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Abstract
A problem of optimal mid-term or long-term planning of inspection and repair of 
freight containers in multiple facilities is introduced and investigated. The contain-
ers are of different types and quality levels, which define their repair costs and work-
force requirements. The objective function includes the total holding, inspection, 
repair, transportation and rejection costs. We propose a deterministic, time-depend-
ent, integer linear min-cost multi-commodity network-flow formulation. The prob-
lem is shown to be polynomially solvable if there is a single facility, a single time 
period and all the containers are repairable and have to be repaired. It is shown to be 
NP-hard for three important special cases. The computational results of our experi-
ments on randomly generated instances based on real data show that instances of 
sizes 3 facilities, 4 container types and up to 9 container quality levels can be solved 
with CPLEX in 5 minutes on a conventional PC, even for 30 periods, with an opti-
mality gap of less than 3%. This is sufficient for medium-term or weekly planning or 
for short-term recovery planning. However, there are instances of the same magni-
tude, but with 360 periods of a considerably longer planning horizon, for which an 
optimality gap of 28% remained even after 10 hours of CPLEX computation.
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1 Introduction

Container port logistics is an important sector of world economy. In 2021, global 
container shipping market reached approximately 849 million twenty-foot equiva-
lent units, which is an increase of 7% compared with 2020, when the Coronavirus 
(COVID-19) pandemic caused cancellations of many container shipping contracts 
(https://www.statista.com/statistics/913398/container-throughput-worldwide/). 
However, as of February 2022, some 11.6% of the total container ship capacity still 
was not utilized. In April 2022, the biggest worldwide container port of Shanghai 
was paralyzed by a strict COVID lockdown. One of the core problems in container 
transport is the availability of empty containers exactly where they are needed, 
namely at suppliers of products. This increased demand for empty containers and 
the associated transportation is caused by our increased demand for goods produced 
around the world. European and American ports have a high surplus of empty con-
tainers. At the same time, Asian ports face a significant shortage, see (Kuzmicz and 
Pesch 2019) for empty container balancing between export and import dominant 
regions. In this situation, extending container lifetime and their efficient usage are 
important.

Container damage interrupts the flow of goods in maritime logistics, but it is 
inevitable and can happen at any stage of container shipping. Therefore, container 
inspection and repair shops exist in all major ports. Our study is motivated by the 
need of cost efficient planning of such shops. The empty containers, some of which 
can be damaged, appear in a specific place because of their planned relocation in 
a supply chain, or due to the completion of a shipping contract. The repaired con-
tainers are used to satisfy the demand for empty containers. This demand exists in 
each container transshipping point such as a port. A formal definition of the problem 
studied in this paper is given below.

There are empty containers of n types arriving to one of several repair facilities of 
a logistics company in the planning horizon of T unit-time periods. We denote this 
facility as 0, other facilities as 1,… ,F , and number the time periods by t = 1,… , T  . 
Due to limited storage, transportation, inspection and repair capacities, some of the 
arriving containers can be rejected.

A container that arrived at facility 0 undergoes a quality inspection at this facility 
and possibly needs to be repaired at this or any other facility. If a repair is performed 
at a facility f ≥ 1 , then the container is transported there by a vehicle. Any vehicle 
can carry independent of the type the same number of containers - either one or 
two of any type. Good quality containers are used to satisfy the given demands of 
the clients specified for each time period. The demanded good quality containers 
are collected at the time of the demand satisfaction by the clients at their expense. 
The remaining good quality containers are kept to satisfy the future demand. If the 
inspection determines that the quality of a container is not good but appropriate for 
repair, then it is repaired at the facility within the time period when it is brought 
there. Any container can have one of q = 0, 1,… ,Q + 1 quality levels including the 
good (“as new”) quality level q = 0.
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A container of any quality level but the quality level Q + 1 can be repaired. If the 
inspection determines that the quality level is Q + 1 , then the corresponding container 
is discarded at no cost and cannot be used to satisfy any demand. We may assume that 
any repaired container has the required good quality. Our discussion with a container 
logistics company revealed that their main objective concerning scheduling inspection 
and repair of containers is minimizing the total costs, provided that customer demands 
are met and workforce, storage and transportation capacities are not exceeded. The 
costs include rejection, inspection, repair, inventory and transportation costs. A vari-
ation of the problem where containers must not be rejected is also interesting. Cur-
rently, the company does not optimize the costs or does it intuitively and experience-
based. Their major objective is the demand satisfaction. However, the demand can be 
acceptably satisfied at different resource costs. Therefore, we aim to minimize a cost 
combination, in which the demand satisfaction can be prioritized.

Let us explain the need to consider values of F, n, Q and T greater than one. 
Multiple repair facilities are often used in practice because space at the container 
terminal is limited and only a small inspection and repair shop can be placed close 
to the empty container arrival point. More repair shops can exist in the terminal 
vicinity to satisfy larger repair demand. Multiple container types exist due to their 
natural multi-type characteristics such as size (20-foot or 40-foot), floor (metal or 
wooden), top (hard or open) and cooling requirements for maintaining cargo tem-
perature (refrigerated container (reefers) or non-refrigerated). Inspecting and repair-
ing a 40-foot container usually takes more time than a 20-foot one, and inspecting 
and repairing a reefer requires an inspection of the motor and the container itself. 
There exists a nomenclature of container damages, and damages are classified into 
major groups corresponding to the container quality levels. Damages of the same 
group have similar workforce requirements and repair costs. Since essentially dif-
ferent numbers of containers arrive in different time periods and container demands 
change over time, a time decomposition approach will unlikely be efficient in solv-
ing the studied problem.

In the next section, a review of relevant literature is provided. In Sect.  3, we 
describe a min-cost multi-commodity network flow formulation of the studied prob-
lem, which can be classified as an Integer Linear Programming (ILP) problem. Sec-
tion 4 establishes a borderline between easy and hard cases of the studied problem. 
An O(n) time algorithm is presented for the case F = 0 , T = 1 , all containers are 
repairable and container rejection is not allowed. When there exist non-repairable 
containers of each type, or one of the parameters F = 0 or T = 1 is increased by one, 
the problem becomes computationally difficult. Section 5 presents computer experi-
ments with CPLEX for the ILP problem. The paper completes with a short summary 
of the results.

2  Literature review

We are not aware of any academic literature on planning container inspection and 
repair operations. However, our problem has some common features with ear-
lier investigated problems. In particular, the problem falls into the categories of 
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inventory management in reverse logistics, planning work and rework processes and 
lifetime inspection and maintenance planning for deteriorating engineering systems. 
Reverse logistics deals with the reuse processes in supply chains, see (Fleischmann 
et al. 1997), (de Brito and Dekker 2004), (Kim and Glock 2014), (Cobb 2016), (Ber-
ling and Sonntag 2022). In a closed-loop supply chain, demands are satisfied by new 
and repaired products, which leads to a complex problem of planning the original 
production and the repair. Our problem is simpler. It does not consider flows of new 
and repaired containers separately as well as constraints on these flows and complex 
relations between the participants of the supply chain.

