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Environmental Nudges 
 

Abstract 
 
To minimize the environmental costs of electric vehicles (EVs) and support decarbonizing electric 
grids, drivers must charge their EVs when renewable energy generation is abundant. To induce a 
shift in charging behavior toward daytime hours with ample solar energy, we conducted a field 
experiment (n = 629) at a large workplace to measure the influence of environmental nudges and 
financial incentives on the usage and timing of workplace charging. Environmental nudges led 
drivers to shift from early to later morning charging, whereas discounts to charge at work 
increased total workplace charging and prompted a shift from daytime to early morning and 
overnight charging. We identify three clusters of mechanisms explaining these temporal shifts: 
the utilization and reliability of the charging network, concerns about charger scarcity, and driver 
characteristics. Finally, we compute the societal effects of CO2 emissions and marginal electricity 
costs of these shifts in workplace charging sessions. 
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I Introduction

Every credible plan for deep reductions in greenhouse gas emissions necessary to avoid catas-

trophic climate change includes the widespread electrification of light-duty transportation

(International Energy Agency, 2021). In the three largest markets (China, E.U. and the

U.S.), electric vehicles (EVs) currently make up 10–38% of passenger vehicle sales. These

jurisdictions have each set ambitious targets of 50-100% EV sales by 2030–2035 (European

Environment Agency, 2021; Office of the Press Secretary, 2021; Executive Department State

of California, 2020). Alongside the transition to EVs, most strategies for deep decarboniza-

tion anticipate a rapid uptake of renewable energy in the power sector (International Energy

Agency, 2021), given that the carbon footprint associated with EV charging is contingent

on the carbon intensity of the power grid. The efficacy of these strategies in achieving their

objective of reducing emissions hinges on the charging behavior of drivers; charging affects

both the power grid, which must accommodate increased demand, and emissions, given that

marginal grid emissions fluctuate throughout the day (Imelda et al., 2022). In solar-dominant

grids, that variation puts a premium on midday charging when most people are at work.

Although most charging today is done at home — enabled because early EV adopters

tend to be wealthier and have higher rates of homeownership (LaMonaca & Ryan, 2022) —

workplace charging remains crucially important for two reasons. First, future EV owners will

likely have less access to private home charging and hence require alternative charging options

(Chakraborty et al., 2019). Second, as the electric grid incorporates more intermittent

renewable energy, the value of electricity storage and flexible load options (like EV charging)

will grow alongside the need to balance fluctuations in energy supply and demand (Powell

et al., 2022). With many institutions committing to net-zero carbon goals and supporting

their employees with charging facilities, the extent to which EVs reduce emissions will depend

on how drivers interact with workplace EV networks and, in turn, how workplace policies

influence their charging decisions.
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Failure to shape future electricity demand from charging could be enormous: if charged

during daytime instead of overnight, we calculate that California’s current EV stock of 1.29

million vehicles would decrease annual emissions by an additional 1.35 million tCO2 —

equivalent to avoided global damages of $252 million, assuming a social cost of carbon of

210 $
tCO2

. Furthermore, between December 2022 an November 2023, California curtailed 2.6

million MWh of renewable power (California Independent System Operator, 2024), mainly

during midday, due to a lack of demand or storage — equivalent to energy for 35 million full

charges of an average EV and enough to charge 633,000 EVs over an entire year.1 Scaled to

the vehicle fleet in California (currently 25.6 million cars) and assuming that vehicles typi-

cally charge every four days, a standard throughput of 6 kW implies they could collectively

draw 38.4 GW if plugged in simultaneously, exceeding typical peak demands and potentially

offsetting the “duck curve” — the midday dip and evening surge in electricity demand — if

charging is distributed more evenly throughout the daytime hours.

In this paper, we run a series of interventions aimed at increasing workplace daytime

charging and thereby reducing CO2 emissions from charging. Our interventions include

financial discounts for charging at work and environmental nudges that provide information

on the benefits of workplace daytime charging. These interventions have been studied in

the context of shifting the timing of home charging (Bailey et al., 2023; Burkhardt et al.,

2023). However, in our context and in most solar rich states, we understand very little

about shifting people’s charging behavior to the workplace during working hours. Drivers

have various charging options (at work, in public, or at home, if available) and charging

habits that range from ingrained to flexible. We conducted a randomized controlled field

experiment (n = 629) at the University of California San Diego (UCSD) — host to a large

workplace EV charging network — to investigate how these interventions shape drivers’

decisions to use workplace charging (e.g., to shift to workplace charging). Our research

1This calculation considers only battery EVs (not plug-in hybrids) and assumes mean vehicle performance
(3.5 miles/kWh efficiency, 76 kWh battery size), 14,600 annual vehicle miles traveled, and mean overnight
(22–6) and daytime (9–15) grid carbon intensities of 91.96 and 21.65 gCO2/MJ , per CARB’s 2023 LCFS
emission attribution methodology that uses average emission factors.
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revolves around a newly established EV club for UCSD affiliates, which we created to collect

data on drivers’ demographics, vehicles, commuting and workplace charging habits.

Our experiment investigates how environmental nudges and financial incentives can

induce a shift in where and when drivers charge. The experiment consists of two interventions

conducted in sequence: an informational treatment from October 5 to 23, 2023, followed

by two phases of financial treatment from October 24 to November 19. First, we provide

drivers with information about the CO2 emission benefits associated with daytime versus

nighttime charging, delivered three times (once per week). Second, we give drivers discounts

on workplace charging, irrespective of time.2 If incentives can encourage drivers to plug-in

at the workplace (ideally during daylight hours), then automated algorithmic solutions can

manage the precise timing of charging to meet the grid’s needs and minimize emissions.3 In

the first phase of this financial treatment, participants receive either a small ($.16/kWh) or

large ($.23/kWh) discount on the base workplace rate of $.30/kWh, such that workplace

charging is slightly cheaper than overnight home charging and equal to the average locational

marginal price (LMP) of electricity (which is the lowest plausible cost that drivers could pay

for charging), respectively.4 In the second phase of financial treatment, we move half of

the large discount group to the small discount while otherwise maintaining the first phase,

allowing us to investigate habit formation for workplace charging.

We report three principal findings. First, we found that the environmental nudges

had a small, negative effect that was indistinguishable from zero across six outcomes of

total workplace charging, measured as the share of charging done at work, the number of

charging sessions, energy consumption, session duration, charge duration, and idle duration.

2We opted for flat discount rates for workplace charging as opposed to time-of-day rates to focus on the
challenge of getting drivers plugged into charging stations at work during sunlight hours to effectively utilize
renewable energy. In the context of automated load management, the timing of when people physically plug
in will matter less for total carbon emissions than the number of EVs plugged in during the day.

3While much research has focused on the technical potentials for automated load management (ALM)
to optimize workplace EV networks (McClone et al., 2023), algorithmic solutions require that drivers first
behave in preferred ways (i.e., be plugged-in at preferred times).

4For the remainder of the paper, we refer to the effect of financial incentives as the difference between
receiving small and large discounts.
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In contrast, the first phase of workplace charging discounts led to increases in total energy

consumed and charging duration per session, suggesting that financial incentives induced a

short-term shift in charging from home to the workplace and motivated drivers who already

use workplace charging to engage in “deeper” sessions that draw more energy. However, the

second phase of discounts did not change the total charging activity, suggesting the absence

of habit formation in drivers’ charging behavior after the discount ended.

Second, our interventions also led to significant shifts in when drivers initiated charging

sessions. We consider the timing of charging across five distinct windows: early morning

(5–7), morning (7–10), midday (10–16), evening (16–21), and overnight (21–5). Receiving

environmental information led to a reduction of .045 (5.3%) weekly early morning charging

sessions and a shift to later morning charging, an intertemporal substitution toward daytime

hours more aligned with solar generation. Conversely, the first discount on workplace charg-

ing led to an increase of .044 (4.3%) early morning and .031 (3.3%) weekly overnight charging

sessions, while charging decreased during the rest of the day. Additionally, the second phase

of the financial discount resulted in an increase of .118 (12.4%) weekly evening sessions but

a smaller shift to early morning charging. This indicates an intertemporal substitution in

the opposite direction, toward periods of lower network utilization but away from midday

solar energy generation, a perverse effect in which financial incentives for charging increase

CO2 emissions.

An important attribute of EV charging at the workplace is the bundling of parking spots

and chargers. Our setting reflects the likely trajectory of workplace charging infrastructure

in other contexts at the forefront of EV adoption. Most planned infrastructure upgrades only

include a subset of parking spots enabled with EV chargers. We find evidence to support at

least three different mechanisms that can explain the temporal shifts in workplace charging:

the quality of workplace charging infrastructure, the experimental incentive structure, and

driver characteristics. First, drivers who predominantly charge in parking garages with high

utilization of chargers during the morning commute period shift to off-peak periods to ensure
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they receive a charge. Drivers who shift when they charge during the discounts are those

who charge predominantly in parking garages with reliable chargers (i.e., with low rates of

sessions that supply meaningful energy). This suggests that financial incentives have stronger

temporal effects when drivers expect charging facilities to deliver a meaningful charge.

Second, financial discounts may affect commuters’ perceptions of charger availability.

Within congested networks, discounts may instill the belief that drivers need to charge during

periods when workplace chargers are less occupied to secure an available charger. We find

support for this mechanism in a follow-up experiment with identical financial intervention as

well as messaging designed to prime perceptions of such incentive-induced scarcity. Drivers

primed to perceive high incentive-induced scarcity shifted from early morning to evening

when the network is less utilized, highlighting that perceptions of scarcity alone shift charging

behavior toward periods of lower utilization.

Third, we examine the relationship between several driver characteristics and their re-

sponse to the interventions. As frequent commuters mainly shift to evening and overnight

sessions during discount periods, greater commuting flexibility may allow drivers to adjust

their charging schedules in response to incentives. Additionally, access to private home charg-

ing and low-cost overnight rates may influence the response in charging behavior: drivers

without home chargers or facing high charging prices at their usual location significantly

shift to evening and overnight sessions in response to financial incentives.

Finally, we calculate the societal benefits of these total and temporal shifts in charging,

measured as avoided CO2 emissions and changes in the cost of charging. Overall, the total

and temporal shifts in workplace charging during the informational and the first financial

treatment led to a net benefit of 1.16% and 1.21% in avoided CO2 emission damages and

reductions in the cost of charging, while the net effect of the second financial treatment

was −1.95%. If scaled to all EV owners in California, the informational and first financial

intervention would have decreased CO2 emission damages by $2.9 million and $2.4 million

annually, whereas the second financial intervention would have increased CO2 emissions by

5



$3.7 million annually. The first financial discount would cost approximately $6,230 per ton

of avoided CO2 emissions, indicating that financial demand-side interventions are a highly

cost-ineffective policy for emission reduction in EV workplace charging. Conversely, environ-

mental nudges may offer a more cost-efficient policy for reducing CO2 emissions, contingent

upon their financial costs. Across interventions, the charging-induced environmental effects

are substantially larger than the marginal changes in participation in California’s Low Car-

bon Fuel Standard (LCFS), highlighting the importance of factoring in emission damages

when setting EV charging rates.

The literature on EV charging behavior has evolved along three dimensions: where

and when drivers choose to charge their vehicles, why they make these choices, and how to

design policies to shape these decisions. This paper advances the state of research along all

three lines. First, because early adopters of EVs tend to be wealthier and have higher rates

of homeownership (Davis, 2019), studies consistently show that the majority of charging

occurs overnight (Helmus et al., 2020) at home (Lee et al., 2020). As the profile of EV

buyers shifts to adopters who are less wealthy and less likely to own a home, there is a

growing recognition that workplace charging will play a crucial role in both fostering EV

adoption (Dorsey et al., 2024) and meeting the growing demand for charging (Tal et al.,

2020). Yet, to our knowledge, there exist no experimental evidence on how to induce a

shift to daytime workplace charging.5 Our workplace-wide experiment marks the first effort

to deliver evidence on micro-level charging behavior at the workplace and constitutes the

largest experimental study for workplace EV research.6

5We build on a rich literature of home and public charging experiments that suggests price-based and
informational interventions can shape drivers’ charging decisions. These include various pricing strategies
(Motoaki & Shirk, 2017; Davis & Bradley, 2012; Langbroek et al., 2017; Kacperski et al., 2022), prizes
and auctions (Fetene et al., 2017), financial penalties (Asensio et al., 2021), and financial discounts (Bailey
et al., 2023). Informational interventions have also proven effective, including information on estimated cost
savings (Nicolson et al., 2017), on charging sourced from renewable energy (Nienhueser & Qiu, 2016), and
tailored at the point of charge (Asensio et al., 2021).

6Although the literature lacks an experimental basis around workplace EV charging, there are a ongoing
studies that study how to develop systems for smart EV charging to reduce the impact on the power grid.
These include studies at the Cadarache research center near Aix-en-Provence (Robisson et al., 2022), the
University Campus Lyngby in Denmark (Askjær et al., 2020), the project ChargeForward in the San Francisco
Bay area (Lipman et al., 2020), and the Dutch INVADE pilot (2024).
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Second, the identified clusters of mechanisms contribute to our understanding of why

drivers shift the timing of their workplace charges. We establish network congestion —

i.e., when the number of EV drivers who wish to charge exceed available chargers — as a

central impediment to shifting drivers to daytime workplace charging.7 Our work highlights

how financial incentives can backfire when they induce a perceived scarcity of chargers in a

congested network. When parking and charging capacity is limited, as is common in most

workplaces around the world, the scarcity concerns from discounted prices to charge at work

can cause unintended shifts to evening charging with higher grid intensity.8

Third, our empirical findings can inform charging strategies intended to align charging

behavior with policy objectives. While there is little evidentiary basis for how these policies

affect the efficiency of the workplace network,9 we derive an empirical framework that allows

us to estimate the emission damages and the marginal cost of supplying electricity for EV

charging from the effect of our interventions. Our framework characterizes how shifts in the

workplace charging usage and timing alter CO2 emissions and the cost of charging. Finally,

we also derive the financial implication from LCFS revenues for the workplace that hosts the

charging network and the local utility company.

The rest of the paper proceeds as follows. Section II presents the experimental design

and summarizes data. Section III provides the empirical methodology, experimental findings,

and mechanisms. Section IV discusses the societal and institutional implications of the

experiment. Section V concludes with policy implications.

7This aligns with the literature that identifies charger scarcity as a major barrier to widespread EV
adoption (Tal et al., 2014; Bornioli et al., 2023) and influence on driver behavior (Helmus et al., 2020). Some
experiments have studied ways to reduce workplace charger scarcity by encouraging drivers to move their
EV when done charging (Asensio et al., 2021; Bornioli et al., 2023).

8This relates to a literature on the unintended consequences of environmental policies that have been
established in the context of daylight saving time (Kotchen & Grant, 2011), marginal emissions from charging
electric cars (Zivin et al., 2014), and building codes (Levinson, 2016).

