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Abstract
Heuristic rules are appropriate, if a decision maker wants to set the price of a new 
product or of a product, whose past price variation is low, and budget limitations 
prevent the use of marketing experiments or customer surveys. Whereas such rules 
are not guaranteed to provide the optimal price, generated profits should be as close 
as possible to their optimal values. We investigate eleven pricing rules that do not 
require that a decision maker knows the price response function and its parameters. 
We consider monopolistic market situations, in which sales depend on the price of 
the respective product only. A Monte Carlo simulation that is more comprehensive 
than extant attempts found in the literature, serves to evaluate these rules. The best 
performing rules either hold price changes between periods constant or make them 
dependent on the previous absolute price difference. These rules also outperform 
purely random price setting, which we use as benchmark. On the other hand, rules 
based on arc elasticities or on a loglinear approximation to sales and prices, turn 
out to be even worse than random price setting. In the conclusion, we discuss how 
heuristic pricing rules may be extended to deal with product line pricing, addi-
tional marketing variables (e.g., advertising, sales promotion, and sales force) and a 
duopolistic market situation.
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1  Introduction

Most pricing methods require knowledge of the underlying price response func-
tion. This knowledge can be acquired by econometric methods, market experi-
ments, customer surveys or expert interviews (Maurice et  al. 1992; Simon and 
Fassnacht 2019). Econometric methods need at least a moderate number of sales 
and price observations. In the case of new products this condition is never ful-
filled. In addition, observed prices should show sufficient variation.

Though market experiments are ideal in terms of external validity, decision 
makers often avoid them. High costs constitute one possible reason for such 
behavior. Though experimentation costs have decreased in online settings, high 
costs remain relevant in offline environments. Moreover, offline retailing remains 
dominant in many consumer product categories. According to a recent survey, 
between 58 and 93 % of customers in Germany mostly buy offline across sixteen 
categories (Kunst 2021). Because of high costs, firms make relatively little use 
of market experiments. Surveys of over 11,000 firms in nine euro-area countries 
show that the majority set prices by markup rules (Fabiani et al. 2006). In Ger-
many, for example, about 73% of firms fix prices this way.

Recent studies demonstrate that even in online situations price experiments are 
not very frequent. According to an extensive empirical study based on daily U.S. 
and U.K. price listings across a broad range of product categories, firms often do 
not use experimentation fearing that it “may alienate customers and harm firm’s 
reputation” (Gorodnichenko et al. 2014). In a similar manner, Wood et al. (2020) 
show that the managers of internationally operating online fashion retailers in the 
U.K. rely on markup rules. In fact, these managers not only bypass experimenta-
tion, they do not take any consumer behavior data into account.

Customer surveys to obtain estimates of elasticities (e.g., by conjoint analysis) 
entail high costs. Expert interviews are less costly because of the low number 
of people involved. The external validity of both customer surveys and expert 
interviews may be low. In surveys customers are exposed to an artificial situation, 
often with a focus on price. Therefore, their responses may differ from those of 
customers in the market place (East et al. 2013). It is well known that expert judg-
ments as a rule perform worse than even very simple statistical models (Camerer 
and Johnson 1991). In addition the assessment of customers’ price response by 
experts may be motivationally biased (e.g., sales managers tend to be overcon-
fident and therefore to underestimate the price sensitivity of customers (Marko-
vitch et al. 2015).

As an alternative approach we investigate pricing rules which do not require 
that a decision maker knows the price response function and its parameters. These 
pricing rules are heuristic, which means that they are not guaranteed to provide 
the optimal price. Nonetheless, profits generated by a rule should be as close as 
possible to profits that result at the unknown optimal price.

Such pricing rules are especially appropriate if a decision maker faces a budget 
limitation and wants to set the price of a new product or the price of a product 
whose price variation in the past is low. Costs involved are much lower compared 
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to experiments, customer surveys and expert interviews. Contrary to customer 
surveys and expert interviews, these rules have high external validity as they pro-
cess responses of customers in the market place.

We notice a striking lack of research on the performance of heuristic pricing 
rules. In the following we describe previous relevant studies and explain how we 
contribute over this research. Baumol and Quandt (1964) investigate two heuristic 
rules, random sampling and price setting based on a linear approximation of sales 
and prices, for two periods only. We use the random sampling rule as well. We 
also rely on a linear approximation, but in contrast to Baumol and Quandt (1964) 
we refer to sales and prices for a maximum of 30 periods. We also investigate 
modified versions of three rules developed by Thore (1964) that provide price 
changes between two subsequent periods. In addition, we look at six rules, which 
have not been investigated before. Of these six rules three comprise price elastici-
ties that are constant across periods, two depend on price elasticities that change 
between periods, and one rule is based on a loglinear approximation.

Baumol and Quandt (1964) generate sales and prices for two periods by deter-
ministic simulation from linear, multiplicative, and exponential price response 
functions to which they approximate a linear function. The Monte Carlo simula-
tion of Billström and Thore (1964) continues the work of Thore (1964). Billström 
and Thore (1964) compute prices for a fixed number of periods. These authors 
only consider the linear response function with additive errors. Moreover, their 
simulation is based on one set of parameters only, i.e., one coefficient vector and 
one residual variance.

Compared to Billström and Thore (1964) our Monte Carlo simulation is more 
comprehensive. We consider five functions by adding semi-logarithmic and logis-
tic functions to the forms found in Baumol and Quandt (1964). For each functional 
form, we have 36 different coefficients vectors at our disposal as we distinguish 
three minimum sales values, three maximum sales values, and four elasticity values. 
In addition, the Monte Carlo simulation uses three different residual variances and 
three different values for the number of periods.

In the concluding section we discuss how several investigated rules may be 
extended to deal with product line pricing, effects of additional marketing variables 
on sales (e.g. of advertising budgets, sales promotion budgets, sales force budgets) 
and pricing in a duopolistic market situation. To the best of our knowledge, the pre-
vious literature has not treated such extensions.

