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Abstract 

 
This paper examines the effects of daily outdoor air pollution variation on student test scores. 
Using Danish register data for all elementary and lower secondary students, we link home 
addresses to a 1 km x 1 km pollution grid to measure test day and lifetime pollution exposure. An 
increase in fine particles (PM2.5) from a very clean to an average day reduces math scores by 
1.8% and reading by 0.9% of a standard deviation. Even at low pollution levels, student 
performance is harmed, especially in math. We find no evidence of heterogeneity by health, socio-
economic status, or lifetime exposure. 
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1 Introduction

Despite global efforts to reduce air pollution, which have successfully lowered exposure levels in

North America and Europe (Sicard et al., 2023), air pollution remains a universal externality, one

from which no one is ever entirely exempt. While the health consequences of air pollution are well-

established, there is a growing body of research focusing on its non-health-related impacts (Aguilar-

Gomez et al., 2022; Graff Zivin and Neidell, 2012; Isen et al., 2017), including its effects on cognitive

performance (Ebenstein et al., 2016; Carneiro et al., 2021). While much of this research centers on

adults, children are particularly vulnerable to air pollution due to their outdoor activities and a

potentially heightened sensitivity during critical developmental periods. Understanding the effects

of air pollution on children is essential, as childhood is widely recognized as a the formative years

for human capital development (Cunha and Heckman, 2007). However, there is limited knowledge

about how air pollution impacts children’s cognition, particularly at lower pollution levels commonly

found in high-income countries, and how these effects might interact with individual predispositions.

To shed light on these questions, our paper studies the effects of daily variation in outdoor air

pollution on test scores of primary and lower secondary school students. We use data from Denmark,

which allows us to combine information about local levels of ambient air pollution, student test

scores, and population-wide registration data. To construct the pollution treatment, we observe

the place of residence of each student and match the daily concentration of fine inhalable particles

(PM2.5) from an atmospheric model with a resolution of 1 km by 1 km. Crucially for identifying even

small treatment effects at low levels of pollution below the WHO guideline1 limits, our individual-

level administrative data contains information about student performance on 2.6 million repeated

national tests in math and reading between grades 2 to 8 from 2010 to 2018. Using the large sample,

we are also able to distinguish the impacts along the distribution of test scores and between different

test domains, shedding light on the cognitive processes involved. To investigate treatment effect

heterogeneity, we access comprehensive health data and are, therefore, the first to speak to the

role of underlying health conditions based on pre-existing diagnoses such as asthma, acute, and

chronic respiratory diseases. While it is likely that some health conditions may amplify the effects

of exposure to pollution, we currently know little about which conditions and the degree to which

they matter.

To circumvent a bias from non-random selection of neighborhoods, our main analysis exploits
1Fine inhalable particles (PM2.5) below 15 µg/m3.
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that students from the same family take several tests across days with varying levels of pollution.

We probe the robustness of our results by including fixed effect at the individual instead of the

family level, and by instrumenting pollution with local wind directions (Deryugina et al., 2019).

Here, the exclusion restriction postulates that no direct or indirect effect of the direction of wind,

conditional on weather controls, may affect the outcome other than the effect through air pollution.

We find that a 10 µg/m3 increase in fine inhalable particles (PM2.5) leads to a reduction in

student performance in math by 1.8 percent and in reading by 0.9 percent of a standard devia-

tion. We document that these effects are even present at pollution levels below the recommended

safe limit from the WHO and appear to be linear in levels of pollution. Our IV results that ex-

ploit municipality-specific wind directions are comparable in magnitude and statistically significant,

bolstering the causal interpretation of the effect of air pollution on test scores.

Across the test score distribution, we find that the effects of air pollution increase with the

proficiency of the students in math, the effects being approximately 50% larger at the top of the

math test score distribution compared to the average impact. No such gradient is visible for the

results in reading. To further scrutinize this result, we split the math and reading outcomes into

three test domains each: numbers and algebra, geometry, and applications for math, and language

comprehension, decoding, and text comprehension for reading. The pattern with increasing effects

over the quantiles of the distribution is most pronounced for geometry in math tests that is related

to higher order logical reasoning and judgement skills (Spiller et al., 2023). All reading domains,

in contrast, have flat profiles.

The impact of air pollution is often assumed to depend on health-related susceptibility and to

trigger a multitude of correlated health problems. However, it is still an open question whether the

pathways from exposure to cognition are in fact related to other health problems.2 We observe the

entire health histories of all individuals and test for heterogeneity of the effects by prior respiratory

diseases including diagnoses of asthma earlier in life. While the health issues are highly predictive

of test scores, they do not significantly moderate the effect of air pollution. We further test for

habituation effects of air pollution by interacting the same day pollution with cumulative pollution

measures over the lifetime and find no heterogeneous effects along this dimension. Moreover, we

do not find strong evidence for heterogeneity by mothers’ education, but we show that the impact

on test scores is twice as large for girls as for boys.
2The development of mental disorders has also been associated with air pollution exposure (Antonsen et al., 2020;

Khan et al., 2019; Thygesen et al., 2020).
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We test the robustness of our results across a variety of specifications. For example, our results

are robust to different levels of fixed effects, including individual student fixed effects, and to

the inclusion of covariates. We also test whether the results can be replicated in a high-stake

exam environment, using Gymnasium exit exams as the outcome. We also observe large effects of

pollution exposure in this setting: a 10-point increase in PM2.5 decreases exam grades in math by

8.7% of a standard deviation and in Danish by 4.6% of a standard deviation.

Our results contribute directly to a recent and growing literature that connects daily variation in

air pollution with performance in exams and assessments in education. In seminal work, Ebenstein

et al. (2016) rely on data from Israeli high school exit exams, the Bagrut matriculation, and

exploit the fact that the same student takes multiple obligatory tests on days with varying levels

of air pollution. The authors document clear and harmful effects of air pollution; a one standard

deviation increase in fine inhalable particles (PM2.5) leads to a reduction in student performance of

3.9 percent of a standard deviation. In a related paper, Carneiro et al. (2021) combine individual-

level panel data from university entrance exams from Brazil (São Paolo and Rio de Janeiro) with

information on local wind conditions to show that a one standard deviation increase in inhalable

particles (PM10) leads to a reduction in student performance of 8 percent of a standard deviation.

Zivin et al. (2020) show that the scores of the college entrance exams in China are significantly

decreased due to the downwind air pollution of agricultural fires, with stronger effects in high-

achieving students. As a rare example of an analysis of indoor air pollution, Roth (2020) finds for

London-based university students that particulate matter exposure (PM10) reduces their scores in

high-stakes exams.

Interestingly in light of the indications from our domain-wise results, a related literature speaks

to the cognitive processes involved in explaining the drops in test performance from air pollution

exposure. La Nauze and Severnini (2021) use data from brain-training games and show that

PM2.5 exposure decreases adult cognitive functioning in the memory and problem solving domains.

Stronger results for younger adults are consistent with fluid intelligence, the part that is independent

of accumulated knowledge, being more affected by air pollution. Krebs and Luechinger (2021) use

data from a brain training game in which players solve arithmetic problems and find that nitrogen

oxide pollution (NOx) reduces the scores of experienced players. Using laboratory experiments

with university students in Brazil, Bedi et al. (2021) show that PM2.5 reduces performance in a

grammatical reasoning test. The test was designed to involve higher mental processes and relies on

fluid intelligence, which predicts educational outcomes and performance in cognitively demanding
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occupations.