9Institutions have implemented numerous practices and policies aimed at “managing” (i.e., improving
the efficiency of) workplace EV networks — e.g., numerous fixed and volumetric pricing structures; digital
queuing; time limits with pricing; valet services; day- and time-based restrictions; and public messaging
systems (Sutton et al., 2022). Research has found that these policies can inhibit workplace charging as much
as they encourage it (Caperello et al., 2013), e.g., by causing rather than alleviating congestion (Nicholas &
Tal, 2015).
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II Experiment

The experimental setting assesses two interventions to promote daytime workplace charging:

informational nudges and financial discounts. Specifically, we analyze whether information

about the climate benefits of daytime charging and financial discounts for workplace charg-

ing influence where and when people charge. In addition, we examine the mechanisms,

persistence, and interaction of these two treatments.

We conducted the field experiment at UCSD, which operates one of the world’s largest

EV charging networks in a single workplace. We coordinate closely with campus admin-

istrators (UCSD’s Transportation Services) responsible for workplace charging policy and

pricing as well as two leading charging vendors, ChargePoint and PowerFlex, which collect

and share charge session data. To recruit research participants, we created a campus club

for EV drivers — the “Triton Chargers” — open to UCSD affiliates (students, staff, and

faculty), in which drivers opt-in, consent to research, and receive discounts for charging at

work and opportunities to win raffle prizes (monthly $50 gift cards for being a member

and larger quarterly gift cards for responding to surveys).10 In return, members respond

to recurring surveys that inquire about demographic information, their EV, commuting and

driving, charging habits, motivations, and unique vendor identification numbers, allowing us

to access individuals’ workplace charging activity and analyze potential behavioral shifts in

response to interventions. Appendix A.1 describes the recruitment of EV drivers at UCSD.

II.A Design of informational and financial interventions

The experiment consists of two interventions run in series — an informational treatment run

over 19 days from October 5–23, followed by two phases of financial treatment run over 27

days from October 24 to November 19 (Figure I). Interventions were conducted within one

10The Triton Chargers and associated experimental social science research at UCSD are part of a broader
research testbed for distributed energy, called “DERConnect,” which is open to outside researchers.
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academic quarter to maintain consistency in workplace population and schedules.

In the informational intervention, half of the study participants were randomly assigned

to treatment and half to control. Treatment consists of an email, delivered three times (once

per week), stating the climate benefits of daytime charging compared to nighttime charging.

In each email, benefits are reported as avoided CO2 emissions, equivalent unburned gasoline,

and prevented global environmental damages. Appendix A.2 reports the email message and

calculations for these quantities.

In the financial intervention, all drivers received discounts for Level-2 charging and were

randomly placed into treatment arms that varied discount size.11 The financial intervention

consists of two phases. During the first phase (October 24 to November 5; 13 days), roughly

one-third of participants receive a small discount ($.16/kWh), and two-thirds receive a large

discount ($.23/kWh) — equivalent to 50% and 75% off the base workplace rate of $.30/kWh,

respectively.12 We set discounts so that the effective small-discount rate of $.14/kWh corre-

sponds to the cheapest overnight home charging rate of the local electric utility, San Diego

Gas & Electric (SDG&E; $.145/kWh from midnight to 6 am during winter months) — thus

negating any economic advantage of overnight home charging. While SDG&E’s rates vary by

hour and are cheapest overnight (Table B1), workplace rates and discounts apply equally to

all hours of the day. The large-discount rate of $.07/kWh is equivalent to the mean LMP of

wholesale electricity at UCSD, corresponding to the plausible lowest cost that drivers could

pay for charging. Appendix A.3 summarizes the prompts for the financial discounts.

During the second phase (November 6–19; 14 days), half of the large discount group

continues with the large discount, while the other half moves to the small discount.13 The

11The vast majority of UCSD chargers are Level-2. Participants report rarely using the small number of
DC Fast chargers at work and we exclude these from this study.

12One drawback to our design is that we lack direct access to the prices charged by (and displayed at)
charging stations. Drivers pay full price for their charging activity and receive the discount incentive as a
rebate at the end of the study period. If drivers disregard or forget our communications about incentives,
they may be unaware of the incentive throughout the experiment. This may bias our estimates toward zero,
but it represents potential real-world scenarios and follows previous research (Burkhardt et al., 2019).

13To ensure parity in the number of active work days across both financial treatments, we schedule the
second treatment to span 14 days, accounting for Veterans Day on November 10 when commuters are likely
absent from work.
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second financial intervention thus has three treatment arms—LL (Large-Large), LS (Large-

Small), and SS (Small-Small) discounts—given to three distinct groups. In this phase, we

test for the presence of habit formation when financial discounts are reduced. If the charging

behavior of participants on reduced discounts (LS) closely mirrors those who continue to

receive the large discount (LL), our results are consistent with habit formation. In contrast,

if the charging behavior of participants on reduced discounts (LS) reverts to those receiving

the small-small sequence of discounts (SS), our results indicate the absence of habit formation

during the first discount.

Figure I: Experimental design

Notes: This figure shows participant assignment to treatment and control groups over the three phases
of our experiment: informational (Oct 5-23), first financial (Oct 24-Nov 5), and second financial (Nov 6-19).
Figure A2 documents the full experimental schedule.

Appendix A.4 summarizes the full experimental schedule. All randomization is done

via stratified block randomization based on drivers’ commuting frequency (at least three

times per week), preferred charging location (at or away from the home residence), and

environmental motivations for choosing a charging location (high or low).
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II.B Key datasets

1. Charging network data. During our experiment, the UCSD charging network com-

prised 331 Level-2 charging ports, including 250 ChargePoint and 72 PowerFlex stations.14

Stations record session data, including total session duration (marked by plug-in and plug-

out times), charging duration, idle duration (time plugged in but not charging), and energy

consumed.15 They also record the unique (anonymized) ID of the driver who initiated the

session, allowing us to link drivers to charging sessions. We exclude sessions that indicate

an initiation error (i.e., that consume less than .5 kWh or last fewer than 5 minutes) or flout

parking rules (i.e., exceed 16 hours).16 Appendix B.1 provides information on chargers and

parking rules at UCSD.

2. Driver data. Upon enrolling in the Triton Chargers EV club, drivers provide infor-

mation on their demographics (age, gender, income, and education), university affiliation,

vehicle (year, make, model, type), living arrangement (rent or own, dwelling type), charging

behaviors (access to charging alternatives, fraction of charging done by location), commut-

ing behavior (commute frequency and distance, obtained via zip code),17 and motivation for

choosing workplace charging locations (Table I, A–C). In addition, we periodically request

odometer readings to track total driving before, during, and after interventions. Throughout

our experiment, Triton Chargers accounted for approximately 36% and 27% of the energy

consumed at PowerFlex and ChargePoint stations at UCSD, respectively.

14UCSD plans to install an additional 760 Level-2 and 35 DC Fast Charger stations by the end of 2025.
We exclude eight Level-2 chargers operated by SemaConnect.

15Some sessions in our dataset are fragmented, potentially due to software resets, driver actions such as
unplugging and replugging, or data collection errors. We merge these session fragments and treat them as
single charging events if the temporal gap between consecutive sessions is five minutes or less for a single
driver at a specific port.

16Campus rules permit 4 hours of charging at ChargePoint stations and 12 hours at PowerFlex stations.
Although the maximum allowable duration is 12 hours, we include a small subset lasting 12 to 16 hours.
We show that the effect on the timing of charging behavior remains consistent even when including charging
sessions with initiation errors (Figure C1).

17We calculate the commute distance as the road network distance between the centroid of the driver’s
self-reported zip code and UCSD.
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3. Other data. In addition to workplace charging, drivers may charge at home at rates

set by the local utility (SDG&E) or at public destinations (e.g., malls, plazas) at rates set by

the commercial operator. SDG&E public charging rates are tied to, but significantly higher

than, the LMP of electricity. Appendix B.2 summarizes SDG&E residential charging rates

and wholesale electricity prices during the study period. To calculate the climate impacts

of EV charging, which depend on the carbon intensity of electricity, we use emission factors

published by the California Air Resources Board (2023). We supplement our dataset with

the LMP of electricity from California’s Independent System Operator (2023) (CAISO) to

estimate the change in electricity cost of charging due to charging at locations associated

with different LMPs.

II.C Descriptive statistics

Table I summarizes participants’ demographics (Panel A), vehicle attributes (Panel B), and

commuting and charging habits (Panel C), along with the outcome variables that characterize

charging behavior (Panel D). Per self-reported survey responses, the average participant is

38 years old, has 17 years of education (equivalent to a Bachelor’s degree), an annual income

of $136 thousand, and makes 3.3 weekly commutes to work. Participants are mostly staff

(49%), faculty (21%), or graduate students (18%) and either own a single-family house (43%)

or rent off-campus (34%).18 The average EV is 2.4 years old and has been driven 29,153 miles;

76% of EVs in our study are battery-electric. The mean daily driving mileage is 40 miles,

and the mean one-way commute distance is 14 miles. 59% of participants report having

a home charger. Drivers report paying, on average, $.18/kWh, although 190 participants

(30% of the sample) report not knowing the price they typically pay to charge.

Per vendor charging session data, drivers initiated .89 weekly workplace charging ses-

1810% of our sample reports owning condos, bringing total homeownership to 54%, almost exactly that of
the San Diego population. For our purposes, however, condo ownership and single-family house ownership
are distinct because the latter have local control over decisions about installing home charging while condo
owners may not.
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sions during the experiment. The mean session, charging, and idle durations were 318, 233,

and 85 minutes, respectively. The average energy consumed was 19 kWh, and participants

did 30% of their charging at work (on an energy basis). During our experiment, 403 out of

629 participants initiated at least one workplace charging session. Figure A3 displays charg-

ing behavior patterns based on location, time of day, reasons for charging, and motivation

to charge at work. Drivers self-report that they charge mostly at work or at home while

also utilizing other locations such as charging plazas and destination charging. Drivers self-

report doing 39% of charging overnight and 19% during solar peak afternoon hours of 12-16.

Drivers generally report price as the key factor in choosing a charging location. When at

work, where prices are the same everywhere, they report choosing charging locations nearest

their office (39%) or where they think they are most likely to find an open charger (31%).

III Empirical results

III.A Methodology

To estimate the effect of the information and first phase of the financial treatment on work-

place charging behavior, we run the following regression (1):

yi = βInfoi + δReward1i + η(Infoi · Reward1i) + γXi + αj + εi, (1)

where i indexes the driver; yi refers to the charging outcome variable of interest; Infoi

and Reward1i are dummy variables equal to 1 if the individual received the informational

prompts and large discount in the first financial treatment, and equal to 0 otherwise; the

vector Xi represents a rich set of individual socio-demographic variables, vehicle character-

istics, charging attributes, and motivation about charging;19 and αj are garage-fixed effects

19Socio-demographic control variables include age, gender, income, years of education, weekly days com-
muting to work, commuting distance, and a dummy variable for affiliation. Vehicle characteristics and
charging attributes include vehicle age, battery size, energy efficiency, vehicle type, odometer reading, an
indicator for access to home charging, and charging price. As some respondents did not state their income
and charging price, we use the average as a proxy for this variable. In addition, we include a dummy for the
preferred charging location, usual charging time, motivations for charging location, and motivations when

13



Table I: Participant characteristics and charging behaviors

Mean Std. dev. Min Max Obs.

A.Demographics
Age 38.25 12.88 22 80 629
Share male (%) 0.53 0.50 0 1 629
Income ($1,000s) 135.73 66.58 25 200 557
Years of education 17.18 3.09 11 21 629

B.Vehicle attributes
Vehicle age (years) 2.38 2.59 0 22 629
Battery electric (%) 0.76 0.43 0 1 629
Odometer reading (miles) 31078 29395 28 205,573 444

C.Commuting and charging habits
Days at work per week 3.26 1.75 0 6 629
Daily mileage (miles) 36.31 29.09 0 312 357
Home charger (%) 0.59 0.49 0 1 629
Charging price ($ per kWh) 0.18 0.12 0 1 382

D.Outcome variables
Share of energy at work (%) 31.61 34.63 0 100 351
Weekly charging sessions 0.88 1.19 0 9 629
Energy consumed (kWh) 18.89 12.23 1 67 403
Session duration (min) 318 172 9 792 403
Charging duration (min) 233 137 9 749 403
Idle duration (min) 85 104 0 614 403

Notes: This table reports descriptive statistics on driver demographics (Panel A), ve-
hicle attributes (Panel B), commuting and charging habits (Panel C), and outcome vari-
ables of interest (Panel D) for experiment participants. Driver data (Panel A-C) are from
the Triton Chargers EV club enrollment survey prior to the experiment; the outcome
variables (Panel D), which characterize charging behavior, include all charging sessions
between the first informational prompt (October 5) and the conclusion of the financial
treatment (November 19). We report averages for age, income, and education, while our
survey asked respondents to select the appropriate bracket for each.
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(i.e., modal charging location) to control for time-invariant charging characteristics. The

coefficients of interest β and δ measure the effect of the information and financial treat-

ment on the outcome of interest. The coefficient η measures the interaction effect between

informational and financial treatment.

For the second phase of the financial experiment, we consider an analogous specification

to that in equation (1), but we replace the Reward1i dummy with an indicator variable

Reward2i denoting 1 if an individual is in the large discount group in the second phase. To

estimate habit formation, we restrict our sample to drivers who received the first financial

discount and compare the charging behavior of those who continued receiving large discounts

to those who reverted to small discounts in the second phase. In addition, we control for

the total energy and charging sessions during the five distinct time periods on Veterans Day

(November 10). Standard errors are clustered at the individual-level.

We use the model specification in (1) to analyze total workplace charging activity and

the timing of workplace charging. To measure changes in total charging, we analyze six

outcome variables: each driver’s share of charging done at work, the number of sessions

initiated, energy consumed, session duration, charging duration, and idle duration (Panel D,

Table I). A driver’s share of charging at work is the total energy consumed from workplace

charging divided by the expected energy consumed from total driving, which we estimate

from data on the driver’s daily vehicle miles driven, obtained through recurring odometer

readings, and their vehicle’s energy efficiency.20

To measure the effect of interventions on the timing of charging (measured by the hour

in which sessions are initiated), we analyze charging over five distinct periods: early morning

(5:00–6:59), which sees the earliest morning commuters arrive and has low utilization; morn-

ing (7:00–9:59), characterized by the arrival of most regular commuters and a rapid surge

to near maximal levels of network utilization, along with rising solar production; midday

choosing where to charge at work.
20We assume participants with plug-in hybrids drive on electricity only for a subset of total miles, with

longer electric-only ranges corresponding to lower reliance on gasoline (Isenstadt et al., 2022).
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(10:00–15:59), characterized by relatively constant high utilization and maximal solar gen-

eration; evening (16:00–20:59), characterized by departing commuters, arrival of nighttime

workers, and rapidly waning solar generation; and overnight (21:00–4:59), characterized by

low network utilization. Californians are incentivized through time-of-use pricing to avoid

using electricity during the evening period.