The literature on planning work and rework processes usually assumes that these 
two types of processes are performed on the same equipment, and the objective is to 
minimize the total cost of switching between work and rework, holding-backlogging 
cost, rework cost and defective product disposal cost, see (Inderfurth et  al. 2006, 
2007). Comparing with these studies, our problem is again easier because produc-
tion of new containers is not considered. However, our problem considers several 
specific conditions such as different container types and quality levels, workforce, 
storage and transportation capacities and costs of the operations.

A number of publications deal with the lifetime inspection and maintenance plan-
ning for deteriorating engineering systems. For example, (Bismut and Straub 2021) 
propose a heuristic-based adaptive planning method for inspection and maintenance 
of large stochastically deteriorating structures during their service life. (Morato et al. 
2022) combine dynamic Bayesian networks with partially observable Markov deci-
sion processes for optimal inspection and maintenance planning of civil and mari-
time engineering systems, which are exposed to fatigue and corrosion throughout 
their operational life. Contrary to these studies, we do not consider long-term timing 
decisions – the containers are inspected and repaired soon after their arrival to the 
port.

Several studies exist in which container inspection or repair is mentioned as a 
logistics system element, but container inspection and repair planning is not part 
of the decision. (Weele and Ramirez-Marquez 2010) propose an optimization tech-
nique for constructing an inspection strategy that delivers a given detection rate for 
contraband-containing containers at the lowest possible cost.(Bernat et  al. 2016) 
present stochastic review policies that incorporate allocation schemes for empty 
containers, their maintenance and repair options, as well as street turns. (Hjortnaes 
et al. 2017) propose a multi-commodity model to optimize empty container reposi-
tioning strategies, which makes an explicit distinction between flows of non-dam-
aged and damaged containers. (Hosseini and Sahlin 2019) develop a multi-period 
optimization model to dispatch empty containers of multiple types and various con-
ditions (dirty and clean) between terminals, depots and cleaning stations. Our results 
may complement these studies by adding consideration of inspection and/or repair 
resources and costs to the respective models.

Our solution approach is to formulate the studied problem as a min-cost multi-
commodity network flow problem. Problems of this type are studied by (Ahuja 
et al. 1993), (Karzanov 1994), and recently by (Grande et al. 2018) and (Khodayifar 
2021), to name a few. The typical application is to find the best delivery plan of sev-
eral products from the manufacturing sites to the warehouses though a given road 
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network with arc capacities and costs. The common features of these problems and 
our problem are several incoming flows that go through a space-time network, the 
flow conservation constraints and the total flow cost to be minimized. The resource 
constraints, which are crucial in our problem, are rarely considered in the network 
flow problems. The studied problem can be also classified as a multi-item dynamic 
economic lot-sizing problem, which is to find production quantities of a manufac-
turing line over a discrete time horizon such that the production capacity is not 
exceeded and the total setup, production and holding/backlogging cost is minimized. 
Studies of single-item problems of this kind were initiated by (Wagner and Whi-
tin 1958). Multi-item problems, resource constrained problems and problems with 
ecological/re-manufacturing considerations of this kind have been studied by (Kao 
1979), (Chubanov et al. 2008), (Li et al. 2012), (Kim and Lee 2013), (Akbalik et al. 
2015), (Kang et al. 2018), (Wu et al. 2018), (Absi et al. 2018), (Cunha et al. 2019), 
(Altendorfer 2019), (Kilic and van den Heuvel 2019), (Beck and Glock 2020), 
among others. The specific combination of the production environment, resource 
constraints and costs in our problem has not been studied before.

3  Detailed problem formulation

We first introduce and explain input data for the studied problem in Table 1.
All the input parameters are assumed to be nonnegative integer numbers. In real-

ity, the numbers of arriving containers, their quality and, to some extent, container 
demands are uncertain. We assume that their values are given by experts on the 
basis of previous experience and statistical data from the same or a similar company. 
The income of the container repair business is assumed to be fixed because all the 
demands must be satisfied. Therefore, the profit is maximized by minimizing the 
costs.

The cost minimizing problem admits a constrained min-cost multi-commodity 
network flow formulation which is illustrated in Fig. 1. The corresponding network is 
denoted as G = (O,A) where O and A define the sets of nodes and arcs, respectively, 
in the network. It is assumed that there are n container flows of types j = 1,… , n 
along each arc a ∈ A . Nodes are denoted by pairs (f,  t), f = −1, 0, 1,… ,F + 1 , 
t = 0, 1,… , T + 1 , where f = −1,F + 1 denote artificial facilities corresponding 
to the arrival and rejection stage ( f = −1 ), and departure of good quality and non-
repairable containers from the system ( f = F + 1 ). An arc connecting node o to 
node q is denoted by a triple (o, q, ⋅) , where symbol ⋅ ∈ {∼,−, ◦, ∙,×,◊} is used to 
distinguish the type of container flow on parallel arcs. Nodes corresponding to the 
container arrival and removal of rejected containers are not shown in Fig. 1. Arcs 
corresponding to the flow of rejected containers are marked with symbol ∼ . Nodes 
and arcs of the other types are explained below.

For modeling purposes it is convenient to introduce the following notation.

• O0 – set of nodes each of which has at least one predecessor and at least one suc-
cessor.

• Pv – set of ingoing arcs of the node v ∈ O0.
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Table 1  Input data

Notation Description

n Number of container types
Q Quality levels. Level 0 corresponds to perfect quality and level Q + 1 to unacceptable 

level
F Inspection is done on facility 0 and repair is done on facilities 0, 1,… ,F

T Number of time periods in the planning horizon

c
(rej)

j
Cost of rejection of one container of type j, j = 1,… , n

c
(ins)

j
Cost of inspection of one container of type j and any quality level at any facility, 
j = 1,… , n

c
(rep)

jq
Cost of repair of one container of type j and quality level q at any facility, j = 1,… , n , 
q = 0, 1,… ,Q , c(rep)

j0
= 0 (for good quality containers)

c
(rep)

j
=

Q
∑

q=0

c
(rep)

jq
pjq

100

Expected cost of repair of one container of type j and any quality level but quality level 
Q + 1 at any facility, j = 1,… , n

c
(tra)

f
Cost of transportation of one container of any type from facility 0 to facility f, 
f = 1,… ,F

c
(hol)

f
Holding cost of one container of any type at facility f when passing from any time 

period t to time period t + 1 , t = 0, 1,… ,T  , f = 0, 1,… ,F

djt Demand of containers of type j which is the number of good quality containers of 
type j that should be available for clients by the end of time period t, j = 1,… , n , 
t = 1,… ,T  . This demand can be satisfied by containers repaired in time periods 
1,… , t , and it cannot be satisfied by those repaired in the later time periods

gjf Initial inventory of good quality containers of type j at facility f at the beginning of 
time period 1, j = 1,… , n , f = 0, 1,… ,F

kjt Number of containers of type j arriving to facility 0 at the beginning of time period t, 
j = 1,… , n , t = 1,… ,T

m Transportation capacity, which is the total number of containers of any type that can be 
moved from facility 0 to all other facilities in any single time period. If the set M of 
vehicles, their container capacities capv and numbers of journeys numv in any single 
time period are known, then m =