A few recent papers have analyzed the impacts of other measures of air pollution on test

scores and with varying lengths of exposure and time horizons. Zhang et al. (2018) use verbal

and math test results from a large longitudinal survey in China for respondents of all ages over 9

to estimate the effects of an air pollution index (API), which contains measures of sulfur dioxide

(SO2), nitrogen dioxide (NO2), and particulate matter (PM10). They find that the API affects

only verbal tests negatively in the short term, but both tests in the longer term, when regressed

on mean API for the previous 90 days through 3 years. In a recent paper, Halliday et al. (2022)

estimate the impact of VOG, the air pollutant compounds from volcanic eruptions, on test scores

of students in primary and lower secondary school in Hawaii. They find a 1.1 percent of a standard

deviation decrease in test scores from a one standard deviation increase in particulate pollution,

with the effects concentrated among economically disadvantaged students. To identify causal effects

of more long-term pollution exposure, Heissel et al. (2022) exploit the changes in pollution from

school transitions in Florida. They find evidence of a medium-term effect of air pollution on test

scores of students in middle school and high school. Similarly, Bharadwaj et al. (2017), use sibling

comparisons to document negative effects of fetal pollution exposure on 4th grade test scores in

Chile. Finally, our work also speaks to a broader literature that is concerned with the effects of air

pollution on health (e.g., Currie and Neidell (2005); Schlenker and Walker (2016); Deryugina et al.

(2019)), and on labor productivity (e.g., Graff Zivin and Neidell (2012); Isen et al. (2017); Chang

et al. (2016, 2019)).

Our results complement the existing evidence and advance it in several ways. First, while

most of the existing evidence on the cognition effects of air pollution stems from high-pollution

environments (Ebenstein et al., 2016; Carneiro et al., 2021; Zhang et al., 2018), we show that

particulate matter exposure is harmful, even at levels below widely used threshold values. In

fact, the marginal effects of changes close to zero pollution are hardly any different from impacts

at higher levels. This result has important policy implications, as it informs debates about safe

levels of air pollution exposure and policies that postulate threshold values, the violation of which

invokes reduction efforts. Second, our results indicate that the negative impacts of air pollution

exposure on cognition are not confined to adults or situations with high stakes involved. Instead,

the impacts extend far into childhood and are visible in cognitive tests of primary school students.

Third, there is a lack of evidence on which pathophysiological mechanisms are involved (see Aguilar-

Gomez et al. (2022) for an overview), an area which we contribute to by showing evidence that
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the top part of the distribution and, in particular, hard problems in geometry show the largest

negative effects. This result is consistent with higher mental processes being directly affected by

air pollution, bridging the gap between impacts on test scores and on the evidence on cognitive

functioning (Bedi et al., 2021; La Nauze and Severnini, 2021; Krebs and Luechinger, 2021). Fourth,

there has been speculation about the susceptibility to air pollution being related to poor health

conditions based on the medical literature, while direct evidence has been lacking in the context

of cognition impacts. For example, Ebenstein et al. (2016) hypothesize that larger effects for boys

and low socio-economic status students may be due to higher rates of asthma in these groups, while

we do not find differential impacts using data on diagnosed asthma cases. Moreover, even common

respiratory diseases are not moderating the impact of air pollution. These results caution against

transferring evidence of differences in vulnerability from impacts on health domains (Deryugina

et al., 2019) over to impacts on productivity and cognition.

The paper proceeds as follows: Section 2 describes the institutional background for our study.

Section 3 presents our data and empirical strategy. Section 4 shows our results, section 5 concludes.

2 Background

2.1 The Danish educational system

The Danish schooling system is characterized by a universal two-tier structure. Primary and lower

secondary education, typically spanning ten years from the age of six to sixteen, is conducted in

the same elementary school (folkeskole). These schools are typically public, while a private school

alternative exists that follows the same structure and receives comparable state funding. The upper

secondary education is divided into an academic (Gymnasium) and vocational track, where more

than 70% of students choose the academic track.

During elementary school, students undergo a number of assessments, the national test (Den

Nationale Test), that do not enter their grades. The primary objective of the national test is to

collect data on students’ proficiency levels in key subjects, including Danish and mathematics. The

test enables educators and policymakers to evaluate the overall quality of education and to identify

areas of strength and weakness in education and across schools by providing a comprehensive

assessment of students’ academic skills. The tests are administered to students between the 2nd

and 8th grade levels. The tests are mandatory for all students in public primary and lower secondary

schools and entire classrooms take the tests at the same time during the school day. The national
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tests are carried out between February and April every year.

The national test is a computer-based assessment that incorporates multiple-choice questions

and tasks and each test takes at least 45 minutes. The items are aligned with the national curriculum

objectives and learning goals. The tests are conducted online in a self-scoring and adaptive program.

The adaptivity of the test implies that the program monitors the proficiency of the student during

the test and adjusts the difficulty level of the subsequent questions. This procedure ensures a

more accurate assessment of proficiency than a linear test. Since the test score is evaluated in the

computer-assisted program, teachers are not involved in picking questions or assessing the students’

performance, ensuring that the results are comparable among students at the national level.

In practice, the test assesses the student’s skills across various subdomains or profile areas. In

math, these are numbers and algebra (knowledge about magnitudes and properties of numbers

as well as computational strategies); geometry (knowledge about shapes of objects and spatial

relationships); and statistics (the concept of uncertainty and analysis of data). In reading, the

subdomains are language comprehension (the meaning of words); decoding (word recognition); and

reading comprehension (the content of the text).For a detailed description of the test program, see

Beuchert and Nandrup (2018).

After completing lower secondary education, students can apply to either a Gymnasium or a

vocational track. In this study, we focus on grades from Gymnasium exit exams along with the test

scores of the compulsory tests. Each Gymnasium offers a three-year program that provides direct

access to university education and other post-secondary programs (conditional upon performance)

and has multiple tracks that the students can apply to. All subjects can be taken on three different

academic levels, where the student will have the subject for one year for the lowest level, and for

three years for the most advanced level. It is mandatory to follow Danish for three years, while

the students can choose between following mathematics for either one, two or three years. In the

Danish system, it is mandatory for the students to take a written exam in Danish, whereas other

exams are drawn at random. All written exams are taken in the end of May or beginning of June

each year, and all students are taking the exam at the same time. In contrast to the national

test, all students are asked the same questions in the written Gymnasium exit exams. The exam

in written Danish lasts five hours, whereas the exam in math lasts between three and five hours

depending on the level.
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3 Data and Estimation strategy

In this section, we first introduce our data for the analysis, which combines the Danish register

data, air pollution data, and weather data. We then lay out the main estimation strategy and

explain how we instrument air pollution using information on wind conditions.

3.1 Data and Sample

We combine individual-level register data with air pollution and weather data to build a rich data

set that allows us to estimate the effect of at-home air pollution on test scores in school.

Our primary outcome data are based on information on compulsory test scores from the Danish

National Tests provided by the Danish Agency for IT and Learning (Styrelsen for IT og Læring).

