward. However, this performance-based reward can be nega-
tive. Fractions will be rounded up. In addition, an initial reward of 3,000 yen will
be given. The total auction reward is the sum of the performance-based reward
and the initial reward. You will not know which round is selected for your reward
until the end of the experiment, so please make decisions seriously in all rounds.

Now, we explain the layout of the screens for each round. Each round of
the auction consists of two screens. The first is the bidding screen.5 The upper
left of the page displays the time limit. After the time limit passes, the system
automatically moves to the next page. The page title indicates that this is the
third round of bidding. Below that, you can confirm whether this round is the
reward-determining round for your opponent. However, you will not know if this
round is the reward-determining round for you until the end of the experiment.
Below that, you can check your value for this round. In this example, your value
is 9,000 points. Next, please focus on the blue box. Here, you will choose whether
to opt in and, if so, how much to bid. Use the radio buttons to select whether to

4The graph is shown in Figure 3.
5The screen is shown in Figure 2.
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opt in. If you choose to opt in, use the slider to select your bid. You can operate
the slider with your mouse or keyboard. The amount you select will be displayed
below the slider. After the time limit passes, your selection will be submitted
automatically. You can change your selection as many times as you like before the
time limit.

There is more to the bidding screen. By clicking this menu, you can check
the results of previous rounds, the experimental rules, and the profit adjustment
rules. Now, let’s explain how to use a calculator for the profit adjustment in
detail.6 First, enter Bidder B’s bid amount. Then, click the “calculation” button.
The change in Bidder A’s profit will then be displayed below. Please use this
calculator if you wish to check the profit adjustment rules.

The second screen is the auction result screen.7 The price will rise from 0
points in an animation, stopping at the lower of the two bids. This final price is
the winning price. In this example, your bid is 5,000 points, and your opponent’s
bid is 4,000 points, so the winning price is 4,000 points. Since you submitted the
higher bid, you are the winner. The winning profit is calculated by subtracting the
winning price (4,000 points) from your value (9,000 points), resulting in a profit
of 5,000 points. Additionally, according to the profit adjustment rules explained
earlier, your profit increases by 663 points according to your opponent’s bid. As
a result, your total profit in this round is the sum of your winning profit and the
profit change, which is 5,663 points. This concludes one round of the auction.

Finally, we explain the schedule of the experiment. First, you will log in to
the experiment website. After logging in, you will be asked to answer a brief
questionnaire for trait assessment. The questionnaire will be shown on the screen
later. The results of the questionnaire will affect your rewards. Afterward, you
will participate in practice auctions. These practice rounds are intended to help
you get familiar with the rules and operations, and two rounds of practice auctions
will be conducted. The practice rounds will not count toward the rewards. After
the practice auctions, you will take a quiz to confirm your understanding of the
rules. Then, the actual auction will begin. There will be 20 rounds of auctions
in total, and they will count toward your rewards. After the main rounds, you
will take another quiz. The quiz content will be shown on the screen later. This
quiz is unrelated to the auction. There is an additional reward for completing
this quiz. Finally, after a brief survey and receipt of your participation payment,

6The calculator is shown in Figure 3.
7The screen is shown in Figure 4.
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the experiment will conclude. The payment will be made in increments of 10 yen.
Any amount less than 10 yen will be rounded up.

This concludes the explanation of the experimental rules.

E Reinforcement Learning Model

In this appendix, we apply the reinforcement learning model of Börgers and
Sarin (1997) to our auction game. Given the auction game is a Bayesian game,
we need some modification. We also borrow the idea of perturbation from Gale
et al. (1995, Section 6) .

Fix any step size κ ∈ (0, 1]. Let σ̃(t) and ς̃(t) denote bidder i’s and j’s states
at each time t ∈ {0, κ, 2κ, ...} respectively. Their states are random variables. We
assume that σ̃(0) = σ(0) and ς̃(0) = ς(0) with probability one, and bidders have
the same initial state σ(0) = ς(0) ∈ ∆(B)V . At each time t, bidders independently
choose bids according to their states given their realized values. We denote by
σ(t) = E[σ̃(t)] and ς(t) = E[ς̃(t)] their expected states at t. We call the component
σ̃v(t) ∈ ∆(B) the substate for bidder i with value v at t.