∑

v∈M capvnumv

pjq

100
Probability that the quality level of any single non-inspected container of type j is q, 
pjq ∈ {0, 1,… , 100} , j = 1,… , n , q = 0, 1,… ,Q + 1 , 

∑Q+1

q=0
pjq = 100 . It can be a 

historical percentage of containers of quality level q among all the inspected contain-
ers of type j. It is restrictively assumed that the number of containers of quality level 
q among any x non-inspected containers of type j is equal to pjqx

100
 for any x. (Inderfurth 

et al. 2006),(Inderfurth et al. 2007) point out that it is often the case in practice that 
statistical observations provide information about the usual percentage of defective 
items

rjq Number of working-hours required to repair one container of type j of quality level 
q ≠ Q + 1 at any facility, j = 1,… , n , q = 0, 1,… ,Q , rj0 ∶= 0 (for good quality 
containers)

rj =

∑Q

q=0
rjqpjq

100

Expected number of working-hours required to repair one container of type j of any 
quality level but quality level Q + 1 at any facility, j = 1,… , n

sj Number of working-hours required to inspect one container of type j at any facility, 
j = 1,… , n

Uf Upper bound on working-hours available for repair work in any time period at facility f, 
f = 0, 1,… ,F

ujf Initial inventory of non-inspected containers of type j at facility f at the beginning of 
time period 1, j = 1,… , n , f = 0, 1,… ,F
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• Sv – set of outgoing arcs of the node v ∈ O0.
• A− – set of arcs corresponding to the flow of arriving and accepted containers 

via facility −1 and to the flow of non-inspected and non-repaired containers over 
time at the same facility f ∈ {0, 1,… ,F} . These are the unmarked arcs in Fig. 1.

• A◦ – set of arcs ((f , t), (f , t + 1), ◦) and ((f , t), (F + 1, t), ◦) corresponding to the 
good quality containers kept at facility f in the time period from t to t + 1 and that 
are carried from facility f to facility F + 1 in the same time period t, respectively. 
These containers were quality checked at time t − 1 or earlier and are therefore 
known to be of good quality when they arrive to facility f at t. These arcs are 
marked with symbol “ ◦ ” in Fig. 1.

• A∙
ft
 – set of arcs ((f , t), (f , t + 1), ∙) and ((f , t), (F + 1, t), ∙) corresponding to the 

flow of good quality containers, which were inspected and possibly repaired at 
facility f at time t. These arcs are marked with symbol “ ∙ ” in Fig. 1.

• A∙ = ∪F
f=0

∪T
t=1

A∙
ft
.

Table 1  (continued)

Notation Description

Vf Upper bound on working-hours available for inspection in any time period at facility f, 
f = 0, 1,… ,F

Wf Storage capacity of facility f, which is the number of containers of all types that can be 
simultaneously kept at f, f = 0, 1,… ,F

Fig. 1  Network for the min-cost multi-commodity flow formulation, F = 2 , T = 3.
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• A×
ft
 – set of arcs corresponding to the transportation of non-inspected and non-

repaired containers from facility 0 to facility f ∈ {1,… ,F} in time period t. 
These arcs are marked with symbol “ × ” in Fig. 1.

• A× = ∪F
f=1

∪T
t=1

A×
ft
.

• A◊ – set of arcs corresponding to the flow of non-repairable containers among 
containers inspected for quality. These arcs are marked with symbol “ ◊ ” in 
Fig. 1.

• A∼ – set of arcs corresponding to the flow of rejected containers. These arcs are 
marked with symbol “ ∼ ” in Fig. 1.

The constrained min-cost multi-commodity network flow problem is denoted as 
CMCF (Constrained Min-Cost Flow). In the algebraic form, it can be given as fol-
lows. Introduce nonnegative integer variables xja which represent the amount of flow 
(number of containers) of type j along the arc a, j = 1,… , n , a ∈ A . Denote by x the 
matrix of variables xja and denote by ℕn,|A|

0
 the set of all such nonnegative integer 

matrices.
Problem CMCF :

where

are the total rejection costs of containers of type j,

are the total holding costs of containers of type j at all the facilities,

are the total inspection and repair costs of containers of type j, and

are the total transportation costs of containers of type j, subject to

min
x

n
∑

j=1

(Rejj(x) + Holj(x) + IRj(x) + Traj(x)),

Rejj(x) = c
(rej)

j

T
∑

t=1

xj((−1,t),(−1,t),∼)

Holj(x) =

T
∑

t=1

F
∑

f=0

c
(hol)

f
(xj((f ,t),(f ,t+1),−) + xj((f ,t),(f ,t+1),◦) + xj((f ,t),(f ,t+1),∙))

IRj(x) = (c
(ins)

j
+ c

(rep)

j
)
∑

a∈A∙

xja + c
(ins)

j

∑

a∈A◊

xja

Traj(x) =

T
∑

t=1

F
∑

f=1

c
(tra)

f

∑

a∈A×
ft

xja

(1)xj((f ,0),(f ,1),◦)) = gjf , j = 1,… , n, f = 0, 1,… ,F,
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Constraints  (1)–(3) initialize the input flow variables and set them to the pre-
scribed values. Constraints (4) define the quantity of non-repairable containers. 
The set Sv ∩ (A◊ ∪ A∙) in (4), where v = (f , t) , corresponds to the flow of containers 
which were uninspected at facility  f at the beginning of time period  t. Then, they 
were inspected and repaired there, and the flow was divided into the flow of non-
repairable containers marked ◊ , and two flows of good quality containers marked ∙ , 
namely, one flow to satisfy the demand at time period t and another flow to satisfy 

(2)xj((f ,0),(f ,1),−)) = ujf , j = 1,… , n, f = 0, 1,… ,F,

(3)xj((−1,t),(0,t),−)) + xj((−1,t),(−1,t),∼) = kjt, j = 1,… , n, t = 1,… , T ,

(4)
∑

a∈Sv∩A
◊

xja =
⌊pj,Q+1

100

∑

a∈Sv∩(A
◊∪A∙)

xja

⌋

, v ∈ O0, j = 1,… , n,

(5)
∑

a∈Pv∩(A
−∪A×)

xja =
∑

a∈Sv�A
◦

xja, v ∈ O0, j = 1,… , n,

(6)
∑

a∈Pv∩(A
◦∪A∙)

xja =
∑

a∈Sv∩A
◦

xja, v ∈ O0, j = 1,… , n,

(7)
∑

a∈Pv�A
◊

xja = djt, v = (F + 1, t), j = 1,… , n, t = 1,… , T ,

(8)
n
∑

j=1

F
∑

f=1

∑

a∈A×
ft

xja ≤ m, t = 1,… , T ,

(9)
n
∑

j=1

sj

∑

a∈S(f ,t)∩(A
◊∪A∙)

xja ≤ Vf , t = 1,… , T , f = 0, 1,… ,F,

(10)
n
∑

j=1

rj

∑

a∈A∙
ft

xja ≤ Uf , t = 1,… , T , f = 0, 1,… ,F,

(11)

n
∑

j=1

(xj((f ,t),(f ,t+1),−) + xj((f ,t),(f ,t+1),◦) + xj((f ,t),(f ,t+1),∙))