We use the reading tests in the 2nd, 4th, 6th, and 8th grades and the math tests in the 3rd and 6th

grades. Our data comprise the universe of reading and math tests conducted from 2010 to 2018,

amounting to 2,598,119 test results in total. In practice, we construct standardized test scores by

grade level, year, and subject as our main outcome variable. As a secondary outcome we use grades

from written Gymnasium exit exams in math and Danish. As for the national test we construct

standardized test scores as our outcome.

From the national test register, we have access to unique (encrypted) individual identifiers

making it possible for us to link all (100 %) test-takers to administrative register from Statistics

Denmark. This step allows us to add a rich set of demographic, socio-economic, and health infor-

mation to the students. First, we include basic demographics of the students including age and

place of living, and we identify the students’ siblings and parents via mother and father identi-

fiers. Second, from earnings and education registers, we add information about parental income

and highest educational attainment to infer the socio-economic status of the students. Third, we

use the National Patient Register to describe the medical history of the students by adding all

medical diagnoses from hospitals. As air pollution leads to respiratory (Dockery and Pope, 1994;

Ward, 2015) and cardiovascular disease (Brook et al., 2009; Dominici et al., 2006; Langrish et al.,

2013), disease onsets are potentially important mediators and moderators. The contemporaneous

disease may carry a direct health impact on cognitive performance, while previous medical condi-

tions may increase the susceptibility of students to contemporaneous pollution exposure. We use

the diagnoses to construct measures of early respiratory disease, including asthma.

Our measure of pollution exposure is the daily concentration of fine particulate matter PM2.5.
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Pollution concentrations are provided by a high-resolution modeling system at 1 km x 1 km reso-

lution from 1980 to 2018. A hemispheric model (DEHM) and an urban background model (UBM)

feed the modeling system that uses inputs from emissions and weather and calculates atmospheric

transport, chemical transformation and deposition of 80 chemical species, where PM2.5 consists of

primary emitted particles, secondary inorganic aerosols, secondary organic aerosols, and sea salt

(Brandt et al., 2001, 2003, 2012). We match the register information on addresses to the 1 km x 1

km grid cells and thus obtain daily pollution concentrations at the current home address. For each

student, we observe all addresses from birth and onwards and use these to compute the cumulative

pollution exposure. Auxiliary pollutants — sulfur dioxide (SO2), carbon monoxide (CO), and ni-

trogen dioxide (NO2) — are matched in the same manner. Figure 1 show the distribution average

PM2.5 levels across Danish municipalities.

Figure 1: Spatial distribution of air pollution

Notes: The figure shows the distribution of PM2.5 in our estimation sample as average deviation from the national
mean for municipalities in Denmark.

Daily weather measurements come from Denmark’s Meteorological Institute (DMI). We use

data from 102 monitoring stations covering all major mainland and islands. Municipalities without

available data are assigned the weather from the neighboring municipalities or the average within a

grouping of municipalities that reflect common maritime influences (see Figure A1 for the grouping

of municipalities). Precipitation, temperature, humidity, and cloud cover act as control variables.
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Temperature is measured in degrees Celsius, precipitation in millimeters, and humidity and cloud

cover are measured as percentage points. Wind directions are used for the construction of the

instrumental variables.

The summary statistics for our sample are presented in Table 1. Panel A reports sample means

for our test dates for both the compulsory tests and Gymnasium exit exams, while Panel B reports

sample means at the student-level. For the compulsory test, our sample consists of 2,598,731 tests,

while our sample for Gymnasium exit exams consists of 457,245 exams. The reason behind the

large difference in these numbers is that not everyone in a cohort enrolls in Gymnasium and that

Gymnasium exit exams are only taken once per student, while the compulsory tests are taken

at multiple grade levels. For each test and exam, we observe the pollution on the day of the

test/exam (PM2.5, NO2, SO2, and CO), and the average temperature, precipitation, humidity, and

percentage cloud cover. Panel A shows that, on average, children face levels of PM2.5 of 9.9 µg/m3

for the compulsory test and 7.9 µg/m3 for the Gymnasium exit exams. It also indicates that the

temperatures are generally higher on the days when students participate in Gymnasium exit exams

compared to the compulsory test.

In Panel B of Table 1, we report student-level means, which include demographic information.

Half of included students in the compulsory tests are females, whereas the share of females is

higher in Gymnasium exit exams, because of their higher enrollment rate. Additionally, for both

compulsory school tests and Gymnasium exit exams, the share of native Danes is just above 90%.

Finally, most students live with both parents during primary and lower secondary education.

3.2 Empirical Strategy

The goal of our paper is to estimate the effect of daily outdoor air pollution on student test scores

and our baseline empirical model is the following:

TSit = δPM2.5,it + X ′
itβ + ϕt + νf + uit, (1)

where TSit is the standardized test score for math or reading from a test that individual i of family

f takes on date t. The variable of interest is contemporaneous pollution PM2.5,it, which is measured

in µg/m3. The coefficient δ shows the linear effect of air pollution on test scores in percent of a

standard deviation of the outcome.

As there is potential self-selection into high or low pollution areas that correlates with test
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Table 1: Descriptive Statistics

Compulsory test High school exam
Mean Std Mean Std

Panel A. Environmental data
Pollution Exposure at test day

PM2.5 9.9 (6.1) 7.9 (2.8)
NO2 10.8 (7.3) 10.8 (5.2)
SO2 1.9 (2.1) 1.3 (1.2)
CO 157.9 (37.2) 127.1 (14.1)

Previous exposure
PM2.5 in-utero 11.9 (1.7) 14.3 (2.2)
PM2.5 in first three years of life 11.8 (1.6) 13.8 (2.1)
PM2.5 before test 10.2 (1.9) 12.5 (1.6)

Climate controls at test day
Temperature (degrees Celsius) 6.9 (4.4) 14.1 (3.6)
Precipitation (cm) 0.1 (0.2) 0.0 (0.1)
Humidity (percentages) 80.6 (9.8) 75.0 (10.8)
Cloud cover (percentages) 50.4 (30.2) 38.3 (31.1)

Panel B. Student-level data
Female 0.49 (0.50) 0.58 (0.49)
Number of children within the family 2.16 (0.81) 2.37 (20.88)
Ethnicity

Native Dane 0.89 (0.31) 0.92 (0.27)
Non-Dane 0.11 (0.31) 0.08 (0.27)

Living with parents
Both parents 0.67 (0.47) 0.62 (0.49)
Father 0.04 (0.20) 0.06 (0.23)
Mother 0.27 (0.44) 0.24 (0.42)

Observations (Tests) 2,598,731 457,245
Number of families 393,516 227,414
Number of children 731,960 276,700
Years 2010-2018 2010-2018

Notes: The table reports average characteristics of the environmental data as
daily averages in Panel A and averages as the student-level per student in the
data in Panel B. Standard deviations are shown in parentheses.
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scores, we include family fixed effects νf . They account for neighborhood effects of the families’

addresses and for unobserved time-constant family-specific factors like the human capital of parents,

joint investments in siblings’ education, or pollution avoidance investments. We further control for

the student’s sex and grade level in Xit to account for potential correlations with performance in

tests. Air pollution follows predictable time patterns across years, days of the week, and time of

day (early morning, morning, later) that we control for in ϕt to account for potential correlations

with performance in tests. Finally, we include a range of weather controls that potentially affect

air pollution and performance at the test simultaneously. Weather controls in Xit are temperature,

precipitation, humidity, and cloud cover. Lastly, we cluster the standard errors at the school level.