We investigate eleven heuristic pricing rules with respect to their capability to 
get close to optimal profit. Decision makers may resort to such rules if they know 
neither the form of the price response function nor its parameters. We evaluate these 
rules by two performance measures, average forgone profit and average asymmetric 
foregone profit, both over planning horizons of different lengths. Foregone profit in 
a period is defined as difference between the observed profit achieved by a pricing 
rule and the expected optimal profit. We determine foregone profits by Monte Carlo 
simulation that generates unit sales (in the following briefly called sales) from static 
aggregate price response functions. Let us emphasize that the information about 
both form and parameters of the functions is only available for the Monte Carlo sim-
ulation, but remains hidden for each of the evaluated pricing rules.
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We proceed as follows: In Sect. 2 we prepare the simulation experiment. We start 
this section by detailing the decision problem and the two performance measures 
used to evaluate pricing rules. We present the eleven investigated pricing rules and 
the other factors of the simulation experiment (maximum and minimum sales val-
ues, price response functions, variable unit costs, error terms, planning horizon). We 
also show how to determine optimal prices and their point elasticities for the various 
price response functions. In Sect. 3 we analyze the simulation experiment by hetero-
scedastic regression models. In Sect. 4 we summarize results, discuss limitations of 
our study and indicate possible approaches to overcome these.

2 � Preparing the simulation

2.1 � Decision problem and objective function

A static aggregate price response function Q(p) links the price of a product to its 
sales. We regard a monopolistic market in which prices of other products do not 
affect sales. The dominance of markup rules for price setting noticed in Fabiani et al. 
(2006) indicates that many firms operate in such markets. A static price response 
function considers sales for an aggregate of costumers (e.g., all costumers residing 
in a certain region) and not sales for individual consumers. The function is static 
as it does not include dynamic effects (e.g., lagged prices or lagged sales) and its 
parameters are constant across time.

We assume throughout that the cost function is linear with known constant vari-
able unit costs c. Therefore profit �(p) as function of price p can be written as:

We do not include fixed cost in expression (1) because it is irrelevant for the opti-
mal solution. If the price response function and its parameter values are known, the 
profit-maximizing price p∗ can be determined by solving the monopolistic pric-
ing rule (also known as Amoroso-Robinson condition) which includes elasticities 
(Hanssens et al. 2001; Hirschey et al. 1993):

For a differentiable response function price elasticities � can be determined as point 
elasticities in the following way:

Except for the multiplicative response function point elasticities vary with price (see 
Online Resource 2).

Let Q ∶ ℝ
+
→ ℝ

+ be a static aggregate price response function, that maps 
the price in a period t to sales in the same period. Q itself is continuous, 

(1)�(p) = (p − c)Q(p)

(2)p∗ =
�

� + 1
c

(3)� =
�Q(p)

�p

p

Q(p)
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monotonically decreasing, and may have concave and convex areas, to allow for 
an inverse S-shape. Furthermore, Q is not dependent on the period t.

In accordance with the marketing science literature we take into account that 
response functions are not deterministic (Hanssens et  al. 2001; Leeflang et  al. 
2015). Therefore we add an error term to obtain a stochastic response function 
Qs(p) = Q(p) + e . Errors, whose construction will be explained in Sect.  2.7, are 
normally distributed as e ∼ N(0, �2) for a given variance �2 .

For a known price response function, it would be sufficient to consider 
expected profit because variable unit cost is constant (Jagpal 1999). Expected 
profit can be written as

�(p) is continuous, and hence attains its maximum �∗ at a price p∗ due to Theo-
rem 4.16 in Rudin (1976) since p is limited to a compact interval.

We define the forgone profit F(p) at a price p as difference between the 
observed profit �s(p) = (p − c)Qs(p) at a price p and the expected profit at the 
optimal price �(p∗):

As �(p∗) is the global maximum of � , F is non-positive, and F(p) = 0 ⇔ p = p∗ . 
Therefore the global maximum of F is identical to the global maximum of � and 
maximizing F is equivalent to maximizing � . Furthermore, this maximum is unique 
for all price response functions that we consider in the simulation (see Sect. 2.4).

The decision problem that we investigate is different, because there is no 
information on the true price response function and its parameters. The decision 
maker only observes sales Qs as responses to prices she or he has set in previous 
periods. From observed sales the decision maker can, of course, determine the 
corresponding observed profit. Note that the optimal price and its correspond-
ing expected profit are only determined during our Monte Carlo simulation, they 
are unknown to the decision maker and consequently not processed by any of the 
investigated rules.

We use two alternative performance measures based on the forgone profit just 
defined over an entire planning horizon to evaluate pricing rules. The higher any 
of these measures turns out for a pricing rule, the better we evaluate the latter. 
The first measure considers that the profit due to a price set by a rule should be 
as close as possible to the profit which results for the unknown optimal price p∗ . 
This performance measure equals the average forgone profit across a given plan-
ning horizon of T periods:

Specifying the second performance measure we follow the suggestion of one anony-
mous reviewer to allow for an asymmetry regarding the deviation from the optimal 
price, namely that “overpricing”is more costly than “underpricing”. We call this 

(4)� ∶ ℝ
+
→ ℝ

+, p ↦ (p − c)Q(p).

(5)F(p) ∶= �s(p) −�(p∗)

(6)1

T

T∑

t=1

F(pt).
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performance measure average asymmetric foregone profit. It is based on the general-
ized loss function of Elliot et al. (2005) and can be written as follows:

For 0.0 < 𝜔 < 0.5 this measure puts more weight on a forgone profit F(pt) if 
the price set is greater than the optimal price because of the indicator function 
�(pt > p ∗) . � equals 0.4 in our simulation study. Consequently, foregone profits are 
weighted by 0.6 = 0.4 + (1 − 2 × 0.4) if the price is greater than the optimal price 
and by only 0.4 if the price is less equal the optimal price. This way we put more 
emphasis on foregone profits in the case of “overpricing”. On the other hand, we 
still consider “underpricing” in a sufficient manner.

Seven of the investigated eleven rules require data of previous periods. There-
fore sales and prices of the first two periods t = 1, 2 are equal and deterministic 
for each rule. An equivalent perspective is that p1, p2,Qs(p1) and Qs(p2) are com-
mon knowledge. We will explain these values at the beginning of Sect. 3.