To assess the quality of our three randomizations, we compare mean values and provide

balance tests on driver demographics, vehicle attributes, and commuting and charging habits

in Table A1. Using a two-way t-test, the table shows that the randomization achieved balance

across the observed covariates for the treated and control groups during each intervention.

The only statistically significant difference when comparing mean values is the share of male

commuters for the informational and first financial treatment and the years of education for

the first financial treatment. However, we verify that the experimental results are robust to

including baseline controls.

We expect our findings from our large academic campus in a metropolitan area to rea-

sonably translate to other institutions at the forefront of the EV transition. First, early EV

adopters from non-academic institutions are likely to face a similar combination of employ-

ees, many of whom may have more flexible work schedules and commuting patterns. Second,

the higher income and education levels of our sample relative to the area median are consis-

tent with the typical characteristics of early EV adopters in California (Lee et al., 2019). It

is worth noting, however, that our study population consists of UCSD affiliates who choose

to charge at work and self-select into the study. Therefore, it is plausible that they are more

responsive than the general population to our interventions. However, we would expect this

subset to behave similarly to early adopters of EVs at such workplaces.

III.B Main findings

This Section reports empirical results on total charging behavior and the timing of charging

during the informational and financial treatments.
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1. Effect on total charging behavior Figure II shows daily total charging activity for

the six measures of workplace charging: share of workplace charging (Panel A); the number

of charging sessions (Panel B); total energy consumed, in kWh (Panel C); session duration,

in hours (Panel D); charging duration (Panel E); and idle duration (Panel F) across the two

interventions for the treatment and control groups. The informational and first financial

intervention each consist of a single treatment and control group; the second financial in-

tervention has three treatment arms consisting of LL, LS, and SS combinations of discounts

given during the first and second financial discount, respectively.

Across all measures, there is no striking difference between groups. The most evident

shift in total charging behavior is the slight increase in the number of initiated charging

sessions (Panel B) and the total energy consumed (Panel C) between days 19 and 25 among

individuals who receive the first large discount.

Table II provides the regression estimates for the informational treatment (Panel A), two

financial treatments (Panel B–C), and interaction effects between information and the first

large discount (Panel D). The coefficients indicate how interventions influence each of the six

measures of total workplace charging in a given week. First, the informational treatment did

not significantly affect any measure of total charging, which suggests that the environmental

appeal of daytime charging does not impact habits about where to charge (e.g., workplace

vs. home).21 This is consistent with results from a similar, smaller trial experiment we ran

in June 2023 (Table C3). Appendix A.6 describes the design of this trial experiment.

Second, the first financial discount increased the total weekly energy consumed by 3.2

kWh (19.4%).22 The weekly mean share of charging done at work increased from 28% to

33% from the informational to the first financial treatment (column 1), consistent with the
21One possible explanation for the non-existing treatment effect is information spillover, i.e. that infor-

mation about climate benefits diffused from treated to non-treated participants. However, spillover effects
are unlikely to explain our results since there is no significant increase in workplace charging immediately
after the experiment (Table C2).

22Related to literature on rebound effects in the context of fuel efficiency (Gillingham et al., 2020), the
discounted charging could plausibly have led to an increase in driving. However, we find no evidence that
participants increased their driving or total energy consumption in response to the larger financial incentives
(Table C6).
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Figure II: Total charging behavior by day
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idea that financial discounts encouraged drivers to charge at work. In addition, the discount

induced higher average energy consumption and longer charging duration per session, which

suggests that the larger discounts are associated with longer sessions (Table C4).23 These

results suggest that the large discount encouraged additional drivers to charge at work and

motivated drivers who already use workplace charging to charge their vehicles with more

energy per session. This is also consistent with the slight increase in energy consumed on

UCSD’s “Clean Air Day” (Wednesday, October 4), a promotional event with a 50% discount

on the workplace charging rate (Appendix A.7).

Third, in contrast to the first financial discount, the second financial discount (in which

half of the large discount group continued with the large discount) did not change individuals’

total charging activity. This is also reflected in the weekly mean share of charging done at

work, which decreased from 33% to 29% across the first and second financial treatment.

We attribute the smaller effect on total charging during the second financial discount to

shifts in the timing of initiated charging sessions: providing large discounts to fewer drivers

reduced the perceived scarcity of available chargers and led fewer drivers to arrive early in

the morning to secure the associated discounts.

2. Effect on the timing of charging behavior Next, we transition to temporal shifts in

charging behavior. Figure III shows the average number of charging sessions and energy

consumed per driver, by hour of the day, over the course of each intervention − the in-

formational (Panel A), first financial (Panel B), and second financial treatment (Panel C).

To calculate total energy delivered, we assume that energy is dispensed uniformly to the

EV while actively charging.24 During each intervention, most charging sessions are initiated

23Although the informational and second financial treatment do not exhibit significant effects on the
average energy and duration of charging sessions, we observe two non-significant shifts: a decrease in charging
duration due to informational intervention and an increase in the charging duration due to the second financial
discount. One plausible explanation is that discounts induce drivers to plug in earlier in the morning, leading
to longer stays at work and longer duration sessions. In contrast, the informational treatment causes drivers
to arrive later in the morning, resulting in shorter sessions.

24ChargePoint chargers dispense energy continuously from the time a charging session begins until the
vehicle is fully charged or unplugged. However, ChargePoint chargers have two ports, so the nominal 6.6
kW throughput may fall (or increase) by 3.3 kW if another EV starts (or stops) charging during the session.

19



Ta
bl

e
II

:E
ffe

ct
on

to
ta

lc
ha

rg
in

g
be

ha
vi

or

To
ta

lc
ha

rg
in

g
be

ha
vi

or

(1
)

Sh
ar

e
(2

)
Se

ss
io

ns
(3

)
E

ne
rg

y
(4

)
Se

ss
io

n
ti

m
e

(5
)

C
ha

rg
e

ti
m

e
(6

)
Id

le
ti

m
e

A
.I

nf
or

m
at

io
n

2.
89

2
-.0

09
-.1

85
-1

5.
50

5
-4

.8
36

-1
0.

66
7

(3
.1

86
)

(.
08

6)
(1

.6
45

)
(3

1.
34

5)
(2

2.
40

1)
(1

5.
05

5)
W

ee
kl

y
m

ea
n

de
p.

va
r.

28
.4

4
.8

5
14

.5
5

26
8.

07
18

7.
17

80
.9

B
.D

is
co

un
t

1
-.4

63
.0

12
3.

20
5*

28
.8

77
35

.8
78

-6
.9

96
(3

.6
23

)
(.

09
5)

(1
.8

29
)

(3
3.

23
6)

(2
2.

72
7)

(1
7.

32
3)

W
ee

kl
y

m
ea

n
de

p.
va

r.
32

.9
3

.9
3

16
.4

8
29

4.
69

20
9.

1
85

.5
9

C
.D

is
co

un
t

2
-1

.6
32

.1
23

1.
91

6
33

.0
81

23
.9

60
9.

13
7

(4
.6

22
)

(.
12

1)
(2

.5
00

)
(4

2.
23

8)
(3

0.
65

1)
(1

8.
39

8)
W

ee
kl

y
m

ea
n

de
p.

va
r.

28
.9

5
.8

7
16

.1
9

28
5.

02
19

9.
93

85
.0

9

D
.I

nf
or

m
at

io
n

x
la

rg
e

di
sc

ou
nt

-1
.8

58
-.0

00
.2

95
-1

7.
41

9
-4

.4
78

-1
2.

93
9

(3
.1

63
)

(.
08

8)
(1

.5
92

)
(3

0.
87

4)
(2

1.
39

4)
(1

5.
69

7)
O

bs
er

va
ti

on
s

35
1

62
9

62
9

62
9

62
9

62
9

N
ot

es
:

T
hi

s
ta

bl
e

pr
es

en
ts

th
e

re
gr

es
si

on
es

ti
m

at
es

of
th

e
in

fo
rm

at
io

na
l

(P
an

el
A

),
fir

st
fin

an
ci

al
(P

an
el

B
),

an
d

se
co

nd
fin

an
ci

al
tr

ea
tm

en
t

(P
an

el
C

),
as

w
el

la
s

in
te

ra
ct

io
n

eff
ec

ts
(P

an
el

D
).

T
he

ou
tc

om
e

va
ri

ab
le

s
in

di
ca

te
th

e
sh

ar
e

of
w

or
kp

la
ce

ch
ar

gi
ng

(c
ol

um
n

1)
;n

um
be

r
of

ch
ar

gi
ng

se
ss

io
ns

(c
ol

um
n

2)
;
to

ta
l
en

er
gy

co
ns

um
ed

,
in

kW
h

(c
ol

um
n

3)
;
se

ss
io

n
du

ra
ti

on
,
in

m
in

ut
es

(c
ol

um
n

4)
;
ch

ar
gi

ng
du

ra
ti

on
,
in

m
in

ut
es

(c
ol

um
n

5)
;a

nd
id

le
du

ra
ti

on
,i

n
m

in
ut

es
(c

ol
um

n
6)

.
A

ll
re

gr
es

si
on

s
in

cl
ud

e
in

di
vi

du
al

de
m

og
ra

ph
ic

,v
eh

ic
le

,c
ha

rg
in

g
in

fr
as

tr
uc

tu
re

,m
ot

iv
at

io
na

lc
on

tr
ol

va
ri

ab
le

s,
an

d
ga

ra
ge

-fi
xe

d
eff

ec
ts

.
A

ll
co

effi
ci

en
ts

ar
e

re
po

rt
ed

in
in

di
vi

du
al
×

w
ee

k.
T

he
w

ee
kl

y
m

ea
n

ou
tc

om
e

va
ri

ab
le

is
re

po
rt

ed
be

ne
at

h
th

e
co

effi
ci

en
ts

.
R

ob
us

t
st

an
da

rd
er

ro
rs

,
cl

us
te

re
d

by
in

di
vi

du
al

s,
ar

e
in

pa
re

nt
he

se
s.

T
he

nu
m

be
r

of
ob

se
rv

at
io

ns
is

re
po

rt
ed

in
th

e
la

st
ro

w
.

*,
**

,
**

*:
st

at
is

ti
ca

lly
si

gn
ifi

ca
nt

w
it

h
90

%
,9

5%
,a

nd
99

%
co

nfi
de

nc
e,

re
sp

ec
ti

ve
ly

.

20



during 7–9 am, with a second smaller peak around 12 pm. Most energy is delivered over 9

am – 3 pm once most EVs are plugged in.

Receiving environmental nudges led to a substantial decrease in charging sessions ini-

tiated between 5–7 am and a slight increase in initiated sessions between 7–10 am (Panel

A). In addition, we observe a reduction in initiated sessions between 3–9 pm. Conversely,

the first financial intervention shifts charging to 5 am and 9-11 pm for the large-discount

group (Panel B). During the second financial intervention, we observe that the LL discount

group shifts to even earlier evening and overnight sessions between 6-10 pm (Panel C). While

both groups that received the first financial discount (LL and LS) show a shift to initiating

sessions at 5 am, we observe an increase in charging between 6-7 am for the SS group.

Consequently, environmental prompts seem to contribute to postponed scheduling of

morning sessions and fewer late afternoon and evening sessions—both of which better align

charging with solar energy generation. Larger financial incentives induced a shift to earlier

morning and overnight charging, driven by greater evening arrivals at work.

Table III presents the regression estimates of the daily temporal distribution of charg-

ing for the informational (Panel A), first financial (Panel B), and second financial treatment

(Panel C), as well as the interaction between the information and first financial incentive

(Panel D). The coefficients indicate how our interventions influence the number of initiated

charging sessions per driver during the five distinct periods in a given week. The informa-

tional treatment resulted in a significant decrease of .045 weekly early morning charging

sessions (5–7), which was compensated by an (insignificant) increase in sessions during the

morning (7–10). Given an average of .85 weekly workplace charging sessions per driver,

around 5.3% of weekly sessions were shifted away from early morning. This indicates an

intertemporal substitution effect, wherein the environmental prompts induced a shift from

early morning toward daytime charging when solar energy generation is more abundant.25

PowerFlex chargers ask drivers to specify their desired charging duration and mileage to add as inputs to an
automated load management algorithm that modulates the start time or kW throughput if there is surplus
time to meet the requested mileage, potentially concentrating energy dispensed throughout the session.

25Consistent with the idea that environmental motivation is a determinant of EV charging timing, we find
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Figure III: Number of charging sessions and energy consumed by hour of the day

Notes: The figure displays the average number of charging sessions and energy consumed per driver, by
hour of the day, over the course of each intervention – the informational (Panel A), first financial (Panel B),
and second financial treatment (Panel C). Bars indicate charging sessions; lines denote energy consumed.
The energy consumed equals the uniform dispensation of power to the electric vehicle during active charging.
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Conversely, the first financial discount for workplace charging yielded a significant in-

crease of .044 early morning (5-7) and .031 overnight sessions (21-5) and an (insignificant)

decrease in initiated charging sessions over the rest of the day. This corresponds to a shift of

4.3% and 3.3% of the weekly workplace charging sessions per driver due to the first financial

incentive. This pattern suggests an intertemporal substitution in the opposite direction —

outside of the solar midday period. This is consistent with charging behavior during the

Clean Air Day, which saw drivers initiate earlier charging sessions (Figure A6, Panel B).

Finally, drivers who continued receiving large discounts in the second phase (LL) sig-

nificantly increased evening sessions (16–21) by .118 (12.4%) compared to those who were

switched to small discounts (LS). As the timing of initiated charging sessions of drivers who

received reduced discounts reverted to those receiving the small-small sequence of discounts

(Table C7), drivers’ charging behavior reflects an absence of habit formation after the first

financial treatment. The shift from overnight to earlier evening charging may indicate that

commuters adapted their routines to charge during periods when a greater number of charg-

ers are reliably available for overnight charging.26 The smaller shift to early morning charging

may reflect less competition for chargers later in the morning since fewer participants receive

a large discount during the second financial discount (one-third of participants moved from

the large to the small discount). One additional explanation is that the financial incentives

led to an immediate but temporary shift to morning sessions, consistent with the fact that

the discount caused a shift to early morning charging (Table C2) and total energy consumed

(Table C8) solely in the first week of the first financial intervention

In addition to the intra-day shifts of charging sessions, commuters may also respond

to our interventions by shifting to weekend charging sessions or reducing energy from (non-

discounted) DC Fast Chargers. However, we do not find any evidence of intra-week substi-

that primarily individuals who report high environmental motivations for charging reduce their early morning
sessions during the informational treatment, while individuals who report low environmental motivations
increased their early morning and overnight charging as a response to financial discounts (Table C5).

