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Online Appendices to: “Robust Real Rate Rules”

Tom D. Holden, Deutsche Bundesbank 09/12/2024

Appendix A Setting nominal rates out of equilibrium

Real rate rules work as combining the rule with the Fisher equation leads the
real rate terms to cancel out. Could this cancellation mask a singularity that would
prevent the central bank from setting rates according to a real rate rule? To see the
apparent problem, suppose that the economy is currently in period 1, and that all
in future periods, the central bank’s behaviour will be given by the simple real rate
rule of equation (2). Assume the Fisher equation (1) always holds. Then for t > 1,
re+ By =i, =1+ ¢,

Our discussion up to now would naturally lead the reader to conclude that
rt; = 0 for all £ > 1, unconditional on whatever happens in period 1. Suppose this
were true. Then, the period 1 Fisher equation would imply that i; = ;. Thus,
apparently, nothing the central bank could do in period 1 could ever produce i; #
r1. In particular, it seems that the central bank cannot apply a real rate rule in
period 1if 7t; # 0. This is incorrect though, as if a real rate rule applies from period
1 onwards, it is only the case that 77, = 0 for all t > 1 if it happens that 7t; = 0. This
confusion stems from us having given an incomplete description of equilibrium
up to now. A full equilibrium description specifies the outcome for every possible
history, not just those on the equilibrium path.

A full description of the standard equilibrium of the Fisher equation (1) and
real rate rule (2) is as follows. Suppose the rule was introduced in period 1. Then,
forallt > 1,if r, = O0foralls € {1,...,t — 1}, then 7r, = 0. Otherwise, 77, = ¢71;_4.
This implies that on the equilibrium path, 7; =0 (as with t =1, the set
{1,...,t — 1} is empty), and hence 7r, = 0 for all ¢+ > 1. However, suppose that off
the equilibrium path, 77; # 0. Then 7, = ¢711, and hence the period 1 Fisher

equation states that iy —r; = ¢7r;. Thus, i; — rq is not fixed; it is a function of
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period 1 inflation, something that the central bank can affect in period 1 via open

market operations. There is no singularity.!

Appendix B Lags in the Phillips curve and Euler equation
The robust real rate rule of equation (6) is also robust to the presence of lags in
the Euler or Phillips curve. For example, suppose the Phillips curve and Euler
equation are given by:
7t = B(1 — 0)Etyq + BorTt_q + KX, + KW, (15)
X = 0(1 = 0x)EpXpyq + 80x,_1 — Gy — 1),
where B and § may not have the same structural interpretation as B and &
(depending on the precise micro-foundation). These equations have no impact on
the solution for inflation, which remains 77, = — ﬁ ;. Instead, the lag in the Euler
equation changes the dynamics of the real interest rate, with no impact on inflation
or output gaps, while the lag in the Phillips curve affects both output gap and real
rate dynamics, with no impact on inflation. In particular, the output gap is given
by x; = @ [(/g(’n ~p(1-B(1~ Qn)p>)€t—l -(1-p01- Qn)p>£§,t] - Wi
As before, the output gap has a closed form solution in terms of the monetary
policy and cost push shocks. Monetary policy shocks are still always

contractionary, but they only have a short-lived impact on the output gap if ¢, is
p(1-Pp)

B(1-p?)

Appendix C  Responding to other endogenous variables

around

The original Taylor rule contained a response to output. Even with a unit
coefficient on the real interest rate, responding to output will change determinacy
conditions, though it still preserves some robustness. To see this, consider the

monetary rule, i, =r; + ¢, 71; + ¢ x; + ;. Suppose the lag-augmented NK

1t is worth noting that there are other equilibria of equations (1) and (2) that imply an identical equilibrium
path but generate more plausible behaviour off this path. Suppose that in period 1 when the rule is
introduced, the economy starts in state A. Suppose also that each period a biased coin is tossed which comes
up heads with probability g € (0,1]. If the economy is in state A in period ¢, then 77, = 0, whereas if the
economy is in state B in period ¢, then 77, = % 1;_q.Fort > 1, the economy is in state A at t if and only if either
(i) the economy was in state A atf — 1 and 77;_; = 0, or (ii) the coin comes up tails. Otherwise, the economy
is in state B at t. Thus, in state B, E,7t; ; = q% ; + (1 — q)0 = ¢y, as required. Hence, explosions need not

last for ever following a deviation.
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Phillips curve (15) holds, then this monetary rule is equivalent to the rule:

i =1+ §rrt + K [ — B(1 = 02) By — BorTtioa] — Pxtor + &
(This is produced by using the Phillips curve to substitute out the output gap.)
Combined with the Fisher equation, we have that:

EiTti1 = $rrty + k[ 1, — Bl = 0)E 7y, — Bgnﬂt—l] — i + Gy
This has a determinate solution if the quadratic:

[1+ 5791 = 0:)]A% = (¢ + K7 P ) A+ 57 B0y =0

has a unique solution for A inside the unit circle. It is sufficient that the quadratic
is positive at A = —1 but negative at A =1, which holds if and only if 1 +
k1 (1+B) + ¢, >0and 1 —x"1¢,(1—p) — ¢, <0.S0,if x« > 0, p, > 0 and
B € [0,1] as expected, then it is sufficient that ¢, > 1 as before.? This is still
considerable robustness. Providing there is something like a Phillips curve linking
inflation and the output gap, the standard ¢, > 1 condition will be sufficient for
determinacy. This would not hold with a more standard monetary rule: in that
case determinacy depends on § and ¢, as shown by the Bilbiie (2008; 2019) results
discussed in Subsection 3.2 of the main text.

Responding to real rates provides additional robustness even with a response
to output as it disconnects the Euler equation from the rest of the model. The only
remaining role of the Euler equation is to give a path for real rates, given the
already determined paths of output and inflation.> The Fisher equation, not the
Euler equation is central to monetary policy transmission under real rate rules.

For greater robustness, the central bank can replace the response to the output
gap with a response to the cost push shock w,. With an appropriate response to
wy, this is observationally equivalent to responding to the output gap, but ensures
determinacy under the standard Taylor principle.

