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The State-dependent Trading Behavior of

Banks in the Oil Futures Market*

Daniel Bierbaumera Malte Riethb Anton Velinovc
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Abstract

We study the state-dependent trading behavior of financial institutions in the
oil futures market, using structural vector autoregressions with Markov switching in
heteroskedasticity. We consider two states of the world: tranquil and turbulent. We
decompose the observable time-varying price volatility during the period 2006M6-
2016M5 into changes in the slopes of traders’ demand curves and into changes in
the variability of their demand shocks. We find that the downward-sloping demand
curve of intermediaries steepens significantly during crises times and that the vari-
ance of their demand shocks doubles. These findings suggest that the futures pricing
of financial institutions is highly nonlinear and raises the hedging costs of producers
and consumers of oil when volatility is high.
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1 Introduction

Traditional theories of asset pricing assign no role to financial intermediaries and view

them as a veil without influence on the functioning of financial markets. This conjec-

ture has been questioned. Modern finance states that intermediaries, broadly defined

as entities which channel funds between different parties, affect asset prices due to sev-

eral frictions (Shleifer and Vishny, 1997, Kyle and Xiong, 2001). Following the global

financial crisis, Brunnermeier and Pedersen (2009) and He and Krishnamurthy (2013)

show theoretically how asset price dynamics may change during crises in markets where

intermediaries are the marginal investors. Under financial stress, intermediaries’ fund-

ing constraints can become binding and their risk-bearing capacity may shrink. Such

occasionally binding constraints lay the foundation for nonlinearities and give rise to liq-

uidity dry-ups and volatility spikes. Based on these theoretical insights, several empirical

papers study the relation between cross-sectional asset pricing and various measures of

intermediaries’ financial health (Adrian et al., 2014, He et al., 2017).

There is also an intense debate about the increased presence of financial institutions

in commodity markets and whether they amplify commodity price fluctuations (Irwin

and Sanders, 2012, Hamilton and Wu, 2015, Pavlidis et al., 2018). Sanders and Irwin

(2013), for instance, assess the accuracy of the imputed amount of index investments in

the WTI crude oil futures market, which allows gauging the importance of these financial

investments in commodity markets; Acharya et al. (2013) show that the severity of inter-

mediaries’ capital constraint affects futures risk premia; and Etula (2013) highlights the

relevance of the risk-bearing capacity of securities broker-dealers for futures risk premia.

In this paper, we study the state-dependent trading behavior of financial intermedi-

aries in the oil futures market and the quantitative implications for changes in futures

price volatility. We build a Markov switching in heteroskedasticity structural vector au-

toregressive (MSH-SVAR) model and estimate it on weekly position data from the U.S.

Commodity Futures Trading Commission (CFTC). The sample period is June 2006 until

May 2016. Our proxy for intermediaries’ exposure are futures positions held by large

global banks, such as JP Morgan Chase, Goldman Sachs, or Morgan Stanley. For identi-

fication of the structural model, we use a stylized conceptual framework following Cheng

et al. (2015). It describes the trading behavior of different trader groups in form of net

long demand curves depending on the contemporaneous futures price and a group-specific

demand shock. The framework provides sufficient restrictions for just-identification. The

main identifying assumption is that traders do not respond directly to position changes

of other trader groups, consistent with the publication lag of the CFTC data.

We consider two states of the world: tranquil and volatile periods. The endogenous

determination of these states is at the core of the analysis. The Markov switching frame-

work gives full voice to the data and reduces the risk of misspecification of the transition
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points. Since the structural model is just-identified for each state, we can let both the

impact effects and the volatility of the structural shocks switch across states. This facili-

tates a decomposition of reduced-form changes in futures price volatility into changes in

the slopes of traders’ demand curves and in the volatility of their demand shocks.

Our paper contributes to the literature along several dimensions. The results show

that the trading behavior of financial intermediaries changes significantly across states.

First, the demand curve of intermediaries steepens significantly when switching from

the tranquil to the turbulent state. The lower price elasticity implies that they are less

willing or able to absorb trades of other market participants. This increases the hedging

costs for producers, processors, and consumers of oil by two thirds according to our

estimates. Second, the variance of intermediaries’ own demand shocks doubles during

these episodes. This raises price volatility further. Both findings are consistent with the

theoretically predicted nonlinearities in Brunnermeier and Pedersen (2009) and He and

Krishnamurthy (2013).

Our study also relates to a long-standing literature on the determination of commodity

futures prices, and their relation to spot prices.1 Recently, there has been much interest

in the role of financial institutions in these markets and whether the increased presence

of financial investors has changed the functioning of commodity markets (Fattouh et al.,

2013, Cheng and Xiong, 2014). Our analysis focuses on the role of financial intermediaries

in the price formation process on the oil futures market. We show that their trading

behavior is state-dependent and that this increases the hedging costs of other market

participants significantly when volatility is high, that is, when hedging is needed most.

The paper builds on a literature on structural time-series models with heteroskedastic-

ity (Rigobon, 2003). We combine the type of Markov switching models following Herwartz

and Lütkepohl (2014) with the framework of Bacchiocchi and Fanelli (2015) and Bacchioc-

chi (2017). The first model type determines regime switches endogenously, but allows only

for changes in the volatility of the structural shocks across regimes. The second class al-

lows for changes in both the contemporaneous effects and the volatility of the structural

shocks, but defines the regimes exogenously based on prior information. Our model con-

tains both desirable features: an endogenous regime determination, and changes in the

impacts and in volatility. This is crucial for our analysis as it allows, first, endogenously

estimating switches in volatility and, second, decomposing them into changes in the slopes

of demand curves and into changes in the volatility of demand shocks. Another impor-

tant difference to the aforementioned models is that we do not use the heteroskedasticity

for identification. The latter is achieved through economic reasoning, implying that the

structural shocks have the simple economic interpretation of net long demand shocks.

1 See Garbade and Silber (1983), Hirshleifer (1990), Kilian and Murphy (2014), Henderson et al. (2015),
Sockin and Xiong (2015).

3



The model is also easily interpretable, in that, conditional on the state, it is identical to

a single state model.

Finally, we investigate whether combinations of variables can capture the Markov

switching regimes. We relate the smoothed probability of the high volatility state to

model-external variables through logit regressions. They show that higher Baa-Aaa cor-

porate bond spreads and lower U.S. Treasury yields are the best indicators of turbulent

times, consistent with risk premia and risk-free rates being important factors for the

futures basis and prices (Gorton et al., 2012, Szymanowska et al., 2014).

The remainder of the paper is structured as follows. The next section discusses the

literature on intermediary asset pricing, presents a simple conceptual framework and

some testable implications. It further outlines the empirical methodology and describes

the data. Section 3 contains the main results, while Section 4 provides further evidence

on the characteristics of the high volatility state. This section also contains an extensive

sensitivity analysis. The last section concludes.

2 Conceptual Framework, Empirical Model and Data

In this section, we first summarize the literature on intermediary asset pricing. Using

the findings in the literature, we present a conceptual framework and derive two testable

implications for the trading behavior of intermediaries in the oil futures market. The

section ends with a description of the data.