We assume that, at each time, each bidder observes only his or her own previous
bids, values, and payoffs. Bidders update their states as follows: Following Börgers
and Sarin (1997), we interpret payoffs as “strengths of reinforcement.” Fix any
CARA parameter r ∈ R. We apply a positive affine transformation to the CARA
utility function u so that u(x) ∈ (0, 1) for all profit levels x in the experiment. Let
ũv
b(t) denote the payoff for bidder i with value v bidding b at time t. This payoff is

realized according to the opponent’s state ς̃(t) and value ṽj conditional on ṽi = v.
The interim expected payoff is

E [ũv
b(t)] = U ς(t)(v, b).

First, we define a learning process with no perturbation. We suppose that
bidder i with value v has chosen a bid b at time t. At time t + κ, bidder i with
value v updates his or her substate by taking a weighted average of the old substate
σ̃v(t) and the unit vector that puts all probability on bid b. The weight on the
unit vector is given by κũv

b(t). Bidder i with another value w ̸= v retains the old
substate. The learning process is thus defined as

σ̃v
b (t+ κ) = (1− κũv

b(t))σ̃
v
b (t) + κũv

b(t),

σ̃v
a(t+ κ) = (1− κũv

b(t))σ̃
v
a(t)
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for each a ∈ B \ {b}, and σ̃w(t + κ) = σ̃w(t) for each w ∈ V \ {v}. Taking
expectation with respect to bidder i’s value, bid, payoff, and substate at time t

yields

σv
b (t+ κ)− σv

b (t)

κp(v)
=

(
U ς(t)(v, b)− U ς(t)(v, σ(t))

)
σv
b (t).

Next, we introduce perturbations into the learning process. At each time t+κ,
bidder i with value v follows the original process with probability 1 − δ(t), and
updates his or her substate by taking a weighted average of σ̃v(t) and θv with the
remaining probability δ(t). The weight on the exogenous substate θv is κ. Bidder
i with another value w ̸= v retains the old substate. The process is thus modified
as follows:

σ̃v
b (t+ κ) = (1− δ(t)) ((1− κũv

b(t))σ̃
v
b (t) + κũv

b(t)) + δ(t) ((1− κ)σ̃v
b (t) + κθvb ) ,

σ̃v
a(t+ κ) = (1− δ(t))(1− κũv

b(t))σ̃
v
a(t) + δ(t) ((1− κ)σ̃v

a(t) + κθva)

for each a ∈ B \ {b}, and σ̃w(t + κ) = σ̃w(t) for each w ∈ V \ {v}. Taking
expectation with respect to bidder i’s value, bid, payoff, and substate at time t

yields

σv
b (t+ κ)− σv

b (t)

κp(v)
= (1− δ(t))

(
U ς(t)(v, b)− U ς(t)(v, σ(t))

)
σv
b (t) + δ(t) (θvb − σv

b (t)) .

As σ(t) = ς(t) due to σ(0) = ς(0) and symmetry between bidders, we obtain
equation (8) in the paper by replacing the step size κ with τ .8

F Proofs of Lemmas in the Paper

Lemma 1. A function l0 : V → R satisfies equation (2) for each v ∈ V if and
only if l0 satisfies equation (1) for each b ∈ V .

Proof of Lemma 1. It follows from the compound distribution of (ṽ1, ṽ2) that the
break-even condition (2) is equivalent to

ρl0(v) + (1− ρ)E [v −min{v, w̃}+ l0(w̃)] = 0. (16)

Simple algebra shows that the function l0 defined by (1) satisfies equation (16)
8As explained in footnote 29 of the paper, we set τ = 10 to speed up computation. This is

equivalent to setting κ = 1 and multiplying the right side of the above equation by 10.
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for each v ∈ V . Conversely, suppose that a function l0 satisfies equation (16)
for each v ∈ V . By multiplying both sides of (16) by p(v) and summing over v,
we obtain

∑
v p(v)l0(v) = −(1 − ρ)

∑
v

∑
w p(v)p(w)max{v − w, 0}, and hence,

E[l0(w̃)] = −(1 − ρ)E[max{w̃i − w̃j, 0}]. Substituting this expected value back
into equation (16) gives equation (1).