However, it may be hard for the central bank to observe the cost push shock.
To get round this, suppose that the central bank knows that a Phillips curve in the

2 This is stronger than necessary. The second condition states that ¢, + x~1¢,(1 — ) > 1 so a response to
the output gap can substitute for a response to inflation. This condition is identical to that for the standard
(purely forward looking) three equation NK model with Taylor type rule found in Woodford (2001).

3 This is analogous to how the Euler equation is slack when solving for optimal monetary policy. In that case,
the combined Euler equation and Fisher equation give the level of nominal rates required to hit the optimal

output gap and inflation. The author thanks Florin Bilbiie for this observation.
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form of equation (15) holds. (Our results would generalize to other links between
real and nominal variables.) For now, suppose the central bank also knows the
coefficients in equation (15). Then the central bank could use a rule of the form:
=1+ ¢+ (Px[xt — k= B(1 = 0 Bty — Bgnnt—l]] + G-

By equation (15), this implies that, i, = 1, + ¢, 71, — ¢, w; + {;, as desired. Of
course, the central bank is also unlikely to know the coefficients in the Phillips
curve. However, we show in Supplemental Appendix K.5 in Holden (2024) that
the central bank can learn these coefficients in real time, without changing the
determinacy conditions, at least under reasonable parameter restrictions.*

If the central bank wishes to respond to other endogenous variables, a similar
approach should be possible if they are aware of the broad form of the model’s
structural equations. However, the central bank may worry about having
fundamental misconceptions about how the economy works. They can be
reassured though that the Taylor principle is sufficient for determinacy if the
response to other endogenous variables is small enough, no matter the form of the
model’s other equations. We prove this in Supplemental Appendix K.1 in Holden
(2024). This also implies that a precise unit response to real rates is not needed for
determinacy. Real rates are just another endogenous variable, so determinacy only
requires a response sufficiently close to one.

Classic results on determinacy in monetary models can be reinterpreted
through this lens. Even if the central bank is not responding to real rates, it is still
likely to be responding to variables that are correlated with them. Our results
imply that rules sufficiently close to a real rate rule must be determinate.

For example, many models contain an Euler equation of the form:

Cr \¢
1= B(expr,)E,; (C d ) ,
t+1
where C; is real consumption per capita and ¢ is the elasticity of intertemporal

substitution. Additionally, in many models, in equilibrium, consumption growth

roughly follows an ARMA (1,1) process:

4 1t is sufficient (but not necessary) that ¢, >0, ¢, >0,k >0, E €[01], 0, €101),p€[01) and ¢, >
21— $:(1+)
( Qﬁ)/ K *

max {;
B(1-0)
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C
g = log (Cttl) = (1= 0g)8 + 0g81-1 + &g + g1, £gr ~ WN(O,0%).

(This is a good approximation to US post-war data.’) Combining these two

equations gives that:

r, = —logpB +

— 2
: gpgg - % (%) + %ggt + e_gggg,t,
implying that a (roughly) % response to consumption growth can substitute for a
(roughly) unit response to real rates.

Of course, output (growth, level or gap) is in turn highly correlated with
consumption growth, so output (growth, level or gap) may also substitute for real
rates. For example, in the Smets & Wouters (2007) model of the US economy, the
monetary rule is of the form i, = ¢, 71, + z; + {;, where z, is a linear combination
of other endogenous variables and ¢, is the monetary shock. At the estimated
posterior mode, the correlation between z, and the real interest rate is 0.63, with
both variables having standard deviation of 0.46%.° Thus, the Smets & Wouters
(2007) estimates imply that (in a sense) the Fed is already about two thirds of the
way to using a simple robust real rate rule.

There is one final way of allowing an interest rate response to other
endogenous variables that is both simple and robust. Rather than placing the
endogenous variables directly within the rule, the central bank can follow a time-

varying inflation target which is a function of these endogenous variables. We

propose this approach in Section 2 of the main text.

Appendix D Learning and bounded rationality

Our results on Fisher wedges in the main paper (Subsection 3.3) suggested
that as long as 6 is large enough, real rate rules should continue to work in the
presence of departures from perfect rationality. Here, we verify this for several

popular models of learning and bounded rationality.

5 Estimating on US data from 1947Q1 to 2023Q4 (U.S. Bureau of Economic Analysis 2024) with T-distributed
shocks gives p, = 0.64, 0, = —0.43 (p-values both below 0.001). Using Gaussian shocks on data up to
2019Q4 gives similar results (o, = 0.67, 6, = —0.53). These results can be generated by running the
MATLARB script “Main.m” provided in this paper’s replication materials.

® These results can be generated by running the MATLAB script “Main.m” provided in this paper’s
replication materials. The code for replicating Smets & Wouters (2007) is derived from code provided by

Pfeifer (2024), itself based on the authors’ original replication code (Smets & Wouters 2019).
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D.1 Adaptive, naive, and extrapolative expectations

Branch & McGough (2009) suppose that aggregate inflation expectations are
a linear combination of rational expectations and an additional term capturing
adaptive, naive or extrapolative expectations. In particular, agents’ period t
expectation of period t + 1 inflation is givenby aE, 7, + (1 — a)07,_;. Here, & €
[0,1] gives the weight on rational expectations, and & > 0 controls whether the
non-rational part is adaptive (6 < 1), naive (6 = 1) or extrapolative (6 > 1). This
leads to the behavioural Fisher equation i, = r; + aE; 71, + (1 — a)07m1,_.