2.2 � Pricing rules

We investigate eleven pricing rules. Five rules assume either constant or changing 
elasticities that they insert into the Amoroso-Robinson condition (2) to determine 
price. Two rules start by approximating price responses by a linear or loglinear 
function. These two rules and the five rules based on elasticities can be seen as 
variants of the markup rule which dominates price setting in practice according to 
the survey of Fabiani et al. (2006) already mentioned in Sect. 1. In addition, we 
take three rules from a publication of Thore (1964) and finally consider random 
pricing as benchmark.

The first three rules assume that price elasticity is constant. Due to restric-
tions on time, resources or data a decision maker may simply rely on average 
elasticities published in a meta-analytic study (Bijmolt et  al. 2005; Tellis 1988) 
or known for the respective product category and market. These three rules differ 
with respect to the value of the constant elasticity: 

	(1).	 a low elasticity of −1.5
	(2).	 a medium elasticity −2.5
	(3).	 a high elasticity of −3.5

The next two rules allow for changing elasticities: 

	(4).	 Arc elasticities
		    As the price response function is unknown, we estimate the arc elasticity �t 

from observed sales and prices of the previous two periods as (Monroe 1999): 

(7)1

T

T∑

t=1

[𝜔 + (1 − 2𝜔) �(pt > p ∗)]F(pt)
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	(5).	 Smoothed arc elasticities
		    We apply first order exponential smoothing to reduce fluctuations of esti-

mated elasticities. In period t = 3 we define 𝜀̃3 ∶= 𝜀3 as in (8), and for t > 3 we 
define 

 A global optimization search provides � = 0.4 as best value (see Appendix 
A).

The next two rules approximate the unknown response function by either a lin-
ear or a loglinear function using observed sales and prices up to period t for 
t = 3, 4,… , T  . Note that coefficients of the approximating model usually change 
from period to period. 

	(6).	 Linear approximation
		    We modify Rule 3 presented in Baumol and Quandt (1964) which is based 

on estimating a linear function for sales and prices of only two periods. If the 
true price response function is stochastic, using only two periods may easily 
run into difficulties implying a positive price elasticity. We approximate sales 
by a linear model Qs = a0 − a1p and compute 

 from Baumol and Quandt (1964). This expression is equivalent to the static 
monopolistic pricing rule if both price response and cost functions are linear 
and known.

	(7).	 Loglinear approximation
		    Log sales are approximated by estimating the loglinear model 

log(Qs) = b0 − b1 log(p) by OLS. Taking its antilog we obtain the multiplicative 
model Qs = exp(b0)p

−b1 . If the multiplicative model is the true response func-
tion, −b1 equals the constant elasticity. As the response function is unknown, 
we consider −b1 an approximation to the unknown true elasticity. Consequently, 
we insert this elasticity estimate into the Amoroso-Robinson condition (2) to 
compute the price in period t.

The next three rules are based on a publication of Thore (1964) and look inter 
alia at observed profits �s(p) which are computed from observed sales by 
(p − c)Qs(p) . Trying to find the profit maximizing solution they determine 
the price in period t as pt = pt−1 + �pt . These rules differ from each other with 
respect to the computation of the price change �pt . 

	(8).	 Constant changes

(8)�t =
Qs(pt−1) − Qs(pt−2)

pt−1 − pt−2

pt−2

Qs(pt−2)

(9)𝜀̃t ∶= 𝛽 𝜀̃t−1 + (1 − 𝛽) 𝜀t−1 with 𝛽 ∈ (0;1)

(10)pt = (a0∕a1 + c)∕2
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		    We extend Equation (4) in Thore (1964) which only outputs the sign of a 
price change by setting the absolute value of a price change to a constant value 
�1 : 

 The rule builds upon the idea that after a price increase which has led to 
higher (lower) profits the decision maker is inclined to increase (decrease) 
next period’s price. According to the same reasoning, if a price decrease has 
led to lower (higher) profits, the decision maker increases (decreases) next 
period’s price. This simple mechanism is reproduced by 

 If this expression equals one (minus one) price is increased (decreased) by 
the constant amount �1 . A global optimization determines �1 = 0.3 as best 
value (see Appendix A).

	(9).	 Changes dependent on the previous absolute price difference
		    This rule is similar to the previous one, but allows price changes to vary. We 

use the modification of the rule given by Equation (5) in Thore (1964) defined 
as: 

 We decide to insert price differences under the square root instead of the 
profit differences of the original formulation to get similar orders of magni-
tude. An independent simulation confirms that our modification works bet-
ter than the original rule from Thore (1964). Price changes are not constant 
because �2

√
�(pt−1 − pt−2)� acts as stretch factor to the constant step size 

given by rule 8. This factor stabilizes the absolute amount of price changes, 
because higher (lower) previous price changes favor higher (low) current 
price changes in absolute terms. The best value for �2 is found to be 0.4 by the 
method presented in Appendix A.

	(10).	 Slope dependent changes
		    This rule is given by Equation (6) in Thore (1964): 

 The rule is similar to gradient ascent of the profit function, but replaces the 
first derivative by the slope of the straight line connecting observed profits 
�s(pt−1) and �s(pt−2) (Chiang 1984). For the price response functions inves-
tigated in the Monte Carlo simulation gradient ascent with first derivative is 
known to find the optimal solution. Alas, here the derivative cannot be com-
puted because it requires knowledge of the price response function. In our 
study slopes of observed profits take very high absolute values. We therefore 
decide to cushion the rule by the ratio of the interval centers pcenter∕Qcenter 

(11)�pt = �1sign((�s(pt−1) −�s(pt−2)) (pt−1 − pt−2)).

(12)sign((�s(pt−1) −�s(pt−2)) (pt−1 − pt−2)).

(13)�pt = �2

√
�(pt−1 − pt−2)� sign((�s(pt−1) −�s(pt−2)) (pt−1 − pt−2)).

(14)�pt = �3
�s(pt−1) −�s(pt−2)

pt−1 − pt−2
.
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( pcenter = 5,Qcenter = Sat∕2 with Sat as saturation level of the response func-
tion). Introducing this factor leaves us with 

 ensuring that �3 has the same order of magnitude as �1 and �2 . The optimal 
value for �3 (see Appendix A) was found to be 0.1. Notice further that using 
this rule requires a vague knowledge of the function’s saturation level.