26As our study occurred over a relatively short timeframe, the estimated treatment effects should be
interpreted as short-term effects and drivers may require a longer horizon to form charging habits.
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tution of charging sessions or substitution from DC Fast Chargers (Table C6). Moreover, we

document that the estimated coefficients are robust to including vehicle-brand-fixed effects

in addition to the vehicle characteristics and garage-fixed effects (Table C9).

III.C Mechanisms

To assess the mechanisms behind the temporal shifts, we empirically test three factors that

may explain the temporal shifts in workplace charging sessions: the “quality” (i.e., reliability

and availability) of workplace charging infrastructure, the effect of experimental incentives

on perceptions of charger scarcity at work, and the characteristics of drivers, in particular

their commuting flexibility and whether they have access to home charging.

We focus on these mechanisms for three reasons. First, drivers have reported difficulty

finding an available and reliable charger at work in the enrollment survey, aligning with exist-

ing literature highlighting these as common shortcomings in public charging infrastructure.27

Second, scarcity concerns emerged as a potential explanation for the temporal shifts in the

first financial experiment, with greater early morning charging indicating intensified competi-

tion for chargers due to limited availability. Third, analyzing driver characteristics is critical

for identifying which demographic groups respond to our interventions, thus informing future

interventions targeting the most responsive groups. Understanding the mechanisms can help

institutions and policymakers predict temporal shifts in charging behavior depending on the

characteristics of their charging networks, incentives, and commuters.

1. Quality of charging infrastructure. We test two charging network attributes that

plausibly affect drivers’ charging decisions. The first is high network utilization, defined

as the fraction of chargers used during a given hour, which could discourage drivers from

charging at work. As Figure V illustrates, by 9 am the two largest campus zones (West

Campus and East Campus) typically experience 80–90% weekday utilization, while all other

27Charger unreliability is a known impediment to EV adoption and charging. For example, Rempel et al.
(2022) report that only 73% of DC Fast Charger ports sampled in the Bay Area in 2022 were operational,
far below the 95–98% range claimed by EV charging service providers.
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Table III: Effect on the timing of charging

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A. Information -.045* .087 -.024 -.019 -.008
(.027) (.056) (.044) (.032) (.011)

Weekly plug-ins per driver .07 .35 .26 .13 .03

B. Discount 1 .044** .001 -.028 -.035 .031*
(.022) (.061) (.048) (.040) (.017)

Weekly plug-ins per driver .07 .41 .27 .14 .04

C. Discount 2 -.045 -.023 .055 .118** .025
(.035) (.067) (.064) (.054) (.029)

Weekly plug-ins per driver .09 .36 .31 .14 .05

D. Information x large discount -.028 .060 -.008 -.024 -.001
(.022) (.059) (.043) (.037) (.011)

Observations 629 629 629 629 629

Notes: This table presents the regression estimates for the time of day in which sessions are initi-
ated for the informational (Panel A), first financial (Panel B), and second financial treatment (Panel
C), as well as the interaction effect between information and the first financial treatment (Panel D).
The outcome variables indicate the number of initiated charging sessions during early morning (5:00
- 6:59) (column 1), morning (7:00 - 9:59) (column 2), midday (10:00 - 15:59) (column 3), evening
(16:00 - 20:59) (column 4), and overnight (21:00 - 4:59) (column 5) periods. All regressions include
individual demographic, vehicle, charging infrastructure, and motivational control variables, as well as
garage-fixed effects. All coefficients are reported in individual×week. The weekly number of initiated
charging sessions per driver is reported beneath the coefficients. Robust standard errors, clustered by
individuals, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and 99% confi-
dence, respectively.
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(a) Network utilization

(b) Charger unreliability

(c) Incentive-induced scarcity
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(d) Commute frequency

(e) Access to home charger

Figure IV: Effect on the timing of charging by mechanisms

Notes: This figure displays the significant regression estimates (hollow bar) for the time of day in which
sessions are initiated across the informational (left), first financial (middle), and second financial treatment
(right). We show significant treatment effects (solid bars) on the timing of charging sessions for five mech-
anisms: Network utilization (Panel a), session glitch rate (Panel b), incentive-induced scarcity (Panel c),
commute frequency (Panel d), and access to home charging (Panel e). Morning and midday periods are as-
sociated with low grid carbon intensity (7 - 16; depicted in yellow), whereas evening periods typically exhibit
higher carbon intensity (16 - 21; depicted in red). All coefficients are reported in individual×week. We set
statistically insignificant estimates to 0. 95%-confidence intervals are indicated through whiskers and reflect
robust standard errors.
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zones experience over 50% utilization.28 Periods of high utilization largely align with periods

of low grid carbon intensity.

To empirically estimate whether network utilization is a mediating factor in our es-

timated temporal shifts in workplace charging during the interventions, we run separate

regressions for drivers who typically charge at low, medium, and high utilization garages —

defined as garages with ≤ 60%, 60 − 75%, and ≥ 75% utilization, respectively, during the

morning commute period (7 – 12 pm). We observe that the informational and financial in-

terventions affect drivers who typically charge in low- and high-utilization garages differently

(Figure IVa). In response to informational prompts, the drivers who shift to later morning

charging are exclusively those who typically charge in low-utilization garages, which suggests

that drivers’ responsiveness is higher when there is no charger scarcity. In contrast, the shift

toward overnight and late evening periods during the financial discounts predominantly re-

flects drivers who use medium- and high-utilization garages shifting to periods with lower

utilization to guarantee they receive a charge.29 Consistent with drivers’ concerns about

charger scarcity, these temporal shifts induced by the financial discount occurred primarily

in campus zones with high network utilization (Table C11).

The second network attribute that could discourage drivers from charging at work is

the perceived unreliability of chargers. We measure this unreliability of chargers as the

percentage of charging sessions that “glitch” (i.e., that fail to deliver a meaningful energy),

which varies between 15 to 20% daily for PowerFlex and ChargePoint chargers at work

(Figure B9). Of all attempts to charge during our study, only 86% yielded meaningful

energy (> 0.5 kWh).30 Moreover, drivers who unsuccessfully plug in on their initial attempt

28We calculate “effective” network utilization, which excludes chargers that are temporarily non-
operational or out-of-service (Appendix B.3). These estimates represent a lower bound because we do
not detect when stalls are occupied by non-charging vehicles (e.g., non-EVs parked in an EV station or EVs
exploiting parking spots without charging). Appendix B.4 summarizes network utilization at UCSD.

29The shift to earlier morning charging sessions during the first discount occurs mainly in low-utilization
garages. These shifts may reflect an expectation that large discounts on charging will intensify competition
for highly utilized chargers during peak periods and, therefore, only cause a shift among drivers who face
lower utilization early in the morning.

30Charging attempts may fail due to user error, physical charger damage, software bugs, or device or
app connectivity. One possible explanation for the low reliability of charging networks is that operating a
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are less likely to receive a charge during immediately consecutive attempts (Figure B10).
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Figure V: Network utilization by time of day and campus zone

Notes: This figure shows the effective hourly utilization of chargers for the five campus zones over the
experiment period (October 5 - November 19). Results are the average, by hour, of all weekdays in the ex-
periment period. We define the effective hourly charger utilization as the percentage of chargers used in a
given hour relative to all chargers used during the experiment period. We exclude chargers that are non-
operational and out-of-service. Figure B1 shows the five distinct parking zones on the UCSD campus.

Because these failed attempts occur more frequently in particular garages, we assess

whether charger unreliability was a cause of the temporal shifts in workplace charging by

comparing drivers who experience a low (≤ 10%), medium (10 − 20%), and a high rate

of failed sessions (≥ 20%), or “glitch rate,” at their modal garage. Consistent with the

hypothesis that drivers are more willing to shift their charging behavior when chargers are

charging station has not been profitable for many charging companies, meaning few resources are available
for maintenance (Campbell, 2024).
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reliable, drivers who charge at low-glitch-rate garages lead most temporal shifts in charging

during all interventions (Figure IVb).31

2. Experimental incentive structure. In addition to the quality of network infrastruc-

ture, financial discounts themselves could increase drivers’ perceptions of scarcity if drivers

believe lower charging rates induce greater workplace-wide charging. Figure B7 suggests an

almost 10% surge in hourly PowerFlex charger utilization from the informational to the first

financial discount at 9 am on the first Monday of the intervention period, giving drivers

reason to associate network scarcity with discounts. An “induced” expectation of additional

network use could decrease drivers’ willingness to charge at work or deviate from existing

charging patterns in response to discounts.

To test whether perceived incentive-induced scarcity contributed to temporal shifts in

workplace charging during the interventions, we conduct a follow-up financial intervention

similar to the first financial intervention, but that additionally primes drivers’ beliefs about

how many EV drivers receive the discount (Appendix A.8). In this follow-up intervention, the

scarcity treatment group received a notification implying that the entire Triton Chargers EV

club would get the discount, while the control group received a similar notification implying

that only one-third of the club would receive the discount.

Expectations of incentive-induced scarcity resulted in a shift from early morning to late

evening charging sessions equivalent to the transition from the first to the second financial

discount intervention (Figure IVc). This suggests that drivers’ scarcity concerns of increased

competition for chargers in the morning, as in the first financial experiment, prompted them

to seek charging during low-utilization periods in the evening. Drivers’ expectations of addi-

tional incentive-induced workplace charging had an impact nearly equivalent to the incentives

themselves. Notably, the temporal shifts to early morning and overnight charging sessions

of the large financial discount during the scarcity experiment closely mirror those of the

31We observe a temporal shift caused by drivers that experience higher glitch rates in one case: a shift to
morning charging in the informational intervention. One possible explanation is that these high-glitch-rate
garages also have lower utilization, indicating that availability eclipses unreliability.
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first financial discount intervention (Table C10).32 Thus, the incentive-induced perception

of scarcity can explain some of our observed shifts during the financial intervention toward

evening charging when the network is less congested.

3. Driver characteristics. Drivers with greater flexibility in their decisions about when

to commute to work and charge may be better able to adapt their commuting and charging

schedules in response to nudges and discounts (Kacperski et al., 2022). To test whether

greater commuting flexibility influences charging behavior, we compare the temporal shifts

of drivers with different commute frequencies. Given our context as a workplace charging

network, we identify drivers who commute frequently (≥ 3 times per week) as possessing

higher flexibility, as they can select from several days for charging. Frequent commuters

are solely responsible for the shift to evening and overnight sessions during the first and

second discount (Figure IVd), suggesting that commuter groups with greater flexibility are

more likely to adjust their charging schedule. Overall, we observe a slight substitution in

total charging behavior from infrequent to frequent commuters (Table C13), indicating a

redistribution of total workplace charging between these commuter groups.

An additional driver characteristic that could limit the use of workplace charging is

access to private home charging and low-cost overnight charging rates, potentially deterring

the use of workplace charging (Jabeen et al., 2013). Consistent with this mechanism, we

find that providing financial discounts induces large shifts to evening and overnight charging

sessions from drivers without a home charger (Figure IVe) or those who report paying high

modal prices for charging at their usual location (Table C14). These results imply that

the convenience of residential charging for treated drivers plays a key role in how financial

incentives shift the timing of charging sessions.33 In addition, our interventions also prompted

an increase in total energy consumed for drivers who report paying high modal prices for

32The effect of the charging discount on energy consumed and session duration during the follow-up
experiment align with the effects on total charging behavior during the main experiment (Table C12).

33These interventions solely shift the timing of charging among battery EV drivers, who have larger
batteries, require longer charging durations, and lack alternative fuel options, unlike plug-in hybrid drivers
who may view the discounts as beneficial but ultimately non-essential (Table C15).
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charging at their usual location (Table C16), which suggests that financial interventions have

a more pronounced effect on these commuters.

IV Policy implications

IV.A Effects from EV charging

In this Section, we present an empirical framework for estimating the effects of our interven-

tions on workplace charging usage and timing from societal and institutional perspectives.

1. Societal effect. From a societal perspective, the total and temporal effects of shifting

workplace charging affected the global avoided CO2 emission damages (denoted △CO2)

and the total electricity cost of charging (denoted △LMP ). Although these effects benefit

different groups — global benefits from CO2 emissions reductions, and ratepayer benefits

from lower electricity costs — we refer to the sum of these effects as the experiment’s societal

effect. Focusing on marginal changes in charging behavior induced during the information

and financial treatments, the societal effect △Esocietal is the sum of avoided CO2 emissions

and the changes in the electricity cost of charging per driver annually:

△Esocietal =

Global︷ ︸︸ ︷
△COtiming

2,h +△COlocation
2︸ ︷︷ ︸

Effect on environment

+

Ratepayer︷ ︸︸ ︷
△LMP timing

h +△LMP location︸ ︷︷ ︸
Effect on electricity cost

. (2)

Each effect involves changes in workplace charging due to shifts in the timing of workplace

charging (denoted with superscript timing) and home charging, which result from a shift of

charging from home to the workplace (denoted with superscript location).

To estimate the monetary implications of the change in CO2 emissions, we calculate how

our interventions affect commuters’ charging-related CO2 emissions.34 The first part equals

the hourly charging-related CO2 emission changes at work that arise through the information

34We exclude potential changes in office electricity usage from adjustments in commuting schedules, as
their per capita energy consumption is negligible compared to EV charging.

32



and financial treatments for each hour h. The second part aggregates the changes in hourly

energy consumption per day and adjusts by the total effect on energy consumed to reflect

that the total energy dispensed for EV charging remains constant. We thereby assume

that any energy from charging brought to work leads to an equivalent reduction in energy

dispensed from typical away-from-work charging.35 Equation (3) displays the change in

charging-related CO2 emission from our interventions:

△CO2 =
24∑
h=1

(βkWh
h ·CIh + δkWh

1h ·CIh + δkWh
2h ·CIh︸ ︷︷ ︸

T iming work charging

) · SCC

− (βkWh·CI + δkWh
1 ·CI + δkWh

2 ·CI︸ ︷︷ ︸
Shifts home charging

) · SCC, (3)

where βkWh
h , δkWh

1h , and δkWh
2h indicate the effect of informational, first financial, and second

financial treatment on total energy consumption during hour h. The coefficients refer to

the effect on average hourly energy consumption between the plug-in time and the end of

the charge. CIh refers to the hourly carbon intensity (gCO2/MJ) per the LCFS program.36

βkWh, δkWh
1 , and δkWh

2 indicate how the informational, first financial, and second financial

treatment affect the total energy consumption per day (column 3, Table II). CI denotes

daily CO2 emissions from the average charging profile of Triton Charger EV club members.37

Multiplying this with the Environmental Protection Agency’s social cost of carbon (SCC) of

210 $
tCO2

(2022) yields the total cost of CO2 emissions.