The identifying assumption for pollution in this first model is that after controlling for family

and time fixed effects, demographics, and weather measures, air pollution on the day of the test

is as good as random. We are thus exploiting the within-family variation in test scores between

siblings and within-student variation between test iterations. The treatment variation in pollution

comes from unanticipated variation between the dates when schools take the tests that any student

from the same family is participating in. In general, differences in pollution come primarily from

variation across dates rather than between addresses as shown in Figure 2. The left graph shows

the distribution of PM2.5 across all tests in our sample. The vertical line indicates the WHO limit

value of 15 µg/m3,3 which is exceeded in rare instances. The right graph depicts the variation of

air pollution within families. Even after controlling for the mean level in the family that absorbs

the differences between locations, tests taken on different days show almost as much variability as

the raw data.

Figure 2: Distribution of air pollution

(a) Raw (b) Residualized family (c) Residualized student

Notes: The figure plots the distribution of PM2,5 in our estimation sample as (a) raw data, (b) residualized with
family fixed effects, and (c) residualized with individual fixed effects. The vertical line in (a) depicts the café
limit of the WHO.

324-hour average exposure limit.
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The fixed effects specification may still suffer from date specific unobserved factors that affect

pollution and test scores simultaneously. For example, a city wide festivity may increase traffic

and thereby air pollution, but also distract students and suppress test performance. To avoid such

biases, we propose a second estimation strategy, where we instrument air pollution with local wind

directions similar to the procedure in Deryugina et al. (2019). The idea is that the local wind

direction determines which pollutants are transported to a location. For example, the pollution

produced on a highway can be transported to eastern or western neighborhoods depending on the

direction of the wind (Anderson, 2020). The exclusion restriction for the instrument requires that

the wind direction, after controlling for fixed effects and all other weather influences, only affects

test scores via air pollution. We implement the 2SLS estimation with the first stage equation

PM2.5,it =
98∑

m=1

4∑
d=1

γmdwdmd
it + X ′

itβ + ϕt + νf + eit, (2)

where the endogenous air pollution is the dependent variable. The instruments are the municipality-

specific wind directions. The wind direction in municipality m on date t is recorded in four indicator

variables: wdm1
it for 1-90 degree wind, wdm2

it for 91-180 degree wind, wdm3
it for 181-270 degree wind,

wdm4
it for 271-360 degree wind. The indicator wdmd

it is equal to one if the wind comes from interval d

in any hour of the day, all are zero when there is no wind. For each wind direction and municipality

combination, we identify a first stage parameter γmd. The intuition of the instrument is that wind

directions affect every location differently. Our instrument extracts the variation in air pollution

that is only due to wind directions on the test date and the municipality specific response to changes

in wind directions. We combine the instrumental variables strategy with our fixed effects framework

from above by keeping all control variables and adding a wind speed control.

One caveat of our estimation strategy and of most other pollution studies is that the concentra-

tions of different types of air pollutants strongly correlate with each other. It implies that the effect

we estimate for fine particulate matter (PM2.5) may be overestimated as it includes the impact of

all other correlated air pollutants. A relative increase in our measure should thus be understood as

a relative increase of correlated pollutants (see Table B1). To address the issue, we also estimate a

model for each of the criteria air pollutants as a robustness check.
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4 Results

This section describes all results, beginning with the main estimates of air pollution impacts on

test scores. We then explore non-linearities in the effects at different levels of air pollution and

investigate how the impacts vary across the distribution of test scores. Next, we will explore hetero-

geneous impacts of air pollution across several dimensions, including life-time pollution exposure

and prior health conditions. We end with results on an alternative outcome from Gymnasium exit

exams and probe the robustness of our main results.

4.1 Main Findings of Pollution Effects on Test Scores

We present a visual preview of our results in Figure 3, where we show residualized test scores and

residualized air pollution, using the set of controls and fixed effects described above. Each circle

represents the average test scores of 1 µg/m3 PM2.5 bins. The Lowess bandsmoother estimate of

the non-parametric relationship between air pollution and test scores suggests a negative effect.

The reduction in test scores is fairly linear across the distribution of air pollution.

Figure 3: Scatter plot of residual air pollution and test scores

(a) Residual math test scores (b) Residual reading test scores

Notes: The figure plots the relationship between residual (a) math and (b) reading test scores and residual PM2,5
estimated by Lowess bandsmoother. Each observation in the plot shows residual test scores averaged over bins
of width three units of residual PM2,5. Residual test scores and residual PM2,5 are generated by regressing each
variable on all fixed effects. The lowest 1% and highest 1% values for residual PM2,5 are left out.

We present our main regression results for the effect of PM2.5 on standardized test scores in

math and reading in Table 2. Regressions in all columns include the full set of control variables

and family fixed effects. In columns 1 and 2, we show results for the effects of contemporaneous air

pollution concentrations on the day of the test. The result in column 1 suggests that a 10 µg/m3
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increase in air pollution (about the mean in our sample) decreases math test scores by 1.8% of a

standard deviation. Reading test scores decrease by 0.9% of a standard deviation, and both results

are statistically significant at the 1% level. To put these estimates into perspective, remember that

the within-family variation in pollution levels, i.e., differences in concentrations that affect family

members by pure coincidence on different days, range from -9 to +14 points. Thus, a change in air

pollution by 10 µg/m3 merely corresponds to the difference between days with good and poor air

quality.4

Table 2: Impact of PM2.5 on test scores

Fixed effects IV

Math Reading Math Reading
(1) (2) (3) (4)

PM2.5 ∗ 10 -0.018*** -0.009*** -0.020** -0.008
(0.002) (0.003) (0.010) (0.006)

Average PM2.5 9.89 9.97 9.89 9.97
Observations 846,342 1,752,389 846,342 1,752,389
First stage F 46.79 120.6
Level of fixed effects Family Family Family Family

Notes: The dependent variables in all regressions are standardized test scores
from the national compulsory tests. Pollution is measured at the home address.
All regressions include controls for temperature, precipitation, humidity, and
cloud cover, as well as fixed effects for sex, family, time-of-date (early morning,
morning, later), day-of-the-week, year, and grade level. Results in columns 1
and 2 are from fixed effects regressions, results in columns 3 and 4 are from
2SLS regressions. The instrument is constructed following Deryugina et al
(2019). Wind dummies are equal to 1 if there is wind in any hour during the
test date within 90 degree intervals, with no wind as the omitted category.
The dummies are interacted with municipality identifiers. IV regressions addi-
tionally control for average wind speed. Across all specifications we are using
family fixed effects and standard errors clustered at the school level in paren-
theses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Treatment effects of 1.8% and 0.9% of a standard deviation in test scores are non-negligible,

but still smaller than what has been found for school exit exams and university entry exams in

other settings. Ebenstein et al. (2016) find for Israeli school exit exams, that a comparable change

in PM2.5 air pollution decreases school exit exam scores by about 4.7% of a standard deviation.5

4A possible concern could be that parents are keeping their children at home when pollution levels are high.
However, we do not find any indication that pollution levels affect the probability of participating in the test.

