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Abstract
Data-driven machine learning algorithms have initiated a paradigm shift in hedonic 
house price and rent modeling through their ability to capture highly complex and 
non-monotonic relationships. Their superior accuracy compared to parametric 
model alternatives has been demonstrated repeatedly in the literature. However, the 
statistical independence of the data implicitly assumed by resampling-based error 
estimates is unlikely to hold in a real estate context as price-formation processes 
in property markets are inherently spatial, which leads to spatial dependence struc-
tures in the data. When performing conventional cross-validation techniques for 
model selection and model assessment, spatial dependence between training and 
test data may lead to undetected overfitting and overoptimistic perception of predic-
tive power. This study sheds light on the bias in cross-validation errors of tree-based 
algorithms induced by spatial autocorrelation and proposes a bias-reduced spatial 
cross-validation strategy. The findings confirm that error estimates from non-spatial 
resampling methods are overly optimistic, whereas spatially conscious techniques 
are more dependable and can increase generalizability. As accurate and unbiased 
error estimates are crucial to automated valuation methods, our results prove helpful 
for applications including, but not limited to, mass appraisal, credit risk manage-
ment, portfolio allocation and investment decision making.
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Introduction

Real estate markets feature a spatial dimension that is pivotal to price and rent deter-
mination processes. The inherent spatial dependence in the economic value of assets 
cannot be ignored in hedonic models, as this would lead to spurious and biased 
results (Anselin, 1988; Can and Megbolugbe, 1997; Basu and Thibodeau, 1998). 
Guidance on how to account for spatial dependence in linear regression models is 
vast and remains the subject of many contributions to the hedonic and spatial econo-
metric literature.

Moving from parametric hedonic regression techniques to the universe of non-
parametric statistical learning methods, the literature has brought forth a growing 
body of evidence that machine learning algorithms can provide superior predic-
tive performance for complex spatial regression problems, including various appli-
cations to house price estimation (e.g., Kok et al., 2017; Mullainathan and Spiess, 
2017; Mayer et al., 2019; Hong et al., 2020; Pace and Hayunga, 2020; Bogin and 
Shui, 2020). To a great extent, the gains in explanatory power can be attributed to 
the flexibility of such models. This provides machine learning algorithms with the 
capability to exploit anisotropic and non-monotonic structures across space, which 
is of particular benefit when the spatial domain under investigation is a global one, 
as shown by Pace and Hayunga (2020). While this characteristic is a blessing when 
reproducing sample data, it can be a curse when predicting out-of-sample data since 
high flexibility is linked to overfitting, as demonstrated by Mullainathan and Spiess 
(2017) and Bogin and Shui (2020). Any kind of dependence structures in the data 
can exacerbate this problem, if not controlled for (Roberts et al., 2017). Thus, all the 
more surprising, little attention has been paid to the implications of spatial depend-
ence in house prices and rents for the statistical validity of cross-validation (CV) 
errors, which are widely used to select and assess non-parametric models. For CV 
errors to be valid estimates of predictive performance, observations must be statisti-
cally independent of each other (Bishop, 1995; Brenning, 2005; Varma and Simon, 
2006). This assumption is unlikely to hold in a real estate context (Bourassa et al., 
2010) because “[…] error variance is not equal to zero but may be a function of spa-
tial proximity among houses”, as explained by Can and Megbolugbe (1997).

Two main problems arise when applying random resampling techniques to spa-
tially dependent data. First, spatially structured variation in the residuals may be 
absorbed by non-causal regressors, consequently leading to the selection of overly 
complex and overfitted models that do not perform well with unseen data. Second, 
spatial autocorrelation between training and test observations provides the predic-
tor with information that is assumed to be unavailable during model training, thus 
inflating estimates of predictive accuracy. In turn, this may hide the first problem 
as CV errors appear to be legitimate (Brenning, 2012; Roberts et al., 2017). Using 
such models to predict unseen data can result in substantially lower accuracy than is 
approximated by CV. When furthermore applied in combination with model-agnos-
tic interpretation techniques to draw inference on the relation between housing value 
and property features, spurious regression can result in the identification of mean-
ingless relationships.
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In response, researchers from geoscientific modeling fields have developed spa-
tially conscious resampling methods to address these problems. However, the ade-
quacy of such techniques for hedonic house price models cannot be blindly assumed 
since prediction goals may differ. To the best of our knowledge, no research has 
thus far accounted for spatial dependence in algorithmic hedonic models by apply-
ing spatial resampling techniques. We believe that a sound understanding of the 
implications arising from spatial dependence is of great importance when applying 
machine learning algorithms to hedonic regression problems. Hence, this study aims 
to investigate the role of spatial autocorrelation on resampling-based model selec-
tion and model assessment of algorithmic hedonic methods, thereby evaluating the 
efficacy of spatial CV in contrast to non-spatial (i.e., random) CV. By doing so, we 
demonstrate the pitfalls of resampling-based performance evaluation and intend to 
raise awareness of the importance of spatially conscious resampling techniques in 
hedonic house price modeling.

Based on a cross-section of apartment rents in Frankfurt, Germany, we train and 
evaluate tree-based algorithms using spatial as well as non-spatial CV. We sub-
sequently forecast out-of-sample data to assess the bias in error estimates associ-
ated with spatial autocorrelation. The results are put into a broader perspective by 
benchmarking our machine learning algorithms against a non-spatial ordinary least 
squares (OLS) and a spatial autoregressive framework, allowing for a relative com-
parison of bias and predictive performance. Lastly, we analyze the residual spatial 
autocorrelation to detect signs of overfitting to spatial structures in the data.