2.1 Conceptual Framework

Traditional theories of asset pricing regard financial intermediaries as a veil without influ-

ence on the performance of asset markets. Intermediaries act according to their clients’

preferences, making a representative household the marginal investor. This neglect of the

intermediary sector has been questioned by numerous studies showing that intermediaries

face a variety of constraints, such as limits to arbitrage, due to which they influence the

functioning of asset markets (Kyle and Xiong, 2001, Fostel and Geanakoplos, 2008). In an

influential paper Brunnermeier and Pedersen (2009) show the interdependence between

the ability of intermediaries to raise capital and market liquidity. If funding liquidity is

scarce, intermediaries are reluctant to open new positions, market liquidity is lower, and

volatility is higher. He and Krishnamurthy (2013) study the asymmetric effects of inter-

mediary capital on risk premia. When capital is abundant, intermediaries are able to offset

losses such that there are limited effects on risk premia. When capital is scarce, however,

intermediaries’ losses can be associated with higher and more volatile risk premia.

The subsequent empirical literature has studied the relation between intermediaries’

financial health, using a variety of approximations of this unobservable variable, and asset
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prices. Adrian et al. (2014) investigate the relation between a stochastic discount factor

based on the leverage of security broker-dealers and asset returns. He et al. (2017) use

capital ratios of intermediaries and provide evidence that intermediaries are the marginal

investors in many asset markets and thus key to understanding price formation. Focusing

on commodity markets, Acharya et al. (2013) show that the futures risk premium and

hence producers’ hedging costs are increasing in the severity of intermediaries’ capital

constraints, measured by their assets relative to households’ assets. Etula (2013) uses the

leverage of securities broker-dealers, who serve as counterparties to hedgers, to build a

risk aversion index and finds that it is a determinant of risk premia in commodity futures

markets. Finally, Cheng et al. (2015) approximate the risk absorption capacity of financial

traders in commodity futures markets with the VIX and document a risk transfer from

those traders to hedgers during periods of high volatility.

These contributions suggest that when volatility is high (i) intermediaries are more

reluctant to take on new positions, and (ii) their exposure to idiosyncratic balance sheet

shocks increases. To map these considerations into testable implications, we formulate a

stylized model of the oil futures market, following Cheng et al. (2015). The framework

describes the trading behavior of all market participants, who are assumed to be atomistic

price takers. We distinguish between three groups of traders: hedgers (H), financial

intermediaries (F ), and others (O). Hedgers are producers, processors, or large consumers

of oil, who want to hedge physical oil price risk of commercial businesses. For the second

group, we primarily think of it as large banks that either trade on behalf of clients without

direct access to the futures market or on their own behalf. The third group contains all

remaining traders and is mainly comprised of specialized commodity trading advisors,

commodity pool operators, and traders who cannot be clearly classified in any other

category.

The demand curves of the three trader groups are

∆yH = −aH(S)∆P +
√
λH(S)νH

∆yF = −aF (S)∆P +
√
λF (S)νF

∆yO = −aO(S)∆P +
√
λO(S)νO,

where ∆yi denotes the change in the net long oil futures position of trader group i =

H,F,O. ∆P is the log difference in the oil futures price. The coefficients ai(S) determine

the slope of the respective demand curve and thus measure the price elasticity of each

group. They reflect the capacity or willingness to absorb trades of other groups.

Illiquidity might arise if there are limits to arbitrage which deter risk averse arbi-

trageurs from taking the counter-side. Shleifer and Summers (1990) and Shleifer and

Vishny (1997), for example, show that large position changes can influence prices through

an effect on the order book if the instantaneous supply of counterparty orders is low.
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Regarding financial intermediaries, a low aF implies that they absorb a smaller part of

the desired demand shift of producers or, equivalently, provide less liquidity, and that the

price impact will be larger.

Each demand curve further features a random shock νi which causes the respective

trader group to adjust its net long position due to own reasons. For financial intermedi-

aries the causes can be manifold: portfolio diversification, risk management, speculative

motives based on private signals, or long hedging of short exposure vis-à-vis clients. The

λi(S)’s measure the variances of the shocks and are allowed to differ across groups. One

can interpret these coefficients as the exposure of each trader group to its idiosyncratic

shocks. For example, if we think of νF as a shock hitting the balance sheet of intermedi-

aries, then a larger λF suggests a greater exposure to this shock. Although being highly

stylized, the simple demand functions thus capture two main trading motives of financial

institutions in commodity futures markets: liquidity provision to other traders and trad-

ing for own purposes. The market clearing condition, ∆yH + ∆yF + ∆yO = 0, closes the

model and ensures that the price is jointly determined by all traders in equilibrium.

We distinguish in an ad-hoc form between two different states S = 1, 2 of the world.

Without loss of generality, we think of state 1 as tranquil periods and of state 2 as volatile

times. The latter can be either episodes of general financial market turmoil that spill over

to the oil futures market through balance sheets of intermediaries or drastic oil market

developments that directly affect intermediaries in the oil futures market. The central

feature of the model is that the ai(S) and λi(S) coefficients are allowed to differ between

regimes. Hence, both the ability of traders to absorb other traders’ shocks as well as the

variance of own shocks can change between states. Using the market clearing condition

and writing the system in matrix notation gives
1 0 aH(S)

0 1 aF (S)

−1 −1 aO(S)




∆yH

∆yF

∆P

 =


√
λH(S)νH√
λF (S)νF√
λO(S)νO

 . (1)

The inclusion of these endogenous variables allows us to capture the most relevant

players in the oil futures market. Including an additional group “Other Reportables”

as a robustness exercise does not influence our findings. Expression 1 is the basis for

the identification of our structural empirical model. It illustrates our main identifying

restrictions which are reflected in the zero elements on the LHS of (1). We assume

that no trader group responds directly to the position change of any other group. This

assumption is consistent with the publication lag of the CFTC data that we use and

the market to which they refer. The positions correspond to each Tuesday end-of-day at

the electronic trading platform of the New York Mercantile Exchange. Here, aggregated

orders of the other investors are not observable. Furthermore, the CFTC reports are only
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released the following Friday, implying that traders cannot contemporaneously observe

and thus directly respond to aggregated position changes of other groups. They do so, of

course, indirectly through prices.

Given our interest in financial intermediaries, we derive the following hypotheses about

the changes in the coefficients across states:

Hypothesis 1 The slope of the demand curve of financial intermediaries changes during

turbulent times: aF (1) 6= aF (2).

Hypothesis 2 The volatility of intermediaries’ demand shifts changes during turbulent

times: λF (1) 6= λF (2).

The alternative hypotheses are that there are no significant changes across regimes,

implying that there is no clear difference in the way financial intermediaries trade in

tranquil versus turbulent times. Finally, unlike Cheng et al. (2015), our framework does

not contain a common shock which simultaneously affects all trader groups. This reduces

the computational complexity of the estimation. Instead, we deal with such shocks by

including a number of exogenous control variables in the baseline empirical model and by

conducting an extensive sensitivity analysis adding further controls.

2.2 The MSH-SVAR Model

We now describe the Markov switching in heteroskedasticity vector autoregressive (MSH-

VAR) model, which treats any potential transition variable(s) as latent. Specifically, we

follow the approach of Herwartz and Lütkepohl (2014), where only the reduced form

covariance matrix may change across volatility regimes and all other parameters are held

constant. The authors attribute these changes to changes in the variances of the structural

shocks and use them for identification, holding constant the contemporaneous effects of

the shocks across regimes. We depart from their model along two important dimensions.

First, we do not use the heteroskedasticity in the data for identification. We achieve the

latter through economic reasoning, exploiting the parameter restrictions implied by the

theoretical model of Section 2.1. Second, given that our model is just-identified for each

state, we allow for changes in both the contemporaneous effects and in the variances of

the structural shocks.