	(11).	 Random pricing.
		    Taken from Baumol and Quandt (1964), we sample the price from a uniform 

distribution whose lower bound equals unit cost c and whose upper bound 
equals 9. Random pricing serves as benchmark in the evaluation, because only 
pricing rules that perform better deserve further scrutiny.

2.3 � Restrictions on variables, parameters and elasticities

In our simulation the price range is [1;  9], the sales range [0; 1,000,000]. As we 
do not round off to integers, the entire simulation is scalable. In other words, these 
intervals can be transformed to different ranges and orders of magnitude yielding, as 
a rule, identical results.

As we want all of our functions to be comparable, we need them to have similar 
properties. As a rule, we set the highest possible value to Q(1) = Max , and the low-
est possible value to Q(9) = Min.

We assume that price response is elastic and do not allow for elasticities outside 
the interval [−7; − 1.25] . If a computed elasticity lies outside the interval, it is pro-
jected to the nearest boundary before determining the price pt in period t. We show 
how elasticities are computed in Sect. 2.6. This way we cover a large part of the dis-
tribution of elasticity values determined in the meta-analysis of Bijmolt et al. (2005).

Moreover, we are in a position to investigate pricing rules using the Amoroso-
Robinson relation, i.e., rules drawing upon elasticities as well as rules involving a 
linear or loglinear approximation. Obviously, these rules do not work for elastici-
ties greater than – 1.0, no matter whether they lie in the interval [−1.0, 0.9] or are 
positive > 0.0 . In the meta-analysis of Bijmolt et al. (2005) the relative frequencies 
of these two value ranges amount to 16.5 % and 2.2 %, respectively. On the other 
hand, the two rules constant changes and changes dependent on the previous abso-
lute price difference do not require elasticities lower than – 1.0 and may work under 
such circumstances.

We do not allow prices to be smaller than variable unit costs or larger than the 
maximum price. Should that happen, the price is set to equal to variable unit costs or 
the maximum price of 9, respectively.

As we add a normally distributed error term to Q in order to obtain Qs , it is pos-
sible to obtain non-positive sales values. To prevent non-positive values we set the 
absolute minimum sales to 10 (an order of magnitude below the low minimum 
level). Therefore we use the value max (10,Qs) in the simulation. This might lead 

(15)�pt = �3 (pt−1 − c)
Qs(pt−1) − Qs(pt−2)

Qcenter

pcenter

pt−1 − pt−2
,
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to the fraction in expression (15) for the rule slope dependent changes being ill-
defined, in which case �pt is randomly set to either +�3 or −�3.

2.4 � Functional forms, sales levels and coefficients

We consider the following functional forms of price response functions (Hanssens 
et al. 2001): 

	(1).	 The linear function Qlin(p) = a0 − a1 p

	(2).	 The multiplicative function Qmult(P) = b0 p
−b1

	(3).	 The exponential function Qexp(p) = ec0−c1 p

	(4).	 The semi-logarithmic function Qsemlog(p) = d0 − d1 log(p)

	(5).	 The logistic function Qlog(p) =
Qmax

1+e−(f0−f1 p)

with positive parameters a0, a1, b0, b1, c0, c1, d0, d1, f0, f1 > 0 (see Appendix B).
Please note that we restrict our attention to widespread functional forms. There-

fore, we do not include the Gutenberg price response function (Simon and Fassnacht 
2019). In addition, the fact that this price response function usually requires knowl-
edge of the average price of competitors justifies this decision.

The properties of the five investigated functional forms depend on their coeffi-
cients. We therefore start with a table of properties for the functions and choose 
coefficients such that the functions adhere to these properties. We define a low, 
medium and high level for each of the two properties ‘Maximum’, (Q(1), the high-
est possible sales value) and ‘Minimum’ (Q(9), the lowest possible sales value). The 
values can be seen in Table 1.

Given values of maximum and minimum sales, we can uniquely solve for the 
coefficients of these functions (for a proof, see Appendix B): 

	(1).	 for the linear function:
		    a0 =

9Max−Min

8
, a1 =

Max−Min

8

	(2).	 for the multiplicative function
		    b0 = Max, b1 =

log(b0∕Min)

log(9)

	(3).	 for the exponential function
		    c0 =

9 log(Max)−log(Min)

8
, c1 =

log(Max)−log(Min)

8

Table 1   Properties Variable name Maximum Sales Minimum Sales
Level Max Min

Low 500,000 1000
Medium 750,000 5000
High 1,000,000 10,000
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	(4).	 for the semi-logarithmic function
		    d0 = Max, d1 =

d0−Min

log(9)

	(5).	 and for the logistic function
		

 Qmax = 1.005Max, f0 =
9 log

(
Max

Qmax−Max

)
+log

(
Qmax−Min

Min

)

8
, f1 =

log
(

Max

Qmax−Max

)
+log

(
Qmax−Min

Min

)

8
. 

To obtain unique coefficient values for the logistic function we add a third restric-
tion that makes Qmax 0.5% higher than the respective maximum sales value.

2.5 � Optimal prices and variable unit costs

As explained in Sect. 2.1, we need to know the price maximizing the expected profit. 
So, for each function type, given its coefficients and variable unit cost c we need an 
exact formula for the optimal price p∗ . The derivation of the following formulae can 
be found in Online Resource 1: 

	(1).	 for the linear function:
		    p∗ = 1∕2(

a0

a1
+ c)

	(2).	 for the multiplicative function
		    p∗ =

−b1 c

−b1+1

		    this coincides with the Amoroso-Robinson condition (2) for a constant elas-
ticity.