To make informed decisions, the precise estimation of house prices and rents is 
imperative to parties in the real estate industry, such as investors, developers, lenders 
or regulators. Since CV is commonly used as an “out-of-sample experiment” (Mul-
lainathan and Spiess, 2017) to assess the predictive accuracy of algorithmic hedonic 
models, a systematic bias in error estimates may have adverse effects on the alloca-
tion of both debt and equity (Kok et al., 2017). The results of this study prove help-
ful in increasing the reliability and generalizability of CV errors, thus containing 
valuable implications for mass appraisal practices, credit risk management, portfolio 
allocation as well as investment decision making.

This paper is structured as follows: the section on "Hedonic Modeling of Spa-
tially Structured House Prices and Rents" elaborates the problems of spatially struc-
tured data and their implications for hedonic analyses in the most commonly applied 
parametric as well as non-parametric regression frameworks, thereby providing an 
overview of the empirical literature on algorithmic hedonic approaches with a focus 
on applied resampling strategies. In the "Data and Methodology" section, the dataset 
is presented, followed by a description of the study design and the methodological 
approach. The empirical results are presented and discussed in the "Results" section 
and the final "Conclusion" section summarizes the findings of this study.
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Hedonic Modeling of Spatially Structured House Prices and Rents

In his 1970 study on urban growth in the Detroit region, W. R. Tobler invoked his 
well-cited first law of geography, stating that the outcomes of nearby events cor-
relate stronger than those of more distant events. Transferred to a housing context, 
this implies that the economic value of housing at any given location in geographic 
space depends, amongst other aspects, on the value of housing in neighboring loca-
tions. This deduction is well underpinned by spatial econometric as well as land 
economic theory for several reasons, such as spatial spillover effects (i.e., adjacency 
effects) and neighborhood effects (Can, 1992). Moreover, spatial clustering of house 
prices and rents may originate from a high correlation in the utility of the underlying 
houses derived from their structural characteristics (Basu and Thibodeau, 1998) and 
their fixed location in geographic space (Can and Megbolugbe, 1997; Osland, 2010), 
both of which determine the economic value of housing.

This leads to the conclusion that space is a fundamental factor that drives price 
formation processes in housing markets, subsequently resulting in two critical char-
acteristics of housing market data: First, spatial autocorrelation, which is spatial 
dependence in price and rent determination processes; second, spatial heterogene-
ity, defined as the systematic variation in the behavior of price and rent formation 
processes across space (Anselin, 1988; Can and Megbolugbe, 1997). As stated by 
Osland (2010), one can assume that “[…] a mixture of these effects will be pre-
sent in all housing market cross-section data”. This poses important methodological 
implications on both parametric and non-parametric hedonic regression frameworks, 
which will be discussed below.

Parametric Hedonic Models

The economic theory of hedonic pricing in a housing context dates to Rosen 
(1974), who implemented the derivation of implicit prices of hedonic characteris-
tics using a least squares estimator. Due to their efficiency and ease of interpret-
ability, least squares estimators have established themselves as the standard econo-
metric approach to hedonic house price modeling. Likewise, the concept of hedonic 
price modeling has been successfully transferred and applied to the determination 
of apartment rents (e.g., Sirmans et al., 1989; Sirmans and Benjamin, 1991; Allen 
et al., 1995).

Implications of Spatial Dependence

Independent and identically distributed errors with a zero mean and constant vari-
ance are crucial Gauss-Markov assumptions to produce consistent and efficient esti-
mates in a least squares context (Wooldridge, 2016). Spatial autocorrelation and 
spatial heterogeneity in the residuals violate these assumptions, resulting in unreli-
able confidence intervals and biased t-statistics, which lead to spurious statistical 
inference (Anselin, 1988; Basu and Thibodeau, 1998). Depending on the underlying 
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spatial processes causing spatial effects, even point estimates might be biased and 
lead to erroneous results (Pace and LeSage, 2010).

Moreover, endogeneity is likely to occur due to omitted variable bias, measure-
ment errors in the independent variables or feedback loops induced by adjacency 
effects. The explanatory power of spatial effects not explicitly reflected in the model 
specification is picked up by the error term or by covarying explanatory variables 
instead, leading to biased estimates and non-normality of the errors (LeSage and 
Pace, 2009). Even if spatial controls are included in the regression equation, the 
assumption of linearity in the functional form requires their relationship with the 
dependent variable to be constant across space. However, in the real world, such 
relationships are seldom linear and monotonic nor isotropic since slopes are likely 
to vary by distance and direction (Osland, 2010). Non-stationarity across space will 
persist as spatial heterogeneity in the residuals, violating the crucial OLS assump-
tion of homogeneity in the errors.

It can be concluded that both theory, as well as empirical research, suggests that 
the Gauss-Markov assumptions underlying traditional OLS estimators cannot be 
naturally presumed in a real estate context (Can and Megbolugbe, 1997; Bourassa 
et al., 2010; Cajias and Ertl, 2018), resulting in biased and inconsistent least squares 
estimates as well as spurious inference.

Accounting for Spatial Dependence

Spatial autoregressive models are the typical statistical instruments to consider spa-
tial effects in parametric frameworks. They control for spatial dependence by explic-
itly incorporating the underlying correlation structures as spatial lags in their func-
tional form (see Cliff and Ord, 1973; Anselin, 1988; Cressie, 1993; Manski, 1993; 
Kelejian and Prucha, 1998; LeSage and Pace, 2009). As the necessity to account for 
spatial effects in linear models is well understood, spatial autoregressive, as well 
as other spatial modeling alternatives, are widely applied and discussed in a real 
estate context (e.g., Pace and Gilley, 1997; Case et al., 2004; Militino et al., 2004; 
Valente et  al., 2005; Bourassa et  al., 2007, 2010; Osland, 2010; Füss and Koller, 
2016; Cajias and Ertl, 2018). Although such methods have been demonstrated to 
reduce residual spatial autocorrelation if applied carefully, the models continue to be 
linear, limiting their ability to capture highly complex and multi-dimensional rela-
tionships in the formation of house prices and apartment rents.