Lemma 2. Fix any opt-out strategy z for risk-neutral bidders. (i) If z(v′) > 0 for
some v′ > l(v′), then U z(v′) > U z(v) for each v ≤ l(v). (ii) If z(v) > 0 for some
v < l(v), then U z(v) < U z(v′) for each v′ ≥ l(v′).

Proof of Lemma 2. (i) Fix any v ≤ l(v). We obtain the inequality U z(v′) > U z(v)

from equation (4) with (v′ − l(v′))z(v′) > 0 ≥ (v − l(v))z(v) and v′ > v. (ii) Fix
any v′ ≥ l(v′). We obtain the inequality U z(v) < U z(v′) from equation (4) with
(v − l(v))z(v) < 0 ≤ (v′ − l(v′))z(v′) and v < v′.

Lemma 3. Fix any symmetric equilibrium z for risk-neutral bidders. Then: (i)
z is decreasing on {v ∈ V | v ≥ l(v)}. (ii) z(vn) < 1. (iii) If z(vm) = 0 for
some vm ≥ l(vm), then z(v) = 0 and U z(v) = U z(vm) ≥ 0 for each v > l(v). (iv)
U z(v) ≤ π for each v ∈ V .

Proof of Lemma 3. (i) To derive a contradiction, suppose that z(v′) > z(v) for
some v, v′ ∈ V with v′− l(v′) > v− l(v) ≥ 0. We then obtain U z(v′) > U z(v) ≥ 0,
where the first inequality follows from equation (4) with v′ > v and the second
from z(v) < z(v′) ≤ 1. Thus, a bidder with value v′ strictly prefers value bidding
to opting out. However, z(v′) > z(v) ≥ 0, which contradicts the equilibrium
condition z(v′) = 0.

(ii) To derive a contradiction, suppose z(vn) = 1. Then, z(v) = 1 for each
v ∈ V from part (i) and Lemma 2 (i), that is, both bidders always opt out in this
equilibrium. A bidder can then obtain the item for free by bidding a positive bid.
This is a contradiction.

(iii) Suppose z(vm) = 0 for some vm ≥ l(vm). As z is an equilibrium,
U z(vm) ≥ 0. Part (i) also implies that z(v) = 0 for each v ≥ vm. Now, if
(vm−1− l(vm−1))z(vm−1) > 0, then we would obtain U z(vm−1) > U z(vm) ≥ 0 from
equation (4), which contradicts z(vm−1) > 0. It must thus hold that z(vm−1) = 0

if vm−1 > l(vm−1). We can proceed by induction on v to show that z(v) = 0 if
v > l(v). Then, equation (4) again implies that U z(v) = U z(vm) ≥ 0 for each
v > l(v).

(iv) To derive a contradiction, suppose that U z(v′) > π ≥ 0 for some v′ ∈ V .
Then, z(v′) = 0 because z is an equilibrium. This implies U z(vn) ≥ U z(v′) > 0
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and z(vn) = 0. However, it then follows from part (iii) that z(v) = 0 for each
v > l(v). Thus,

π < U z(v′) = (1− ρ)
∑

w≤l(w)

p(w)(w − l(w))z(w) + π ≤ π,

which is a contradiction.

Lemma 4. Every ASS z with z(v) = 0 for each v ≥ l(v) satisfies z(v) ∈ {0, 1}
for each v < l(v).

Proof of Lemma 4. To derive a contradiction, suppose that an ASS z satisfies
z(v) = 0 for each v ≥ l(v) while V := {v ∈ V | z(v) ∈ (0, 1), v < l(v)} is
nonempty. As z is an equilibrium, U z(v) = 0 for each v ∈ V . The replicator
dynamics (5) then implies that, on the subset

{σ ∈ ∆(B)V |σ(v, v) + σ(v, 0) = 1 and σ(v, 0) ∈ (z(v), 1) if v ∈ V ,

σ(v, v) = 1− z(v) and σ(v, 0) = z(v) if v ̸∈ V }

of states, the proportion of value-bidders in the subpopulation of any value v ∈ V is
strictly decreasing because σ̇(v, v) = p(v)Uσ(v, v)(1−σ(v, v))σ(v, v) < p(v)U z(v)(1−
σ(v, v))σ(v, v) = 0, where the inequality follows from equation (3) with σ(v′, 0) >

z(v′) for each v′ ∈ V . Thus, the state z is not an ASS. This is a contradiction.
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