	(3).	 For the exponential function:
		    p∗ =

1+c1c

c1

	(4).	 for the semi-logarithmic function:
		    p∗ =

d1c

W(d1 c e
1−d0 )

	(5).	 and for the logistic function:
		    p∗ =

W(exp(f0−1−cf1))+1+cf1

f1

Variable unit costs take one of the three values 2, 3 and 4 in our simulation. We 
explain the rationale for these values, which also applies to the other functional 
forms, for the linear price response function. For the linear function the contribution 
margin p − c is (a0∕a1 − c)∕2 at the optimal price. Contribution margins amount to 
3.52, 3.02 and 2.55 for the three cost levels at the medium sales level, i.e., they dif-
fer from each other by about 0.50. Contribution margins at low and high sales levels 
turn out to be similar. Regression analyses presented in Sect. 3 support these val-
ues as the performance of pricing rules differs significantly between the three cost 
levels.

2.6 � Point elasticities

To analyze the results of the Monte Carlo simulation we need to know the point 
elasticities at the optimum price p∗ (see Sect.  3) which for a differentiable price 
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response function Q(p) are defined by expression (3). The point elasticities at p∗ can 
be calculated as follows (for the derivation see Online Resource 2): 

(1).	 for the linear function:
	   � =

−a1p
∗

a0−a1p
∗

(2).	 for the multiplicative function:
	   � = −b1
(3).	 for the exponential function:
	   � = −c1p

∗

(4).	 for the semi-logarithmic function:
	   � =

−d1

d0−d1 log(p
∗)

(5)	 and for the logistic function:
	   � = −f1p

∗
(
1 −

Qlog(p
∗)

Qmax

)

2.7 � Error terms

As mentioned in Sect. 2.1, we add a normally distributed error term � ∼ N(0, �2) 
to the deterministic part of the response function to obtain the stochastic response 
function Qs as Qs(p) ∶= Q(p) + � . Again, we wish to be able to compare different 
functions while keeping the error level constant. A high (low) error level corre-
sponds to a low (high) coefficient of determination, R-squared, which measures the 
percentage of variance of the dependent variable (in our case: sales) explained by a 
regression model. We use R-squared values because in contrast to residual variances 
�2 they can be compared across studies even if the dependent variable sales is scaled 
differently.

We choose a value for the coefficient of determination R-squared from 
{0.9, 0.7, 0.5} corresponding to a low, medium and high error-term level, respec-
tively. Then we perform an iterative search over values of �2 in the interval between 
106 and 1015 . For each value of �2 we input 5,000 prices uniformly distributed in the 
interval [1; 9] into the deterministic response function to obtain Q(p) to which we 
add errors from N(0, �2) giving stochastic sales Qs(p) . For the values of prices and 
sales obtained this way we then estimate the parameters of the response function 
by nonlinear least squares and compute its R-squared value. We stop the iterative 
search over �2 once the absolute difference to the desired R-squared value is less 
than 0.0001.

2.8 � Planning horizon

We also wish to vary the planning horizon and distinguish short, medium and long 
planning horizons with 10, 20 and 30 periods, respectively. Each of these planning 
horizons includes the first two predetermined periods.
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3 � Analysis of simulation results

Our simulation experiment uses a complete factorial design, i.e., it considers all fac-
tor level combinations. For eleven pricing rules, five functional forms, three maxi-
mum sales and three minimum sales values, three variable unit cost levels, three 
R-squared values and three planning horizons we obtain 11 × 5 × 35 = 13, 365 com-
binations. The simulation generates one value for the sum of forgone profits for each 
combination. In other words, we have 13,365 observations at our disposal, a num-
ber that should be more than sufficient for regression models with 29 coefficients, 
which we use to analyze simulation results. Power analyses (Cohen 1988) providing 
values close to 1.0 even for regression models with small R2 values confirm this 
assumption.

Across all combinations point elasticities at the optimal price attain 
rounded relative frequencies of 5%, 16%, 47% and 31% for the intervals 
[−6; − 4], (−4; − 3], (−3; − 2], (−2; − 1] , respectively. We note that this distribu-
tion of elasticities is very similar to the one documented in the meta-analysis of 
price elasticities (Bijmolt et al. 2005) with relative frequencies of 16%, 19%, 32% 
and 31% . A Battacharyya coefficient of 0.96 provides evidence to this high simi-
larity (Aherne et al. 1997).

We analyze the simulation results by means of two linear regression models 
with multiplicative heteroscedasticity specifying residuals as function of the 
investigated pricing rules. The regression models are estimated by the iterative 
scoring algorithm described in Greene (2003). The two regression models dif-
fer with respect to the dependent variable, namely average foregone profit and 
average asymmetric foregone profit. The independent variables of the regression 
models consist of binary dummy variables that are related to levels of the experi-
mental factors and to four class intervals of the point elasticities at the optimum 
price. We define binary dummy variables of each factor or elasticity classification 
with respect to a base category (pricing rules: random pricing, functional form: 
linear, minimum sales: 1000, maximum sales: 500,000, variable unit cost: 2, 
planning horizon: 10 periods, R-squared value: 0.5, elasticity interval : [−6; − 4]).

The heteroscedastic regression models allow that residual variances differ 
between pricing rules. The homoscedastic regression models with their restric-
tion of equal residual variances are rejected for both average foregone profits and 
average asymmetric foregone profits due to likelihood ratio tests amounting to 
3182.55 and 3003.90, respectively.

Table 2 contains the estimation results. Let us remind you that the higher fore-
gone profits are, the closer a rule gets to the optimum (see Sect. 2.1). Four pricing 
rules are worse than random pricing (i.e., they lead to lower forgone profits) as 
their negative coefficients show (low constant elasticity, arc and smoothed arc 
elasticities, loglinear approximation). A positive coefficient that implies higher 
forgone profits on the other hand indicates that the respective rule does better 
than random pricing. Constant changes, changes dependent on the previous abso-
lute price difference, and medium constant elasticity turn out as the three best 
performing rules. Their coefficients amount to 99.80, 94.46 and 90.44 for average 
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Table 2   Heteroscedastic regressions for the two performance measures