Non‑Parametric Hedonic Models and Cross‑Validation

As the real world can be more accurately described by logarithmic, exponential or 
step functions, the increasing availability of data together with technical progress in 
computational power has triggered the consideration of more flexible non-paramet-
ric machine learning methods for the problem of hedonic house price and rent mod-
eling. In principle, such data-driven approaches do not rely on any a priori assump-
tions about the distributions of the errors, nor the functional form f(x) that explains 
i house prices yi using j regressors xij, but approximate the shape of f(x) by fitting a 
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spline to the data (James et al., 2013). However, it is to mention that the lack of a 
pre-defined additive functional form comes at the cost of inferential insights, as the 
prediction rules of the algorithms are opaque and cannot be directly interpreted due 
to their complexity. Moreover, their high flexibility makes them prone to overfitting, 
which is why modern statistical tools rely on resampling methods for model selec-
tion (i.e., selecting an appropriate level of regularization to approximate the shape of 
f(x) during hyperparameter tuning) and for model assessment (i.e., assessing the test 
error rate of the selected model f̂ (x) to evaluate its performance).

Resampling is typically performed using cross-validation, during which obser-
vations are randomly partitioned into mutually exclusive training and test subsets, 
whereby the predictor is fitted on the training data and evaluated on the respective 
test data (Stone, 1974; Snee, 1977). This concept can be thought of as creating “[…] 
an out-of-sample experiment inside the original sample”, as described by Mullaina-
than and Spiess (2017).

In its most simple form, cross-validation randomly divides the data into two sub-
sets, that is a training set and a validation (i.e., holdout) set based on a given per-
centage split. Subsequently, the model is fitted on the training sample, which is then 
used to predict the responses from the validation sample. This holdout strategy has 
been widely applied in the algorithmic hedonic house price literature. Worzala et al. 
(1995), Din et al. (2001), Peterson and Flanagan (2009) as well as Chiarazzo et al. 
(2014) use this technique for model assessment of artificial neural networks (ANNs), 
and Yoo et al. (2012), Kok et al. (2017) as well as Pérez-Rave et al. (2019) to validate 
different tree-based algorithms such as regression trees (RT), random forest regres-
sion (RFR), gradient tree boosting (GTB) and extreme gradient boosting (XGB). 
Lam et al. (2009), Antipov and Pokryshevskaya (2012), McCluskey et al. (2013) and 
Bogin and Shui (2020) benchmark different machine learning approaches, including 
support vector regression (SVR), shrinkage estimators (e.g., LASSO) as well as neu-
ral networks and tree-based methods using error estimates from a holdout sample. 
The applied split ratios vary between 60 to 80% for the training data and 40 to 20% 
for the test data, respectively. Such holdout strategies are computationally inexpen-
sive and easy to implement. However, the test error rate may be heavily dependent 
on which observations are held out for validation and used for training, resulting in a 
potential bias in the error estimates (James et al., 2013).

To address this form of bias, k-fold cross-validation has been introduced to the 
statistical community (Lachenbruch and Mickey, 1968; Efron, 1983). During k-fold 
cross-validation, the data is partitioned into k mutually exclusive subsets of equal 
size. Subsequently, each of the k folds is once used as a test set and the remain-
ing k – 1 folds are used to calibrate the model, consequently yielding k estimates 
of prediction error that are then averaged. This strategy attempts to generate more 
robust and reliable approximations of out-of-sample predictive performance. In a 
real estate hedonic context, k-fold cross-validation has gained in popularity during 
the past decade. Park and Bae (2015), Gu and Xu (2017), Čeh et al. (2018), Chin 
et  al. (2020) as well as Pace and Hayunga (2020) apply k-fold cross-validation to 
evaluate the performance of tree-based methods. Applications to a broader spectrum 
of machine learning algorithms, including ANNs, SVR, k-nearest neighbors, shrink-
age estimators as well as ensembles of regression trees using boosting and bagging 
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techniques, can be found in Zurada et al. (2011), Mullainathan and Spiess (2017), 
Baldominos et  al. (2018), Mayer et  al. (2019), Hu et  al. (2019), Ho et  al. (2021), 
Cajias et al. (2021), as well as Rico-Juan and Taltavull de La Paz (2021). In all those 
studies, the applied number of folds is either five or ten, except for Mullainathan and 
Spiess (2017), who set k equal to eight.

Machine learning algorithms excel parametric models in the identification of 
complex non-linear relationships between the value of real estate and property char-
acteristics, but they are also criticized for their black box character as their inner 
workings are opaque and comprehensibility as well as direct interpretation of the 
models are impeded by their complexity. Although recent developments allow 
insights into these opaque black boxes via model-agnostic interpretation techniques 
(see Rico-Juan and Taltavull de La Paz, 2021; Lorenz et al., 2022), this constitutes 
a limitation for the use of machine learning in both, academic research and practice. 
As stated by Rico-Juan and Taltavull de La Paz (2021), data-driven models might 
not be consistent with theoretical expectations and may thus have no economic 
meaning when identified relationships are spurious because “[…] the laws of eco-
nomics (and the explanatory models that show causality) as well as the limitations 
econometrics imposes on the models [are ignored], leaving these systems free to 
make inferences from a combination of data”. Spatial autocorrelation is one such 
econometric constraint that is typically ignored in machine learning applications to 
house price data.