We suppose that the central bank follows the monetary rule of equation (6),
iy =1 + ¢y + ;, where {; is an AR(1) process with persistence p € (—1,1), and
where ¢ > 0 at least. Combining this monetary rule with the behavioural Fisher
equation then gives that aE,7; 1 — ¢71, + (1 —a)01,_1 = ;. If & = 0 (meaning
there are no rational agents), then this is purely backwards looking and hence has
a unique solution, given by 71, = ¢$=1(1 — a)07,_; — ¢p~1{,. For stability, we need
¢ > 6, which is stronger than ¢ >1 if 6 > 1. When a >0, the system is
determinate if and only if ¢ > & + (1 — &)6, which again may be stronger than ¢ >
1if 6 > 1.7 Atleast for sufficiently large ¢ though, the solution is unique and stable,
even in the extrapolative case of § > 1. Furthermore, as ¢ — oo, var 7r; — 0. This
means that sufficiently aggressive monetary policy is capable of squashing the
variance of inflation, even in the presence of adaptive, naive or extrapolative

expectations.

D.2 Diagnostic expectations
Under diagnostic expectations (Bordalo, Gennaioli & Shleifer 2018; L'Huillier,
Singh & Yoo 2023; Bianchi, Ilut & Saijo 2023), agents use the non-rational

expectation operator E¢ defined by:

1 ¢ e
0 —— RE:t+1 RE:t+1 ~ RE:t—j+1
Eive = Bpoy 7 + 0| By — ] - z ,’X]'Ef—jvtﬂ ’
j=1%17=1

where v, is any endogenous variable, 6 > 0 governs the overreaction to new

7 For determinacy the quadratic g(A) := ar? — $A + (1 — a)0 must have one root for A inside the unit circle,
and another outside. Note 4(0) = (1 —a)8 > 0,4”(0) > 0and g’ (1) = Oifand only if A = % > 0. Thus, there
is determinacy if and only if 0 > q(1) = a — ¢ + (1 — a)6.
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information, &;,...,&; govern the relative importance of memory at different
horizons, and where vRE*S is the value v, would take if all agents had rational
expectations from period s onwards. (This definition follows Bianchi, Ilut & Saijo
(2023) in assuming agents take a naive approach to dealing with their own time
inconsistency.) In the following, we will take | = oo, meaning that memory
matters at all horizons. We set &; = (1 — w)a/~! giving geometric discounting to
distant memories, governed by the parameter a € (0,1). The | =1 case of
L'Huillier, Singh & Yoo (2023) is nested here as the limit & — 0.

As before, we are interested in the solution to the model governed by the
monetary rule of equation (6) with the diagnostic Fisher equation:

iy =1+ E{pria — py,

where p; is the logarithm of the price level, so 7, = p, — p;_1.® We assume ¢ > 1.
Note that the Fisher equation is given in terms of expectations of the price level,
not of inflation. The two are not equivalent under diagnostic expectations, and it
is the expectation of the price level that emerges from the Euler equation (see
L'Huillier, Singh & Yoo (2023) and Bianchi, Ilut & Saijo (2023)).

Now, by the results of Subsection 3.1, for t > s, pREs = pRES — ﬁ [ posm
ﬁ th<=s Zi- Hence for j > 0:
o ! . gt—j 1- pi+1
]E_‘P = =P ]E_-gk:p_‘_p .
t=jPt+1 t—j ¢_pk=tz—f+1 t—j N v

So, from the Fisher equation and the definition of diagnostic expectations:

(o)
RE:f+1 RE:f+1 i—1 RE:f—j+1
Eprn —A—w) Z o/ E b — Pt
j=1

ip=r+Eplg +0

4 4
=]"t—p¢—_tp+9[7-[t—p¢_tp_ (1_“)51’—1]1
where the auxiliary state s, evolves according to s, = as;_; — =71, — p(1 +

0) (p—_tp — z;_1, and where the auxiliary state z; evolves according to z; = apz,_; +

ap? %. Thus, by the monetary rule:

T = — (1 _g)—l [(1 +gp) ¢§_p+g(1 —“)St—1],

SO:

8 Supplemental Appendix H.2 in Holden (2024) justifies introducing the price level in this way.
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it 9)_1<1+9) (1+p)
of) P TR =
Inflation 77, is stationary if and only if s, is stationary. Since z; is clearly

stationary, for s, to be stationary, we need that -t e (=1,1). Given our
Y t Y ¢—0

assumptions, this requires that ¢ > max{l,%}. Bianchi, [lut & Saijo (2023)

—Zt-1-

estimate § = 1.97 and a mean memory horizon of around 5.44, corresponding to
a = 0.18, so we would need ¢ > 2.40. If ¢ were below this value, then inflation
would explode. This comes from compounding overreactions to past
overreactions.

Still, for ¢ large enough, inflation is stationary. Furthermore, as ¢ — oo,
var 71, — 0, and var((¢ — p)7t; + {;) — 0 as well. The latter fact means that with
even moderately high ¢, inflation’s dynamics are very close to its dynamics under
rational expectations. Hence, as long as the central bank is moderately aggressive,
a real rate rule gets inflation to target even in the presence of diagnostic

expectations.

D.3 Finite horizon planning

Woodford (2019) gives a model of limited planning horizons. Agents are
assumed to optimize over decisions in finitely many future periods, using a
learned value function to evaluate outcomes at their planning horizon. We will
focus on the simple case in which planning horizons are heterogeneous across
agents, with a fraction (1 — a)&/ of households having planning horizon j € N,
where &« € (0,1). With a learned terminal value function, this leads to the Fisher
equation:’

Iy =1 =1 = T+ By (Mg — Tipq),

where the (learned) trend levels of nominal rates, real rates and inflation, 7;, 7, and
7T;, respectively satisfy ¢71;, = 1, — 7, = a7, + (1 — a)pt;_1, assuming the monetary
rule is again given by equation (6), where y; (a measure of the relative marginal

value of real over nominal bonds) evolves according to:

pr= A —=7pp_q + 7 — 1),

9 We derive this by combining the Euler equation for nominal bonds in equation (61) of Woodford (2019)

with an Euler equation for real bonds produced by setting 77;,1 = 7;,1 = 0 in the same equation, (61).
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where 7 € (0,1) controls the speed of household learning.!® Thus, if we define
m:= ﬁ, then 77, = muy,;_4, so:

E, [7'(;:;1] _ l“_l[(f’;‘ aym] ﬂr%ﬂ[‘f:ig ;’L()l + m)]]] [;:_fl] + [a(;l] Z,

The large matrix here has eigenvalues 1 — y € (0,1) and % Thus, for determinacy;,

we just need that ¢ > a, which is strictly weaker than ¢ > 1. The solution has:

G _ G
s—ap T (1_7)ﬂt—1_')’¢_ap-

As with diagnostic expectations, as ¢ — oo, var 77, — 0, and var((¢ — p) 7, +

T =My 1 —

¢;) — 0 as well, so again a large ¢ brings dynamics towards those under rational
expectations. It is particularly reassuring that with finite horizon planning,
determinacy conditions are weaker than under rational expectations. Given a mix
of finite horizon expectations and diagnostic or extrapolative ones, it is likely that

¢ not much larger than one would be sufficient.