The reduced form model is given by

yt = c+ Γ1yt−1 + · · ·+ Γpyt−p + Ψ0xt + Ψ1xt−1 + · · ·+ Ψnxt−n + ut, (2)

where yt = [∆yHt ,∆y
F
t ,∆Pt]

′ is the vector of endogenous variables with ∆yHt and ∆yFt the

change in the net long futures position of hedgers and financial intermediaries, respectively,
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and ∆Pt the log difference in the oil futures price. Further, xt is a vector of W exogenous

variables discussed below, Γi and Ψj are parameter matrices with i = 1, . . . , p and j =

1, . . . , n, where n does not necessarily equal the lag length p, and c is a vector of constants.

Finally, ut is a vector of reduced form error terms with E[ut] = 0 and E[utu
′
t] = Σu(St).

For estimation purposes, we assume that ut is normally and independently distributed

conditional on a given state:

ut|St ∼ NID(0,Σu(St)).

Here, St is a first order discrete valued Markov process that can take on M different values,

St = 1, . . . ,M , with transition probabilities pkl = P (St = l|St−1 = k), k, l = 1, . . . ,M .

Although the model is linear in a given state, it is nonlinear as a whole.

Using the conceptual model in (1), we write the structural empirical model as 1 0 aH(St)

0 1 aF (St)

−1 −1 aO(St)


︸ ︷︷ ︸

≡A(St)

 ∆yHt

∆yFt

∆P


︸ ︷︷ ︸

=yt

=

 εHt

εFt

εOt

 , (3)

where εt = [εHt εFt εOt ]′ is a vector of structural shocks whose standard deviations corre-

spond to
√
λi in the conceptual model, and where we have neglected constants, lags and

exogenous variables for illustration.2 This leads to the following relationship between the

reduced form errors and the structural shocks: ut = A(St)
−1εt, where A(St)

−1 is a matrix

of state-dependent instantaneous effects.

It is important that despite the zeros in A(St) all variables are allowed to react con-

temporaneously to all shocks since

A−1(St) =


aF (St)+aO(St)

ã(St)
−aH(St)

ã(St)
−aH(St)

ã(St)

−aF (St)
ã(St)

aH(St)+aO(St)
ã(St)

−aF (St)
ã(St)

1
ã(St)

1
ã(St)

1
ã(St)

 , (4)

where ã(St) = aH(St) + aF (St) + aO(St). This is a central feature of the model and a

main building block of the empirical plausibility of our identifying assumptions as traders

respond to each other through prices in nearly continuous time. Any zero restrictions

on A−1(St) would thus be difficult to justify. The structure of A−1(St) follows from the

restrictions on A(St) and reveals that a change of aF (St) across states affects the response

of all variables to all shocks as it enters the denominator of all elements in A−1(St).

2 Implicitly this means that νi ∼ (0, 1) and that εi ≡
√
λi(S)νi ∼ (0, λi(S)).
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In order to allow for state-dependence of the instantaneous effects we model A(St) as

A(St) = Ā+A(St), St = 1, . . . ,M, (5)

where Ā consists of the state-invariant part and A(St) is the state-dependent part of the

matrix. For simplicity, we set A(1) = 0. To summarize, the definitions are

A(St) =

 1 0 aH(St)

0 1 aF (St)

−1 −1 aO(St)

 , Ā =

 1 0 āH

0 1 āF

−1 −1 āO

 , A(St) =

 0 0 αH(St)

0 0 αF (St)

0 0 αO(St)

 . (6)

Further, we assume that the structural errors have a non-identity diagonal covariance

matrix: E[εtε
′
t] = Λ(St) (naturally E[εt] = 0). We allow this matrix to be state-dependent

in an analogous fashion as above

Λ(St) = Λ̄ + Λ̃(St), St = 1, . . . ,M, (7)

where each matrix is diagonal. The orthogonality of the structural errors is required for

identification of the structural parameters and is reasonable for idiosyncratic shocks. We

use a variety of endogenous control variables in order to control for any common shocks.

A typical element of Λ(St) is λi(St) = λ̄i + `i(St), where λ̄i and `i(St) are the respective

elements of Λ̄ and Λ̃(St). Again, for simplicity, we set Λ̃(1) = 0. The covariance matrix

of the reduced form errors can then be written as

Σu(St) = A(St)
−1Λ(St)(A(St)

−1)′ . (8)

The system contains six structural parameters per state. These can be directly mapped

to the six unique reduced form parameters through (8). The model is thus just-identified

for any M ; due to restrictions based on economic reasoning, without relying on changes

in volatility. This approach uses a combination of established approaches found in the

literature. For instance, the decomposition in (8) is used by Lanne et al. (2010), Herwartz

and Lütkepohl (2014) and others.

In addition, analogous decompositions as in (5) and (7) can be found in Bacchiocchi

and Fanelli (2015) and Bacchiocchi (2017), which allow for both changes in the structural

slope parameters and changes in the structural shock variances. We follow the approach

suggested by these authors, to check for (local) identification of the model, given the set

of restrictions that we impose. Specifically, the necessary and sufficient rank condition

for local identification is satisfied if the K(K + 1)× a matrix given by

(
I2 ⊗D+

K

)
=

(
2(Ā−1 ⊗ IK) 0K2×K2 0K2×K

2[((Ā +A)−1)Λ⊗ IK ] 2[((Ā +A)−1)Λ⊗ IK ] [((Ā +A)−1)⊗ ((Ā +A)−1)]U ′K

)
S (9)
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has full column rank.3

2.3 Estimation and Bootstrap Procedure

The parameters in (2) are estimated by means of the expectation maximization (EM)

algorithm of Hamilton (1994, Ch. 22), which was extended to multivariate processes by

Krolzig (1997). Crucial for the analysis is to incorporate the regime-switching nature of

the covariance matrix described in (5) and (7), given the restrictions in (6). The latter do

not contain any sign restrictions on the coefficients ai(S). As in Podstawski and Velinov

(2018), we use the following concentrated out log likelihood function in the maximization

step of the EM algorithm:

l(Ā,A(2), . . . ,A(M), Λ̄, Λ̃(2), . . . , Λ̃(M)) =
1

2

M∑
m=1

[
T̂mlog(det(Σu(m)))

+ tr

(
(Σu(m))−1

T∑
t=1

ξ̂mt|T ûtû
′
t

)]
,

where Σu(m) is defined as in (8). Further, ξmt|T ,m = 1, . . . ,M, t = 1, . . . , T are the

model smoothed probabilities, Tm =
∑T

t=1 ξmt|T , and the hat symbol denotes estimated

parameters obtained from the previous iteration.

Once the EM algorithm has converged, we obtain standard errors of the point esti-

mates of the parameters through the inverse of the negative Hessian matrix evaluated

at the optimum. We use these standard errors as a first statistic to determine whether

the estimated parameters change significantly across states. As a second statistic, we

use Likelihood Ratio tests, where we restrict the main parameters of interest to be time-

invariant. As a third statistic, we compute bootstrapped impulse responses. Given the

heteroskedasticity, classical residual bootstrapping may be problematic in generating re-

liable confidence intervals. Any re-sampling scheme needs to preserve the second order

characteristics of the data. We therefore use a fixed design wild bootstrap with u?t = ϕtût,

where ϕt is a random variable independent of yt following a Rademacher distribution.