≤ Wf , t = 1,… , T , f = 0, 1,… ,F,

(12)x ∈ ℕ
n,|A|

0
.
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the demands in later time periods. Constraints (5) and  (6) are the flow conserva-
tion constraints. Note that, due to (5) and the rounding down operation in (4), the 
fraction of the non-repairable containers of type j among all containers of this type 
inspected at facility f in time period  t can be less than the assumed fraction pj,Q+1

100
 . 

Constraints (7) are the demand satisfaction constraints. Constraints (8) are the trans-
portation capacity constraints. Constraints (9) and  (10) are the resource constraints 
linked with the available working-hours for the inspection work and the repair work, 
respectively. Constraints  (11) are the storage capacity constraints. Constraints (12) 
state that the flow values are nonnegative integer numbers.

By substituting (4) with the equivalent relations

the problem CMCF becomes an ILP problem. A relaxation of CMCF, in which vari-
ables xja are rational, is polynomially solvable. We denote this relaxed problem as 
CMCF-R. The optimal objective value of CMCF-R can be used as a lower bound for 
the optimal value of CMCF.

4  Computational complexity

We demonstrate in this section that the problem CMCF with no rejection is solvable 
in O(n) time if F = 0 , T = 1 and all containers are repairable, and it is NP-hard if 
there exist non-repairable containers of each type or one of the parameters F and T 
is increased by one. We begin with the polynomially solvable case. Denote this case 
as CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 = 0) . The case F = 0 of a single facility 

often happens in reality. The case T = 1 of one time period can be employed in a 
rolling horizon solution approach when part of the decision is fixed and another part 
is to be adjusted to the real-life changes. The case pj,Q+1 = 0 , j = 1,… , n , reflects 
the situation when all the containers are repairable. Let us show that 
CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 = 0) can be solved in O(n) time.

Theorem 1 The problem CMCF(F = 0, T = 1, c
(rej)

j
= ∞, pj,Q+1 = 0) has no solution 

if and only if any of the following inequalities is satisfied:

pj,Q+1

∑

a∈Sv∩A
∙

xja − 99 ≤ (100 − pj,Q+1)
∑

a∈Sv∩A
◊

xja, v ∈ O0, j = 1,… , n,

(100 − pj,Q+1)
∑

a∈Sv∩A
◊

xja ≤ pj,Q+1

∑

a∈Sv∩A
∙

xja, v ∈ O0, j = 1,… , n,

(13)gj0 + uj0 + kj1 < dj1, j = 1,… , n,

(14)
n
∑

j=1

sj(dj1 −min{gj0, dj1}) > V0,
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If relations reversed to (13)–(16) are satisfied, then the follow-
ing solution is optimal: xj((0,1),(1,1),◊) = 0 , xj((0,1),(1,1),◦) = min{gj0, dj1} , 
xj((0,1),(0,2),◦) = gj0 − xj((0,1),(1,1),◦) , xj((0,1),(1,1),∙) = dj1 − xj((0,1),(1,1),◦) , xj((0,1),(0,2),∙) = 0 , 
xj((0,1),(0,2),−) = uj0 + kj1 − xj((0,1),(1,1),∙) , j = 1,… , n.

Proof The value in the left-hand side of (13) is the number of available containers of 
type j, for all j. If that number does not satisfy the demand, then the problem has no 
solution. Further, since there are gj0 good quality containers of type j, the minimum 
number of containers of type j to be inspected and repaired in order to satisfy the 
demand is dj1 −min{gj0, dj1} . Therefore, if any of (14) and (15) is satisfied, then the 
problem has no solution because of the resource shortage. The inventory of type j 
containers at the end of time period 1 is equal to their initial inventory gj0 + uj0 + kj1 
minus the demand dj1 . Therefore, if (16) is satisfied, then the problem has no solu-
tion because of the insufficient storage capacity.

Now, assume that (13)–(16) are satisfied. The problem CMCF in the statement of 
the theorem can be represented as follows.

(15)
n
∑

j=1

rj(dj1 −min{gj0, dj1}) > U0,

(16)
n
∑

j=1

(gj0 + uj0 + kj1 − dj1) > W0.

min
x

n
∑

j=1

[c
(hol)

0
(gj0 + uj0 + kj1 − dj1)

+ (c
(ins)

j
+ c

(rep)

j
)(xj((0,1),(0,2),∙) + xj((0,1),(1,1),∙))],

subject to

(17)gj0 = xj((0,1),(0,2),◦) + xj((0,1),(1,1),◦), j = 1,… , n,

(18)xj((0,1),(1,1),∙) + xj((0,1),(1,1),◦) = dj1, j = 1,… , n,

(19)uj0 + kj1 = xj((0,1),(0,2),−) + xj((0,1),(0,2),∙) + xj((0,1),(1,1),∙), j = 1,… , n,

(20)
n
∑

j=1

sj(xj((0,1),(1,1),∙) + xj((0,1),(0,2),∙)) ≤ V0,

(21)
n
∑

j=1

rj(xj((0,1),(1,1),∙) + xj((0,1),(0,2),∙)) ≤ U0,



192 M. Y. Kovalyov et al.

1 3

Observe that the solution presented in the statement of the theorem satisfies the con-
straints (17)–(22). Furthermore, the maximal quantities of good quality containers 
are used to satisfy the demands, and therefore, the inspection and repair costs are 
minimized, which means that the presented solution is optimal.   ◻

Denote a modification of the polynomially solvable problem 
CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 = 0) , in which pj,Q+1 > 0 , j = 1,… , n ,  

(there exist non-repairable containers of each type) as 
CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 > 0) . We show that the modified problem is 

NP-hard.

Theorem  2 The problem CMCF(F = 0, T = 1, c
(rej)

j
= ∞, pj,Q+1 > 0) is NP-hard 

even if gj0 = uj0 = dj1 = 0 , j = 1,… , n , and all the repair and holding costs are 
equal to zero.

Proof We will use a reduction from the NP-complete problem Equal CaRdinality 
PaRtition (ECP) ( (Garey and Johnson 1979)).