5The student fixed effects estimates suggest a -0.040 effect per AQI unit, which corresponds roughly to 2.8 µg/m3

and the standard deviation of the test points is 23.7.
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Carneiro et al. (2021) find that a 10µg/m3 change in PM10 air pollution reduces university entry

exam scores in Brazil by 8% of a standard deviation. Remember that our results are taken in an

environment with much lower air pollution levels (9.9 µg/m3 PM2.5 in Denmark vs. 21.1 µg/m3

PM2.5 in Israel (Ebenstein et al., 2016) and 17.5 µg/m3 PM10 in Brazil (Carneiro et al., 2021)) and

with national tests at much younger ages in elementary and lower secondary school.

Table 3: Impact of PM2.5 on test scores by domain

(1) (2) (3)

Math domain: Algebra Geometry Applied

PM (2.5)*10 -0.015*** -0.016*** -0.016***
(0.002) (0.002) (0.002)

Observations 846,342 846,342 846,342
R-squared 0.56 0.56 0.58

Reading domain: Language Decoding Text
Comprehension Comprehension

PM (2.5)*10 -0.009*** -0.008*** -0.007***
(0.002) (0.002) (0.002)

Observations 1,752,389 1,752,389 1,752,389
R-squared 0.49 0.59 0.58

Level of fixed effects Family Family Family

Notes: The dependent variables in all regressions are standardized test scores
from the national compulsory tests split into three domains for both math and
reading. Pollution is measured at the home address. All regressions include
controls for temperature, precipitation, humidity, and cloud cover, as well as
fixed effects for sex, family, time-of-date (early morning, morning, later), day-of-
the-week, year, and grade level. Standard errors clustered at the school level in
parentheses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

While our main specification using family fixed effects illustrates a negative relationship between

the level of air pollution and students’ academic performance, there might well be date specific un-

observed factors that affect pollution and test scores simultaneously. Besides endogeneity concerns,

instrumenting air pollution can alleviate measurement error issues in the estimation. The instru-

ment only exploits municipality variation in air pollution that is driven by wind direction and,
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thus, affects everyone in the municipality similarly.6 The IV results are presented in columns 3 and

4 of Table 2. Our findings suggests that a 10-point increase in air pollution decreases test scores

in math with 2.0% of a standard deviation, and decreases test scores in reading with 0.8% of a

standard deviation. These estimates are very close to the main estimates, only much less precisely

estimated. The effect on math test scores is still statistically significant at the 5% level. Overall,

these results suggest that our FE estimates in columns 1 and 2 are not subject to endogeneity or

measurement error concerns.

We round off this section by exploring the effects on the subdomains of the national tests. Table

3 shows that the average effects are very similar across all subdomains of both the math and the

reading tests. It suggests to us that our conclusions are robust and not sensitive to the precise

type of skill tested within broader categories: air pollution affects cognitive functioning in general,

though it is most severe for the skills applied in math regardless of the domain.

4.2 Non-linearities Across Pollution Levels

Table 4: Effects of PM2.5 limit violations

(1) (2) (3)
EU: 20µg/m3 WHO: 15µg/m3 WHO: 5µg/m3

Panel A: Math
Above limit -0.020*** -0.023*** -0.017***

(0.007) (0.005) (0.005)

Observations 846,342 846,342 846,342
R-squared 0.63 0.63 0.63
Panel B: Reading
Above limit -0.012*** -0.013*** -0.008***

(0.004) (0.003) (0.003)

Observations 1,752,389 1,752,389 1,752,389
R-squared 0.63 0.63 0.63

Notes: The dependent variables in all regressions are standardized test scores from
the national compulsory tests. Pollution is measured at the home address. For WHO
the safe limit is 15 and the low limit is 5, for EU the safe limit is 20. All regressions
include controls for temperature, precipitation, humidity, and cloud cover, as well
as fixed effects for sex, family, time-of-date (early morning, morning, later), day-
of-the-week, year, and grade level. Standard errors clustered at the school level in
parentheses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

6Local measurements of air pollution may, conversely, be poor approximations of individual exposure, particularly
if the measurement locations are not representative of the location of the students.
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Whether or not there is a safe level of pollution has long been debated. Air quality guidelines

that posit limits to air pollution seemed to suggest that such safe levels of pollution exist. In its

latest guidelines, however, the World Health Organization emphasizes that there is no evidence

for a safe level of air pollution (WHO, 2021). To test whether exceeding low air pollution limits

yields consistent effects on test scores, we construct dummies for a 20 µg/m3 limit violation (yearly

average limit from European Union (2008)), for a 15 µg/m3 limit violation (daily value that should

not be exceeded at the 99th percentile of days throughout a year by WHO (2021)), and a 5 µg/m3

limit violation (strict yearly average from WHO (2021)). The results are shown in Table 4. We

find similar effect sizes across limits for both math and reading, where the estimates are significant

for the 15 and 5 µg/m3 limits. Importantly, even exceeding the low 5 µg/m3 limit shows consistent

and statistically significant negative effects on both test scores. This result supports the notion by

the WHO (2021) that pollution at any level matters.

As a next step, we exploit the full distribution of pollution levels to test for non-linearities in

the effects on test scores. Figure 4 shows results with discretized levels of pollution in 5 µg/m3

intervals with a reference category of below 5 µg/m3. The effects on math and reading test scores

are increasing almost linearly from 5-10 µg/m3, 10-15 µg/m3, and 15-20 µg/m3. Above 20 µg/m3,

the effect start to level off, but also become less precisely estimated. This pattern of treatment

effect sizes with increasing levels of pollution suggests two important interpretations. First, there

is a significant negative impact on test scores even at levels far below the ones suggested by current

and past limit guidelines. Second, the impact of pollution seems largely to be linear in levels.

4.3 Are the Top and Bottom Performers Equally Affected?

How exactly air pollution affects cognition and what pathophysiological processes are involved is

still largely unknown (Aguilar-Gomez et al., 2022). What we do know is that brain function can be

hampered by both a direct entrance of pollutant particles through the olfactory bulb and indirectly

through inflammatory processes in the body, as shown in experiments with mice (Underwood,

2017). Whether these impacts manifest themselves in lower cognitive function across the board or

in specific brain tasks is a priori unclear. It is, however, important to understand whether tasks

that require complex brain function are more or less affected by exposure to air pollution. We

attempt to explore the mechanisms indirectly by asking where in the distribution of test scores air

pollution has the largest impact. In our setting, the tests are adaptive, such that higher test scores

imply harder problems to be solved by the students. Heterogeneous effects across the difficulty of
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Figure 4: Effects across pollution distribution

(a) Math test scores (b) Reading test scores

Notes: The figure plots the effects of 5-µg/m3-interval dummies of air pollution relative to less than 5 µg/m3 on
standardized (a) math and (b) reading test scores. The regressions include controls for temperature, precipitation,
humidity, and cloud cover, as well as fixed effects for sex, family, time-of-date (early morning, morning, later),
day-of-the-week, year, and grade level. Standard errors clustered at the school level, and confidence intervals at
95% level are depicted.

the questions can help us understand better what type of mental processes are most susceptible to

air pollution.

To test for heterogeneity across the test score distribution, we estimate unconditional quantile

treatment effects (Firpo, 2007; Firpo et al., 2009), using estimators developed by Borgen et al.

(2021)7 that allow for high-dimensional fixed effects and continuous treatments. Using this method,

we obtain quantile treatment effects that control for confounding variation as in our main estimation

and are interpretable as the impact of air pollution at the q-th quantile of the unconditional test

score distribution.