That is, ϕt is either 1 or –1 with probability 0.5. This is a common technique for these

3 K is the number of endogenous variables; a := aĀ−1 +aA+aΛ; aĀ−1 , aA, aΛ is number of free elements
of Ā−1,A and Λ, respectively; SĀ−1 , SA, and SΛ summarize linear restrictions on Ā−1, A and Λ,
respectively; SI summarizes cross-restrictions on the elements of Ā−1 and A; D+

K is the Moore-Penrose
inverse of the duplication matrix DK ; and

S =

 SĀ−1 SI 0K2×aΛ

0K2×aĀ−1
SA 0K2×aΛ

0K2×aĀ−1
0K2×aA SΛ

 . (10)

As suggested by Bacchiocchi and Fanelli (2015), we check numerically whether the matrix (9) has
full rank before estimation by drawing 100,000 matrices Ā,A,Λ from the uniform distribution on the
interval between -10 and 10. We find that the rank condition is satisfied for all draws.
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types of models (Herwartz and Lütkepohl, 2014, Podstawski and Velinov, 2018). All the

computations are done with the software Matlab.

2.4 Data

We use data of the Disaggregated Commitments of Traders (DCOT) Report of the U.S.

Commodity Futures Trading Commission (CFTC). The data are weekly and are available

from 13 June 2006 onwards. Our sample ends on May 24, 2016, thereby containing 520

observations. It is characterized by two severe oil price collapses: the gloabal financial

crisis and the oil price recession in 2014/16. This needs to be kept in mind when inter-

preting our estimates as they may not be representative of the more tranquil period prior

to the global financial crisis.

We calculate the net long position of the trader groups denoted as “Producer/ Mer-

chant/ Processor/ User” and “Swap Dealer” in light sweet crude oil traded at the New

York Mercantile Exchange (NYMEX) to approximate net long demand of hedgers and fi-

nancial intermediaries, respectively. Given the computational complexity of the empirical

model we focus on these two trader groups, as they have relatively well defined business

models within classifications, and lump the remaining groups in the price equation. In

Section 4.2, we show that the results are insensitive to adding another trader group to

the model. We employ the next-to-maturity futures settlement price of light crude oil at

NYMEX. The endogenous variables enter the model in standardized first differences and

in log differences for prices.

According to the definition of the CFTC, a swap dealer is “[a]n entity that deals

primarily in swaps for a commodity and uses the futures markets to manage or hedge

the risk associated with those swaps transactions” (CFTC, 2017a). The vast majority of

them are major global banks and the remaining traders in this group are other banks and

financial intermediaries (CFTC, 2017b). Heumesser and Staritz (2013) document that

the four largest globally active banks in this category held around 70% of swap positions

in commodity futures markets in 2008, namely, Goldman Sachs, Morgan Stanley, JP

Morgan, and Barclays Bank. In 2012 the group was made up of Bank of America, JP

Morgan, Goldman Sachs, and Citibank. Other banks with big swap positions include

Merril Lynch, Deutsche Bank, HSBC, Credit Suisse, Rabobank, and UBS.

One caveat of the CFTC data are potential misclassifications of traders and hence

reporting errors. First, financial intermediaries have incentives to be classified as hedgers

since this entitles them to preferential treatments. Hedgers are exempted from position

limits and face lower margins requirements, translating into less capital needed for main-

taining open positions. Second, the data refer to total end-of-day positions of traders,

meaning that positions are aggregated across trades due to different business reasons.

This aggregation complicates an interpretation of position changes. Third, the CTFC
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itself changes the classification of traders from time to time, for example following alter-

ations in the way traders participate in the futures market. Overall, misclassifications

cannot be fully excluded. But the bias of these reporting errors is likely to imply that

some financial traders are erroneously classified as hedgers and our results might then

actually represent a lower bound of the influence of intermediaries on futures prices.

Finally, we augment the model with a number of contemporaneous exogenous vari-

ables to control for common factors that potentially affect positions of all trader groups

simultaneously. We add the number of initial jobless claims to capture the state of the

real economy and the balance sheet of the Federal Reserve to account for nominal devel-

opments. Both variables are available at the weekly frequency. Moreover, we include the

surprise component in news releases of 30 U.S. macroeconomic indicators to account for

public information approaching the market. In Section 4.2 we show that the results are

insensitive to the inclusion of a large number of further exogenous variables. Appendix A

contains a complete description of the data used in the analysis.

3 Results

We start by showing statistical evidence supporting the choice of a regime-switching

model, followed by a brief presentation of the endogenously determined states. We then

discuss the model’s main implications in terms of estimated structural parameters. Ad-

ditionally, we report bootstrapped impulse responses and variance decompositions.

3.1 Model Selection

We follow the literature and select the lag order of the endogenous variables in the MSH-

VAR model based on a linear VAR model. All three information criteria point to one lag

out of 26 considered lags. This also seems plausible from an economic point of view, given

that financial markets react immediately to new information, and since our data are of

weekly frequency. We use the same lag length for the exogenous variables.

Table 1 contains specification statistics for the Markov switching model. It shows

that a MSH-VAR model is clearly preferred over a standard linear VAR according to the

log-likelihoods and information criteria. The latter have been shown to work well to judge

the performance of MS models (Psaradakis and Spagnolo, 2006), whereas standard tests

are problematic for determining the number of states (Hansen, 1992). The choice of two

states is motivated by theoretical reasoning (see Section 2). This number suffices to test

our two hypotheses. Estimation of a two-state model is also less cumbersome and leads

to more stable and precise estimates, given that a potential third state contains only a

limited number of observations. Nevertheless, we consider a three state model in the

robustness analysis.
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Table 1: Model Specification

Model Log

Likelihood

AIC SC

Reduced form linear VAR −2069.4 4354.7 4813.7

Reduced form MSH-VAR, 2 states −1957.2 4158.3 4676.8

Note: Model fit comparison of a linear VAR and a two-state MSH-VAR with lag order n = p = 1 based

on the log-likelihood, Akaike information criterion, and Schwarz criterion.

Finally, we do not consider a model with switches in the conditional mean, which is a

nonlinear function of both the intercept and all the parameters on the lagged variables, as

programming and estimating such a model is challenging. In the sensitivity analysis, we

show that the main results are unchanged when considering a switching intercept term.

3.2 Volatility regimes

One main feature of the Markov switching model is the endogenous determination of the

two states based on changes in the reduced form covariance matrix. For the labeling of

the states we look at the diagonal elements of the reduced form covariance matrices:

Σu(1) =

 0.58 · ·
0.00 0.74 ·
−0.11 −0.33 0.31

 Σu(2) =

 1.34 · ·
−0.29 0.78 ·
−0.23 0.05 1.58

 . (11)

Equation (11) shows that there is a low-volatility regime, state 1, with relatively small

variances, and a high-volatility regime, state 2, with larger variances. Especially the

variance of the oil futures return increases strongly from 0.31 to 1.58 in state 2. The

variance of net long positions of hedgers also more than doubles from 0.58 to 1.34. In

contrast, the variance of net long positions of financial intermediaries increases only mildly

from 0.74 to 0.78. Through the lens of the conceptual model, this modest change is likely

reflecting two offsetting forces. On the one hand, a steeper demand curve of intermediaries

(Hypothesis 1) means that they are less price-elastic and implies that a given order of

other market participants induces a smaller change in intermediaries’ positions and a

larger price increase. On the other hand, a rise in the volatility of intermediaries’ own

demand shocks (Hypothesis 2) is tantamount to a rise in the variance of their positions.