Implications of Spatial Dependence

Although cross-validation proves to be decisive in reducing bias in error estimates, 
any kind of resampling technique is subject to one central assumption. By conduct-
ing an out-of-sample experiment that draws random observations from the data that 
are then used to approximate prediction errors, CV attempts to simulate unseen data. 
For cross-validation to yield unbiased prediction error estimates, statistical inde-
pendence between training and test observations is required (Bishop, 1995; Bren-
ning, 2005; Varma and Simon, 2006). Consequently, the meaningfulness of the 
resulting CV errors as a robustness test for out-of-sample predictive performance 
is highly reduced in spatial modeling fields where the independence assumption is 
violated (Le Rest et al., 2014). More specifically, spatial dependence structures in 
the data cause two main problems in the workflow of machine learning algorithms.

First, regressors are often covarying with unexplained spatial dependence struc-
tures in the residuals. During hyperparameter tuning (i.e., model selection), the 
model may overfit these spatial structures to non-causal, but covarying regressors 
in the attempt to optimize model performance, thereby reducing or completely 
absorbing unexplained structured covariation from the residuals. This may lead to 
a selection of overly complex models that can reproduce the training data but may 
not generalize well to unseen data (Can and Megbolugbe, 1997; Le Rest et al., 2014; 
Roberts et al., 2017; Meyer et al., 2019). Second, when the sample from the valida-
tion fold is drawn from the same dependence structure as the training folds due to 
spatial proximity, the predictor may obtain information from the spatially autocor-
related test data that is assumed to be unavailable to the model during training. This 
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unauthorized glimpse on the test data results in approximations of predictive power 
(i.e., model assessment) that may be overly optimistic and thus not representative for 
unseen data with different spatial structures (Picard and Cook, 1984; Hastie et al., 
2009; Le Rest et al., 2014; Trachsel and Telford, 2016; Roberts et al., 2017; Schratz 
et al., 2019; Lovelace et al., 2019).

In a real estate context, such cases of poor out-of-sample predictive performance 
were, for instance, reported by Mayer et  al. (2019) for their random forest. Bogin 
and Shui (2020) report significant overfitting using a random forest with a deviation 
of 22.1 percentage points in the R2 compared to in-sample cross-validation errors. 
Mullainathan and Spiess (2017) demonstrated a similar bias in cross-validation 
errors for both bagging and boosting with 39.6 percentage points discrepancy in the 
R2 of the random forest and 8.7 percentage points in the boosting trees.

This is problematic because, on the one hand, accuracy implied by cross-valida-
tion may lead to unjustified confidence in a model’s predictive power that cannot be 
guaranteed when making predictions with unseen data. On the other hand, identified 
relationships may be spurious and can result in fallacious inferential conclusions 
when model-agnostic interpretation techniques are applied to interpret the pricing 
processes of the algorithms.

Accounting for Spatial Dependence

One possible approach to account for spatial dependence structures in the selec-
tion and assessment of non-parametric models is by using resampling techniques 
that split the data strategically by considering spatial proximity among observations 
rather than randomly. Spatial partitioning can be designed in many ways. However, 
the general concept is to increase independence between training and test data by 
clustering or blocking the individual folds across space or by removing training data 
within a specific distance band of each test point, such that performance is evaluated 
on more distant events that tend to be less correlated to the training sample (Tobler, 
1970; Trachsel and Telford, 2016; Roberts et al., 2017). In a spatial context, such 
approaches have been introduced to the statistical community under many differ-
ent terms. These include “spatial cross-validation” (Brenning, 2005, 2012), “spa-
tial leave-one-out cross-validation” (Le Rest et al., 2014), “h-block cross-validation” 
(Trachsel and Telford, 2016), “spatial k-fold cross-validation” (Pohjankukka et al., 
2017), “spatial buffering”, “spatial blocking”, “environmental blocking” (Valavi 
et al., 2018) and “leave-one-cluster-out cross-validation” (Meyer et al., 2019). Fol-
lowing the methodology and terminology of Brenning (2012), we will continue 
naming this concept spatial cross-validation in the remainder of this study. The con-
ceptual difference between random and spatial partitioning of folds during cross-
validation is visualized in Fig. 1 based on an example with three folds.

Since “[…] the adequacy of non-spatial partitioning techniques for spatial data-
sets can be questioned” as stated by Schratz et  al. (2019), spatial cross-validation 
methods are widely used in scientific fields such as climatology (Trachsel and Tel-
ford, 2016), ecology (Bahn and McGill, 2007; Schratz et al., 2019), remote sensing 
(Brenning, 2012; Meyer et al., 2019) and geosciences (Brenning, 2005). The need 
for spatial resampling has been stressed repeatedly in those fields, yet, its suitability 
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and efficacy for real estate data has not been investigated thus far. Findings from 
other disciplines cannot be easily transferred to a real estate context since the objec-
tives and circumstances under which predictive models are designed may differ. 
Despite compelling arguments to use spatial cross-validation when modeling data in 
geographic space, there is good reason to be cautious when applying such methods 
to a real estate hedonic context.

Spatial partitioning may hide entire ranges or functional relationships of regres-
sors during training, thereby introducing extrapolation to a model that is supposed 
to interpolate and consequently resulting in overly pessimistic estimates of predic-
tion errors during model assessment (Snee, 1977; Roberts et  al. 2017). However, 
the model can also be underfitted when the selected level of regularization is too 
high which may result in poor predictions (Kok et  al., 2017). This dichotomy is 
particularly pronounced in real estate related regression tasks where high levels of 
spatial dependence tend to exist between observations but the prediction goal is usu-
ally dominated by the interpolation of existing properties within a delineated mar-
ket. In cases where both the degree of spatial autocorrelation in the data and the 
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Fig. 1   a Random Partitioning of Folds. b Spatial Partitioning of Folds. Notes: This figure depicts the 
conceptual difference between random partitioning and spatial partitioning of folds using k-means clus-
tering during cross-validation
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extrapolation range are low, conventional cross-validation techniques that split the 
data randomly may be appropriate for performance optimization and evaluation. 
However, in  situations where a model predicts outside the spatial domain of the 
training data and correlation structures between the residuals and non-causal regres-
sors differ from the structures that were overfitted to non-causal regressors, random 
partitioning may yield unsatisfactory results (Bahn and McGill, 2007; Roberts et al., 
2017).