Figure 5 shows quantile treatment effects of air pollution on test scores in math in panel (a)

and reading in panel (b). At the lowest percentiles in the math test score distribution, air pollution

has a very small impact, less than half of our baseline estimate. The treatment effects increase

steadily with the quantiles of the distribution. At the top, treatment affects exceed 3% of a standard

deviation for a 10 µg/m3 increase in air pollution. Although there is indication of larger impacts

on higher test scores in math, the profile for reading is relatively flat. While the difficult parts in

math tests are arguably more heavily relying on fluid intelligence, much of the reading test relies on

crystallized intelligence and accumulated knowledge that is less prone to being influenced by outside

factors. This result is consistent with the effects on problem solving and arithmetic problems in
7The residualized quantile regression is a two-step procedure that first purges confounding variation from the

treatment variable and then regresses the raw outcome variable on the residualized treatment.
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Figure 5: Quantile treatment effects

(a) Math (b) Reading

Notes: The graphs show unconditional quantile treatment effects (Borgen et al., 2021) for every fifth percentile of
the outcome distribution. Panel (a) shows results for math, panel (b) results for reading. Solid lines are quantile
treatment effects, grey areas are 95% confidence bands, the dark dashed line is the linear OLS estimate with 95%
confidence bands as light dashed lines. Pollution is measured at the home address. The estimation controls for
temperature, precipitation, humidity, and cloud cover, as well as fixed effects for sex, family, time-of-date (early
morning, morning, later), day-of-the-week, year, and grade level.

brain-training games (La Nauze and Severnini, 2021; Krebs and Luechinger, 2021). Results for an

air pollution effect on a language test for university students in a laboratory environment that was

designed to involve higher mental processes point in a similar direction (Bedi et al., 2021).

To further investigate this result, we obtain quantile treatment effects for the six test domains

separately in Figure 6. The test in numbers and algebra builds strongly on accumulated knowledge

of math principles and calculation rules, and we see that the results in Panel (a) are the least

steep. The differences across the distribution in the geometry test in Panel (b) are much stronger.

This pattern of results is consistent with fluid intelligence playing a larger role for problems that

involve visualization and spatial reasoning. The results for applications in math in Panel (c) that

are derived from a mixture of problems across math domains are less distinct than for geometry.

All three reading domains show no pattern across the test score distribution, which is in line with

the quantile regressions results for the summary measure.

4.4 Who is Most Susceptible to Air Pollution?

The existing literature has struggled with linking children’s test performance and exposure to

pollution to indicators of their prior health, yet precisely health capital has been proposed as a

potential moderator. Table 5 explores the extent to which our findings vary with children’s early

respiratory health. For both math and reading tests, we do not find any evidence that having a
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Figure 6: Quantile treatment effects by domain

(a) Math: Algebra (b) Math: Geometry (c) Math: Applied

(d) Reading: Language (e) Reading: Decoding (f) Reading: Text

Notes: The graphs show unconditional quantile treatment effects (Borgen et al., 2021) for every fifth percentile
of the outcome distribution. Panel (a)-(b) shows results for the three math domains, panel (d)-(f) results for the
three reading domains. Solid lines are quantile treatment effects, grey areas are 95% confidence bands, the dark
dashed line is the linear OLS estimate with 95% confidence bands as light dashed lines. Pollution is measured at
the home address. The estimation controls for temperature, precipitation, humidity, and cloud cover, as well as
fixed effects for sex, family, time-of-date (early morning, morning, later), day-of-the-week, year, and grade level.

respiratory health condition affects how daily levels of air pollution affect test scores. This finding

goes against the intuition that air pollution only operates through diminished health and that

individuals with prior health conditions are more heavily affected (Beatty and Shimshack, 2014;

Schlenker and Walker, 2016; Deryugina et al., 2019; Achakulwisut et al., 2019). In contrast, our

findings suggest that air pollution affects cognition directly and without health deterioration as the

mediator.

An alternative explanation could be that we can only identify asthma diagnoses related to in-

and outpatient hospitalization, and not from primary health care physicians. In Denmark, it is

estimated that around 10% of children have asthma,8 however, we only identify a rate of 5%.

It is important to note that our results do not provide information about how air pollution affects

children’s risk of developing a respiratory health conditions, or whether children with respiratory

health conditions are generally more susceptible to air pollution impacts in other domains.

In Table 6 we explore the extent to which our findings vary with exposure to air pollution early
8Asthma-Allergy Denmark
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Table 5: Heterogeneity by prior health conditions in first 5 life-years

(1) (2) (3)
Asthma Respiratory Chronic respiratory

Math
PM2.5 -0.0018*** -0.0018*** -0.0018***

(0.0005) (0.0005) (0.0005)
PM2.5* 1(Health) 0.0019 0.0007 0.0017

(0.0013) (0.0007) (0.0013)
1(Health) -0.0287* -0.0249*** -0.0272*

(0.0166) (0.0092) (0.0162)

Observations 583,026 583,026 583,026

Reading
PM2.5 -0.0008*** -0.0008*** -0.0008***

(0.0002) (0.0002) (0.0002)
PM2.5* 1(Health) 0.0003 0.0002 0.0002

(0.0006) (0.0003) (0.0006)
1(Health) -0.0223** -0.0224*** -0.0194**

(0.0100) (0.0054) (0.0098)

Observations 1,341,116 1,341,116 1,341,116
Mean condition 0.05 0.18 0.05

Notes: The dependent variables in all regressions are standardized test scores
from the national compulsory tests. Pollution is measured at the home address.
All regressions include controls for temperature, precipitation, humidity, and
cloud cover, as well as fixed effects for sex, family, time-of-date (early morning,
morning, later), day-of-the-week, year, and grade level. Standard errors clus-
tered at the school level in parentheses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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in life. Evidence provided by Bharadwaj et al. (2017); Sanders (2012); Isen et al. (2017) shows that

in-utero and early-life exposure to air pollution affects children’s test scores and later life outcomes

negatively. Therefore, we may expect children who have been exposed the most early in life, to be

more affected by higher levels of air pollution. We use the three different measures of lifetime air

pollution from Table 1, and construct an indicator variable to capture whether the student belongs

to the 25% of children with the highest average exposure in the specific period of life. For both

math and reading tests, our main results do not vary across average exposure to air pollution from

birth until the year before first test (column 1), during the first three years of life (column 2), or

in-utero exposure to air pollution (column 3). This suggests that current levels of air pollution

affect all children equally, independently of their previous exposure.

Again, it is important to note that these results do not provide information about how early

in life or lifetime exposure affects children’s performance, but on the interaction between previous

average exposure and current levels of air pollution.

Additionally, we explore the extent to which our results vary with the socioeconomic status of the

family (Table B2), measured as top and bottom income quartiles. We do not find any heterogeneity

across this dimension. Lastly, we explore heterogeneity by sex and find that although both boys and

girls are significantly affected by air pollution, girls appear more susceptible with point estimates

twice as large as those for boys (Table B3).

4.5 Alternative Outcome with High Stakes: Gymnasium Exit Exams

To test whether our results on test scores carry over to high-stake situations, we use exit exam

grades from upper secondary education, the Gymnasium, as an alternative outcome. All students

in the same cohort sit the same exam, which is graded by an external censor. Roughly half of

a cohort completes this educational track, which gives access to higher education. Grades from

the Gymnasium exit exams contribute to the GPA that students use to apply for university and

post-secondary education.