Together, we thus observe a small increase in the variance of intermediaries’ positions and

a large increase in the variance of the price in state 2. In the following we refer to state

1 as the “tranquil state” and to state 2 as the “turbulent state.”

Figure 1 plots the smoothed probabilities of state 2. They show that the model

distinguishes the two volatility states well throughout the sample. The probability of

being in the high volatility state 2 is either (very close to) 100% or (very close to) 0%.
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Figure 1: Smoothed Probabilities of State 2

Note: Plot of the endogenously estimated smoothed probabilities of the high volatility state 2, that is,
the “turbulent state.”

This clear distinction can be interpreted as a validation of the assumption of switching

volatility over time. Furthermore, there are ample observations in each state, providing

the basis for an estimation of the state-specific parameters.

3.3 State-Dependent Intermediary Pricing

In the following we formally test our two main hypotheses by evaluating the estimated

parameters of interest, and their statistical significance based on the Hessian. We also

perform Likelihood Ratio tests to compare the baseline specification allowing for switches

in all parameters with alternative models which restrict some to be time-invariant.

We start with the estimated relations between variables in the tranquil state:

A(1) = Ā =



1 0 1.06∗∗∗

(0.22)

0 1 1.52∗∗∗

(0.13)

−1 −1 0.56
(0.53)


.

The matrix corresponds to the one in the conceptual model and the last column contains

the estimated slopes of the demand curves. For the interpretation, the sign of the coef-

ficients needs to be reversed to obtain the estimated price elasticity (see 3). Hedgers are

ordered first, financial intermediaries second, and the group of others third. The values

in parentheses show the standard errors. Asterisks indicate whether the parameters are

statistically different from zero (∗, ∗∗, ∗ ∗ ∗ correspond to significance at the 10%, 5%,

and 1% level, respectively). The estimated slopes for hedgers and financial intermediaries
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are highly statistically significant, with the latter demand curve being flatter. In tranquil

times, intermediaries have the highest price elasticity and are the group most willing to

take counterpositions. This ability shows how intermediaries facilitate hedging of produc-

ers and contribute to the functioning of the market. The slope parameter of others is not

significant, potentially reflecting trader heterogeneity within this group.

To test Hypothesis 1, we evaluate A(2). The last column of this matrix contains the

estimated changes in the slopes of the demand curves:

A(2) =



0 0 −0.31
(0.28)

0 0 −1.26∗∗∗

(0.14)

0 0 0.41
(0.60)


.

The only slope that changes significantly is the one for intermediaries. The change has

the expected sign and is economically relevant. The demand curve steepens by more than

80%.

Adding Ā and A(2) yields the slope coefficients in state 2:

A(2) = Ā+A(2) =


1 0 1.06

0 1 1.52

−1 −1 0.56

+


0 0 −0.31

0 0 −1.26

0 0 0.41

 =


1 0 0.75

0 1 0.26

−1 −1 0.96

 .

We can now compare the slope for intermediaries aF (St) directly across regimes. The

comparison shows that aF (1) = 1.52 > 0.26 = aF (2), or, equivalently, that aF (2)−aF (1) =

−1.26 < 0. As this difference is statistically different from zero the estimates suggest

that intermediaries absorb trades of other market participants to a lesser extent during

turbulent times.

This result lends support to the prediction of the theoretical literature that interme-

diary asset pricing is state-dependent, and shows that the oil futures market is a typical

asset market. Moreover, together with the smoothed state probabilities it suggests that

this market is not only affected by own developments but also by financial turmoil orig-

inating in other markets where financial intermediaries are active as well. Brunnermeier

and Pedersen (2009) refer to this phenomenon as “commonality of liquidity across assets”

which results from the difficulty of large banks to raise capital during periods of stress. As

a result, market liquidity as a whole can decrease and observed price volatility increases.

To further judge the economic significance of the change in demand functions, we

interpret the overall effects of net long demand shocks in both states. They take into
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account all instantaneous feedback among positions and prices and are given by

A(1)−1 =

 0.66 −0.34 −0.34

−0.48 0.52 −0.48

0.32 0.32 0.32

 , A(2)−1 =

 0.62 −0.38 −0.38

−0.13 0.87 −0.13

0.51 0.51 0.51

 .

(12)

Each column shows the effects of a demand shock of a given trader group on the positions

of hedgers and intermediaries, and on prices. Comparing the response of intermediaries’

positions to demand shocks of the other two trader groups between state 1 and 2 shows

that intermediaries absorb trades from other market participants to a lesser extent in

the turbulent state. The respective value decreases in absolute terms from 0.48 to 0.13.

Instead, intermediaries are mostly trading for own reasons, as indicated by the increase

from 0.52 to 0.87 of the effect of their own shocks on own positions.

The bottom rows show that regardless of which trader groups’ demand is shifting,

the price impact in a given regime is the same as it depends on all traders’ demand

curves (see last rows in (4) and (12)). Across regimes, however, the price impact increases

strongly, by nearly 60%. When interpreting this number, one has to bear in mind that

the elements in A(S)−1 are functions of all three estimated slopes in A(S) and that some

coefficients and their changes are not statistically significant. But when considering only

the significant change in the coefficient for intermediaries, aF , the price effect of demand

shocks is 0.53, which is virtually the same as when considering all changes in slopes.4

Hence, regardless of the precise computation, the price impact of any trade in the market

increases by almost two thirds in state 2, and the results indicate that this is mostly due

to a steeper demand curve of financial intermediaries.

To test Hypothesis 2, we turn to the estimated structural variances in state 1, Λ(1),

and their switch to state 2, Λ̃(2):

Λ(1) = Λ̄ =


0.71∗∗∗ 0 0
(0.13)

0 0.47∗∗∗ 0
(0.06)

0 0 1.90∗∗∗

(0.66)

 , Λ̃(2) =


1.18∗∗∗ 0 0
(0.35)

0 0.45∗∗∗ 0
(0.12)

0 0 1.46
(1.11)

 .

In state 1, intermediaries have the smallest reaction to own shocks, if we interpret λ̄F

as the exposure to idiosyncratic balance sheet shocks. This finding is consistent with

the idea that in normal times they can easily absorb ordinary balance sheet shocks. In

state 2, however, the volatility of demand shifts of intermediaries almost doubles from

4 In detail, the coefficients in the last row are given by 1/ã(St), where ã(St) = aH(St) +aF (St) +aO(St).
Hence, 1/ã(1) = 0.32 and 1/ã(2) = 0.51. If we only change aF (St) between states, that is ã(2∗) =
aH(1) + aF (2) + aO(1), then we obtain 1/ã(2∗) = 0.53.
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0.47 to 0.92. Importantly, the change λF (2)− λF (1) = 0.45 > 0 is statistically significant

at the one percent level. The estimates thus support Hypothesis 2 and suggest that

during turbulent times the exposure of financial intermediaries to shocks hitting their

balance sheet increases. Finally, the volatility of demand shocks of hedgers also changes

significantly across regimes, being already relatively high in state 1. This finding suggests

that producers and processors of oil have a large exposure to oil market specific shocks

already during normal times, consistent with many items on their balance sheet being

linked to the price of oil. This sensitivity increases further during episodes that contain

large oil price swings.