ECP: Given positive integer numbers a1,… , a2h and A satisfying 
∑2h

j=1
aj = 2A , is 

there a subset Y ⊂ H ∶= {1,… , 2h} such that |Y| = h and 
∑

j∈Y aj = A?
For any instance of ECP, construct an instance of CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 > 0) , 

in which n = 2h , W0 = 3h , V0 = 4h2A − 2A , gj0 = uj0 = dj1 = c
(rep)

j
= c

(hol)

f
= 0 , 

kj1 = 2 , pj,Q+1 = 50 , c(ins)
j

= aj , sj = 2hA − aj , j = 1,… , n . Values of the other input 
parameters are such that the constraints they are involved in are satisfied. The case 
of the problem CMCF in the statement of the theorem can be represented as 
follows.

(22)

n
∑

j=1

(xj((0,1),(0,2),−) + xj((0,1),(0,2),◦) + xj((0,1),(0,2),∙)) ≤ W0,

x ∈ ℕ
n,|A|

0
.

min
x

2h
∑

j=1

aj(xj((0,1),(0,2),∙) + xj((0,1),(1,1),◊)), subject to

(23)xj((0,1),(0,2),∙) + xj((0,1),(1,1),◊) + xj((0,1),(0,2),−) = kj1 = 2, j = 1,… , 2h,

(24)xj((0,1),(1,1),◊) =
⌊50(xj((0,1),(0,2),∙) + xj((0,1),(1,1),◊))

100

⌋

, j = 1,… , 2h,
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We show that the instance of ECP has a solution if and only if the constructed 
instance of CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 > 0) has a feasible solution with 

the total cost not exceeding 2A. Note that the objective function only contains 
inspection costs of aj . Assume that the instance of 
CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 > 0) has a solution x with total costs of at 

most 2A. Due to the constraints (23) and (24), only the following pairs of variable 
values are feasible for any fixed  j: (a) xj((0,1),(0,2),∙) = 1 , xj((0,1),(1,1),◊) = 1 , (b) 
xj((0,1),(0,2),∙) = 1 , xj((0,1),(1,1),◊) = 0 , and (c) xj((0,1),(0,2),∙) = 0 , xj((0,1),(1,1),◊) = 0 . Further-
more, if xj((0,1),(1,1),◊) = 0 , then there exists an optimal solution such that 
xj((0,1),(0,2),∙) = 0 for the same j. Therefore, we may assume that any of the following 
two cases is realized for each j: (a) xj((0,1),(0,2),∙) = 1 , xj((0,1),(1,1),◊) = 1 , or (c) 
xj((0,1),(0,2),∙) = 0 , xj((0,1),(1,1),◊) = 0.

Introduce set Y = {j ∣ for which case (a) is realized, j ∈ H} . It follows from (26) 
that |Y| ≥ h . We must have

It follows that |Y| = h and 
∑

j∈Y aj = A . Hence, Y is a solution of the instance of 
ECP.

Let set Y be a solution of the instance of ECP. Construct a solution x of the 
instance of CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 > 0) such that j ∈ Y  implies case 

(a) and j ∈ H�Y  implies case (c). It can easily be verified that x is feasible and the 
total cost is equal to 2A, as it is required.   ◻

We further show that increasing F = 0 or T = 1 in the pair (F = 0, T = 1) by one unit 
makes the polynomially solvable problem CMCF(F = 0, T = 1, c

(rej)

j
= ∞, pj,Q+1 = 0) 

computationally difficult even if all the costs are equal to zero.

(25)
2h
∑

j=1

(2hA − aj)(xj((0,1),(0,2),∙) + xj((0,1),(1,1),◊)) ≤ 2(2h2A − A),

(26)

2h
∑

j=1

(2 − xj((0,1),(1,1),◊)) ≤ 3h,

x ∈ ℕ
2h,|A|

0
.

2h
∑

j=1

aj(xj((0,1),(0,2),∙) + xj((0,1),(1,1),◊)) = 2
∑

j∈Y

aj ≤ 2A and

2(2h2A − A) ≥

2h
∑

j=1

(2hA − aj)(xj((0,1),(0,2),∙) + xj((0,1),(1,1),◊))

= 4hA|Y| − 2
∑

j∈Y

aj ≥ 4h2A − 2A.
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Theorem  3 The problem CMCF(F = 1, T = 1, c
(rej)

j
= ∞, pj,Q+1 = 0) is NP-hard 

even if all the costs are equal to zero.

Proof We will use a reduction from the NP-complete problem PaRtition ( (Garey 
and Johnson 1979)).

PaRtition: Given positive integer numbers a1,… , al , is there a subset 
Y ⊂ L ∶= {1,… , l} such that 

∑

j∈Y aj =
∑

j∈L�Y aj?
Denote A =

∑l

j=1
aj∕2 . For any instance of PaRtition, construct instance of 

CMCF(F = 1, T = 1, c
(rej)

j
= ∞, pj,Q+1 = 0) , in which n = l , U0 = U1 = A , kj1 = 1 , 

gj0 = gj1 = uj0 = uj1 = 0 , dj1 = 1 (one container of each type j must be repaired 
either on facility 0 or on facility 1), pj,Q+1 = 0 (all containers are repairable), and 
repair workforce requirements are rj = aj , j = 1,… , l . All the costs are equal to zero 
and values of the other input parameters are such that the constraints they are 
involved in are satisfied. Introduce variables yj0 = xj((0,1),(2,1),∙) and yj1 = xj((1,1),(2,1),∙) . 
For the constructed instance of CMCF(F = 1, T = 1, c

(rej)

j
= ∞, pj,Q+1 = 0) , the fol-

lowing constraints must be satisfied:

It is easy to see that the constructed instance of CMCF(F = 1, T = 1, c
(rej)

j
= ∞, pj,Q+1 = 0) 

has a feasible solution if and only if the original instance of PaRtition has a solution. The 
relation between the two solutions is such that j ∈ Y implies yj0 = 1 and yj1 = 0 and 
j ∈ L�Y implies yj0 = 0 and yj1 = 1 , j = 1,… , l .   ◻

Theorem  4 The problem CMCF(F = 0, T = 2, c
(rej)

j
= ∞, pj,Q+1 = 0) is NP-hard 

even if all the costs are equal to zero, j = 1,… , n.

Proof A reduction from the problem PaRtition is used. For any instance of PaRti-
tion, construct instance of CMCF(F = 0, T = 2, c

(rej)

j
= ∞, pj,Q+1 = 0) , in which 

n = l , U0 = A , kj1 = 1 , kj2 = 0 , gj0 = gj1 = uj0 = uj1 = 0 , dj1 = 0 , dj2 = 1 (one con-
tainer of each type j must be repaired on facility 0 either in time period 1 or in time 
period 2), and repair workforce requirements are rj = aj , j = 1,… , l . All the costs 
are equal to zero and values of the other input parameters are such that the 

yj0 + yj1 = dj1 = 1, j = 1,… , l,

yj0, yj1 ∈ {0, 1}, j = 1,… , l,

l
∑

j=1

rjyj0 =

2h
∑

j=1

ajyj0 ≤ U0 = A,

l
∑

j=1

rjyj1 =

2h
∑

j=1

ajyj1 ≤ U1 = A.
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constraints they are involved in are satisfied. Introduce variables zj1 = xj((0,1),(0,2),∙) 
and zj2 = xj((0,2),(1,2),∙) . For this instance of CMCF(F = 0, T = 2, c

(rej)

j
= ∞, pj,Q+1 = 0) , 

the following constraints must be satisfied:

It is easy to see that the described instance of CMCF(F = 0, T = 2, c
(rej)

j
= ∞, pj,Q+1 = 0) 

has a solution if and only if the original instance of PaRtition has a solution. The rela-
tion between the two solutions is such that j ∈ Y implies zj1 = 1 and zj2 = 0 and 
j ∈ L�Y implies zj1 = 0 and zj2 = 1 , j = 1,… , l.