We present results on the effect of PM2.5 on standardized Gymnasium exit exam grades in

Table 7. The regressions include a full set of control variables and school fixed effects. We rely on

school fixed effects for this analysis, as there are fewer families with two or more siblings attending

Gymnasium exit exams, leading to a dramatic drop in sample size when using family fixed effects.
9 The result in column 1 indicates that a 10-point increase in air pollution decreases the exam

9We note that our main results with the national tests in the previous section also hold with school fixed effects,
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Table 6: Heterogeneity by life-time pollution exposure

(1) (2) (3)
Before test First three years In-utero

Math
PM2.5 -0.0018*** -0.0018*** -0.0017***

(0.0003) (0.0003) (0.0003)
PM2.5*1(Top exposure) -0.0014 -0.0003 -0.0007

(0.0023) (0.0012) (0.0008)
1(Top exposure) 0.0474 -0.0692*** 0.0202

(0.0352) (0.0226) (0.0128)

Observations 846,342 846,342 846,342

Reading
PM2.5 -0.0009*** -0.0009*** -0.0009***

(0.0002) (0.0002) (0.0002)
PM2.5*1(Top exposure) -0.0005 0.0012 0.0005

(0.0010) (0.0008) (0.0005)
1(Top exposure) 0.0106 -0.1567*** -0.0068

(0.0198) (0.0157) (0.0080)

Observations 1,752,389 1,752,389 1,752,389

Notes: The dependent variables in all regressions are standardized test scores from
the national compulsory tests. Pollution is measured at the home address. All re-
gressions include controls for temperature, precipitation, humidity, and cloud cover,
as well as fixed effects for sex, family, time-of-date (early morning, morning, later),
day-of-the-week, year, and grade level. Standard errors clustered at the school level
in parentheses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 7: Impact of PM2.5 on Gymnasium exit exams

(1) (2)
Math Danish

PM2,5 ∗ 10 -0.087*** -0.046**
(0.023) (0.023)

Average level of pollution 8.4 7.5
Observations 191,584 265,661
Level of fixed effects School School

Notes: The dependent variables in all regressions are
standardized exam grades. Pollution is measured at the
home address. All regressions include controls for tem-
perature, precipitation, humidity, and cloud cover, as
well as fixed effects for sex, day-of-the-week, year, and
grade level. Robust standard errors clustered by school
level in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

grades in math by 8.7% of a standard deviation. Column 2 shows the effect is smaller but also

significant for grades in Danish with a 4.6 of a standard deviation drop. Overall, these results for

exit exams are larger in magnitude compared to those using test scores from compulsory tests and

are much more similar to the effect sizes found in Ebenstein et al. (2016) and Carneiro et al. (2021).

Note that exit exams have a number of distinct features that make them different from those of

our main analysis: A smaller fraction of students takes these exams, the outcomes are grades given

by censors, they are high-stake tests, students only do them once, and the tests are not adaptive.

4.6 Robustness Checks

For our main results, we use a simple specification with air pollution on the day of the test to

construct our measure of exposure. It is conceivable however, that the pollution level of the previous

day still has an impact on test performance one day later. Moreover, air pollution may be correlated

across consecutive days. We test for time lags in the treatment mechanism using a more flexible

lead and lag specification in Figure 7. The graphs show coefficients for air pollution three days

before the test and three days after the test. For math in Panel (a), we see that the negative effect

accrues mostly on the test day and to a lesser extent from one day before. The results for reading in

Panel (b) show a shift of the impact to the day before the test. With the tests being held mostly in

the morning, results for the test date and the day before are consistent with a transitory pathway

to cognitive performance.

see Table B5
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Figure 7: Impact of air pollution on test scores in the days before and after the test

(a) Math (b) Reading

Notes: The figure plots the coefficients from a regression of test scores on PM2.5 for the test date (day=0) as well
as the three days prior and post the test, estimated in a single regression. The regression includes controls for
temperature, precipitation, humidity, and cloud cover, as well as fixed effects for sex, family, time-of-date (early
morning, morning, later), day-of-the-week, year, and grade level. Standard errors are clustered at school level.
The confidence interval is for the 95% level.

We also see results for the days after the test in Figure 7. For both math and reading, none

of the coefficients are statistically significant thus supporting our main specification. To further

assess the robustness of our main results, we continue to investigate how the inclusion of different

covariates affects the estimates. These findings are presented in Appendix Table B4. For both

math and reading, leaving out weather information, including family background information, and

controlling for birth order, does not change any of the coefficients appreciatively.

Additionally, we investigate how the results vary with the inclusion of different levels of fixed

effects. These findings are presented in Appendix Table B5. For both math and reading tests,

the OLS estimation (Column 1) yields smaller magnitudes than our preferred estimation after

controlling for family fixed effects (Column 3): -1.2% vs -1.8% in math and +0.3% vs -0.9% in

reading, with the former result for reading being statistically insignificant. When we include school

fixed effects instead (column 2), the estimates come closer to our preferred results at -1.4% for

math and -0.2% for reading. As an additional specification check, we control for individual fixed

effects (column 4). The estimates are essentially the same as in our preferred model, but somewhat

less precisely estimated.

We also change the specification of the included weather variables: temperature, precipitation,

relative humidity, and percentage cloud cover (Table B6). For both math and reading tests, the

results do not change when including a linear and quadratic term of temperature, precipitation,
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Table 8: Relationship to other air pollutants

(1) (2) (3) (4)

Pollutant: PM2.5 NO2 SO2 CO

Math
Pollutant*10 -0.018*** -0.008*** -0.034*** -0.004***

(0.002) (0.002) (0.005) (0.000)

Average level of pollution 9.89 10.69 1.80 156.02
Observations 846,342 846,342 846,342 846,342

Reading
Pollutant*10 -0.009*** -0.003*** -0.019*** -0.002***

(0.001) (0.001) (0.003) (0.000)

Average level of pollution 9.97 10.87 2.91 158.81
Observations 1,752,389 1,752,389 1,752,389 1,752,389

Level of fixed effects Family Family Family Family

Notes: The dependent variables in all regressions are standardized test scores from the
national compulsory tests. Pollution is measured at the home address. All regressions
include controls for temperature, precipitation, humidity, and cloud cover, as well
as fixed effects for sex, family, time-of-date (early morning, morning, later), day-
of-the-week, year, and grade level. Standard errors clustered at the school level in
parentheses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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relative humidity, and percentage cloud cover (column 2), or when including all two-way interactions

between weather variables (e.g. precipitation by temperature) (column 3).

For our main result, we estimate the effect of PM2.5 on test scores, acknowledging that other

pollutants are positively correlated (Table B1) and could explain parts of the impact. Therefore,

we interpret the effect of PM2.5 as the impact of compounded air pollution. As a final robustness

test, we estimate separate models with other criteria air pollutants, nitrogen dioxide (NO2), sulfur

dioxide (SO2), and carbon monoxide (CO), as the treatment variables. The results in Table 8

indicate that air pollution has a statistically significant and negative impact regardless of which

pollutant is used. The NO2 and SO2 estimates are smaller and the CO estimate is larger in

magnitude relative to the treatment mean.