In electricity markets, the LMP reflects the marginal cost of supplying the next incre-

ment of electricity demand at a specific location within the grid, considering three compo-

nents: energy cost (i.e., cost of generating electricity at the cheapest marginal resource),

35As our interventions did not significantly affect the total vehicle miles traveled or energy dispensed at
work charging sessions for drivers who responded to recurring odometer readings (Table C6), we assume that
drivers did not change their total energy consumption. This aligns with existing work on the rebound effect
in the context of fuel efficiency, which suggests that the rebound effect in personal vehicle travel tends to be
small (Gillingham et al., 2013).

36To transform the carbon intensity factor from gCO2/MJ into tCO2/kWh, we multiply CIh by
3.6 MJ/kWh · 10−6t/g.

37We derive the average daily carbon emissions from charging by multiplying the hourly carbon intensity
with the self-reported percentage of charging during four different times of the day: Morning (6am-12pm),
afternoon (12-4pm), evening (4-9pm), and night (9pm-5am).

33



congestion cost (i.e., cost associated with the capacity of the transmission network, which

can prevent the cheapest electricity from reaching certain locations), and losses (i.e., cost

due to the electrical losses that occur during transmission). The marginal cost of energy

constitutes the primary component of LMP (Figure D1). Specifically, we measure how our

interventions affect the electricity cost of charging as drivers shift from home to workplace

charging (or vice versa), which are associated with different wholesale electricity prices (i.e.,

LMP) reported by CAISO pricing node.38 Equation (4) shows the change in the marginal

electricity costs that arise through the information and financial treatments:

△LMP =
24∑
h=1

(βkWh
h ·LMPh + δkWh

1h ·LMPh + δkWh
2h ·LMPh︸ ︷︷ ︸

T iming work charging

)

− (βkWh·LMP home + δkWh
1 ·LMP home + δkWh

2 ·LMP home︸ ︷︷ ︸
Shifts home charging

), (4)

where LMPh refers to the hourly LMP of electricity at UCSD’s pricing node during the

intervention period. LMP home denotes the daily average LMP of electricity at our drivers’

typical pricing node.39

2. Institutional effect. The institution that hosts the charging network can generate rev-

enues from shifts in workplace charging usage and timing (denoted △LCFStiming
h ) through

California’s LCFS program. The LCFS is designed to increase the availability of low-carbon

alternative fuels, while reducing petroleum dependency, the carbon intensity of California’s

transportation fuel pool, and air pollution. Equation (5) illustrates the change in LCFS

revenues that result from the temporal shifts in workplace charging, which is equal to the

product of the change in electricity consumption by hour and the carbon intensity of elec-

tricity at that hour:40

38This relates to the literature on EVs impact on distribution grids, which indicates that capacity upgrades
of 25 GW are necessary to accommodate the anticipated increase in electricity consumption in California
(Li & Jenn, 2024).

39We identified the ten zip codes with the most Triton Club members (representing nearly 50% of our
sample) and matched these to the pricing nodes that serve these areas based on proximity (excluding those
associated with UCSD’s microgrid).

40We treat the intervention implementation costs as a transfer from the institution to drivers receiving
the discounts.
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△LCFStiming
h =

24∑
h=1

(CIstandard −
CIh
3.4

) (βkWh
h + δkWh

1h + δkWh
2h︸ ︷︷ ︸

T iming work charging

) · P̄ · 3.4, (5)

where CIstandard = 89.5 gCO2/MJ is the typical carbon intensity from gasoline-powered cars,

and P̄ = $64.51 / tCO2 is the LCFS credit price per ton. CIstandard is multiplied by 3.4, which

is the Energy Economy Ratio showing the fuel-feedstock combination displacing gasoline with

a light-/medium-duty EV. From the institution’s perspective, LCFS revenues accrue when

charging is brought to work, while shifts toward home charging accrue to the state’s electric

utilities.41 Hence, we abstract from changes in LCFS revenues from home charging as the

utilities’ LCFS credits are a pass-through that goes to electrifying the transport sector.

IV.B Mapping experimental results to theory

Table IV summarizes the societal impact of avoided CO2 emissions and changes in the

societal cost of charging resulting from our interventions (equation 2). We report the societal

effect comprising the weighted average of CO2 emission damages and the LMP of electricity

from charging (Appendix D.1). The social CO2 emission damages and the marginal cost of

supplying electricity for EV charging are equal to $148.66 and $147.58 per driver annually.

Panel A of Figure VI shows the changes in hourly CO2 emissions due to temporal

shifts in workplace charging during the three interventions. The grid carbon intensity (grey

dashed line) is typically low during midday but sharply increases during the evening as solar

generation dissipates and rising demand mobilizes fossil-based power plants. The temporal

shifts in workplace charging from the informational treatment reduced CO2 emissions by

1.72% as drivers shift charging away to later morning periods. The first and second discounts

increased emissions by 5.63% and 5.3% due to more frequent early morning and overnight

41Under the LCFS, credits are generated whenever an EV driver charges their vehicle at home. The
state’s electric utilities receive credits for at-home charging in their respective service territories. However,
the utility companies must put the proceeds from LCFS credit sales toward programs to support their
residential customers who own or lease an EV.
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charging hours with higher grid intensity.

Table IV: Effects from EV charging

Effect per driver (%)

Information Discount 1 Discount 2

Avoided CO2 emissions (△CO2)
Due to timing of work charging 1.72 −5.63 −5.3
Due to shift in home charging −.24 6.89 3.4

Locational marginal price (△LMP )
Due to timing of work charging 1.06 −5.53 −5.3
Due to shift in home charging −.23 6.7 3.3

Societal effect (△Esocietal) 1.16 1.21 −1.95

Notes: This table reports the societal effect measured as the percentage change in carbon emissions per equation
(3) and electricity cost of charging per equation (4) due to the temporal and total shifts of charging for each inter-
vention – the informational (column 1), first financial (column 2), and second financial treatment (column 3). The
societal effect represents the weighted average change in carbon emissions and LMP. The effects associated with each
discount period represent the impact of the large discount relative to the small discount levels.

The informational intervention reduced the energy consumed at work, while the finan-

cial incentives led to additional energy dispensed from workplace charging. As workplace

charging has lower carbon intensity than the typical charging profile reported by Triton

Charger Club members, the environmental effect of shifting charging to work is positive.

Hence, the total shift away from workplace charging during the informational intervention

increased CO2 emissions by .24%.42 In contrast, the increase in total energy consumed at

work during the financial discount periods led to a CO2 reduction of 5.63% and 5.3%, re-

spectively. Although financial incentives led to workplace charging during higher carbon

intensity periods, the shift from to workplace charging mitigates a significant portion of this

increase and surpasses the environmental damages from the temporal shifts during the first

discount. Therefore, the environmental implications of discounted workplace charging are

initially positive due to the temporary effect on early morning sessions but gradually become

damaging as charging shifts to overnight periods.
42As we assume no changes in the timing of away-from-work charging, this estimate of our informational

prompts may serve as a higher bound for the environmental effect.
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Overall, the informational treatment and first financial discount resulted in a CO2 re-

duction of 1.48% and 1.26%, while the second financial treatment resulted in a CO2 increase

of 1.9%. If scaled to all EV owners in California, the informational treatment and first finan-

cial treatment would avoid $2.9 million and $2.4 million in CO2 emission damages per year,

whereas the second financial discount would inflict $3.7 million in CO2 emission damages.

The first financial discount, at a cost of $6,230 per ton of avoided CO2 emissions, indicates

that financial demand-side interventions are costly for reducing EV charging emissions. In

contrast, environmental nudges can be cost-efficient if annual informational campaign costs

for daytime charging remain below $2.21 per driver assuming a SCC of $210 per ton.

Panel B of Figure VI shows the changes in the electricity cost of charging due to in-

tertemporal shifts in charging during the three interventions. The LMP at UCSD’s pricing

node (grey dashed line) is typically high during evening periods, indicating no societal trade-

off in the optimal timing of EV charging between CO2 emissions and the wholesale electricity

costs, as both follow similar hourly cost patterns. The informational prompts reduced the

cost of charging by 1.06% by shifting to daytime charging with abundant solar energy. In

contrast, the discount-induced early morning and overnight charging sessions increased the

cost of charging at UCSD by 5.53% and 5.3%. However, the overall shift in charging from

home to work reduced the cost of charging at our driver’s homes, resulting in total changes in

the cost of charging of .83% during the informational period, 1.17% during the first financial

discount, and −2% during the second financial discount.

From a societal perspective, the informational treatment led to a 1.16% increase in

avoided CO2 emissions and reduced cost of charging, which resulted from a shift to workplace

charging with lower grid intensity. The net effect of the first financial treatment equals 1.21%,

primarily due to shifting from home to work charging. However, as drivers shifted gradually

to late evening charging hours with higher grid intensity and LMP and away-from-work

charging, the net effect of the second financial treatment equals −1.95%.
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Figure VI: Effect on hourly CO2 emissions, LMP of electricity, and LCFS revenues

Notes: The figure displays the percentage change in hourly carbon emissions (Panel A), electricity cost of
charging (Panel B), and LCFS revenues (Panel C) due to the temporal shifts from EV workplace charging
of each intervention. The grey dashed line in Panels A and C denotes the hourly carbon intensity from the
California Air Resources Board in 2023-Q3. The grey dashed line in Panel B denotes the average marginal
LMP of electricity at UCSD’s pricing nodes during our intervention period from CAISO.

Panel C of Figure VI shows the percentage change in LCFS revenues due to intertem-

poral shifts in charging during the three interventions. Compared to the $44.67 in LCFS

revenue generated annually per driver from EV workplace charging, the financial incentives

led to an increase of 19.33% and 6.95% in LCFS revenues for the institution that hosts the
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workplace charging, primarily due to the shift from home to workplace charging. This implies

that the discounts on workplace charging led to a redistribution of LCFS revenues from the

local utility company to the institution that hosts the charging network. Additionally, the

informational prompts increased the institutions’ LCFS revenues by .9% as drivers shifted to

daytime charging hours with higher LCFS credits. From the perspective of UCSD, summed

over all Triton Charger club members, the informational and the two financial interventions

increased annual LCFS revenues by $254, $5, 430, and $1, 953, respectively.

1. Distributional effects. We contrast the revenues earned through California’s LCFS

program to the costs of providing drivers discounts on workplace charging (denoted △Costs).

The cost of implementing the intervention, per equation (6), is total energy consumed by each

discount group throughout the experiment multiplied by the respective small ($.16/kWh)

and large ($.23/kWh) discounts, applicable to all Level-2 workplace charging sessions:

△Costs = (El · $.23/kWh)︸ ︷︷ ︸
Large discount

+ Es · $.16/kWh︸ ︷︷ ︸
Small discount

). (6)

El and Es refer to the total energy consumed by the large and small discount groups during

the experiment. For the first financial treatment, the incentives paid to the average par-

ticipant were $7.43 for the large and $4.36 for the small discount. For the second financial

treatment, the average incentives provided to the participants came to $8.59 for the large

and $4.54 for the small discount. Converted to an annual basis, the intervention implemen-

tation costs of these discounts substantially outweigh the charging-induced marginal changes

in LCFS revenues from workplace EV charging per driver.

A common objection to providing financial incentives for charging is that the benefits

accrue unevenly across socioeconomic groups. Figure 4 presents the distributional profile

of the financial discounts across six income brackets in our study population. Normalized

by group size, the uptake of discounts is roughly uniform across income brackets. However,

because EV drivers skew wealthier in our study and in observed adoption trends, high-

income households earned the majority of financial discounts for workplace charging. While
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we paid $1, 667 in discounts to the highest income group, the lowest income group received

only $216. Given that current EV drivers are wealthier, providing financial incentives to

shift these individuals’ charging sessions to the workplace is a highly regressive policy tool.

As the pool of EV drivers becomes more representative of the broader population, this tool

should become less regressive.
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Figure VII: Discounts by income

Notes: This figure shows the discount paid per driver for each of the six income groups in our study
(left axis), and the total discount paid to each income group (right axis). The six groups report household
incomes (in $1,000s) of ≤ $25; $25-$50; $50-$75; $75-$100; $100-$150; and > $150.

V Conclusion

As the market for EVs increasingly shifts from early to mainstream adopters, who are ex-

pected to have less access to private home charging, understanding where and when these

new drivers charge their vehicles is pivotal for supplying their increased energy demand from

renewable sources. As electric grids transition toward renewable resources, particularly solar,

they have large variations in marginal emissions throughout the day. For a solar-abundant

grid, such as in California, clean and efficient EV charging will require temporal shifts to-

ward midday when most people are at work (Gillingham et al., 2021). As EVs proliferate and

renewable energy capacity increases, policies should encourage a shift to daytime charging

40



to optimize power usage.43

The empirical findings of our field experiment at UCSD can inform workplace policy

aimed at encouraging sustainable daytime charging. Our interventions induced opposing

shifts in daily charging patterns. Information about the climate benefits of daytime charging

prompted a shift in charging from morning toward daytime, better aligning with periods of

solar energy generation. In contrast, financial discounts spurred drivers to charge earlier in

the morning and later in the evening, outside the optimal period. In addition, the charging

discounts encouraged drivers to charge at work and with more energy per session. The

results highlight the importance of environmental knowledge about daytime charging to

reshape daily charging patterns and the adverse effects of time-invariant price mechanisms

to achieve workplace charging.

Understanding the underlying mechanisms is vital for developing effective policies and

identifying drivers most amenable to these policies. We document three clusters of mecha-

nisms that explain the observed temporal shifts. First, driver’s responsiveness to off-peak

charging hours hinges on the utilization and reliability of the network. Second, commuters’

perceptions of charger availability resulted in overnight charging sessions. Third, high-

frequency commuters and drivers without access to low-cost charging away-from-work were

among the most responsive groups. We highlight that the charging-induced shifts from our

interventions can contribute to a substantial CO2 emission reduction of EVs and generate

LCFS revenues for the workplace that hosts the charging network. The experiments at UCSD

mark the start of an evidentiary basis for understanding and shaping driver charging behav-

ior at workplaces. However, understanding how more nuanced discount structures (e.g.,

time-based or kWh-based) might encourage preferred charging behavior or how to encourage

deeper charge sessions to achieve higher network utilization requires more research.

43Despite the growing capacity of grid-connected battery storage systems, shifting EV charging to daytime
hours remains critical because current battery storage capacity and fossil fuel generation are insufficient to
fully meet the increase in peak evening demand that widespread EV adoption could bring.
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A Experimental design

This section provides additional details about EV drivers at UCSD (Section A.1), informa-

tional prompts (Section A.2), emails notifying participants about financial discounts (Section

A.3), the experimental schedule (Section A.4), the Triton Charger EV club members (Sec-

tion A.5), our Spring trial informational experiment (Section A.6), Clean Air Day (Section

A.7), and our follow-up charger scarcity experiment (Section A.8).