D.4 Least squares learning

Under least squares learning (Marcet & Sargent 1989; Evans & Honkapohja
2001), agents update their beliefs about the laws of motion of endogenous
variables via recursive least squares. We suppose the real rate rule of equation (6)
is introduced in period 1, and we allow agents to begin with prior beliefs that may
not be centred on the rational expectations solution. For simplicity, we assume
agents can directly observe the monetary shock ¢;. (Without this assumption, we
can still prove local convergence of beliefs to rational expectations. With it, we will
have global convergence.) We also assume that the shock to {; is normally
distributed.

Since agents observe the exogenous process (;, by the strong law of large
numbers, their estimates of the parameters of ;s law of motion converge almost
surely. Thus, without loss of generality, we can assume that they already know
these coefficients. Then, let v be the known variance of ;. We suppose that in
period t, agents believe that for all s, 7y, = a, + b,{; + €,, where they believe

E,_1&, = 0. Allowing for a constant seems natural, as they may not know the

10 The right hand side of the equation for 7, — 7; and the law of motion for y, are derived from subtracting
versions of equations (46), (59), (65) of Woodford (2019) for real bonds from the corresponding equations

for nominal bonds.

Page 9 of 25



inflation target (here zero), or the size of the static Fisher equation wedge (here
also zero). They estimate the coefficients a, and b, by recursive least squares, given
some initial prior beliefs a, and b, with weight w > 0, and given the known value

of v. Hence:

- )+t lE] v

Agents then approximate E, 7, by a; + pbtgt, so from the monetary rule, 2, +

ob.l; = ¢y + {;. Thus, if we define m, := (1 + 03 ) then:

1 1
T = ¢ [a; + (0b = 1) ] = amtm + ® [ =mpa,_q + (0 —my)b_18 — ]

So 7ty = (¢ —my) "' [(1 = mpa_y + (o — my)by_15; — ;] Substituting this back

f+w

into the law of motion for [Zi] gives a recurrence for these variables to which we
can apply a slight generalization of Theorem 6.10 of Evans & Honkapohja (2001).
We do this in Supplemental Appendix K.11 in Holden (2024) and so prove that if
¢ > 1, then with probability one, a; converges to 0 and b; converges to — % Since
f’ converges in probability

to zero as well. Thus, agents succeed in learning the rational expectations solution,

m, converges in probability to zero, this implies 77, +

no matter what the initial conditions are. This guarantee of global stability under
least squares learning is a large improvement over the situation with standard
monetary rules, for which at best local stability can be proven (see e.g. Bullard &
Mitra (2002)).

D.5 Constant gain learning

If agents believe parameters may be non-stationary, then it is no longer
reasonable to perform standard least squares learning. Instead, it is natural to
assume that they learn with a constant gain coefficient on new observations
(Evans & Honkapohja 2001). This replaces the ;— gain in the law of motion for
[Zt] above with some constant, oy > 0. For s1mphc1ty, we start by looking at the p =
0 case. As before we assume that agents know the coefficients governing ¢;, so they

know that p = 0. Then 4, and b, evolve according to:

O R e
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3 9
B [@4]_ g g
Nk T il LU R

p-7rv "o
The results of Conlisk (1974) imply that the mean and variance of [ZZ]
converge to finite constants if and only if the eigenvalues of the expectation of the
Kronecker product of the transition matrix with itself are in the unit circle. These
eigenvalues are 1201 ’)/+O(7) 1201 4> 7+O(’)/) 1—2¢ v+ O(7?),
1-2y+0("?) asy — O So ¢ > 1 is sufficient for the mean and variance of [ bt]
converge to finite constants for all sufficiently low <. In this case, Eya; — 0 and
Egb; = —% as t —» oo, as expected. Moreover, note that by continuity in p, the
convergence of means and variances generalises from the p = 0 case. In particular,
for all ¢ > 1 and all p and vy sufficiently close to 0, the mean and variance of [Zi]
will converge to finite values (continuous in p).
Finally, from the explicit formula for the variance given in Conlisk (1974), we
have that with p =0, ¢ > 1 and < sufficiently low, var, [ZZ] — 0 as t - oo,
meaning that a, and b; converge in probability to the truth. (Note that if 2,_; = 0

and b,_; = — %, then a4, = 0 and b, = — - as well.) Thus, even though agents are

1
¢
using a constant gain, they still manage to exactly learn the true parameters,
whatever the initial conditions. It is easy for agents to learn the rational

expectations equilibrium under a real rate rule!

Appendix E Non-linear expectational difference
equations

E.1 General set-up

We are interested in the non-linear expectational difference equation:

* ¢ r:| *

tHt—1 —E —t+1 t+1)t

I1 T MEE, T
t =1 L1

IT; E
If we define X, := ——and Z, := Ll then this difference equation is a particular

example of the more general equat1on.
X! = By Zy 1 X
We show in Appendix E.2 below that if Z, = 1 for all ¢, then this has a unique

solution for ¢ > 1, and we show in Appendix E.3 that it still has a unique solution
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for arbitrary Z;, under a few additional conditions, and that the solution is
approximately unique under even milder conditions.