  ◻

Theorems 1–4 set the borderline between easy and hard cases of the problem 
CMCF with no rejection allowed: The problem is polynomially solvable if F = 0 , 
T = 1 and all containers are repairable, and it is NP-hard if some containers are not 
repairable or one of the parameters F and T is increased by one.

We conclude this section with a remark on an equivalence of the problem CMCF 
with no rejection allowed and a problem with high rejection costs. Calculate an 
upper bound, denoted as B, on the total cost of a feasible solution of the problem 
CMCF obtained if every arriving container is supposed to be accepted, inspected, 
transported, repaired and stored:

Remark 1 The problem CMCF with rejection costs c(rej)
j

= B , j = 1,… , n , has an 
optimal solution with the total cost not exceeding B − 1 if and only if it has a feasible 
solution with no rejected container.

zj1 + zj2 = dj2 = 1, j = 1,… , l,

zj1, zj2 ∈ {0, 1}, j = 1,… , l,

l
∑

j=1

rjzj1 =

l
∑

j=1

ajzj1 ≤ U0 = A,

l
∑

j=1

rjzj2 =

l
∑

j=1

ajzj2 ≤ U0 = A.

(27)

B = min{B1,B2}, where

B1 =

n
∑

u=1

T
∑

t=1

kut

(

c(ins)
u

+ max
1≤q≤Q

{

c(rep)
uq

}

+ max
1≤f≤F

{

c
(tra)

f
+ (T − t)c

(hol)

f

})

,

B2 =

T
∑

t=1

[

m ⋅ max
1≤f≤F

{

c
(tra)

f

}

+

F
∑

f=0

(

Vf + Uf + (T − t)Wf c
(hol)

f

)

.
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5  Computer experiments

Computer experiments aim to demonstrate that the instances with the practical input 
data can be solved in an acceptable time, to find input parameters that affect applicability 
of the relaxed problem solution, to see how the solution time and the share of the rejected 
containers in an optimal solution depends on the rejection costs, and to detect the most 
difficult benchmark instances. In the experiments, 30 series of random instances are con-
structed. The number of container types is n = 4 and the number of facilities is three 
( F = 2 ) in any instance. Each series is specified by a triple (T ,Q, c(rej)) , where c(rej) 
denotes a common single container rejection cost. We consider T ∈ {7, 14, 30} , 
Q ∈ {5, 9} , c(rej) ∈ {100, 200, 300, 500,B} , where B is the big number defined in (27). 
Notation c(rej) = c means that c(rej)

j
= c for all j = 1,… , n . For each series, 20 random 

instances of the problem CMCF are generated. For each instance of the same series, the 
following within the intervals of equally distributed input data are randomly generated:

• number of containers of type j arriving to facility 0 at the beginning of time 
period t: kjt ∈ [100, 300] , j = 1,… , n , t = 1,… , T;

• initial inventory of non-inspected containers of type j at facility f at the begin-
ning of time period 1: ujf ∈ [0, 100] , j = 1,… , n , f = 0, 1,… ,F;

• initial inventory of good quality containers of type j at facility f at the beginning 
of time period 1: gjf ∈ [0, 100] , j = 1,… , n , f = 0, 1,… ,F;

• demand of containers of type j at the end of period t: djt ∈ [⌊0.8Dj⌋, ⌊1.2Dj⌋] , 

where Dj =

∑F

f=0
(ujf+gjf )+

∑T

�=1
kj�

T
 is the average amount of available containers per 

time period, j = 1,… , n , t = 1,… , T;
• transportation capacity: m ∈ [⌊0.8M⌋, ⌊1.2M⌋] , where M =

F
∑n

j=1
Dj

F+1
 is the aver-

age amount of available containers per time period multiplied by F

F+1
 to account 

for the containers which are not moved from facility 0;
• nominator in the probability that the original quality level of any single inspected 

container of type j is q: pj0 ∈ [5, 10] , pj,Q+1 ∈ [0, 5] and pjq =
�

(100−pj0−pj,Q+1) xq
∑Q

h=1
xh

�

 , 

where random numbers xq ∈ [0, 100] for q ∈ {1,… ,Q} , j = 1,… , n . For each j, 
calculate Δj = 100 −

∑Q+1

q=0
pjq . Note that Δj ≤ Q due to the rounding down oper-

ation for pjq . Introduce set of indices H = {1,… ,Q} . For each j, generate ran-
dom number h ∈ H and re-set pjh ∶= pjh + 1 . Remove h from H and repeat gen-
eration of h and re-setting of pjh . Repeat this process Δj times to get 
∑Q+1

q=0
pjq = 100 , j = 1,… , n;

• number of working-hours required to inspect one container of type j at any facil-

ity: sj =
s�
j

60
 , where s�

j
∈ [20, 60] , j = 1,… , n;

• upper bound on the available working-hours for inspection in each time period at 
facility f: Vf ∈ [⌊1.2I⌋, ⌊1.8I⌋] , where I =

∑n

j=1
sjDj

F+1
 is the average amount of work-

ing-hours required to inspect all the available containers per time period and 
facility, f = 0, 1,… ,F;



197

1 3

Cost minimizing planning of container inspection and repair…

• number of working-hours required to repair one container of type j and quality 
level q ∈ {1,… ,Q} at any facility: rjq =

r�
jq

60
 , where r�

jq
∈ [20q, 20(q + 1)] , 

j = 1,… , n , q = 1,… ,Q;
• upper bound on working-hours available for repair work in any time period at 

facility f: Uf ∈ [⌊1.2J⌋, ⌊1.8J⌋] , where J =

∑n

j=1

∑Q

q=1
pjqrjqDj

100(F+1)
 is the average amount 

of working-hours required to repair all the available containers of quality levels 
1,… ,Q per time period and facility, f = 0, 1,… ,F;

• storage capacity of facility f: Wf ∈ [⌊0.9
(3
∑n

j=1
Dj)

F+1
⌋, ⌊1.1

(3
∑n

j=1
Dj)

F+1
⌋] , where 

3
∑n

j=1
Dj

F+1
 

is the tripled average amount of the available containers per time period and 
facility to allow storage of the containers from the previous time periods, 
f = 0, 1,… ,F;

• cost of inspection of one container of type j and any quality level at any facility: 
c
(ins)

j
= 20sj , where 20 is the cost of one working-hour of inspection work, 

j = 1,… , n.
• cost of repair of one container of type j and quality level q at any facility: 

c
(rep)

jq
= 30rjq , where 30 is the cost of one working-hour of repair work, 

j = 1,… , n , q = 1,… ,Q , c(rep)
j0

= 0 (for good quality containers);
• cost of transportation of one container of any type from facility 0 to facility f: 

c
(tra)

f
∈ [50 + 10f , 150 + 10f ] , f = 1,… ,F;

• holding cost of one container of any type at facility f when passing from any time 
period  t to time period t + 1 , t = 0, 1,… , T  : c

(hol)

f
∈ [1 +

F−f

2
, 2 +

F−f

2
] , 

f = 0, 1,… ,F.