Independent Variable Average Foregone Profit Average Asymmetric Foregone 
Profit

Coefficient Standard 
error

t-value Coefficient Standard 
error

t-value

(Intercept) – 212.35 8.76 – 24.24 – 109.97 4.27 – 25.75
Pricing Rule
 Constant low elasticity – 70.34 6.94 – 10.14 – 58.11 4.26 – 13.64
 Constant medium elasticity 90.44 3.94 22.95 51.13 2.05 24.94
 Constant high elasticity 27.08 4.94 5.49 28.21 2.30 12.27
 Arc elasticities – 148.29 6.94 – 21.37 – 44.84 2.98 – 15.05
 Smoothed arc elasticities – 79.47 5.81 – 13.68 – 20.67 2.63 – 7.86
 Linear approximation 87.93 4.46 19.70 39.71 2.41 16.48
 Loglinear approximation – 122.58 8.30 – 14.77 – 34.57 3.49 – 9.91
 Constant changes 99.80 3.97 25.17 52.75 2.15 4.53
 Changes dependent on the
 Previous absolute price 

difference
94.46 3.96 23.85 53.50 2.11 25.36

 Slope dependent changes 5.05 4.06 1.24 3.59 2.37 1.51
Functional form
 Multiplicative 203.45 3.76 54.04 90.45 1.78 50.77
 Exponential 156.82 4.28 36.66 70.49 2.02 34.82
 Semilogarithmic 108.35 3.54 30.64 46.82 1.67 27.98
 Logistic – 57.64 3.89 – 14.81 – 32.37 1.84 – 17.58

Minimum Sales
 5,000 – 10.38 2.78 – 3.74 – 6.32 1.31 – 4.81
 10,000 – 0.31 2.89 – 0.11 – 2.82 1.37 – 2.06

Maximum Sales
 750,000 – 46.94 2.63 – 17.84 – 20.94 1.25 – 16.82
 1,000,000 – 96.15 2.65 – 36.32 – 43.21 1.25 – 34.49

Variable unit cost
 3 68.95 2.99 23.06 33.9 1.42 23.95
 4 81.00 3.71 21.84 37.14 1.76 21.16

Planning horizon
 20 periods – 2.00 2.60 – 0.77 – 0.94 1.23 – 0.76
 30 periods – 0.84 2.60 – 0.32 – 1.66 1.23 – 1.35

R-squared value
 0.7 9.08 2.60 3.50 2.86 1.23 2.33
 0.9 20.37 2.60 7.84 7.96 1.23 6.47

Elasticity range
 (– 4,– 3] – 13.85 5.75 – 2.41 – 1.56 2.72 – 0.57
 (– 3,– 2] – 26.31 6.11 – 4.30 – 2.40 2.89 – 0.83
 (– 2,– 1] – 136.27 7.28 – 18.72 – 49.69 3.45 – 14.42

Performance Measures in Thousands
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forgone profit and to 52.75, 53.50 and 51.50 for average asymmetric foregone 
profit. We explain lower coefficient values for average asymmetric foregone prof-
its by the fact that foregone profits are multiplied by either 0.6 or 0.4 to compute 
this performance measure (see Sect. 2.1).

For average foregone profit the rule constant changes attains the highest coef-
ficient, changes dependent on the previous absolute price difference is second best. 
For average asymmetric foregone profit, these two rules change places. Therefore, 
we recommend decision makers to choose one of these two price setting rules.

In the following, we discuss regression results for the remaining factors, which, 
as a rule, are similar for both performance measures. We see positive coefficients 
for multiplicative, exponential and semi-logarithmic sales response functions. The 
multiplicative function attains the highest coefficient, which may be explained by 
the constant elasticity property in contrast to the other functions. We obtain the low-
est coefficients for the logistic function. This result indicates that heuristics are more 
likely to deviate from the optimum as the expression of the optimal price is more 
complex compared to the other investigated functions. Length of the planning hori-
zon has no effect on foregone profits, as coefficients of its values are not significant. 
Higher values of maximum sales and higher elasticities (lower price sensitivity) 
allow higher profits, but also imply that foregone profits (profit losses) are lower. 
With respect to average asymmetric forgone profits, we get such a result only for 
the highest elasticity range (−2,−1] . For the other elasticity ranges we obtain no 
significant differences. On the other hand, higher unit variable costs, which lead to 
lower profits, increase foregone profits. Higher R-squared values that are equivalent 
to lower errors of the response functions make it easier for rules to get close to the 
optimum solution. That is why the regressions provide higher and positive coeffi-
cients for higher R-squared values.

4 � Conclusion

We conduct a simulation experiment to evaluate eleven rules of thumb for set-
ting the price in a monopolistic market for one product based on their capability to 
approximate optimal profit. Decision makers may resort to such rules if they know 
neither the form of the price response function nor its coefficients. Functional forms, 
maximum sales and minimum sales values, unit cost levels, R-squared values and 
planning horizons constitute additional factors of the simulation experiment. We 
evaluate pricing rules with respect to average foregone profit and average asymmet-
ric foregone profit across a time horizon of several periods. Foregone profits meas-
ure how close profits achieved by determined prices get to optimal profits.

We analyze the simulation data by two heteroscedastic regression models with 
average foregone profit or average asymmetric foregone profit as dependent vari-
able. Factor levels constitute the independent variables of these regression models. 
Random pricing serves as benchmark for the other ten rules. Rules based on arc 
elasticities and a rule based on approximating a loglinear function perform worse 
than random pricing. Based on these regression models we recommend decision 
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makers to choose one of the two price setting rules, constant changes or changes 
dependent on the previous absolute price difference.

As suggested by two anonymous reviewers we discuss the limitations of our 
study in the following. If deemed possible we also give tentative hints how these 
limitations may be overcome by extending the investigated pricing rules. Of course, 
further research is needed to assess these hints.

We base the simulation on aggregate price response functions and linear cost 
functions, which imply that the optimal price is uniform. We admit that our approach 
is unable to deal with nonlinear tariffs such as quantity discounts or quantity sur-
charges (Iyengar and Gupta 2009), because nonlinear tariffs require information on 
the price response of individual consumers as shown in Allenby et al. (2004).

4.1 � Extensions for product line pricing

We start by indicating how our approach may be extended to tackle product line 
pricing, i.e., pricing of several substitutive products that belong to the same cate-
gory. One could extend the linear approximation rule to consider products of the 
same category. To this end we specify a linear approximation of sales for each prod-
uct i of the category which also includes prices of the other products j ≠ i:

Assuming linear cost functions we get an Ersatz optimization problem consisting of 
linear equations (Simon and Fassnacht 2019). For each product of the category we 
have one equation of the following form:

ci are the variable unit costs of product i. aji denotes the price coefficient of product i 
in the linear approximation of sales for product j.