For the results of Appendix E.3 to apply, we need that I1; is bounded above.
This is true in any model with monopolistic competition in which at least some
small fraction of firms do not adjust their price each period. This does not seem an
unrealistic assumption, at least if the model’s time periods are sufficiently short.
Even under hyper-inflation, it is still unlikely that firms adjust prices many times
per day.

I, is bounded above in such a model because the price level remains finite
even if adjusting firms set an infinite price, as all demand switches to non-
adjusting firms. For example, the model of Fernandez-Villaverde et al. (2015)
contains the equation: 1 = 0I1; 14— G)ﬁtl_g, where ﬁt is the relative price of
adjusting firms and & > 1. This equation comes from the definition of the
aggregate price. As 1, — oo, I, - 7T < oo, thus inflation is always bounded

above, as required.

E.2  Uniqueness of the solution of a simple non-linear expectational
difference equation

Let ¢ > 1. We seek to prove that the non-linear expectational difference
equation:

X! = EXp,

has a unique solution that is:

a) positive (ie., X; > 0forallt € Z),

b) strictly stationary (so for example EX; = EX; forallt,s, € Z),

¢) and has bounded unconditional mean and log mean (i.e., EX; < co and

|Elog X;| < oo forallt € Z).

Clearly X; = 1 is one such solution.

Let X, be a solution to X;P = E,X;,, satisfying (a), (b) and (c) above. Let x, :=
log X;. Then from taking logs, we have:

¢x; = log Erexpx;yq > logexp Epxy g = Epxpyq,

by Jensen's inequality. Therefore, by the law of iterated expectations, for any k €
N:
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PFx, 2> Epxppge = By

As k — oo, the left-hand side tends to either plus infinity (if x, > 0), zero (if x, =
0), or minus infinity (if x, < 0). On the other hand, as k — oo, the right-hand side
tends to Ex; > —oo, by stationarity. Thus, we must have that x, > 0 for all t € Z,
else this equation would be violated. Hence, X; > 1 forallt € Z.

Now note that by stationarity, the law of iterated expectations and Jensen’s
inequality:

EX, = EX,,; = EE,X,,; = EX? > (EX,)?,

sol> (EX,)?1, meaning EX; < 1. However, since X; > 1 for all t € Z, the only
way we can have that EX; < 1isifinfact X; = 1forallt € Z.

Therefore, X; = 1 is the unique solution to the original expectational difference

equation satisfying (a), (b) and (c) above.

E.3 Uniqueness of the solution of a more general non-linear
difference equation
Let ¢ > 1 and let (Z;),cz be a stochastic process satisfying the following
conditions:
i) Z,>0,forallt € Z,
ii) EZ,,=1forallteZ,
ili)  (Z;)ey is strictly stationary,
iv)  there exists Z > 1, independent of the stochastic process (X;);cz (to be
introducedzb, such ’Ephat for all ¢ > ¢, and for all t € Z and all k € N with

k>0,EZ <7

The larger is ¢, the weaker is the moment boundedness assumptions (iv). For
example, if f = 2, then this just requires bounded second moments.

LetX € (0,1) and let ¢ > ¢. We seek to prove that the non-linear expectational
difference equation:

X! = By Zy 1 X,

has a unique solution that is:

a) bounded below by X (so X; > X > 0forallt € Z),

b) strictly stationary (so for example EX; = EX| forallt,s, € Z),

¢) and has bounded unconditional mean, ¢ mean and log mean (i.e., EX, <
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o, IEX;p < oo and |Elog X;| < oo forall t € Z).

Clearly X; = 1 is one such solution. Note that Z, may be a function of X, and
its history, so Z; and X, are not guaranteed to be independent. The previous
subappendix covers the case with Z, = 1 in which slightly weaker assumptions
are needed.

First note that for all t € Z:

1= IEtZt+1 = IEt[Zt+11] = Et[zt+1Et+1[Zt+21]] = Et[Et+1[Zt+1Zt+21]]

= IEt[Zt+1Zt+21] = Et[zt+1zt+2Et+2[Zt+3l]] =

k
= E, [n Zt+j], Vk e N,
j=1

by assumption (ii) and the law of iterated expectations.
Now let x, := log X; and x := log X. Then from taking logs, we have:
¢x; = log EyZy g exp Xy 2 logexp BiZyqXp4q = EpZyqxpyq,
by Jensen’s inequality, as E,[Z;,; x (-)] defines a measure since E,Z;, ; = 1.

Therefore, by the law of iterated expectations, for any k € N:

k k
¢kx, > E, [1’[ Ztﬂ] Xk = By [1‘[ Ztﬂ-] x=1x>—co,
j=1 j=1

by the result of the previous paragraph. As k — oo, the left-hand side tends to
either plus infinity (if x, > 0), zero (if x, = 0), or minus infinity (if x, < 0). Thus,
we must have that x, > Oforallt € Z, else this equation would be violated. Hence,
X; >1forallt € Z.

Now, define z := log Z,and for allt € Z and all k € N with k > 0 define:

p-1
Ll K2
Zt,t+k = ].Og |:EtZ;P+_k < Z,
by our assumptions (iv). Then by repeatedly applying Holder’s inequality:
p-1
CR
X? =B, Z, 1 X1 < []Etz;”+1 ] [EX?,]?
1
91 -1 ¢
R N
< []Etzfﬂ ] E; []Et+1zf’+2 } (B X}, ]?
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$-1 ¢-1
¢

il P Ll L
¢$— ¢$—
= ]El‘Zt+1] ]El‘Zt+2] []E Xt+2]
<.
Pp—1

|7 1o T

<[][ez]” ot

]:

forallk € N withk > 0. Thus from taking logs and limits:
- . z
Xy S Z ¢z, T ¢ k- 11m[qb “log E, Xt+k] Z P24y < Tl’
=1

where the equahty follows from the fact that by stationarity, hm E Xfir P = ]EX;D <
co. Thus, X; < Zﬁ forallt € Z. By assumption Z is not a functlon of ¢,s0as ¢ —
co, this upper bound on X; tends to 1. Hence, for large ¢, X; = 1, giving
approximate uniqueness.