The values of the input parameters are generated to correlate with values of these 
parameters that we observed in a practical environment, except for the rejection cost 
c(rej) ∈ {100, 200, 300, 500,B} whose range was determined experimentally in order 
to demonstrate dependence of solution times and other solution characteristics of the 
rejection cost. In particular, n = 4 container types are standard 20-foot and 40-foot 
containers and 20-foot and 40-foot reefer (refrigerated) containers. Three facilities 
( F = 2 ) are an inspection and repair shop at the container terminal and two other 
repair shops, a little remote. The number of time periods T ∈ {7, 14, 30} correspond 
to the one-week, two-week and one-month planning horizon. The number of quality 
levels Q ∈ {5, 9} is obtained by classifying damage types with similar characteris-
tics into smaller ( Q = 5 ) or larger ( Q = 9 ) number of groups.

The random instances of CMCF and CMCF-R were solved with Python API of 
CPLEX 12.10 on a MacBook Pro with Intel Core i7 2.6 GHz processor and 16 GB 
of RAM under macOS Big Sur. Each instance of CMCF-R was solved in less than 
1 second. The CPU time of CPLEX for CMCF was limited to three hours for each 
instance and the optimality gap (guaranteed solution relative error) was set to zero. 
Tables 2, 3, 4, 5  and 6 contain the following information for each series (T ,Q, c(rej)):

• number of instances for which no feasible solution was found within the time 
limit (row #infeas ). For any instance in our experiments, either both problems 
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CMCF and CMCF-R had feasible solutions or both of them had no feasible solu-
tion, which was established by running CPLEX until a feasible solution was 
found or infeasibility was established. Since any instance of CMCF-R was solved 
in less than 1 second, parameter #infeas is independent of the solution time limit;

• number of instances of CMCF for which an optimal solution was provably found 
within the time limit (row #opt ). Note that the number of feasible instances for 
which no optimal solution was provably found within the time limit is equal to 
20 − #infeas − #opt;

• average and maximal run time of CPLEX for CMCF in minutes to find a solution 
with proven optimality (rows “Mean time to opt” and “Max time to opt,” respec-
tively);

• mean ratio of the number of rejected containers to the number of all arriving 
containers over feasible instances (row “Mean # rejected

# all
”), where “ # all

”=
∑n

j=1

∑T

t=1
kjt .

For each instance we denote by C(R) the value of an optimal solution of this 
instance of CMCF-R, and by C(k) the value of a best solution of that instance of 

Table 2  Computer experiments for c(rej) = 100

(T, Q) (7,5) (7,9) (14,5) (14,9) (30,5) (30,9)
#infeas 0 1 0 0 0 0

Time limit k=5min
#opt 10 10 0 0 0 0
 Mean time to opt, min  < 1 1 – – – –
 Max time to opt, min < 1 2 – – – –

 Mean # rejected
# all

0.128 0.154 0.244 0.146 0.217 0.201

Time limit k=1h
 #opt 12 13 0 0 0 0
 Mean time to opt, min 3 5 – – – –
 Max time to opt, min 31 39 – – – –

 Mean # rejected
# all

0.092 0.107 0.244 0.146 0.217 0.201

Time limit k=2h
 #opt 13 13 0 0 0 0
 Mean time to opt, min 8 5 – – – –
 Max time to opt, min 66 39 – – – –

 Mean # rejected
# all

0.093 0.076 0.244 0.146 0.217 0.201

Time limit k=3h
 #opt 13 13 0 0 0 0
 Mean time to opt, min 8 5 – – – –
 Max time to opt, min 66 39 – – – –

 Mean # rejected
# all

0.091 0.076 0.244 0.146 0.217 0.201
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CMCF found by CPLEX in time k, k ∈ {5min, 1h, 2h, 3h} . The mean and maximal 
CPLEX optimality gaps and the mean and maximal ratios C

(k)

C(R)
 , k ∈ {5min, 1h, 2h, 3h} , 

over feasible instances were less than 0.5% for all series but the maximal gaps and 
the maximal ratios for the series with c(rej) = B . For the series with c(rej) = B the 
maximal gaps did not exceed 3% and the maximal ratios C

(k)

C(R)
 reached 32.5%.

If the ratio of the integer to the non-integer objective value is small, then round-
ing of non-integer variables in the solution of the relaxed problem may lead to an 
acceptable solution of the original integer problem. However, for instances with 
high rejection cost where this ratio is large, the rounding approach may lead to a 
bad solution of the original problem. An explanation is that even a small part of the 
rejected container quantity is costly if c(rej) is large. Thus, if the rejection costs are 
relatively small and a fast solution of CMCF is needed, then the relaxed problem can 
be solved and its solution can be converted into an applicable solution of the original 
problem.

Table 3  Computer experiments for c(rej) = 200

(T, Q) (7,5) (7,9) (14,5) (14,9) (30,5) (30,9)
#infeas 0 0 0 0 0 0

Time limit k=5min
 #opt 8 7 0 0 0 0
 Mean time to opt, min 2 1 – – – –
 Max time to opt, min 5 2 – – – –

 Mean # rejected
# all

0.001 0 0 0.001 0.001 0.002

Time limit k=1h
 #opt 11 8 0 0 0 0
 Mean time to opt, min 8 6 – – – –
 Max time to opt, min 56 43 – – – –

 Mean # rejected
# all

0.001 0 0 0.001 0.001 0.001

Time limit k=2h
 #opt 13 9 0 0 0 0
 Mean time to opt, min 8 19 – – – –
 Max time to opt, min 56 118 – – – –

 Mean # rejected
# all

0.001 0 0 0.001 0.001 0.001

Time limit k=3h
 #opt 13 9 0 0 0 0
 Mean time to opt, min 27 19 – – – –
 Max time to opt, min 131 118 – – – –

 Mean # rejected
# all

0.001 0 0 0.001 0 0.001
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The experimental results are acceptable. For a practical mid-term planning prob-
lem the solver can be run the whole night (about 12 hours). If there is a single input 
data scenario, then 12 hours can be considered as the solution time limit for solving 
one instance. If there are k scenarios, then 12/k can be taken as the time limit for 
each scenario.