Putting the results together, we calculate the overall impact of the different demand

shocks on the endogenous variables. Using Λ(2) = Λ̄ + Λ̃(2), they are given by

A(1)−1Λ(1)0.5 =

 0.56 −0.23 −0.47

−0.41 0.35 −0.67

0.27 0.22 0.44

 , A(2)−1Λ(2)0.5 =

 0.85 −0.36 −0.70

−0.18 0.83 −0.24

0.69 0.49 0.93

.

The numbers resemble those in (12) but provide additional insights as they take into

account the size of demand shifts. While in state 1 intermediaries’ positions are more

driven by trades of other market participants than by own needs, this drastically changes

during state 2, where intermediaries change positions predominantly in response to own

shocks. Moreover, when taking into account the larger variances in state 2, the increase

in the price impact of all demand shocks across regimes is even more pronounced. The

price effects more than double in all cases.

Finally, we compare different model specifications through Likelihood Ratio tests as

another means of analyzing the statistical properties of the main results. We compare the

log-likelihood of the just-identified baseline model, where the slope of the demand curve

and the structural shock variance for intermediaries are, among other parameters, allowed

to change across regimes, to three alternative over-identified model variants, where some

of these parameters are assumed to be time-invariant. We set either αF (2) = 0 (see 6),

`F (2) = 0 (see 7), or impose both restrictions simultaneously, that is, αF (2) = `F (2) = 0.

Table 2 shows that in all three cases the p-values of the tests are essentially zero, clearly

rejecting the restrictions. We conclude that a model which allows for fully state-dependent

trading behavior of intermediaries is favored by the data.

Table 2: Likelihood Ratio Tests of Restrictions for the MSH-SVAR Model

H1: baseline model specification

H0 : αF (2) = 0 H0 : `F (2) = 0 H0 : αF (2) = `F (2) = 0

1.11E-16 2.13E-04 0

Note: Likelihood Ratio tests comparing the baseline model specification (unrestricted model) with
different alternative specifications in which parameters corresponding to financial intermediaries are set
to zero (restricted model). Numbers represent p-values of the null hypothesis.
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3.4 Impulse Responses and Forecast Error Variances

The matrices discussed so far show differences in the impact effects of the shocks across

states. We now present impulse responses to assess the dynamic effects. The bootstrapped

confidence intervals also provide a further alternative of testing whether the effects are

significantly different across regimes, both upon impact and subsequently. Figure 2 shows

the cumulative responses in both states.5 The dashed line refers to the tranquil state and

the solid line to the turbulent state. The shaded area displays 90% confidence intervals

based on 1000 bootstrap replications. Overall, the figure corroborates the conclusions

based on the impact effects. All responses are significantly different across regimes. In

particular, the price effects of all three types of demand shocks are significantly larger in

state 2. Moreover, we again find that financial intermediaries react stronger to their own

shocks during turbulent times while absorbing less of the other traders’ demand shocks.

In contrast, hedgers react more to intermediaries’ demand.

Figure 2: Cumulative Impulse Responses with 90% Bootstrapped Confidence Intervals

Note: Comparison of cumulative impulse responses of the three endogenous variables (in rows) to the
three demand shocks (in columns) in state 1 (dashed line) and state 2 (solid line). Shaded areas represent
90% confidence intervals based on 1000 bootstrapped replications using a fixed design wild bootstrap.
Vertical axes are in absolute changes in case of position variables and percentage changes in case of the
futures price, horizontal axes are in weeks.

The figure also shows that the largest effects occur on impact with only a limited role

for the dynamics, in particular of prices. This observation is in line with asset prices and

financial market participants responding instantaneously to each other, and has several

5 The cumulative response for a given time horizon is the sum of all responses from the previous horizons
until the current horizon. It therefore naturally stays persistent and is not expected to revert back to
zero.
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implications. First, it suggests that the estimates and the statistical inference based on the

impact matrices capture quantitatively most of the nonlinear effects of intermediary asset

pricing. Second, it implies that other empirical approaches that are based on lead/lag

relationships between variables for the identification of the impact of trading behavior

on asset prices, or vice versa, are likely to miss a relevant fraction of the overall effects.

Finally, technically, it means that the underlying assumption of no regime change over

the impulse horizon is not crucial as most of the difference between regimes is on impact.

Moreover, this assumption seems plausible for the chosen horizon of eight weeks as Figure

1 indicates a high persistence of each state. In fact, the probability of staying in the

current state is 0.96 for both states.

As a final means of quantifying the importance of state-dependencies we compute fore-

cast error variance decompositions. They yield the average regime-specific contribution

of the structural shocks to the variability of the endogenous variables. We focus on the

contributions of the shocks on impact which are similar to the decompositions for longer

horizons. Table 3 shows that during tranquil times less than a fifth of the variability of

intermediaries’ positions is explained by own shocks. They mainly respond to demand

shocks of hedgers and other traders. This is in stark contrast to the turbulent state,

where nearly 90% of the variation in intermediaries’ position is explained by own shocks.

Each of the other two shocks contributes only about 5%. Interestingly, the importance

of intermediaries’ demand shocks for price fluctuations remains constant across regimes

at 15%, despite a significant increase in the volatility of their demand shocks in state 2.

This finding suggests that the main distinguishing feature of intermediaries relative to the

other two trader groups is the significant decline in their price elasticity, which does not

apply to the other two groups, rather than the increase in demand volatility in turbulent

times, which is common to all three groups (although the increase is not statistically

significant for the residual trader group).

Table 3: Forecast Error Variance Decomposition

Variable State Demand
Shock

Hedgers

Demand
Shock

Fin.Int.

Demand
Shock
Others

Position Hedgers
1 0.54 0.09 0.37
2 0.54 0.10 0.36

Position Financial Intermediaries
1 0.23 0.17 0.60
2 0.04 0.88 0.07

Futures Price
1 0.23 0.15 0.62
2 0.31 0.15 0.54

Note: Contribution of the three demand shocks to the forecast error variance of the endogenous variables
upon impact in state 1 and state 2. The results change only marginally for longer horizons given that
there is not much persistence in the first-differenced variables.

19



4 State Determination and Sensitivity Analysis

In this section, we first investigate whether combinations of variables can be associated

with the regimes identified by the Markov switching model through logit regressions on

the smoothed probabilities. Then, we conduct a series of robustness tests of the Markov

switching model.

4.1 Regression Analysis of State Probabilities

We relate the smoothed probabilities of state 2 of the MSH-SVAR model to a number of

model-external variables through logit regressions.6 This analysis can add to the economic

interpretation of the agnostically identified regimes and potentially allows inferring which

other markets are relevant for the trading of intermediaries in the oil futures market.

Since the smoothed probability is a continuous measure, we transform it into a di-

chotomous variable by assigning 1 whenever it is above 0.5, and 0 otherwise. Only 16%

of the observations have a probability between 0.10 and 0.90, supporting this transforma-

tion. As regressors, we include a constant and, as suggested by the MS process, one lag

of the original state probability. Given the high autocorrelation of the smoothed proba-

bilities, this lag transforms the model essentially into a specification in first differences.

We therefore use first (log) differences of the other regressors as well, which also reduces

the risk of spurious regression. The regressors are the log S&P 500 index, the ten-year

U.S. Treasury rate, a trade weighted U.S. Dollar index and the log oil spot price.