As shown by Gröbel and Thomschke (2018) and Hong et al. (2020), prediction 
accuracy also depends on the spatial density of the sample locations. This is in line 
with Bahn and McGill (2007), who state that “[…] the sparser the existing coverage 
of sample locations for the dependent variable, the worse the spatial interpolation 
will perform”. In other words, non-spatial CV may perform well in samples with a 
high spatial density but not so well if the distribution of observations across space 
is sparse, as this typically increases extrapolation. Furthermore, this implies that 
bias in prediction accuracy may be a function of distance from the city center since 
observations usually become sparser farther outside where housing structures are 
less dense and markets tend to be less active (Gröbel and Thomschke, 2018).

Although many studies on hedonic machine learning approaches exist, spatial 
cross-validation has so far not been applied to a real estate context, let alone to algo-
rithmic hedonic house price and rent estimation problems. Reported cross-validation 
errors are almost consistently lower than errors of alternative parametric methods, 
such as least squares or spatial autoregressive frameworks. In particular tree-based 
ensemble learners, such as bagging (Breiman, 2001) and boosting (Friedman, 2001), 
have been shown to be most promising for house price estimation compared to alter-
native machine learning methods (see Antipov and Pokryshevskaya, 2012; Kok 
et al., 2017; Mullainathan and Spiess, 2017; Baldominos et al., 2018; Mayer et al., 
2019, Hu et al., 2019; Ho et al., 2021). Pace and Hayunga (2020) find evidence that 
the gains in explanatory power achieved by boosting and bagging algorithms are 
mainly attributable to the exploitation of spatial structures in the data. Consistent 
with the previously outlined logic presented by Bahn and McGill (2007) as well as 
Gröbel and Thomschke (2018), they find the error variance of bagging to increase 
the farther the model extrapolates to a global domain which could indicate that the 
model is overfitted to the spatial structures of more frequently observed houses in 
central districts. This notion is in line with Bogin and Shui (2020) who found a sig-
nificant degree of overfitting in their random forest measured by a holdout strategy 
using appraisal records of homes in rural areas.

The extensive scientific debate about spatial dependence in real estate together 
with the concurrent, steadily growing corpus of literature on machine learning appli-
cations for house price and rent predictions motivates us to assess the sign and mag-
nitude of potential bias associated with spatial dependence when using conventional 
CV methods for model selection and model assessment. Moreover, we investigate 
whether spatial cross-validation is an appropriate technique to account for spatial 
autocorrelation in apartment rents when using predictive machine learning algo-
rithms, although the primary intention is to interpolate within a delineated spatial 
polygon.
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Data and Methodology

We first train and cross-validate tree-based algorithms using a cross-section of apart-
ment rents, thereby applying random as well as spatial partitioning during the cross-
validation procedure for both, model selection and model assessment. With every-
thing else remaining equal, there should be no substantial difference in the selected 
hyperparameters nor the cross-validation errors between spatial and non-spatial 
models if the assumption of spatial randomness was fulfilled. In a second step, we 
calculate the out-of-sample predictive performance of the models by estimating 
the data from a holdout sample one quarter ahead. We then analyze the difference 
between in-sample cross-validation errors and the true out-of-sample prediction 
errors to assess the bias associated with the respective partitioning techniques. A 
non-spatial linear model, as well as spatial autoregressive models, are used as points 
of reference. Third, we evaluate the deviation in bias when excluding spatial control 
variables from the model specification. Based on the hypotheses elaborated in sec-
tion two, we would expect the bias to increase in non-spatial modeling frameworks 
when spatial information is absent due to overfitting unexplained spatial depend-
ence structures in the data to covarying but non-causal regressors. This will be more 
closely evaluated in a fourth step by analyzing the residual spatial autocorrelation in 
all model alternatives.

Data Description

Our sample consists of a pooled cross-section of apartment rents from the Frankfurt 
residential market spanning the period from January 2019 through March 2020. The 
data were sourced from German multiple listing systems (MLS) and are confined 
to apartment rentals excluding single, semi-detached and terraced houses, student 
apartments, senior living accommodations, furnished co-living spaces and short-
stay apartments. Data cleaning was performed to account for duplicates, missing 
values and erroneous data points. The final sample comprises a total of 9256 asking 
rents observed on a monthly scale, including the properties’ most important struc-
tural attributes and equipment as well as their coordinates. A typical way to reflect 
differences in demand for locations in parametric models is to include district fixed 
effects by means of location dummies such as pre-defined submarkets (e.g., Bou-
rassa et al., 2003, 2007) or attractiveness zones (e.g., Doszyń, 2020) that are speci-
fied by real estate experts. In non-parametric machine learning models, the inclusion 
of spatial coordinates (i.e., latitude and longitude) facilitates the identification of rel-
evant submarkets based on spatial patterns in the data without the need to provide 
specific location zones. This allows a model to construct more local sub models for 
the identified areas (see Pace and Hayunga, 2020). The use of continuous coordi-
nates is more efficient because it is computationally less expensive than a matrix of 
location dummies while at the same time, coordinates have a finer resolution, so the 
models are not forced into using pre-defined spatial polygons that limit their flex-
ibility. Also, having too many dummy variables or too few observations per location 
zone may favor overfitting the models. Since our data only contain postcode areas 
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that have very limited economic meaning, we refrain from the inclusion of location 
zones and include the observations’ coordinates by means of latitude and longitude. 
Moreover, distances to nearby amenities were added using an Open Street Maps API 
to control for locational and neighborhood effects.