We can derive even stronger results in the case in which ¢ =1 (in our
assumptions) and one additional assumption holds. First note that with ¢ =1,
from taking limits as ¢ — 1 in assumption (iv), we must have that Z, < Z with
probability one (forallt € Z).

Let Z; be the value that would be taken by Z, if it were the case that X; = 1 for
allt € Z.So, itis also the case that Z; < Z with probability one (forall t € Z), by
our assumption (iv). Suppose further that there exists ¥ > 0 such that:

E|Z, — Zf| < kE(X; — D).
This is reasonable, since if X; — 1 (almost surely), we expect that Z, — Z; (almost

surely) as well.

Now note that:
1 1
E(X;—1)=E [(Etzt+1Xt+1)¢ - 1] <E [E(EtZHlXtH - 1)]

1
=—[EZ, X, —1],
4’[ 1Xp — 1]

(using stationarity and the law of iterated expectations in the final equality). Thus:
% 1 1
E(X,—1) = E [(Etzmxmw - 1] <E [E(Etzmxm -1 = FLEZX 1)

1 1
= E[EZtXt —EZ}] = E[E(Zt —Z)X; + EZ{ (X, = )]

1
< —[ElZ; - Z{|X; + EZ}(X; = 1)]

‘S-
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1 s =
< [Kna(xt ~)ZP T+ ZE(X, - 1)

1] = —
=5 lefP—l + Z] E(X, — 1),
(from, respectively, the convexity of y — y%, stationarity and the law of iterated
expectations, the fact that EZ; =1, algebra, that y < |y|, our bounds on X,
E|Z; — Z;| and Z}, and more algebra). As ¢p — oo, Kzﬁ +7Z - k+Z < 0,50 for
large ¢ it must be the case that % [KZﬁ + 7] < 1. Hence if ¢ is large enough for
this to hold, then E (X; — 1) < 0. However, since X; > 1 forallt € Z, the only way
we can have that EX; < lisifinfact X, = 1forallt € Z.

Therefore, for large enough ¢, X; =1 is the unique solution to the original

expectational difference equation satisfying (a), (b) and (c) above.

Appendix F  Determinacy without the response to the
change in relative inflation

We suppose that the central bank sets nominal interest rates using the rule:

Iyp—s = Max {O, Thi—s + Vip—s + (p_1jp—1-5 — Tt—1jt—-1-5 — Vr—1jt-1-5)
1< 1<
% ~ % ~ %
+ ]Et—ST Z k-1 — ]Et—l—ST Z 1k + 075 — nt—S)}/

with 6 > 0. Define A; := (Viyg — Vigsi) — (Viciqsi—1 — Vi—14sp—1) (as in the

main text), and:

T
¢ :=E 1 (7T — 7t} )
t = tT t+k—L+S t+k—L+S/*
k=1

Then, combining the monetary rule with the multi-period Fisher equation from
Subsection 5.2 gives:
51. + At = ét_l + 9(7-[1. - ﬁ;).

And substituting this back into the definition of ¢; them implies:

T
6T¢, = By ) (Crkoirs — Crakorss—1 + Drskrss)-
k=1

When A, is exogenous, this expectational difference equation has a unique solution
if and only if it has a unique solution when A; = 0 for all . In this case, via the
substitution e, = cA! we have the characteristic polynomial, §TAL=5 = AT — 1.
(Note, our assumptions imply T>L—-S>0 and T >1). The roots of this

equation decide the determinacy of e, (and hence 7;). For determinacy, we need
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L — S > 0 roots strictly inside the unit circle, corresponding to the lags of ¢, in our
difference equation, and T —L + S > 0 roots strictly outside the unit circle,
corresponding to the leads of ¢; in our difference equation.

We will prove that the polynomial:

AT —1=0TALS
has L — S roots strictly inside the unit circle and T — L + S roots strictly outside of
the unit circle, if either L— S =0or 6 > %

First, note that in the special case of L — S = 0, the result is trivial, as the
polynomial becomes AT =1+ 0T, so |A| = (1 + QT)% > 1 as required. (This case
overlaps with the result of the main text.)

Next note that as 6 — oo, L — S roots go to 0, so at least for large 6, L — S roots
are strictly inside the unit circle, as needed. What happens to the other T — L + S
rootsas @ — co? If T = L — S, then there are no such roots, so assume T > L — S.
To examine what happens to these roots, first define « := G_ﬁ, sox - 0asf —
oo, and:

(AT —1) = Tk~ (T-L+H)L=5 — ),
Next, suppose A = zk~! where z = z5 + O(x) as k¥ — 0, so:
((zg + O(K))K_T — 1) — T(zé‘s + O(K))K_T =0,
as © — 0. Multiplying by T then gives:
2 — kT = Tz5=5 + O(x) = 0,
as k — 0. Hence as T > 1, we must have that zJ — Tz5=° = 0, so:

log(T) + 2irtk
T—L+S

ZOE{eXp< )ikE{O,...,T—L+S—1}},

where 7T is the mathematical constant usually denoted by 77, and i := V—1. Thus,
as A = zpk~1 + O(1), as ¥ — 0 (meaning § — o), |A| - oo. So, as required, for
large enough 0, the other T — L + S roots are strictly outside the unit circle. Le., we
are guaranteed determinacy for sufficiently large 6.

Now, suppose 6 is large enough to give determinacy, and consider what
happens as 60 is continuously reduced towards zero. There are two possibilities,
either for some critical # a root crosses the unit circle, or there is determinacy for
all positive 0. In the former case, there must be some A € C with |A\| = 1 such that

the critical value of @ is:
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AT -1

But then by the triangle inequality:
MNT+1 2
9* = 9* <— = —.
= TAE=S T

Hence, in either case, for any 6 > %, we must have L — S roots strictly inside the

unit circleand T — L + S roots strictly outside of the unit circle, as required.