Table 4 shows the point estimates for the different variables, adding them one-by-

one. Robust standard errors are in parentheses. The log odds for each variable has the

expected sign and five out of the seven variables are significant. Increases in the VIX or

the Baa-Aaa corporate bond spread signal higher uncertainty and reflect widening credit

spreads, which are both signs of financial market stress. Increases in the S&P 500, in the

ten-year rate, and the oil spot price, on the other hand, lower the probability of state 2.

Lower equity or oil returns have adverse effects on intermediaries’ trading constraints.

In Table 5 we add the same variables sequentially to the model. Only two variables

remain significant: the Baa-Aaa spread and the ten-year Treasury rate. The negative

coefficient on the Treasury rate is consistent with “flight to quality” phenomena (Brun-

nermeier and Pedersen, 2009) in state 2, induced by a commonality of liquidity across

asset markets and resulting in declining yields. Both coefficients are also in line with

6 We choose a logit model for several reasons. First, standard OLS regressions seem inappropriate as
the assumptions of linearity and homoskedasticity are violated. The smoothed probabilities show that
many observations are close to 0 or 1, with only few observations with values in between. We opt for
a logit model over a probit model as the former has fatter tails and is less sensitive to outliers. Probit
regressions yield similar results, with the coefficients being smaller in absolute value as it is usually the
case. Standard diagnostics tests like the link test for model adequacy or the Hosmer-Lemeshow test as
well as inspecting the receiver operating characteristic curve indicate that the model is well specified.
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Table 4: Logit Regressions Baseline Results

Regressor VIX Baa-Aaa TED Realized S&P Ten-year Exchange Oil
spread spread volatility 500 rate rate price

Coefficient 0.19*** 13.05*** 0.95 11.34 −0.22* −6.54*** 0.46 −0.14**

Robust S.E. (0.07) (4.86) (1.46) (12.96) (0.11) (1.68) (0.30) (0.06)

Note: Logit models with dependent variable equal to 1 if probability of state 2 of MSH-SVAR model ≥ 0.5, and 0
otherwise. Explanatory variables are in first differences and include a lag of the endogenous variable and a constant.
Pseudo R2 = 0.90 in all models. *, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. Sample period:
June 27, 2006 to May 24, 2016, weekly frequency, 517 observations. See Table 6 in Appendix A for a description of the
variables.

Table 5: Logit Regressions Extended Models

Variable (1) (2) (3) (4) (5) (6) (7) (8)

VIX 0.19*** 0.17** 0.19** 0.18* 0.27* 0.24 0.23 0.23
(0.07) (0.07) (0.08) (0.09) (0.16) (0.18) (0.16) (0.15)

Baa-Aaa spread 11.15** 11.60** 12.39** 14.20** 12.71** 11.65** 10.61*
(5.28) (5.16) (5.35) (5.73) (5.68) (5.93) (6.07)

TED spread −1.84 −1.83 −2.17 −2.47 −1.56 −1.25
(1.67) (1.81) (1.64) (1.83) (2.39) (2.57)

Realized volatility 8.26 10.90 7.76 7.85 8.79
(10.78) (12.11) (11.58) (11.11) (10.61)

S&P 500 0.15 0.25 0.29 0.32
(0.23) (0.21) (0.20) (0.19)

10y TB rate −5.48** −6.05*** −5.70***
(2.30) (2.13) (2.07)

Exchange rate 0.29 0.20
(0.29) (0.30)

Oil price −0.07
(0.08)

Observations 517 517 517 517 517 517 517 517

Pseudo R2 0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.91

Note: Logit models with dependent variable equal to 1 if probability of state 2 of MSH-SVAR model ≥ 0.5, and 0 otherwise.
Explanatory variables are in first differences and include a lag of the endogenous variable and a constant. Robust standard
errors are in parentheses. *, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. Sample period: June
27, 2006 to May 24, 2016, weekly frequency. See Table 6 in Appendix A for a description of the variables.

risk premia and risk-free rates being important factors for the futures basis and hence for

futures price dynamics (Acharya et al., 2013, Szymanowska et al., 2014). funding abilities

of financial intermediaries who in turn become less willing and/or able to take over price

risks form hedgers in the oil futures market.

4.2 Sensitivity Analysis

The section concludes with a number of robustness tests of the baseline MSH-SVAR

model. First, we enlarge the baseline model by including another trader group, namely,

the DCOT group of “Other Reportables.” This group consists of reportable traders not

classified as producers/processors/users, swap dealers, or money managers (see Appendix

A). Second, as in Herwartz and Lütkepohl (2014), we allow for a third volatility state.

Appendix B contains a figure with the smoothed probabilities for states 2 and 3. Third, we

shorten the estimation period to June 12, 2007 until May 27, 2014 to exclude the large oil

price swings at the beginning and end of the sample. Fourth, we allow for a more flexible

specification with a switching intercept term. Fifth, we include all financial variables of
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Table 5 except the oil spot price in first (log-)differences as exogenous control variables

in the model. Sixth, we exclude all exogenous variables from the model. Seventh, we

estimate a model with four lags. Eighth, we allow for predetermined exogenous variables.

Ninth, instead of using the log-change in the oil futures price, we employ the change in

the oil futures-spot basis as a third variable besides the two position variables.

Table 7 in Appendix B contains the key results of these alterations. They are qualita-

tively and mostly quantitatively similar to the baseline estimates, which are repeated in

the first row for comparison. In all specifications the demand curve of financial intermedi-

aries steepens significantly in the turbulent state, and the volatility of their own demand

shocks is significantly larger. The endogenously identified states are similar across speci-

fications and the correlation between the probability of state 2 in the baseline model and

in alternative specifications is usually quite high (see second column).7 Overall, the main

results appear to be robust to the various alterations of the model and the data.

5 Conclusion

Modern asset pricing theories state that financial intermediaries face numerous frictions

through which they affect the performance of financial markets. One of them is that during

volatile times their trading constraints become binding and their risk-bearing capacity

shrinks. Intermediaries may then be less able to enter new trades and may have to unwind

existing positions. Such occasionally binding constraints lay the theoretical foundation

for nonlinearities in the asset pricing of intermediaries (Brunnermeier and Pedersen, 2009,

He and Krishnamurthy, 2013).

This paper contributes to the literature by taking a market microstructure view and

providing direct structural estimates of the state-dependent trading behavior of intermedi-

aries. We build a Markov switching in heteroskedasticity model for the oil futures market

and test for the presence of nonlinearities, using weekly data for the period June 2006 un-

til May 2016. The model contains two endogenously identified states, one corresponding

to low and one to high volatility. The empirical results suggest two central nonlinearities.

First, the downward-sloping demand curve of intermediaries steepens significantly in the

high volatility regime. The lower price elasticity implies that intermediaries accommo-

date the hedging needs of producers, processors and consumers of oil to a lesser extent.

This increases the price effect of these demand shocks strongly. Second, the volatility

of intermediaries’ own demand shocks increases significantly during these episodes. This

raises futures price volatility further.