A.1 EV drivers at UCSD

EV chargers at UCSD are available for use by UCSD affiliates (faculty, staff, students)

and the general public. All charging session data are logged by the charger vendors and

(once anonymized) may be used by the UCSD Transportation Services Office for operational

(non-research) purposes. Any EV driver, whether a campus affiliate or just a member of

the public, can access the base workplace charging rate set by the Transportation Office.

During our experiments, the base rate was $.30/kWh for Level-2 charging on weekends and

$.35/kWhon weekdays. To promote EVs and help plan transportation electrification at work,

the Transportation Office offers a 5 ¢/kWh discount on weekdays (~15% off the base rates)

to affiliates who sign up, provide demographic and housing information, and connect their

unique charger vendor identification numbers.

Our team spent about one year recruiting members into a new club for EV-driving

affiliates — what we call the “Triton Chargers” EV club. Enrollees agreed to participate

in research experiments and respond to surveys in return for additional information and

discounts on workplace charging. To be eligible, drivers must be between 18 and 80 years

of age, hold a driver’s license valid in California, and be the primary driver of an EV which

they intend to keep for at least one year after enrolling. Upon enrollment, drivers respond

to a survey about their demographics, EV, charging habits and motivations, and commuting

habits. Drivers also respond to recurring (usually twice monthly) surveys that request an
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odometer reading and updates about their EV. These data allow for estimates of total charg-

ing activity. With unique vendor identification numbers (for ChargePoint and PowerFlex),

we can analyze each driver’s unique workplace charging activity as the session level.

A.2 Informational prompt

The treatment in the informational experiment consists of an emailed prompt (text below)

and the infographic (Figure A1):

• [Informational prompts]: In San Diego in fall, charging a typical EV during daytime,

when solar power is plentiful, avoids 29 pounds of CO2 emissions compared to

charging during nighttime when California relies heavily on burning natural gas to

generate electricity. This is equivalent to avoiding burning 1.5 gallons of gasoline

with every charge; scientists estimate that these avoided CO2 emissions prevent

$2.75 in costs to human welfare and the global economy.

Figure A1: Infographic included with the informational prompt
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A.3 Prompts for the financial discounts

Research participants were notified about financial discounts via email. On October 23,

ahead of the first financial treatment, the following messages were sent to the large and

small discount treatment arms:

• [Large discount group]: From October 24 through November 5, we will offer a

>75% discount on all Level-2 charging you do on campus. We are providing a

$0.23/kWh discount on the base campus price of $0.30/kWh. That means you pay

just $0.07/kWh. After November 5, these discounts will continue, but they may

change in size. We will tell you of all changes ahead of time.

• [Small discount group]: From October 24 through November 5, we will offer a

>50% discount on all Level-2 charging you do on campus. We are providing a

$0.16/kWh discount on the base campus price of $0.30/kWh. That means you pay

just $0.14/kWh. After November 5, these discounts will continue, but they may

change in size. We will tell you of all changes ahead of time.

On November 5, ahead of the second financial treatment, the following messages were sent

to the large–large, large–small, and small–small discount treatment arms:

• [Large - large discount group]: In October, we announced discounted campus charging

through November 5. From November 6 through November 19, your discount

will remain the same. The Triton Chargers research team will continue to provide

a >75% discount ($0.23/kWh) off the base campus price of $0.30/kWh. That means

you will continue paying just $0.07/kWh. After November 19, these discounts will

continue, but they may change in size. We will tell you of all changes ahead of time.

• [Large - small discount group]: In October, we announced discounted campus

charging through November 5. From November 6 through November 19, your
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discount will now be smaller. It will decrease from about 75% to 50% off the

campus’s base price of $0.30/kWh. That means you will now pay just $0.14/kWh.

After November 19, these discounts will continue, but they may change in size. We

will tell you of all changes ahead of time.

• [Small - small discount group]: In October, we announced discounted campus

charging through November 5. From November 6 through November 19, your

discount will remain the same. The Triton Chargers research team will continue

to provide a >50% discount ($0.16/kWh) off the base campus price of $0.30/kWh.

That means you will continue paying just $0.14/kWh. After November 19, these

discounts will continue, but they may change in size. We will tell you of all changes

ahead of time.

Similar messages were sent for Phases 3 and 4 (Section A.4), though these were not part of

the analytical experiment.
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A.4 Experimental schedule

Figure A2: Experimental schedule for the three interventions

Notes: This figure documents the experimental schedule, including dates of all email messages to study
participants, prompts, surveys, and relevant holiday and campus dates. The experiment consists of three
interventions: an informational (October 5 to October 23), first financial (October 24 to November 5), and
second financial (November 6 to November 19) intervention. During the informational intervention, the
treatment group receives a weekly email message (“Prompt 1 of 3,” etc.). Prompts were sent at 6:30 am
on the specified day. Clean Air Day (a non-research campus promotional day) was October 4; the Trans-
portation Office notified the campus community on October 3. The first financial intervention is denoted
by “Phase 1;” the second, by “Phase 2.” Two additional phases (Phases 3 and 4; November 20 to December
17) ensure that drivers in the study have equal access to financial incentives (e.g., so that participants who
receive small discounts in Phases 1 and 2 can access large discounts in Phases 3 and 4) but are not part of
our analytical experiment.
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A.5 Triton Charger EV club members

Campus
Residence
Other
Neighborhood
Destination
Other home

(a) Charging location

Night
Morning
Afternoon
Evening

(b) Charging time

Low prices
Activities
Find charger
Campus
Parking
Fast charger
Environment

(c) Charging motivation

Close office
Open stall
Long dwell
Short time
Environment

(d) At-work charging

Figure A3: Supplementary charging characteristics

Notes: This figure reports charging behavior patterns based on location (Panel A), time of day (Panel
B), reasons for charging (Panel C), and motivation to charge at work (Panel D) for experiment participants
from the Triton Chargers EV club enrollment survey prior to the experiment.
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Table A1: Balance table

Information Discount 1 Discount 2

Treated Control Large Small Large-large Large-small

A.Demographics
Age 38.58 37.92 38.48 37.79 38.35 38.61

(13.33) (12.43) (12.65) (13.34) (12.36) (12.36)
[.52] [.53] [.89]

Share male (%) 0.50 0.57 0.58 0.45 0.55 0.61
(.5) (.5) (.49) (.5) (.5) (.5)

[.06**] [.0***] [.59]
Income ($1,000s) 138.39 133.03 136.69 133.82 137.09 136.28

(66.21) (66.97) (66.94) (66) (66.45) (66.45)
[.34] [.63] [.73]

Years of education 17.32 17.04 17.40 16.74 17.47 17.33
(3.14) (3.04) (3.06) (3.11) (3.17) (3.17)

[.24] [.01**] [.1]
Days at work per week 3.23 3.29 3.28 3.22 3.28 3.27

(1.75) (1.76) (1.76) (1.74) (1.76) (1.76)
[.69] [.72] [.82]

B.Vehicle attributes
Vehicle age (years) 2.40 2.37 2.44 2.27 2.50 2.39

(2.87) (2.29) (2.69) (2.4) (2.68) (2.68)
[.88] [.41] [.45]

Battery electric (%) 0.76 0.77 0.75 0.80 0.79 0.70
(.43) (.42) (.44) (.4) (.41) (.41)

[.66] [.17] [.25]
Odometer reading (1,000 miles) 31.56 30.59 31.77 29.79 32.56 30.93

(31.5) (27.17) (28.9) (30.34) (27.87) (27.87)
[.73] [.5] [.45]

C.Commuting and charging habits
Daily mileage (miles) 34.27 38.38 36.53 35.93 37.74 35.10

(27.81) (30.28) (26.94) (32.66) (29.53) (29.53)
[.18] [.85] [.5]

Home charger (%) 0.59 0.58 0.59 0.58 0.59 0.60
(.49) (.49) (.49) (.5) (.49) (.49)

[.78] [.72] [.94]
Charging price ($ per kWh) 0.18 0.18 0.18 0.19 0.17 0.19

(.12) (.12) (.12) (.12) (.12) (.12)
[.55] [.42] [.12]

Number of Observation 315 314 418 211 210 208

Notes: The table presents the average values and balance tests on driver demographics (Panel A), vehicle attributes
(Panel B), commuting and charging habits (Panel C) for treated and control groups of the informational, first, and sec-
ond financial intervention. Robust standard errors are in parentheses. We report the p-values from a two-way t-test for
differences in means across the treatment group and the control group in backets. *, **, *** refer to statistically signifi-
cant different p-values with 90%, 95%, and 99% confidence, respectively. Driver data are from the Triton Chargers EV
club enrollment survey prior to the experiment. We report averages for age, income, and education, while our survey
data asked respondents to select the appropriate bracket for each.
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A.6 Spring trial informational experiment

In June 2023, about four months before the start of our core experiment, we ran a “trial”

informational intervention, i.e. a scaled-down version of the full intervention. This scaled-

down trial was shorter in duration and had fewer participants but used the same methodology

and structure: the Triton Chargers EV club enrollment survey, stratified block randomiza-

tion into treatment and control groups, and informational treatment consisting of an email

message about the climate benefits of daytime EV charging.

The experimental schedule of the spring trial experiment is documented in Figure A4.

On May 31, all participants received a welcome message to the Triton Chargers EV club.

The treatment and control groups received four informational prompts between June 6 and

June 14, as follows:

• [Treatment]: Thank you for being a Triton Charger and supporting research aimed at

improving the quality of charging services offered at UCSD. We are working to grow

our charging network and reduce automobile emissions as we transition to an electric

vehicle future. In San Diego in spring, charging a typical EV during daytime, when

solar power is plentiful, avoids 26 pounds of CO2 emissions compared to charging

during nighttime. This is equivalent to avoiding burning 1.4 gallons of gasoline with

every charge. In addition, scientists estimate that these avoided CO2 emissions prevent

$2.50 in costs to human welfare and the global economy.

• [Control] Thank you for being a Triton Charger and supporting research aimed at

improving the quality of charging services offered at UCSD. We are working to grow

our charging network as we transition to an electric vehicle future.

In addition, we conducted two surveys that request an odometer reading and updates about

drivers’ EVs. These data allow for estimates of total charging activity.
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Figure A4: Experimental schedule for the spring trial experiment

Notes: This figure shows the schedule of the spring trial experiment. The treatment group receives a
bi-weekly email message (“Prompt 1 of 4,” etc.). The control group receives a generic thank-you message.
Prompts are sent at 6.30 am on the specified day. All participants receive two odometer surveys.
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A.7 Clean Air Day

Figure A5: Charging activity around Clean Air Day by day of the week

Notes: This figure shows the charging activity of the Triton Chargers EV club during the first three
weeks of October by day of the week. Shown are the number of charging sessions (Panel A); total energy
consumed, in kWh (Panel B); session cost, in U.S. dollars (Panel C); session duration, in hours (Panel D);
charging duration, in hours (Panel E); and idle duration, in hours (Panel F). Weeks 1 to 3 correspond to
October 2-8 (red), October 9-15 (gray), and October 16-22 (light gray). Clean Air Day was Wednesday, Oc-
tober 4 (week 1). "Session duration" denotes the full plug-in duration; "charging duration" the duration of
active charging; and "idle duration" the duration parked but not charging.
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Figure A6: Charging activity around Clean Air Day by time of day

Notes: This figure shows the charging activity of the Triton Chargers EV club during the first week of
October (October 2-8) by time of day. Shown are the number of charging sessions (Panel A); total energy
consumed, in kWh (Panel B); session cost, in U.S. dollars (Panel C); session duration, in hours (Panel D);
charging duration, in hours (Panel E); and idle duration, in hours (Panel F). Clean Air Day (denoted in red)
was Wednesday, October 4. "Session duration" denotes the full plug-in duration; "charging duration" the
duration of active charging; and "idle duration" the duration parked but not charging.

A.8 Charger scarcity experiment

Four months after our series of informational and financial experiments, we ran a follow-up

intervention over 13 days from February 5 to 17 to test for incentive-induced perceptions

of scarcity of available chargers. In this intervention, we varied the discount notifications

such that the messages to treated and control groups implied that different numbers of

drivers would receive the discount. This follow-up experiment mimicked phase 1 of the
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financial experiment: the same methodology, same participants (i.e., new club enrollees were

excluded), stratified block randomization into treatment arms that receive small or large

discounts, notifications, and odometer surveys. The experimental schedule of the follow-up

scarcity experiment is documented in Figure A7.

In total, the experiment consisted of four treatment arms. Two arms received the large

discount; two received the small. New to this experiment was that, within each discount

regime, half of participants received a discount notification email that indicated that all

drivers would receive the discount simultaneously, while the other half received a discount

notification message that indicated that no more than 33% of drivers would receive the

discount, as follows:

• [High scarcity]: Starting tomorrow, and for the next two weeks, you will receive an

extra discount on campus charging for being a member of the Triton Chargers EV club.

During these two weeks, we are making discounts available to you and fellow

Triton Chargers.

• [Low scarcity]: Starting tomorrow, and for the next two weeks, you will receive an

extra discount on campus charging for being a member of the Triton Chargers EV

club. During these two weeks, you and no more than 33% of Triton Chargers

will receive this discount.

Through this intervention, we explicitly sought to influence the perceived availability of dis-

counts, and thus the perceived likelihood of discount-induced scarcity for workplace charging.
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Figure A7: Experimental schedule for the scarcity experiment

Notes: This figure shows the schedule of the charger scarcity experiment (February 5 to 17). The experi-
ment consists of two treatment arms: a financial and an induced scarcity intervention. During the financial
treatment, participants receive either a small or large discount on workplace charging. During the scarcity
intervention, participants were told either that no more than 33% of the club or generically that Triton
Chargers would receive the discounts.
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B Supplementary network information

This section provides additional information about the UCSD EV charging stations (Section

B.1), SDG&E EV charging rates (Section B.2), UCSD network operation (Section B.3),

UCSD network utilization (Section B.4), and UCSD network reliability (Section B.5).

B.1 UCSD EV charging stations

UCSD has installed three distinct types of EV parking stalls across its campus (Figure B1)

that differ in charger type and parking rules:

1. EV-1 indicates a 1-hour parking limit at a DC fast charger that delivers 50–125 kW,

adds 75–185 miles of range per 30 minutes, and uses CHAdeMO or CCS plugs. EV-1

spaces have no energy minimum, but drivers should initiate a charging session and

move their vehicles immediately after the session.

2. EV-4 indicates a 4-hour parking limit at a level-2 charger that delivers 6.6 kW, adds

21 miles of range per hour, and uses a J1772 plug. Vehicles may remain in the stall

(charging or idling) for up to four hours.

3. EV-12 indicates a 12-hour parking limit at a level-2 charger that delivers 1.2–6.6 kW

(some leverage circuit-sharing and operate at a continuous 3.3 kW), adds up to 21

miles of range per hour, and uses a J1772 plug. Drivers enter their planned departure

time and desired miles of range to be added; the charger optimizes power delivery to

balance the needs of the EV and power grid.