Appendix G Fiscal Theory of the Price Level (FIPL)
results

G.1 Exact equilibria under active fiscal policy with geometric
coupon debt and flexible prices

Suppose the representative household supplies one unit of labour, inelastically.
Production of the final good is given by y, =[,(=1). In period 0, the
representative household maximises Eq )~ B'logc;, subject to the budget
constraint:

Piey + Ay + QB + Pty = Pyyy + ;1A 1 + (1 + wQp) By,

where ¢, is consumption, 7, are real lump sum taxes, P, is the price of the final
good, A, is the number of one period nominal bonds purchased by the household
at t, which each return I; in period t + 1, Q; is the price of a long (geometric
coupon) bond and B, are the number of units of this long bond purchased by the
household at ¢. One unit of the period t long bond bought at ¢ returns $1 at  + 1,
along with w units of the period ¢ + 1 bond.

The household first order conditions imply:
Py, Py,

1=BLE,m——, Q; = BE (1+ wQi41).
Pl " PriCii 1 =F "PriiCin o
The household transversality conditions are that:
. o QiBy
1 bt = 1 t = 0.
tggﬁ Pyc, O tl’%}’ﬁ Pc, 0

The government fixes taxes at a constant positive level 7, = 7, where T > 0.
The government issues no one period bonds, so A; = 0. The central bank pegs
nominal interest rates at [, = f~1. (We will discuss active monetary policy later.)

The final goods market clears, so y; = ¢, = 1. Thus, from the household budget

constraint, we have the following government budget constraint:
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QiB; + Py = By 1 (1 + wQy).
We look for an equilibrium in which P, = P for all t > 0. We do not impose a
priori that P = P_;.
With P, =P for t>0, the household Euler equations simplify to
(respectively):
1 =Bl = BE;(1 + wQpy1).
The former equation is consistent with the CB’s peg of I, = 1.

We consider the following solution to the latter equation:

Q=7 —Igﬁw * (QO ~1 —ﬁﬁw) ()™

We wish to find Q, which is free to jump. There are three cases to consider:
Casel: Q) <37 ’Z

certainly cannot be consistent with a world in which I; > 0. Thus, this case is ruled

. Then Q, eventually goes to zero (and then negative), which

out.
Case2: Q) = ﬁ —. Then Q, is constant, and the government budget constraint
becomes:
B, =p7'Biy — (1 - pw)PT
Thus:
Bt=Prll__ﬁ/;”+ (B_l—P ﬁ;’>ﬁ -1
So:

B %ff =1 —ﬁﬁw% Is 11_—ﬁ/§U B+ (B Pr 11_—[5; )5

1—1/3w11’<B 1 - PT 11_—/3/;) )

as t — oo. Thus, from the transversality constraint, P = B—;lll__ﬁi] . This is the

standard FTPL equilibrium. Equilibrium type 1!
Case 3: Q, > £

1—/3w'

. 1- 1B
Define z := Q, ( Al

and z > 0, and define g, := Q,(Bw)" =
% [z + (Bw)!], and b, := Btw £, Then the government budget constraint states:

w)! ‘Pt
bt=(1+(ﬁ )>bt_1_ﬁ y
Wy q
and the transversality constraint states %thm q:b; = 0. By our solution for q,, we

know that g, — %

> 0. Thus, the transversality condition requires tlim by =0.
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Now define:

- b, b, b,

b = =

: (Bw)k ¢ (Bwlz+ (Bw)1T\ T z+ (Bw)!
[T+ G HH( i Gar]) 2oy

withb_; = b_; = wB_;. The denominator in the definition of b, is greater than 1,
soif b; —» Oast — oo, then certainly b, — 0. Likewise, if b, » 0 as t — oo, then also

b; — 0, since for all ¢:
_ g2t (Bw)7! + (Bw)”!
b = Il S5 <

So, the transversality condition is equivalent to tlim b, = 0.

Now, substituting the definition of b, into the law of motion for b, gives:

b=y ——— " _ A =pelPr
t = Y- %
qt Hk 0 (1 + (52652 ) o (IBW)
SO:
;o7 — Bw)PT ¢ _ (1-Bw)PT1-p*!
br=bo - Z+(ﬁw) FE e M e r ey ey

.3 _(1—,Ba))PT 1
U z+ (Bw) 1 B(1-BY

(1-Bw)Pt 1

as t — co. For transversality, we thus need that b_; — ) T BB 0,
meaning;:
_BO-B)z+ Bw) '], _(1=B)(1+Quw)
P = b_q = B_;.
(1-Bw)T T
Hence, one equilibrium is for Q, > ﬁ — to be arbitrary and for P to jump to

satisfy this expression. Equilibrium type 2!

Note that this implies that for all ¢:
(1+ wQ)B;_4 _ 1+ wqt(ﬁw)_tE zZ+ (ﬁw)_l wi-1 = T
P P Tz (Bw)t! 1-p

so, it is still always the case that the real value of debt equals the present value of

current and future taxes.
Alternatively, suppose P is given. Then, from the previous solution for P, we

have that if Q, jumps to:

1 Pt B
QO‘Z[(1—/3)B_1_1] Zl—ﬁw’

then the transversality condition will be satisfied. This just requires that:
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JBa1-F
- 17 1-Bw

Hence, inflation is unbounded above in the initial period. Therefore, the FTPL

implies a lower bound on the price level, not an upper bound, and so with passive
monetary policy, there are multiple equilibria.

Now suppose that monetary policy is active, with I; = ﬁ_lﬂf, with ¢ > 1and
IT; := % B! is the real interest rate in this model, so this is a non-linear real rate
rule. Given that ¢, =1, the Euler equation for one period bonds implies the

nonlinear Fisher equation:

1
1 = ;BIt]Et ﬁ,
+

so, fort > 0:
= ()
My \IL)
IT; =1 is the unique stationary solution to this equation, by the results of

Appendix E.2 (with X, := HL,)’ In this candidate equilibrium, I, = =1, so I'l; and

I; have the same path as under the passive policy in the special case in which P =

B,
T

P_;. Consequently, if P_; > % then by the above results, there exists a Q,
under which all equilibrium conditions and transversality conditions are satisfied.
Thus, even with active monetary and active fiscal policy, there is still a stable

equilibrium for inflation and real variables.