7 One exception is the model with the futures basis, which is more volatile than the futures price. Further,
the more volatile states 2 and 3 of the three-state model depict similar periods as state 2 in the baseline
model, and would thus be jointly correlated with that state.
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These findings indicate the existence and empirical relevance of the theoretically pre-

dicted state-dependency of intermediary asset pricing. Quantitatively, the estimates sug-

gest that the steepening of the demand curve is the more important nonlinearity, and

the main distinguishing feature of intermediaries relative to other trader groups in the oil

futures market. Open questions are whether these nonlinearities are also present at lower

frequencies, whether they help to explain the higher volatility of oil prices at high(er)

frequencies, and how the microeconomic evidence generalizes to other markets.
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A Data Appendix

Table 6: Definition of Variables

Variable Definition and Source

Position
Hedgers

Net long position of the trader group “Producer/Merchant/Processor/User” in light
sweet crude oil traded at the New York Mercantile Exchange. Standardized first ab-
solute differences. U.S. Commodity Futures Trading Commission (CFTC), Disaggre-
gated Commitments of Traders (DCOT) Report.

Position
Financial In-
termediaries

Net long position of the trader group “Swap Dealer” in light sweet crude oil traded
at the New York Mercantile Exchange. Standardized first absolute differences. U.S.
Commodity Futures Trading Commission (CFTC), Disaggregated Commitments of
Traders (DCOT) Report.

Futures
Price

New York Mercantile Exchange light crude oil continuous futures settlement price.
Standardized first log-differences. Datastream. Series code: NCLCS00. It is the front
contract continuous time series, which uses the price of the most current contract and
pricing automatically rolls over when the contract expires.

Initial
Jobless
Claims

Number Initial Claims, Weekly, Ending Saturday, Seasonally Adjusted. Standardized
first log-differences. Federal Reserve Economic Data, St. Louis Fed. Series code:
ICSA.

Fed Total
Assets

All Federal Reserve Banks Total Assets, Millions of Dollars, Weekly, as of Wednesday,
Not Seasonally Adjusted. Standardized first log-differences. Federal Reserve Economic
Data, St. Louis Fed. Series code: WALCL.
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U.S.
Macroeco-
nomic
Surprise
Indicators

Difference between actual release and the median forecast estimate of economists sur-
veyed by Bloomberg. Indicators: American Consumer Spending Growth Rates MoM
SA (PCE CRCH:IND), Average Hourly Earnings MoM% SA (AHE MOM%:IND),
Average Hourly Earnings YoY% SA (AHE YOY%:IND), Business Inventories MoM
SA (MTIBCHNG:IND), Capacity Utilization % of Total Capacity (CPTICHNG:IND),
Conference Board Leading Indicators MoM (LEI CHNG:IND), Construction Spending
Total MoM SA (CNSTTMOM:IND), Core Producer Price Index (PPI XYOY:IND),
CPI Urban Consumers Less Food & Energy YoY NSA (CPI XYOY:IND), CPI Ur-
ban Consumers MoM SA (CPI CHNG:IND), CPI Urban Consumers YoY NSA (CPI
YOY:IND), Durable Goods New Orders Industries MoM SA (DGNOCHNG:IND),
GDP Chained 2009 Dollars QoQ SAAR (GDP CQOQ:IND), Housing Starts/Permits
(NHSPSTOT:IND), Industrial Production MoM 2007=100 SA (IP CHNG:IND),
Initial Jobless Claims SA (INJCJC:IND), Markit Manufacturing PMI SA (MP-
MIUSMA:IND), Markit Services PMI Business Activity SA (MPMIUSSA:IND), Non-
farm Payrolls Total MoM SA (NFP TCH:IND), Personal Consumption Expenditure
CPI YoY SA (PCE CYOY:IND), Personal Income MoM SA (PITLCHNG:IND), PPI
Final Demand MoM SA (PCE CYOY:IND), PPI Finished Goods SA MoM% (PPI
CHNG:IND), Producer Price Index - Finished Goods (PPI YOY:IND), Productivity
Output Per Hour Nonfarm Business Sector QoQ SA (PRODNFR%:IND), Retail Sales
(Less Auto and Gas Stations) SA MoM% Change (RSTAXAG%:IND), Trade Balance
of Goods and Services SA (USTBTOT:IND), Unit Labor Costs Nonfarm Business Sec-
tor QoQ% SAAR (COSTNFR%:IND), University of Michigan Consumer Confidence
Indicator (CONSSENT:IND), US Government Budget Balance FED (FDDSSD:IND)

10y TB rate 10 Year U.S. Treasury Benchmark Bond Redemption Yield, Weekly, Ending Tuesday.
First absolute differences. Datastream. Series code: USBDS10Y.

Baa-Aaa
spread

Difference between Moody’s Seasoned Baa Corporate Bond Yield©, Percent, Weekly,
Ending Tuesday, Not Seasonally Adjusted and Moody’s Seasoned Aaa Corporate Bond
Yield ©, Percent, Weekly, Ending Tuesday, Not Seasonally Adjusted. First absolute
difference. Federal Reserve Economic Data, St. Louis Fed. Series codes: DBAA and
DAAA, respectively.

Exchange
rate

Trade Weighted U.S. Dollar Index: Major Currencies, Index 27.06.2006 = 100, Weekly,
Ending Tuesday. First log-differences. Federal Reserve Economic Data, St. Louis Fed.
Series code: DTWEXM.

Oil price Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma, Dollars per
Barrel, Weekly, Ending Tuesday, End of Period. First log-differences. Federal Reserve
Economic Data, St. Louis Fed. Series code: DCOILWTICO.

Realized
volatility

Square root of the weekly realized variance of the oil spot price, which is given by
RVt =

∑n
j=1(pt−1+ j

n
− pt−1+ j−1

n
)2, where pt denotes the logarithm of the oil spot

price and n is the number of trading days during week t. First absolute differences.
Source of the oil price see above.

S&P 500 Standard & Poor’s 500 Stock Market Index, Weekly, Ending Tuesday. First log-
differences (that is, the return). Yahoo Finance.

TED spread TED Spread, Weekly, Ending Tuesday, End of Period. First absolute difference. Fed-
eral Reserve Economic Data, St. Louis Fed. Series code: TEDRATE.

VIX CBOE Volatility Index: VIX, Weekly, Ending Tuesday, End of Period. First absolute
difference. Federal Reserve Economic Data, St. Louis Fed. Series code: VIXCLS.

Definitions of Trader Groups in DCOT Reports

Below are the definitions of the four trader groups in the DCOT Reports as stated in CFTC
(2017a). The fifth group of “Non-Reportables” is a residual component.

Producer/Merchant/Processor/User: An entity that predominantly engages in the production,
processing, packing or handling of a physical commodity and uses the futures markets to manage
or hedge risks associated with those activities.
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Swap Dealer: An entity that deals primarily in swaps for a commodity and uses the futures
markets to manage or hedge the risk associated with those swaps transactions. The swap
dealer’s counterparties may be speculative traders, like hedge funds, or traditional commercial
clients that are managing risk arising from their dealings in the physical commodity.

Money Manager: A registered commodity trading advisor (CTA); a registered commodity pool
operator (CPO); or an unregistered fund identified by CFTC. These traders are engaged in
managing and conducting organized futures trading on behalf of clients.

Other Reportables: Every other reportable trader that is not placed into one of the other three
categories is placed into the “other reportables” category.

Non-Reportables: The remainder of total open interest in the specific futures market that is not
accounted for by the other four categories of traders.

B Sensitivity Analysis: Additional Figure and Table

Figure 3: Smoothed Probabilities of the Two Volatile States in the Robustness Check

Note: Plot of the endogenously estimated smoothed probabilities of the two high volatility states, that
is, the “turbulent states,” in the robustness check of the baseline model with three different states.
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