The building age was calculated relative to the year 2018, and values with a con-
struction date before 1900 were trimmed to avoid disproportionate leverage of those 
observations. The entry date was transformed into a decimal number in years, and 
logarithmic transformations were used for the apartment rent and living area. The 
summary statistics of the features univariate distributions is presented in Table 1. 
The number of entries in each month is distributed uniformly throughout the sample 
period without a significant time trend in apartment rents, as shown in Table 2.

The spatial distribution of the data in Fig. 2a does not seem to exhibit any dis-
tinct location bias, albeit the spatial density of observations increases toward the 
city center. As described by Gröbel and Thomschke (2018), this is not surprising as 
building structures are denser in central areas, which are, moreover, predominantly 
occupied by younger and more mobile tenants, resulting in higher fluctuation rates 
and subsequently more frequent rental offers compared to the outskirts. The average 
distances to the 1, 5, 10, 30, and 100-nearest neighbors amounts to 0.02, 0.04, 0.06, 
0.13 and 0.30 km respectively. Aggregated on a ZIP-code level, Fig.  2b indicates 
that more expensive apartments tend to be clustered in the city center and along the 
north-south axis. More formally, spatial clustering of apartment rents is confirmed 
by the semi-variance of the log rent as depicted in Fig. 3a. The empirical Matérn 
semi-variogram model suggests a spatial autocorrelation range of 0.58 km, which 
is the distance up to which spatial dependence between observations persists in the 
data (Cressie, 1993). In other words, an apartment in our sample has on average 
168 neighbors that do not satisfy the assumption of independence. This number 
increases with spatial density and vice versa. The distribution of neighbors within 
the spatial autocorrelation range is presented in Fig. 3b.

Methodological Approach

Parametric Models

We use an ordinary least squares (OLS) estimator as a non-spatial parametric bench-
mark model. Written in matrix notation, the multiple linear regression model fol-
lows a log-linear functional form of the relationship

with Y being the response vector with n observations of log-transformed apartments 
rents, α being a fixed intercept, X representing regressor matrix with n rows and p 
columns, β being the corresponding n × 1 coefficient vector and ε being the random 
error term vector of length n.

Our modeling approach is based on the principle to avoid overfitting and bias in 
error estimates to isolate the bias originating from spatial dependence. We thus fol-
low Harrell (2015) and Mayer et al. (2019) and exclude only regressors with almost 

(1)Y = � + X� + �
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no predictive power from the hedonic equation but, at the same time, refrain from 
the inclusion of interaction or quadratic terms to keep the models simple. We test 
the null hypothesis of spatial randomness in the OLS residuals by calculating the 
Moran’s I statistic (Cliff and Ord, 1973) and account for potential spatial depend-
ence using the spatial econometric toolbox.

Opposed to the spatial cross-validation technique (where spatially autocorre-
lated information is explicitly excluded from the model), the mechanism of spatial 
econometric models works the exact opposite way by explicitly mapping spatial 

Table 1   Summary Statistics

This table reports the univariate distributions of 9256 asking rents of residential apartments listed 
between January 2019 and March 2020 in Frankfurt (Germany), and their observed characteristics after 
data cleaning. The entry date is represented as a decimal number in years, the building age is calculated 
relative to the year 2018 and is trimmed for buildings constructed before the year 1900, distances are 
calculated as the Euclidean distance to the apartment in kilometers, binary variables indicate whether a 
characteristic is included in the apartment (1) or not (0). N: number of observations, SD: standard devia-
tion, Min: minimum value, Max: maximum value

Variable N Mean Median SD Min Max

Continuous
  Rent per month [Euro] 9256 1088.77 940.00 647.97 190.00 10,000.00
  Living Area [sqm] 9256     75.20   70.00   35.07   10.00      440.00
  Age [years] 9256     44.59   46.00   39.34  −2.00      118.00
  Entry date [years] 9256       0.65     0.67     0.35     0.08          1.25
  Latitude 9256     50.12   50.12     0.02   50.08        50.21
  Longitude 9256       8.66     8.66     0.05     8.49          8.78

Discrete
  Rooms 9256       2.55     2.50     1.00     1.00          8.50
  Floor 9256       2.54     2.00     2.82  −0.50        39.00

Dummies [1 = yes, 0 = no]
  Bathtub 9256 0.53 1.00 0.50 0.00 1.00
  Refurbished 9256 0.22 0.00 0.41 0.00 1.00
  Built-in kitchen 9256 0.71 1.00 0.45 0.00 1.00
  Balcony 9256 0.65 1.00 0.48 0.00 1.00
  Parking 9256 0.48 0.00 0.50 0.00 1.00
  Elevator 9256 0.50 1.00 0.50 0.00 1.00
  Terrace 9256 0.13 0.00 0.34 0.00 1.00

Distances
  NUTS centroid [km] 9256 3.65 3.68 1.87 0.01        10.84
  Bakery [km] 9256 0.39 0.26 0.41 0.00 1.61
  Bar [km] 9256 0.73 0.52 0.64 0.00 2.54
  Biergarten [km] 9256 1.16 0.97 0.77 0.02 3.10
  Café [km] 9256 0.36 0.25 0.33 0.00 1.31
  School [km] 9256 0.31 0.28 0.17 0.02 0.75
  Supermarket [km] 9256 0.26 0.22 0.17 0.00 0.75
  Bus station [km] 9256 3.13 2.77 1.54 0.09 7.56
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interactions among neighboring observations as spatial lag terms in the functional 
form of the relationship. The spatial weight matrix W formally defines the spatial 
relationship between observations. To identify the source of the underlying pro-
cesses causing spatial effects in the data, a model specification search is conducted 
following the general to specific approach advocated by LeSage and Pace (2009) 
and LeSage (2014) starting from the Spatial Durbin Model (SDM)

as well as the Spatial Durbin Error Model (SDEM).