G.2 Linearised equilibria under active fiscal policy with geometric
coupon debt and sticky prices

We now examine the fiscal theory of the price level in a richer model with
sticky prices. We just give the linearised equations of the model. These follow
equations 5.17 to 5.21 of Cochrane (2023), and the reader is referred there for the
derivations. All shocks (variables of the form ¢ ;) are assumed to be mean zero
and independent, both across time and across shocks. The equations follow:

e Euler:x, = E;x;q — 07y

e Phillips: 77; = BE, 71,1 + xx;.

o Fisher:i, =r, + E, 1, 4.

e Robustreal rate rule: i; = r, + ¢p71; + ¢; ;.

e Exogenous real government surplus: s, = & ;.
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e Debt evolution (v, is the value of debt to GDDP, ¢, is the ex-post nominal
return on government debt): fv, = v;_1 + ¢, — 71, — s,

e Equalreturns: E,e; 1 = i;.

e Bond pricing (w controls the maturity structure. w = 0 is one period debt,
w = 11is a perpetuity): e, = wq; — q;_1.

We assume that w > 0. Then for any ¢ # 0, the following solves these linear

expectational difference equations:
€it €it €it €it

7 7

T = Xy = — ry = 0y = —

¢’ K’ oxp’
== (g 5) o g
qt:%[qf—1+es,t_<%+$) 5i,t+€;;;].

As in the non-linear, flexible price case, the bond price is exploding. However,

oKk’

the real value of government debt remains stationary, which is sufficient for the
transversality constraint to be satisfied. Inflation and all real variables are also
stationary. Thus, if monetary policy is passive (¢ € (0,1)), then the linearised
model has multiple valid equilibria, this one, and the standard “FIPL” one in
which g, is stationary (see Cochrane (2023)). Conversely, if monetary policy is
active (¢ > 1), then the model possesses a valid equilibrium with stationary

inflation and real variables.

G.3 Stability under real rate rules for generic models

When is the real rate rule i, = r, + ¢71, + €, , with ¢ > 1 consistent with stable
real variables?

We need to impose at least some additional structure on the rest of the model
in order to make progress on this question for general models. In particular, we
assume that the other endogenous variables of the model can be partitioned into
two groups, z; and ¢q;, where z, may affect g, but not vice versa. The variables in z,
must be stationary in equilibrium, but always have a unique stationary solution if
71, is stationary. The variables in g, need not be stationary in equilibrium. These
restrictions are satisfied by models of the fiscal theory of the price level, for
example, in which case hours, output, consumption, investment, debt-to-GDP,

inflation, nominal & real rates and so on will be in z;, while bond prices and
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quantities will be in g,. That bond prices and quantities need not be stationary
under the fiscal theory of the price level was carefully established from
transversality conditions in Appendix G.1, under the assumption of geometric
coupon debt. The calculations of Appendices G.1 and G.2 also show that only the
value of government debt matters for “z,” variables, not its decomposition into
bond prices and quantities.

Then, without loss of generality, the linearized model (without the monetary
rule) must have a representation in the following form:!!

0=A_,Ez 1 +B,.z; +Cpz, 1 +d, 1, + E,v, (16)

0=AEgr1 + By + Copr1 + A Eezeq + Bpozp + Cpozy g +dgty + Egvy, (17)
where v, is a vector of exogenous shocks with E,_;v, =0, and where the
coefficient matrices are such that there is a unique matrix F, with eigenvalues in
the unit circle such that F, = —(A,,F, + B,,)~!C,,. This condition on F, imposes
that z, has a stationary solution if 7, is stationary: in other words, it ensures there
is no real indeterminacy in the model. Note that g, (and its lags and leads) do not
enter the equation for z;, by our assumption that g; does not affect z;.
~ 1 ¢+ s consistent with (16) and (17). This is the only

¢
possible stationary solution for inflation under the real rate rule i, = r, + ¢, +

We want to see if 71, =

&7 ¢ with ¢ > 1. From this solution for 77;, (9) and the definition of F_:
1
Zy = Fzzt—l + (Azze + Bzz)_1 <$d28§,t - Ezvt)'

Hence, from (10):
0= Aqq]thHl + quqt + quqt—l + ((quFz + qu>Pz + qu)zt—l

1 1
+(AgF. + By.) (AF, + B.,)™! (#st - Ezvt) ~ e+ Egt

. . . -1 .
If there is a real matrix F, solving F, = —(A,,F, + B,,) ~C,, then g, admits a
solution of the form:
G = Fgs1 + Gzpy +heg i + vy,
for some matrices G and | and some vector h. This may be explosive, but that is
allowed by our assumptions. (In the fiscal theory of the price level contexts, this

corresponds to explosions in bond prices and quantities of opposite signs,

1 The lack of terms in E,7t,,; and 7t,_; is without loss of generality, as such responses can be included by

adding an auxiliary variable z, ; with an equation of the form z, ; = 7,.
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producing stable debt values.) In this case, there is no inconsistency with the
solution for inflation implied by our real rate rule. So, the answer to the question
“is a real rate rule consistent with stable z, variables?” is the same as the answer to
the question “does Aqugl + B,,F, + C,, have a real solution for F,?”.

When A, = 0, this is simple. A real solution exists if and only if B, is full rank.
Generically, matrices are full rank, so except in knife edge cases, a real solution
exists when A, =0. Furthermore, by continuity, for almost all A, with

sufficiently small norm, a real solution must exist. Under standard models of the

fiscal theory of the price level, A, = 0, since the geometric coupon bond first order

il

1_[f+1
and 1 = E, EZ—J:EtH (E; is in z;, while Q; is in g;, also see Appendices G.1

condition Q; = E,
1+wQ;

Qi1 ’
and G.2). Thus, generically, all models sufficiently close to a standard fiscal theory

(1 + wQ;;1) can be rewritten as the two equations E;, =

of the price level model must have a real solution for F,. Therefore, for all such

models, a real rate rule is consistent with a stationary path for z; variables.
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