Extending the constant elasticity rule by taking cross-price elasticities into 
account constitutes another possibility. In this case, optimization leads to a system 
of nonlinear equations. Usually, in absolute size cross-price elasticities are much 
smaller than elasticities. For example, in Draganska and Jain (2006) cross-price elas-
ticities of yogurt brands assume values between 0.06 and 0.27, whereas elasticities 
lie between -2.45 and -6.25. A starting point could be the average cross-price elas-
ticity of 0.26 that Auer and Papies (2020) determine in their meta-analysis. Decision 
makers may modify this average value in accordance with Sethuraman et al. (1999) 
who show for 280 brands in 19 different grocery categories that cross-price elas-
ticities are higher if brand i has a higher price and for pairs of brands with similar 
prices. Of course, we need further investigations to evaluate the performance of such 
an extended constant elasticity rule.

We could also apply the rules constant changes and changes dependent on the 
previous absolute price difference to each product as these rules try to approximate 

(16)Qi = ai0 − aiipi +
∑

j≠i

aijpj

(17)Qi + (pit − ci)(−aii) +
∑

j≠i

(pjt − cj) aji = 0
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the unknown gradient of the profit function with respect to the price of a product. 
Both rules would erroneously attribute the marginal price effects of other products 
to the marginal price effect of each considered product, which could deteriorate 
performance.

4.2 � Extensions for additional marketing variables

We now deal with the question how effects of additional marketing variables, e.g. 
advertising, promotion and sales force budgets, may be taken into account. At first, 
let us assume that these budgets are constant. We can justify this assumption by 
the fact that optimal budgets are constant for most (even for most dynamic) sales 
response functions (Leeflang et al. 2015). Under this assumption, all rules are appro-
priate that attain a better performance in our simulation. For the constant medium 
elasticity rule, the decision maker may increase the elasticity by adding the respec-
tive positive values of coefficients for such marketing variables that Bijmolt et  al. 
(2005) determine in their meta-analysis (0.68 for distribution, 0.84 for advertising, 
and 0.79 for promotion). These additions lead to higher elasticities, i.e., less elastic 
demand.

If one allows for changing budgets , the rules constant changes and changes 
dependent on the previous absolute price difference should be avoided because they 
cannot separate between the price effect and the effects of budgets. On the other 
hand, one may add budgets (which may be transformed to reflect decreasing returns 
to scale (Hanssens et al. 2001)), to the linear approximation. For several budget var-
iables xk this leads to a linear model Qs = a0 − a1p +

∑
k ak+1xk . The corresponding 

pricing rule can be written as:

4.3 � Extensions for the duopolistic situation

So far we have only dealt with the monopolistic situation. Although many firms 
operate in such markets (Fabiani et  al. 2006), we now sketch several possibilities 
to specify pricing rules that take a duopolistic situation into account. In the follow-
ing competition might refer either to an individual competitor or to an average of 
competitive firms. One possibility consists in extending the constant elasticity rule 
by using a corrected price elasticity that considers the cross-price elasticity of sales 
with respect to the price of competitor �c and the reaction elasticity of the competi-
tor’s price with respect to the price of the firm �c as follows (Simon and Fassnacht 
2019):

(18)pt = ((a0 +
∑

k

ak+1xk)∕a1 + c)∕2

(19)�corr = � + �c�c



2342	 D. Gahler, H. Hruschka 

1 3

We see from expression (19) that we are back to the monopoly situation if either 
price reaction elasticity or cross-price effects are zero. In addition, if cross-price 
elasticities or reaction elasticities are low, decision makers may safely set prices like 
monopolists.

As a rule, both cross-price and reaction elasticities are positive. The former, 
because a higher competitive price leads to higher sales of the product. The lat-
ter, because competitors react to a price increase (decrease) if the firm by a price 
increase (decrease). These properties make demand less elastic, i.e., the corrected 
elasticity is higher than the original price elasticity �.

To determine the corrected price elasticity a decision maker could take the aver-
age cross-price elasticity from the meta-analysis of Auer and Papies (2020), which 
is 0.26. Alas, we are not aware of meta-analytic studies on reaction elasticities. Pub-
lished competitive reaction elasticities vary strongly (e.g., greater than 0.50 in Lam-
bin (1976) and mostly below 0.20 in Cotterill et al. (2000)).

Extending the linear approximation rule constitutes another possibil-
ity to deal with the duopolistic situation. Now the estimated linear function 
Qs = a0 − a1p + a2pc also includes the competitor’s price pc , which must be known. 
This extended linear approximation rule corresponds to the optimal price reaction to 
a competitive price for a linear price response function (Simon and Fassnacht 2019). 
It can be written as:

The two rules constant changes and changes dependent on the previous absolute 
price difference may be applied to the oligopoly situation as they try to approximate 
the unknown gradient of the profit function with respect to the price of the product. 
They do not need information on the effect of competitive prices, competitive price 
reactions or competitive prices. Future research may investigate if this advantage is 
outweighed by lower performance of these rules.

4.4 � Additional extensions

Finally, let us mention a few other extensions of our study. Future research may 
investigate whether modifications of the response functions underlying the Monte 
Carlo simulation have an effect on the performance of pricing rules. Allowing dis-
crete or continuous changes of parameters of price related to different preferences or 
price sensitivities of customers constitutes one extension. It is also possible to con-
sider switches of the functional form, e.g., from a multiplicative to an exponential 
price response function. Moreover, one could use diffusion models including a price 
decision variable. Diffusion models are appropriate to analyze the demand for dura-
ble goods. Generalized variants of the Bass model are obvious examples of diffusion 
models of this kind (Mahajan et al. 1990).