5 Conclusion

We have shown that an increase in fine particulate matter on the day of the test decreases the

performance of students in math and reading in elementary and lower secondary school. The

effect is most pronounced at the higher end of the test score distribution in math, suggesting

that more complex cognitive functions are particularly vulnerable to air pollution. We did not

find significant heterogeneity by previous health conditions, socioeconomic status, or long-term

exposure to pollution, even though we analyzed extensive register data.

Our findings also indicate that even low air pollution targets do not ensure the absence of

adverse effects on cognitive performance. Even at low levels, the marginal effect of a unit of

air pollution has a comparably negative impact. This result is relevant for many places in the

world. Although air pollution levels in Denmark are generally low, they are not very different from

large population centers. Air pollution levels in Denmark are virtually the same as in the United

Kingdom; concentration levels in the biggest cities, Copenhagen and Aarhus, place them between

Los Angeles, Miami, and Seattle in the United States.10

In general, the negative effect of short-term air pollution on children’s cognition is worrisome.

If air pollution universally diminishes performance, human capital accumulation and productivity

are hampered by the repeated exposure to every-day air pollution anywhere and at any time. A

more positive reading of the results implies that the transitory effect on performance is reversible

and vanishes as soon as air pollution is reduced, which should encourage policy makers to consider
10Data based on 2023 averages for PM2.5 from www.iqair.com.
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these potential benefits even at low prevailing levels of air pollution.
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Online Appendix

”Air Pollution and Cognition in Children: Evidence from National Tests in

Denmark”

Online Appendix A: Additional Figures

Figure A1: Grouping of municipalities

Notes: Guldborgsund and Lolland are one group, Samsø is a part of east-mid-Jytland, Bornholm is grouped for

itself and Læsø is a part of east-north Jutland.
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Online Appendix B: Additional Tables

Table B1: Correlation between difference types of pollutants

(1) (2) (3) (4)
NO2 SO2 CO PM2.5

(1) NO2 1.000
(2) SO2 0.693 1.000
(3) CO 0.753 0.678 1.000
(4) PM2.5 0.620 0.543 0.697 1.000
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Table B2: Heterogeneity by parental SES

(1) (2)

Math
PM2.5 -0.0017*** -0.0016***

(0.0004) (0.0004)
PM2.5* low SES -0.0001 -0.0000

(0.0005) (0.0005)
PM2.5 * high SES -0.0001 -0.0005

(0.0005) (0.0005)

Observations 846,342 846,342
Reading
PM2.5 -0.0007*** -0.0008***

(0.0002) (0.0002)
PM2.5 * low SES -0.0003 0.0000

(0.0003) (0.0003)
PM2.5 * high SES -0.0005* -0.0002

(0.0003) (0.0003)

Observations 1,752,389 1,752,389
Definition of low SES 25% lowest income 25% lowest income
Definition of high SES 25% highest income 25% highest income

Notes: The dependent variables in all regressions are standardized test scores from
the national compulsory tests. Pollution is measured at the home address. All
regressions include controls for temperature, precipitation, humidity, and cloud
cover, as well as fixed effects for sex, family, time-of-date (early morning, morning,
later), day-of-the-week, year, and grade level. Standard errors clustered at the
school level in parentheses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table B3: Heterogeneity by sex of student

(1) (2)
Math Reading

PM2.5 -0.0012*** -0.0006***
(0.0004) (0.0002)

PM2.5*Female -0.0011*** -0.0006***
(0.0004) (0.0002)

Female -0.0086 0.1924***
(0.0056) (0.0038)

Observations 846,342 1,752,389
Notes: The dependent variables in all regres-
sions are standardized test scores from the na-
tional compulsory tests. Pollution is measured
at the home address. All regressions include
controls for temperature, precipitation, humid-
ity, and cloud cover, as well as fixed effects for
sex, family, time-of-date (early morning, morn-
ing, later), day-of-the-week, year, and grade
level. Standard errors clustered at the school
level in parentheses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05,
∗p < 0.1.
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Table B4: Robustness to including covariates

(1) (2) (3) (4) (5)

Math
PM2,5 ∗ 10 -0.018*** -0.018*** -0.016*** -0.016*** -0.017***

(0.003) (0.003) (0.003) (0.003) (0.003)

Average level of pollution 9.89 9.89 9.89 9.89 9.89
Observations 846,342 846,342 809,431 809,431 809,431
R-squared 0.63 0.63 0.62 0.63 0.63
Reading
PM2,5 ∗ 10 -0.012*** -0.009*** -0.010*** -0.008*** -0.009***

(0.002) (0.002) (0.002) (0.002) (0.002)

Average level of pollution 9.97 9.97 9.97 9.97 9.97
Observations 1,751,846 1,751,846 1,673,564 1,673,564 1,673,564
R-squared 0.64 0.64 0.64 0.64 0.64
Weather control No Yes No Yes Yes
Background control No No Yes Yes Yes
Birth order No No No No Yes
Level of fixed effects Family Family Family Family Family

Notes: The dependent variables in all regressions are standardized test scores from the national
compulsory tests. Pollution is measured at the home address. All regressions include controls for
temperature, precipitation, humidity, and cloud cover, as well as fixed effects for sex, family, time-
of-date (early morning, morning, later), day-of-the-week, year, and grade level. Standard errors
clustered at the school level in parentheses: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table B5: Robustness to levels of fixed effects

(1) (2) (3) (4)

Math
PM2,5 ∗ 10 -0.012** -0.014*** -0.018*** -0.016***

(0.004) (0.002) (0.003) (0.005)

Average level of pollution 9.89 9.89 9.89 9.89
Observations 846,342 846,342 846,342 846,342
R-squared 0.00 0.08 0.63 0.86

Reading
PM2,5 ∗ 10 0.003 -0.002* -0.009*** -0.009***

(0.003) (0.001) (0.002) (0.002)

Average level of pollution 9.97 9.97 9.97 9.97
Observations 1,752,389 1,752,389 1,752,389 1,752,389
R-squared 0.01 0.09 0.63 0.83

Level of fixed effects No School Family Individual
Notes: The dependent variables in all regressions are standardized test scores from the
national compulsory tests. Pollution is measured at the home address. All regressions
include controls for temperature, precipitation, humidity, and cloud cover, as well as
fixed effects for sex, time-of-date (early morning, morning, later), day-of-the-week,
year, and grade level. Standard errors clustered at the school level in parentheses:
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table B6: Impact of PM2.5 on test scores – different weather specifications

(1) (2) (3)

Math
PM2,5 ∗ 10 -0.018*** -0.013*** -0.016***

(0.003) (0.003) (0.003)
Observations 846,342 846,342 846,342

Reading
PM2,5 ∗ 10 -0.009*** -0.006*** -0.008***

(0.002) (0.002) (0.002)
Observations 1,752,389 1,752,389 1,752,389

Weather squared No Yes No
Weather interaction No No Yes

Notes: The dependent variables in all regressions are standardized
test scores from the national compulsory tests. Pollution is measured
at the home address. All regressions include controls for tempera-
ture, precipitation, humidity, and cloud cover, as well as fixed effects
for sex, family, time-of-date (early morning, morning, later), day-
of-the-week, year, and grade level. In weather squared, we include
a squared term of temperature, precipitation, relative humidity, and
percentage cloud cover. In weather interaction, we include all two-way
interactions between weather variables (e.g., temperature by precipi-
tation). Standard errors clustered at the school level in parentheses:
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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