The average ratio of the rejected containers to all containers, # rejected
# all

 , 
decreases as the rejection cost c(rej) increases. A significant drop of this ratio is 
observed between c(rej) = 100 , where the ratio reaches 24.4%, and c(rej) = 200 , 
where it drops to 0.2%. For c(rej) ≥ 200 , the ratio does not exceed 0.3%. This 
observation can be used to accelerate the solution process for the hard instances 
with no container rejection or large rejection costs: such an instance can be 
solved with a modified smaller rejection cost, and if the number of rejected con-
tainers is acceptable, then the solution of the modified instance is acceptable for 
the original instance as well.

Table 4  Computer experiments for c(rej) = 300

(T, Q) (7,5) (7,9) (14,5) (14,9) (30,5) (30,9)
#infeas 0 1 0 0 0 0

Time limit k=5min
 #opt 5 7 0 0 0 0
 Mean time to opt, min 2 1 – – – –
 Max time to opt, min 4 3 – – – –

 Mean # rejected
# all

0 0 0 0.001 0.003 0.001

Time limit k=1h
 #opt 7 10 0 0 0 0
 Mean time to opt, min 11 10 – – – –
 Max time to opt, min 42 44 – – – –

 Mean # rejected
# all

0 0 0 0.001 0.003 0.001

Time limit k=2h
 #opt 9 11 0 0 0 0
 Mean time to opt, min 32 17 – – – –
 Max time to opt, min 117 88 – – – –

 Mean # rejected
# all

0 0 0 0.001 0.003 0.001

Time limit k=3h
 #opt 9 11 0 0 0 0
 Mean time to opt, min 32 17 – – – –
 Max time to opt, min 117 88 – – – –

 Mean # rejected
# all

0 0 0 0.001 0.003 0.001
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Several experiments were conducted to find hard benchmark instances of CMCF. 
Two such instances with (T ,Q, c(rej)) = (360, 5,B) were detected. The gap values and 
the ratios C

(kh)

C(R)
 , k = 1,… , 10 , for these instances are given in Table 7. Not surprisingly, 

they decrease with increasing run time. However, the optimality gaps for both instances 
remain more than 22% and 28% and the ratios C

(kh)

C(R)
 remain more than 1.29 and 1.45 after 

ten hours of running CPLEX. All data, including two hard instances can be downloaded 
from Kovalyov et al. 2022 after this paper has been accepted for publication.

6  Conclusions

We introduce and model a tactical cost minimizing resource planning problem for 
inspection and repair of empty containers at a container terminal. The containers 
are of n types and different quality levels, which define their repair costs. The objec-
tive function includes the total rejection, inspection, repair, transportation and hold-
ing costs. A time-dependent integer linear constrained min-cost multi-commodity 
network-flow formulation, denoted as problem CMCF, is proposed. Problem CMCF 

Table 5  Computer experiments for c(rej) = 500.

(T, Q) (7,5) (7,9) (14,5) (14,9) (30,5) (30,9)
#infeas 1 1 0 0 0 0

Time limit k=5min
 #opt 13 3 0 0 0 0
 Mean time to opt, min 1 2 – – – –
 Max time to opt, min 4 4 – – – –

 Mean # rejected
# all

0 0 0 0.000833 0 0.002985

Time limit k=1h
 #opt 14 8 0 0 0 0
 Mean time to opt, min 2 12 – – – –
 Max time to opt, min 12 34 – – – –

 Mean # rejected
# all

0 0 0 0.001 0 0.003

Time limit k=2h
 #opt 14 8 0 0 0 0
 Mean time to opt, min 2 12 – – – –
 Max time to opt, min 12 34 – – – –

 Mean # rejected
# all

0 0 0 0.001 0 0.003

Time limit k=3h
 #opt 14 8 0 0 0 0
 Mean time to opt, min 2 12 – – – –
 Max time to opt, min 12 34 – – – –

 Mean # rejected
# all

0 0 0 0.001 0 0.003
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is shown to be solvable in O(n) time if there is a single facility, a single time period, 
container rejection is not allowed and all containers are repairable. If there exist 
non-repairable containers of each type, there is one facility ( F = 0 ) and one time 
period ( T = 1 ), or there are at least two facilities, or at least two time periods, then 
the problem is NP-hard. Computer experiments with randomly generated instances 
demonstrate that all the instances with 3 facilities ( F = 2 ), 4 container types, up to 9 

Table 6  Computer experiments for c(rej) = B.

(T, Q) (7,5) (7,9) (14,5) (14,9) (30,5) (30,9)
#infeas 0 0 0 0 0 1

Time limit k=5min
 #opt 6 5 0 0 0 0
 Mean time to opt, min 1 1 – – – –
 Max time to opt, min 3 4 – – – –

 Mean # rejected
# all

0 0 0 0 0 0.002

Time limit k=1h
 #opt 8 12 0 0 0 0
 Mean time to opt, min 4 15 – – – –
 Max time to opt, min 15 58 – – – –

 Mean # rejected
# all

0 0 0 0 0 0.002

Time limit k=2h
 #opt 8 12 0 0 0 0
 Mean time to opt, min 4 15 – – – –
 Max time to opt, min 15 58 – – – –

 Mean # rejected
# all

0.0002 0 0 0 0 0.002

Time limit k=3h
 #opt 8 14 0 0 0 0
 Mean time to opt, min 4 31 – – – –
 Max time to opt, min 15 130 – – – –

 Mean # rejected
# all

0 0 0 0 0 0.002

Table 7  Hard benchmark instances, (n,F,T ,Q, c(rej)) = (4, 2, 360, 5,B)

k (hours) 1 2 3 4 5 6 7 8 9 10

Instance 1
 Gap 0.428 0.337 0.297 0.282 0.276 0.271 0.266 0.262 0.246 0.226

 C
(kh)

C(R)

1.753 1.514 1.428 1.398 1.386 1.376 1.368 1.36 1.33 1.297

Instance 2
 Gap 0.516 0.455 0.431 0.42 0.401 0.39 0.382 0.378 0.33 0.287

 C
(kh)

C(R)

2.141 1.9 1.822 1.786 1.73 1.697 1.675 1.665 1.548 1.453
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container quality levels and up to 30 time periods are solved with an optimality gap 
of less than 3% in 5 minutes. Benchmark instances are found with 3 facilities, 4 con-
tainer types, 5 container quality levels and 360 time periods, for which an optimality 
gap of more than 28% remains even after ten hours of running CPLEX. Our research 
is of an initiative nature in relations with an industrial partner. If there will be a 
commercial interest, then the developed software can be included in the port logis-
tics information system and tuned for a good performance in a real-life environment.

For future research, it is interesting to study optimal planning problems of freight 
container inspection and repair with other real-life assumptions, objectives and con-
straints. Handling uncertainty and on-line nature of these problems is of utmost 
importance. Developing efficient meta-heuristic approaches to solve these problems 
can be an alternative to using MILP solvers.
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