A valid UCSD parking permit or hourly parking payment is required to park in campus EV

charging stalls. Parking is free for the first 30 minutes, $4.20 per hour with a daily maximum

of $33.60, and $2.10 per hour after 5 pm on weekdays and on weekends with a maximum of

$8.40. Drivers may be cited if they park in an “EV Charging Only” stall but are not actively
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charging or exceeding the posted time limit and are not actively charging. The university

plans to install an additional 760 Level-2 chargers and 35 DCFCs by year-end 2025.

Figure B1: Parking zones and plazas at UCSD

Notes: This figure shows the five distinct parking zones and individual plazas and garages on the UCSD
campus. Blue-green denotes the Scripps Institution of Oceanography (SIO); purple, West Campus; orange,
East Campus; yellow, Graduate Housing; and red, Hillcrest Medical Center. The Hillcrest Campus is geo-
graphically separate from the Main Campus.

16



Appendix Garg, Hanna, Myers, Tebbe & Victor

B.2 SDG&E EV charging rates

Table B1: SDG&E residential EV charging rates (October–November 2023)

Price ($/kWh)

Summer (Jun-Oct) Winter (Nov-May)

Tariff Super-Off-Peak Off-peak On-peak Super-Off-Peak Off-peak On-peak

EV -TOU .285 .497 .832 .276 .464 .527
EV -TOU-2 .285 .497 .832 .276 .464 .527
EV -TOU-5 .154 .481 .816 .145 .448 .511

Notes: This table presents SDG&E residential rates by tariff period (super-off-peak, off-peak, and on-
peak) for the summer and winter seasons. Super-off-peak hours are 12am - 6am; off-peak hours, 6am - 4pm
and 9pm - 12am; and on-peak hours, 4pm - 9pm. The EV-TOU tariff requires a separate EV meter, in-
stalled by an electrician at the homeowner’s expense, that tracks EV electricity use separately, while the
house remains on a tiered rate. EV-TOU-2 and EV-TOU-5 use an existing household smart meter to track
both home and EV electricity use. EV-TOU-5 has lower volumetric rates (the lowest rates for overnight
EV home charging) along with a fixed monthly fee of $16. Homeowners with household solar PV or battery
storage might have different rates.
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Figure B2: SDG&E public retail EV charging rates

Notes: This figure plots the mean hourly prices for SDGE’s Power Your Drive public charging program
during our intervention period (October 1 - November 30). Retail rates reflect wholesale electricity prices,
which change hourly, and are available at public chargers participating in the Power Your Drive program.
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B.3 UCSD network operation

To calculate the daily “effective” network utilization that drivers experience at work, we

classify chargers daily as either operational, non-operational, or out-of-service (Figure B3).

A charger is “operational” if it reported at least one successful charging session on a given day.

A charger is “non-operational” if it exclusively recorded glitch sessions (i.e., those that last

fewer than five minutes or supply fewer than .5 kWh of energy). A charge is “out-of-service”

if it reports ten or more successive days without activity. For shorter durations without

activity, if either the most recent or following day with activity saw a successful session, the

charger is operational. If both these days saw only glitches, the charger is non-operational.

Figure B3: Network operation flowchart

Notes: This figure shows the classification of charger designations into operational, non-operational, and
out-of-service.

Figures B4 and B5 report charger designations by day for PowerFlex and ChargePoint,

respectively, during the study period (October 5 – November 19). PowerFlex chargers show

variability across parking garages. The Athena parking structure rarely has more than one

non-operational station and none out-of-service. In contrast, a few charge ports in the Gilman
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and Hopkins parking structures were mostly non-operational. Similarly for ChargePoint

garages, the Gilman chargers show a relatively high non-operational frequency and a larger

share of chargers overall reported no charge attempts.
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Figure B4: PowerFlex charger designation by day

Notes: This figure shows the daily designation for each PowerFlex charger: operational (green), non-
operational (red), and out-of-service (black). Each row is a single charger over time, while each column is a
single day across all chargers. The chargers are grouped by parking garage.
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Figure B5: ChargePoint charger designation by day

Notes: This figure shows the daily designation for each ChargePoint charger: operational (green), non-
operational (red), and out-of-service (black). Each row is a single charger over time, while each column is a
single day across all chargers. Stations are ordered by garage (on the left y-axis), and garages are ordered
by region of campus (on the right y-axis).
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Figure B6 reports the network-wide share of PowerFlex and ChargePoint chargers that

were operational, non-operational, or out-of-service during the study period. For PowerFlex,

non-operational and out-of-service chargers compose about 10% and 2% of total chargers;

about 90% were thus operational. For ChargePoint, we observe higher out-of-service rate

and more moderate non-operational frequency; roughly 86% of ChargePoint ports were op-

erational on any given day. These estimates of network congestion represent a lower bound

because they neglect “stall-napping”—occasions when vehicles occupy a charging stall with-

out actually charging yet reduce charger availability all the same.
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Figure B6: Charge port designation share

Notes: This figure shows the network-wide share of PowerFlex and ChargePoint chargers that were oper-
ational (green), non-operational (red), or out-of-service (black) during the study period.
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B.4 UCSD network utilization

0

20

40

60

80

100

0 2 4 6 8 10121416182022

PowerFlex

0

20

40

60

80

100

0 2 4 6 8 10121416182022

ChargePoint

H
ou

rly
 c

ha
rg

er
 u

til
iz

at
io

n 
(%

)

Hour of day

Information Discount 1 Discount 2

Figure B7: Monday’s utilization by time of day and vendor

Notes: This figure shows hourly utilization of PowerFlex and ChargePoint chargers for the first Monday
of the informational (October 9), first financial (October 30), and second financial treatment (November
13). We define hourly charger utilization as the percentage of chargers used in a given hour relative to all
chargers used during the experiment period (October 5 - November 19).
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Figure B8: Network utilization by day

Notes: This figure shows charging network utilization for PowerFlex (red) and ChargePoint (blue) charg-
ers by day in the experiment. Day 0 denotes the first day of the informational treatment. We define charger
utilization as the percentage of chargers used in a given day relative to all chargers used during the experi-
ment period (October 5 - November 19). 100 indicates that all chargers were used at least once during that
day. Vertical dashed lines denote the start of each intervention; thick gray lines denote days on which the
informational prompt was sent. We exclude chargers that are non-operational and out-of-service from the
network utilization (Appendix B.3).
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B.5 UCSD network reliability
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Figure B9: Charging session glitch rate

Notes: The figure displays the percentage of charging sessions experiencing glitches for PowerFlex and
ChargePoint chargers by day. Day 0 denotes the first day of the informational treatment. We define a
"glitched" session as one that lasts fewer than 5 minutes or consumes less than .5 kWh. Vertical lines denote
the start of each intervention; thick gray lines denote days on which the informational prompt was sent.

Figure B10: Probability of workplace charging by attempts

Notes: This figure shows the effective probability of workplace charging for a given session by the num-
ber of attempts for PowerFlex (red) and ChargePoint (blue). The size of the marker reflects the number of
charging sessions, with bins of n=1-10, 11-100, 101-1,000, and 1,000+.
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C Additional regression results

Table C2: Effect on the timing of charging by week

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A.Information
Week 1 -.036 .092 -.037 -.036 -.007

(.031) (.067) (.054) (.038) (.010)
Week 2 -.036 .079 -.012 -.020 -.007

(.031) (.066) (.054) (.040) (.019)
Week 3 -.050** .066 -.015 .003 -.008

(.022) (.045) (.040) (.029) (.013)

B.Discount 1
Week 1 .054** .033 -.033 -.051 .029

(.022) (.069) (.049) (.051) (.023)
Week 2 .028 -.032 -.020 -.014 .028**

(.028) (.056) (.056) (.030) (.013)

C.Discount 2
Week 1 -.065 -.089 .074 .124* .040

(.045) (.073) (.058) (.068) (.028)
Week 2 .004 .026 .024 .111** .007

(.038) (.080) (.072) (.053) (.039)

Notes: This table presents the regression estimates for the time of day in
which sessions are initiated for the informational (Panel A), first financial
(Panel B), and second financial treatment (Panel C) for each week of the
treatment. The outcome variable indicate the number of initiated charg-
ing sessions during early morning (5:00 - 6:59) (column 1), morning (7:00 -
9:59) (column 2), midday (10:00 - 15:59) (column 3), evening (16:00 - 20:59)
(column 4), and overnight (21:00 - 4:59) (column 5) periods. All regressions
include individual demographic, vehicle, charging infrastructure, and moti-
vational control variables, as well as garage-fixed effects. All coefficients are
reported in individual×week. The weekly number of initiated charging ses-
sions per driver is reported beneath the coefficients. Robust standard errors,
clustered by individuals, are in parentheses. *, **, ***: statistically signifi-
cant with 90%, 95%, and 99% confidence, respectively.
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Table C1: Effect on the timing without charging restrictions

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A. Information -.046* .094 -.033 -.022 -.017
(.027) (.058) (.047) (.035) (.013)

Weekly plug-ins per driver .07 .38 .29 .16 .04

B. Discount 1 .046* .007 -.012 -.027 .045*
(.025) (.066) (.057) (.044) (.025)

Weekly plug-ins per driver .08 .44 .33 .17 .05

C. Discount 2 -.028 -.034 .041 .095* .000
(.039) (.071) (.061) (.057) (.022)

Weekly plug-ins per driver .09 .38 .27 .16 .05

Notes: This table presents the regression estimates for the time of day in which sessions are
initiated including charging sessions with initiation errors for the informational (Panel A), first fi-
nancial (Panel B), and second financial treatment (Panel C). The outcome variables indicate the
number of initiated charging sessions during early morning (5:00 - 6:59) (column 1), morning (7:00
- 9:59) (column 2), midday (10:00 - 15:59) (column 3), evening (16:00 - 20:59) (column 4), and
overnight (21:00 - 4:59) (column 5) periods. All regressions include individual demographic, vehi-
cle, charging infrastructure, and motivational control variables, as well as garage-fixed effects. All
coefficients are reported in individual×week. The weekly number of initiated charging sessions per
driver is reported beneath the coefficients. Robust standard errors, clustered by individuals, are in
parentheses. *, **, ***: statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table C4: Effect on average charging behavior

Average charging behavior

(1) Energy (2) Session time (3) Charge time (4) Idle time

A. Information -.168 -9.223 -1.958 -7.264
(.816) (13.100) (10.062) (6.981)

Mean per charge session 9.9 170.48 124.03 46.45

B. Discount 1 1.528* 20.467 18.065* 2.402
(.870) (12.779) (10.371) (6.240)

Mean per charge session 9.87 162.22 120.94 41.28

C. Discount 2 1.128 26.682 12.464 14.227
(1.197) (16.783) (12.921) (9.624)

Mean per charge session 10.48 174.88 122.8 52.07

D. Information x large discount -.912 -23.564** -14.827 -8.740
(.754) (11.785) (9.110) (6.972)

Observations 629 629 629 629

Notes: This table presents the regression estimates on the average charging behavior of the informational (Panel A),
first financial (Panel B), and second financial treatment (Panel C), as well as interaction effects (Panel D). The out-
come variables indicate the average energy consumed, in kWh (column 1); average session duration, in minutes (column
2); average charging duration (column 3); and average idle duration (column 4). All regressions include individual de-
mographic, vehicle, charging infrastructure, motivational control variables, and garage-fixed effects. Robust standard
errors, clustered by individuals, are in parentheses. All coefficients are reported in individual×week. The mean out-
come variable per charge session is reported below the coefficients. The number of observations is reported in the last
row. *, **, ***: statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table C5: Effect on the timing of charging by environmental motivation

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A.Informational prompt
High Environmental Motivation -.068* .093 -.089 .070 .011

(.041) (.107) (.099) (.108) (.026)
Low Environmental Motivation -.043 .087 -.017 -.029 -.010

(.028) (.059) (.045) (.031) (.011)

B.Financial incentive 1
High Environmental Motivation .051* .091 .039 -.080 .031

(.029) (.148) (.137) (.124) (.038)
Low Environmental Motivation .044* -.009 -.035 -.064 .031*

(.023) (.062) (.049) (.076) (.018)

C.Financial incentive 2
High Environmental Motivation .004 -.023 .044 .049 -.048

(.073) (.203) (.151) (.088) (.082)
Low Environmental Motivation -.050 -.022 .057 .126** .033

(.036) (.069) (.067) (.056) (.036)

Notes: This table presents the regression estimates on the timing of charging for the informational
(Panel A), first financial (Panel B), and second financial treatment (Panel C) by environmental motiva-
tion. Environmental motivations are determined from the enrollment survey question about motivations
for charging at work. Low (high) motivation indicates a reponse of <20 points (>20 points) allocated
to the answer "I prefer to charge when and where I think the environmental impact will be the lowest".
The outcome variable indicate the number of initiated charging sessions during early morning (5:00 -
6:59) (column 1), morning (7:00 - 9:59) (column 2), midday (10:00 - 15:59) (column 3), evening (16:00
- 20:59) (column 4), and overnight (21:00 - 4:59) (column 5) periods. All regressions include individual
demographic, vehicle, charging infrastructure, motivational control variables, and garage-fixed effects.
All coefficients are reported in individual×week. Robust standard errors, clustered by individuals, are in
parentheses. *, **, ***: statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table C6: Effect on additional charging behavior

Additional charging behavior

(1) Vehicle miles (2) Total energy (3) Weekend (4) DC Fast Charger

A. Information -21.192 -4.336 -.146 .022
(16.567) (4.170) (.518) (.323)

Weekly mean dep. var. 144.25 37.88 1.82 .7

B. Discount 1 -13.460 -1.870 .794 -.206
(18.264) (4.449) (.649) (.309)

Weekly mean dep. var. 144.25 37.88 2.37 .41

C. Discount 2 19.081 4.247 1.006 -.187
(19.299) (4.985) (.992) (.488)

Weekly mean dep. var. 139.46 36.77 2.97 .47

Notes: This table presents the regression estimates of the informational (Panel A), first financial (Panel B), and second
financial treatment (Panel C) for additional charging outcomes. The first two outcome variables for drivers who responded
to recurring odometer readings indicate the miles traveled during the intervention period (column 1), and the total energy
dispensed for all charging sessions (column 2). The subsequent outcome variables indicate the total energy consumed on
weekends (column 3), and the total energy consumed by DC Fast Charger (column 4). All regressions include individual
demographic, vehicle, charging infrastructure, motivational control variables, and garage-fixed effects. All coefficients are
reported in individual×week. The weekly mean outcome variable is reported beneath the coefficients. Robust standard
errors, clustered by individuals, are in parentheses. The number of observations is reported in the last row. *, **, ***:
statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table C7: Effect on the timing of charging by second discount groups