(20)pt = ((a0 + a2pc)∕a1 + c)∕2
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A Optimization of rule parameters

To find an optimal value for a parameter of a certain rule, we proceed as follows:
For a parameter � ∈ ℝ and a rule R = R(�) which depends on the parameter � , 

let pt(R(�)) be the price determined by rule R given parameter � . For t = 1, 2 this is 
the common-knowledge price from the first two periods, and for t > 2 it is whatever 
rule R calculates, based on previous periods’ data. We have four rules that depend 
on such a parameter: 

	(1).	 smoothed arc elasticities need a smoothing constant � = �,
	(2).	 constant changes need a constant step size � = �1,
	(3).	 changes dependent on the previous absolute price difference need a step size 

factor � = �2 , and
	(4).	 slope dependent changes likewise need a step size factor � = �3.

We then determine a reasonable range for � and then discretize this range to a num-
ber of fixed values �1, ...,�9.

For � the range is already (0;  1), and we choose the nine discrete values 
�1 = 0.1,�2 = 0.2, ...,�9 = 0.9 with a distance of 0.1 between consecutive values.

For both �1 and �2 the most useful range is (0; 1) as well, so we also choose the 
same discrete values.

Based on further analysis, any value of �3 larger that 0.5 is useless, so from the 
range (0; 0.5) we choose the values �1 = 0.05,�2 = 0.1, ...,�8 = 0.4,�9 = 0.45 with 
a distance of 0.05 between consecutive values.

Given a rule R, for each possible index i = 1, .., 9 we perform the price finding 
optimization from the simulation study for the parameter �i by setting the price to be 
pt(R(�i)) for period t and obtain an average performance value of the sum of forgone 
profits and proximity to the optimal price. Based on the rankings of those two per-
formances compared among all values �1, ...,�9 , we chose the parameter �i with the 
overall best ranking.

We obtained the values of � = 0.4 , �1 = 0.3 , �2 = 0.4 , �3 = 0.1 . For � we repeated 
the process with a finer step-size of 0.05, which led to the same result.

B Derivations of coefficients

In this section, we derive the coefficients of the five functions, given their proper-
ties. As mentioned earlier, we want all deterministic functions to achieve their pre-
determined maximum value Sat at a price of p = 1 , and the predetermined minimal 
value Min at p = 9 . For purpose of readability, we call the maximum Sat instead 
of Max throughout this Appendix. Remember that our functions have two param-
eters each, leading to two degrees of freedom, with one exception. The logistic func-
tion has a third parameter Qmax , which is the asymptotic maximum, or supremum. 
So we set Qmax ∶= 1.005 ⋅ Sat , so the supremum is 0.5% above the value at p = 1 . 
All we need to do is start with the equations Q(1) = Sat,Q(9) = Min and possibly 
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Qmax ∶= 1.005 ⋅ Sat and solve for the parameters of the function. At some point 
we use the fact, that the maximal attained value of Min is 1, 000, and the minimal 
attained value of Sat is 500, 000. 

	(1).	 The linear function Qlin(p) = a0 − a1 ⋅ p

		  

 This is just an ordinary system of two linear equations, so define 

 and all that’s left is �� = � , with �−1 ∶=

(
9∕8 − 1∕8

1∕8 − 1∕8

)
 and hence 

� = �−�� , in particular 

 both of which are positive, as Sat > Min.
	(2).	 The multiplicative function Qmult(p) = b0 ⋅ p

−b1

		    Q(1) = b0 = Sat > 0 is fairly straightforward, and then 

 Again, b1 > 0 as Sat > Min.
	(3).	 The exponential function Qexp(p) = ec0−c1⋅p

		    taking the logarithm on both sides of the equations Q(1) = Sat and 
Q(9) = Min again leads to a system of linear equations with the same matrix 
� as in (B.3). We can therefore proceed as in the linear case to obtain. 

 Again, since Sat > Min , both c0 and c1 are positive.
	(4).	 The semi-logarithmic function Qsemlog(p) = d0 − d1 ⋅ log(p)

(B.1)Q(1) = a0 − a1 = Sat

(B.2)Q(9) = a0 − 9a1 = Min

(B.3)� ∶=

(
1 − 1

1 − 9

)
, � ∶=

(
a0
a1

)
,� ∶=

(
Sat

Min

)
,

(B.4)a0 =
9Sat −Min

8
,

(B.5)a1 =
Sat −Min

8
,

(B.6)Q(9) = Sat ⋅ 9−b1 = Min ⇒ −b1log(9) = log(Min∕Sat)

(B.7)⇒ b1 =
log(Sat∕Min)

log(9)
.

(B.8)c0 =
9log(Sat) − log(Min)

8

(B.9)c1 =
log(Sat) − log(Min)

8
=

log(Sat∕Min)

8
.
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	(5).	 The logistic function Qlog(p) =
Qmax

1+e−(f0−f1 ⋅p)

		    The equations 

 can be transformed into 

 We rename the right hand side of (B.14) and (B.15) as Ŝ ∶= log(
Qmax−Sat

Sat
) and 

M̂ ∶= log(
Qmax−Min

Min
) . and again summarize the equations as 

 and solve my multiplying with −�−1 from the left to obtain 

 Remains to show positivity. Note that 

 and since 

 we have 

(B.10)Q(1) = d0 = Sat > 0 is again straightforward, followed by

(B.11)Q(9) = Sat − d
1
log(9) = Min ⇒ d

1
log(9) = Sat −Min ⇒ d

1
=

Sat −Min

log(9)
> 0.

(B.12)Q(1) = Sat =
Qmax

1 + exp(f1 − f0)
, and

(B.13)Q(9) = Min =
Qmax

1 + exp(9f1 − f0)

(B.14)f
1
− f

0
= log

(
Qmax − Sat

Sat

)

(B.15)9f
1
− f

0
= log

(
Qmax −Min

Min

)
.

(B.16)−�

(
f0
f1

)
=

(
Ŝ

M̂

)

(B.17)f0 =
−9Ŝ + M̂

8

(B.18)f1 =
−Ŝ + M̂

8
.

(B.19)M̂ = log

(
Qmax −Min

Min

)
= log(Qmax −Min) − log(Min)

(B.20)Min ≤ 1000,Qmax > S ≥ 500.000
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 and 

 Furthermore 

 and hence 
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