Subsequently, we perform likelihood-ratio tests to challenge the relevance of the 
autoregressive coefficients ρ, θ, and λ from the SDM and the SDEM against more 
specific spatial model alternatives that include only one out of the two interactions 
respectively (Anselin, 1988; Anselin et  al., 1996). As stated by LeSage and Pace 
(2009), this top-down approach has the advantage that the SDM still produces unbi-
ased coefficient estimates even when the true data-generating process is a more spe-
cific model.

(2)Y = � + �WY + X� +WX� + �

(3)Y = � + X� +WX� + u

(4)u = �Wu + �

Table 2   Listings per Month

This table reports the occurence of apartment listings throughout the 
sample period from January 2019 to March 2020 on a monthly scale 
with the respective mean absolute rent in Euro per month and the 
mean rent in Euro per square meter per month. N: number of obser-
vations

Entry Date N Mean Rent [Euro] Mean Rent 
[Euro/sqm]

Jan-19 632 1129.57 14.57
Feb-19 586 1116.31 14.34
Mar-19 677 1081.28 14.20
Apr-19 576 1118.35 14.39
May-19 685 1135.66 14.54
Jun-19 602 1084.38 14.41
Jul-19 746 1083.23 14.22
Aug-19 755 1014.57 14.20
Sep-19 602 1177.08 14.37
Oct-19 633 1088.54 14.26
Nov-19 613 1005.09 13.85
Dec-19 392 1021.86 14.48
Jan-20 600 1101.10 14.82
Feb-20 611 1096.45 14.75
Mar-20 546 1068.98 14.73
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Fig. 2   a Spatial Distribution of Apartment Rents. b Mean Apartment Rents on ZIP-Code Level. Notes: 
The upper map depicts the absolute monthly asking rent in Euro per month of each individual observa-
tion in our sample of 9256 listings between January 2019 and March 2020 in Frankfurt. The bottom map 
shows the respective mean asking rents in Euro per month aggregated on a ZIP-code level



250	 J. Deppner, M. Cajias 

1 3

Non‑Parametric Models

Among a wide variety of algorithmic hedonic methods evaluated in compara-
tive studies, ensembles of regression trees using bagging and boosting techniques 
have consistently shown the most promising results concerning predictive power 

a

b

Fig. 3   a Semi-variogram of the log rent. b Distribution of Neighbors within the Spatial Autocorrelation 
Range. Notes: The empirical Matérn semi-variogram model suggest a spatial autocorrelation range of 
0.58 km, which is the distance up to which spatial autocorrelation persists in the data. The histogram pre-
sents the distribution of neighbors within the spatial autocorrelation range
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(see Antipov and Pokryshevskaya, 2012; Kok et al., 2017; Baldominos et al., 2018; 
Mayer et al., 2019; Hu et al., 2019; Ho et al., 2021; Bogin and Shui, 2020).

The idea behind a regression tree is to stratify the feature space into a set of M 
disjoint intervals R1, R2, …, RM, each of which is assigned a constant cm as predicted 
value, being referred to as the leaf or terminal node of the tree (Breiman et  al., 
1984). Intervals are created by recursive binary partitioning at the nodes tp, choos-
ing a split-point s of a particular feature xj in the process of solving a minimization 
problem that can be expressed as

under the conditions that

following the notation of Hastie et  al. (2009). Each observation is subsequently 
passed down the tree branches by making binary decisions at each split following 
the feature values until the data point has reached its final leaf. As single regres-
sion trees tend to overfit easily and do not perform well on unseen data, we focus on 
ensembles of regression trees, more specifically the bagging-based random forest 
regression introduced by Breiman (2001) and the extreme gradient boosting algo-
rithm developed by Chen and Guestrin (2016) which is an extension of the gradient 
tree boosting method dating to Friedman (2001).

The bagging algorithm grows a forest of many individual but slightly different 
trees b using bootstrapped training samples. Instead of pruning the trees, which is 
typically done to counteract the overfitting of individual regression trees, the trees 
in a forest are grown deeply, resulting in more terminal nodes with fewer observa-
tions being allocated to the same constant cm as the predicted value. The minimum 
node size minnode, which is the smallest possible number of observations in each 
leaf, determines the depth of the tree. Deep trees can lead to overfitting, thus react-
ing very sensitively to changes in the training sample, whereas shallow trees may 
not pick up information from the data adequately, hence producing models which 
are underfitted (Kok et al., 2017). Consequently, the relatively deep trees in a forest 
have a high variance but low bias. The variance is then removed by averaging over 
the results of the b bootstrap trees to increase robustness (Breiman, 1996; James 
et al., 2013). Unlike conventional forests, a random forest considers only a randomly 
selected subset of m predictors from all available predictors p at each split, thereby 
introducing an additional source of variation into the model to counteract overfitting.