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5
C.Discount 2

Large-large vs. Large-small -.045 -.023 .055 .118** .025
(.035) (.067) (.064) (.054) (.029)

Large-large vs. Small-small -.042 -.044 .051 .113** .027
(.036) (.068) (.062) (.050) (.030)

Large-small vs. Small-small -.003 .022 .004 .005 -.001

Notes: This table presents the regression estimates for the time of day in which sessions are
initiated comparing the LL sequence to the LS and SS sequence during the second financial treat-
ment (Panel C). The implied differece between the Large-small and the Small-small sequence is
reported beneath the coefficients. The outcome variable indicate the number of initiated charging
sessions during early morning (5:00 - 6:59) (column 1), morning (7:00 - 9:59) (column 2), midday
(10:00 - 15:59) (column 3), evening (16:00 - 20:59) (column 4), and overnight (21:00 - 4:59) (col-
umn 5) periods. All regressions include individual demographic, vehicle, charging infrastructure,
and motivational control variables, as well as garage-fixed effects. All coefficients are reported in
individual×week. Robust standard errors, clustered by individuals, are in parentheses. *, **, ***:
statistically significant with 90%, 95%, and 99% confidence, respectively.
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Table C8: Effect on total charging behavior by week

Total charging behavior

(1) Sessions (2) Energy (3) Session time (4) Charge time (5) Idle time

A.Information
Week 1 -.024 .248 -14.432 -1.879 -12.536

(.103) (1.960) (35.849) (26.001) (16.658)
Week 2 .003 .594 1.945 8.708 -6.761

(.107) (2.005) (36.599) (25.457) (17.998)
Week 3 -.003 -1.345 -29.597 -19.955 -9.656

(.066) (1.455) (28.633) (20.788) (13.709)

B.Discount 1
Week 1 .032 3.896* 36.312 45.145* -8.840

(.109) (2.174) (39.101) (26.642) (20.193)
Week 2 -.009 2.056 17.316 21.486 -4.152

(.092) (1.784) (31.847) (22.319) (15.619)

C.Discount 2
Week 1 .085 1.989 25.800 25.489 .337

(.127) (2.858) (44.531) (32.988) (17.682)
Week 2 .173 2.315 44.251 25.437 18.817

(.141) (2.544) (48.137) (33.915) (23.327)

Notes: This table presents the regression estimates of the informational (Panel A), first financial (Panel
B), and second financial treatment (Panel C) for each week of the treatment. The outcome variables in-
dicate the number of charging sessions (column 1); total energy consumed, in kWh (column 2); session
duration, in minutes (column 3); charging duration, in minutes (column 4); and idle duration, in minutes
(column 5). All regressions include individual demographic, vehicle, charging infrastructure, motivational
control variables, and garage-fixed effects. All coefficients are reported in individual×week. Robust stan-
dard errors, clustered by individuals, are in parentheses. *, **, ***: statistically significant with 90%, 95%,
and 99% confidence, respectively.
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Table C9: Effect on the timing of charging with brand fixed effects

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A. Information -.053* .088 -.021 -.018 -.008
(.030) (.060) (.045) (.031) (.011)

Weekly plug-ins per driver .07 .35 .26 .13 .03

B. Discount 1 .040* -.028 -.034 -.030 .030
(.023) (.062) (.048) (.037) (.019)

Weekly plug-ins per driver .07 .41 .27 .14 .04

C. Discount 2 -.047 -.056 .058 .110** .020
(.036) (.066) (.067) (.055) (.030)

Weekly plug-ins per driver .09 .36 .31 .14 .05

D. Information x large discount -.038 .053 -.000 -.014 -.004
(.025) (.064) (.045) (.035) (.012)

Observations 629 629 629 629 629

Notes: This table presents the regression estimates for the time of day in which sessions are initi-
ated for the informational (Panel A), first financial (Panel B), and second financial treatment (Panel
C), as well as the interaction effect between information and the first financial treatment (Panel D) ex-
cluding couples. The outcome variable indicate the number of initiated charging sessions during early
morning (5:00 - 6:59) (column 1), morning (7:00 - 9:59) (column 2), midday (10:00 - 15:59) (column
3), evening (16:00 - 20:59) (column 4), and overnight (21:00 - 4:59) (column 5) periods. All regressions
include individual demographic, vehicle, charging infrastructure, and motivational control variables,
as well as garage-fixed effects. All coefficients are reported in individual×week. The weekly number
of initiated charging sessions per driver is reported beneath the coefficients. Robust standard errors,
clustered by individuals, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and
99% confidence, respectively.
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Table C10: Effect on the timing of charging by scarcity

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A. Induced scarcity -.048* -.028 .057 .060* .021
(.029) (.050) (.041) (.031) (.020)

B. Discount .056 .008 .026 .006 .027*
(.035) (.053) (.043) (.033) (.016)

C. Scarcity x large discount -.000 -.036 .050 .042 .043
(.030) (.058) (.053) (.036) (.029)

Weekly plug-ins per driver .08 .37 .23 .13 .04
Observations 629 629 629 629 629

Notes: This table presents the regression estimates on the timing of charging for the induced
perception of scaricty (Panel A), financial (Panel B), and interacted treatment (Panel C) The out-
come variable indicate the number of initiated charging sessions during early morning (5:00 - 6:59)
(column 1), morning (7:00 - 9:59) (column 2), midday (10:00 - 15:59) (column 3), evening (16:00 -
20:59) (column 4), and overnight (21:00 - 4:59) (column 5) periods. All regressions include individ-
ual demographic, vehicle, charging infrastructure, motivational control variables, and garage-fixed
effects. All coefficients are reported in individual×week. The weekly number of initiated charg-
ing sessions per driver and the number of observations are reported below the coefficients. Robust
standard errors, clustered by individuals, are in parentheses. *, **, ***: statistically significant
with 90%, 95%, and 99% confidence, respectively.
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Table C11: Effect on the timing of charging by location

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A.Information
SIO .010 -.058 .025 .023 .005

(.011) (.049) (.029) (.019) (.005)
West Campus -.137 .539 .068 -.158 -.087

(.110) (.332) (.156) (.116) (.070)
East Campus -.334 .067 -.022 -.021 -.025

(.275) (.254) (.053) (.184) (.037)
Graduate Housing -.070 .132* -.099 -.034 -.022

(.090) (.074) (.154) (.037) (.020)

B.Discount 1
SIO -.010 -.098* -.020 -.010 .000

(.016) (.053) (.018) (.025) (.)
West Campus -.045 .147 .041 -.066 -.008

(.129) (.369) (.157) (.112) (.076)
East Campus .460*** -.077 -.007 -.207 .056*

(.172) (.218) (.069) (.306) (.032)
Graduate Housing .000 .028 -.242 .011 .155

(.) (.099) (.161) (.043) (.132)

C.Discount 2
SIO .000 -.013 .003 .000 .000

(.) (.035) (.002) (.) (.)
West Campus -.127 -.318 .105 .339* .096

(.177) (.387) (.231) (.188) (.090)
East Campus .096 -.115 .032 .373 .000

(.334) (.240) (.058) (.241) (.)
Graduate Housing .088 .156 .045 .073 .184

(.062) (.128) (.068) (.075) (.234)

Notes: This table presents the regression estimates on the timing of charging for the
informational (Panel A), first financial (Panel B), and second financial treatment (Panel
C) by campus location. The outcome variable indicate the number of initiated charging
sessions during early morning (5:00 - 6:59) (column 1), morning (7:00 - 9:59) (column
2), midday (10:00 - 15:59) (column 3), evening (16:00 - 20:59) (column 4), and overnight
(21:00 - 4:59) (column 5) periods. All regressions include individual demographic, vehi-
cle, charging infrastructure, motivational control variables, and garage-fixed effects. All
coefficients are reported in individual×week. Robust standard errors, clustered by indi-
viduals, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and 99%
confidence, respectively.
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Table C14: Effect on the timing of charging by typical charging rate paid

Timing of initiated charging session

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A.Information
Low Charge Rate -.023 -.001 .084 -.068 -.004

(.031) (.061) (.071) (.041) (.012)
Medium Charge Rate -.027 .110 -.034 -.032 -.015

(.032) (.071) (.054) (.039) (.012)
High Charge Rate -.116*** .113 -.102 .061 .008

(.042) (.105) (.078) (.064) (.030)

B.Discount 1
Low Charge Rate .036 -.090 -.043 -.046 .002

(.036) (.102) (.064) (.049) (.018)
Medium Charge Rate .046* .004 -.019 -.036 .021

(.027) (.067) (.059) (.045) (.022)
High Charge Rate .049 .099 -.040 -.018 .095**

(.064) (.124) (.087) (.076) (.041)

C.Discount 2
Low Charge Rate -.007 -.104 .046 .097* -.011

(.045) (.104) (.082) (.053) (.041)
Medium Charge Rate -.070** -.052 .102 .102 .047

(.035) (.076) (.083) (.072) (.047)
High Charge Rate -.005 .146 -.072 .188* -.005

(.102) (.166) (.093) (.108) (.039)

Notes: This table presents the regression estimates on the timing of charging for the infor-
mational (Panel A), first financial (Panel B), and second financial treatment (Panel C) by the
typical rate that participants pay for EV charging. Low rates are those <$.17/kWh; medium
rates, ≥$.17/kWh and <$.23/kWh; and high rates, ≥$.23/kWh. The outcome variable indi-
cate the number of initiated charging sessions during early morning (5:00 - 6:59) (column 1),
morning (7:00 - 9:59) (column 2), midday (10:00 - 15:59) (column 3), evening (16:00 - 20:59)
(column 4), and overnight (21:00 - 4:59) (column 5) periods. All regressions include individual
demographic, vehicle, charging infrastructure, motivational control variables, and garage-fixed
effects. All coefficients are reported in individual×week. Robust standard errors, clustered by
individuals, are in parentheses. *, **, ***: statistically significant with 90%, 95%, and 99%
confidence, respectively.
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Table C15: Effect on the timing of charging by vehicle type

Outcome Variable

(1) 5-7 (2) 7-10 (3) 10-16 (4) 16-21 (5) 21-5

A.Informational prompt
Battery Electric -.055* .078 -.036 -.011 -.004

(.031) (.059) (.048) (.030) (.011)
Plug-in Hybrid -.013 .117 .013 -.047 -.019

(.049) (.133) (.103) (.093) (.031)

B.Financial incentive 1
Battery Electric .049** -.025 -.033 -.036 .039**

(.024) (.065) (.053) (.040) (.020)
Plug-in Hybrid .028 .095 -.011 -.031 -.001

(.057) (.151) (.127) (.112) (.028)

C.Financial incentive 2
Battery Electric -.043 -.012 .054 .142*** .040

(.041) (.077) (.064) (.047) (.030)
Plug-in Hybrid -.050 -.053 .060 .046 -.019

(.061) (.170) (.160) (.159) (.067)

Notes: This table presents the regression estimates on the timing of charging for
the informational (Panel A), first financial (Panel B), and second financial treatment
(Panel C) by vehicle type. The outcome variable indicate the number of initiated
charging sessions during early morning (5:00 - 6:59) (column 1), morning (7:00 - 9:59)
(column 2), midday (10:00 - 15:59) (column 3), evening (16:00 - 20:59) (column 4), and
overnight (21:00 - 4:59) (column 5) periods. All regressions include individual demo-
graphic, vehicle, charging infrastructure, motivational control variables, and garage-
fixed effects. All coefficients are reported in individual×week. Robust standard errors,
clustered by individuals, are in parentheses. *, **, ***: statistically significant with
90%, 95%, and 99% confidence, respectively.
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D Details of calculating the effect from charging

In this Section, we provide additional details to derive the annual social CO2 emission dam-

ages, the marginal cost of supplying electricity, and LCFS revenues from EV charging.

Expressing the societal and institutional effect of the shifts in charging behavior in

percentage terms requires us to estimate the social costs of CO2 emission damages, electricity

cost of charging, and LCFS revenues from EV charging per driver. Below, we describe how

we use our charging network and driver data to back out these three empirical objects. To

estimate the annual effects per driver, we convert the average energy consumed over the

experiment (19 days of informational prompts, 13 days of the first discount, and 14 days of

the second discount) to annual energy consumption.

D.1 Deriving emissions, cost of charging, and LCFS revenues

We estimate the social CO2 emission damages of workplace charging as the product of

annual hourly energy consumed at work Eh, the hourly carbon intensity CIh, and the SCC

as follows:

COtiming
2 =

24∑
h=1

Eh · CIh · SCC. (1)

Using the driver’s share of energy charged at work (Table I) allows us to back out the

estimated energy consumption from home charging. We define the share of charging at

work as the total energy consumed from workplace charging divided by the expected energy

consumed from total driving, which we estimate from the driver’s miles traveled and their

vehicle’s energy efficiency. Multiplying the energy of home charging by the carbon intensity

of the average charging profile of Triton Charger EV club members CI gives us the annual

CO2 emissions from home charging:

COlocation
2 =

∑24
h=1 Eh

Sharework
E

· (1− Sharework
E ) · CI · SCC. (2)
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The social workplace and home charging CO2 emission damages from charging are equal to

$148.66 (.71t CO2) per driver annually.

We estimate the marginal cost of supplying electricity for EV charging as the product of

annual hourly energy consumed at work Eh, and the average LMP of electricity at UCSD’s

pricing nodes LMPh as follows:

LMP timing =
24∑
h=1

Eh · LMPh. (3)

Similar to the CO2 emissions from charging, we use the driver’s share of energy charged at

work to derive the energy consumption from home charging. We then compute the annual

marginal cost of supplying electricity for EV charging from home charging as the annual

energy consumption of home charging and the LMP of electricity from the pricing nodes at

Triton Club members’ home address LMP home as follows:

LMP location =

∑24
h=1Eh

Sharework
E

· (1− Sharework
E ) · LMP home (4)

The LMP of electricity from charging at UCSD and the most typical home pricing nodes

correspond to $147.58 per driver annually.

We estimate the annual revenues earned through California’s LCFS program from work-

place charging as the product in electricity consumption at work Ehand the carbon intensity

of electricity CIh at that hour as follows:

LCFStiming =
24∑
h=1

(CIstandard −
CIh
3.4

) · Eh · P̄ · 3.4. (5)

Inserting the carbon intensity from gasoline-powered cars CIstandard and the LCFS credit

price P̄ , we estimate annual LCFS revenues of $44.67 per driver from workplace EV charging.
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Figure D1: LMP components in electricity

Notes: This figure illustrates daily variations in electricity LMP at UCSD’s pricing nodes alongside its
three components: energy cost, congestion cost, and losses cost by day in the experiment. Day 0 denotes
the first day of the informational treatment. Vertical lines denote the start of each intervention; thick gray
lines denote days on which the informational prompt was sent.
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