Boosting works somewhat similar, but unlike bagging, where trees are grown 
simultaneously and independently, boosted trees are grown sequentially using the 
residuals’ information content from preceding trees to continue learning. At each 
sequence, a new regression tree is fitted to the residuals of the previous tree and is 
added into the fitted function, thereby iteratively updating the model (James et al., 

(5)min
j,s

[
min
c1

∑
xi∈R1(j,s)

(
yi − c1

)2
+min

c2

∑
xi∈R2(j,s)

(
yi − c2

)2
]

(6)R1(j, s) =
{
X|Xj ≤ s

}

(7)R2(j, s) =
{
X|Xj > s

}
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2013). Model fit is improved with each iteration until the number of boosting rounds 
is exhausted. To avoid overfitting boosted trees, a shrinkage parameter η, also 
referred to as learning rate, is used to slow down the learning process by making the 
error corrections in each round more conservative. Like the random forest, the 
extreme gradient boosting algorithm is a more regularized alternative of the gradient 
boosting technique in the sense that it attempts to decorrelate the individual trees by 
using only a randomly subsampled portion m

p
 of features in each round to increase 

the robustness of the boosting trees.
Generally speaking, model fit tends to increase with higher flexibility, such as a 

lower minnode, or a lower η. However, this is tied to the risk of overfitting the training 
data, subsequently resulting in poor generalizability of the models. Thus, a level of 
regularization has to be chosen to limit the flexibility of a model. As manual choice 
of these hyperparameter combinations is arbitrary and unlikely to yield satisfactory 
results, model selection is typically conducted using data-driven optimization by 
iteratively testing different hyperparameter combinations within a pre-defined search 
space and evaluating their performance based on cross-validation errors in the 
attempt to minimize a given loss function. Eventually, the set of hyperparameters 
yielding the lowest cross-validation error rate (that is, the best performance in the 
out-of-sample experiment) is chosen as the optimal hyperparameter combination 
(James et al., 2013). This approach is called grid search optimization and is a widely 
used algorithm for automated hyperparameter tuning. For computational reasons, 
we restrict our search space to the three main tuning parameters of each model 
described above. For the random forest, these are the number of bootstrap trees b, 
the number of available features m at each split and the minimum node size minnode 
in each terminal node. Likewise, the number of boosting rounds nrounds, the column 
subsample m

p
 and the shrinkage parameter η are equally important to the boosting 

algorithm. As optimization criterion, we adopt the minimization of squared residu-
als from the least squares estimator.

Performance Evaluation

We measure predictive performance (i.e., the true error rate) of our models by pre-
dicting out-of-sample data from the first quarter of 2020, which is referred to as the 
“holdout sample” in the remainder of this study. The remaining “in-sample” data of 
2019 is used to calibrate the models and approximate their out-of-sample predictive 
performance (i.e., the expected error rate). The resampling strategies used for the 
steps of model selection as well as model assessment are outlined below.

In the parametric world, model selection is performed manually by specifying a 
functional form of the estimator a priori rather than following a data-driven approach 
to maximize fit. Moreover, the flexibility of such models is usually restrained by 
linearity assumptions that make overfitting less of a problem. Thus, prediction 
errors of linear models are typically estimated by simple re-substitution of the data 
used for model fitting (Efron, 1983; Simon, 2007). We follow this standard statisti-
cal approach to approximate the predictive accuracy of the parametric benchmark 
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models and calculate the true error rate by regressing the holdout data using the 
estimated parameters.

As elaborated earlier, data-driven approaches require resampling methods such as 
cross-validation to calculate fair estimates of predictive performance. To isolate the 
effects of spatial dependence and allow for a fair comparison between random and 
spatial partitioning, the resampling strategy is designed with the principle to elim-
inate any bias resulting from sources other than spatial autocorrelation that could 
potentially distort our results. Thus, we perform k-fold cross-validation for model 
selection and model assessment to avoid that error estimates are biased by chance 
due to a specific training or validation set.

It is worth mentioning that the choice of k is associated with a bias-variance 
trade-off, that is, the bias becoming smaller with each additional fold whereas the 
variance of the error estimates increases at the same time due to a higher correla-
tion of the training sets (Hastie et  al., 2009). As suggested by theory and empiri-
cal research, a k of five or ten proves to be a reasonable compromise in this trade-
off, whereby a value of five is only recommended for very large datasets to ensure 
enough observations for model training (Breiman and Spector, 1992; Kohavi, 1995; 
Hastie et al., 2009; James et al., 2013). With the primary aim to isolate the effect 
of spatial autocorrelation, we accept a higher error variance in favor of lowering 
bias and therefore set k to ten, as was also done by Park and Bae (2015), Chin et al. 
(2020), Hu et al. (2019) as well as Rico-Juan and Taltavull de La Paz (2021).

Further following the logic that information flow between training and test obser-
vations leads to biased cross-validation errors, we apply a nested resampling strat-
egy that strictly separates data used for model selection from data used for model 
assessment. This is important since assessing model performance on the same data 
used for model selection does not yield an unbiased estimate of prediction error but 
more of a re-substitution error (Varma and Simon, 2006). Thus, nested resampling 
consists of two resampling loops, that is the inner resampling loop for hyperparam-
eter tuning (i.e., model selection), which is wrapped within the outer resampling 
loop for performance evaluation (i.e., model assessment) such that model selection 
and model assessment is repeatedly performed on mutually exclusive subsamples, 
thereby simulating independent data throughout the entire workflow of the algo-
rithm (Simon, 2007).

Following this strategy, the resulting cross-validation errors should, at least in 
theory, provide an unbiased picture of out-of-sample predictive performance to be 
expected from the models if the assumption of spatial randomness was fulfilled, thus 
enabling us to disentangle the effects of spatial dependence by using spatial CV.

To implement spatial partitioning in the cross-validation procedure, we apply a 
k-means clustering algorithm as proposed by Brenning (2012). The k-means cluster-
ing method is a universal and commonly used technique to detect a specified num-
ber of k clusters among n observations based on a given set of features. In a first 
step, the algorithm randomly chooses k centroids in the multi-dimensional feature 
space. The initial clustering is achieved by allocating each of n observation to the 
“nearest” centroid in the feature space (i.e., by minimizing the Euclidean distance 
from the feature values to the centroid). The positions of the cluster centroids are 
then adjusted by taking the mean feature values of each grouping and the clustering 
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is repeated. The clusters are iteratively adjusted until the allocation doesn’t change 
anymore, so the within-cluster sum of squares is minimized (James et al., 2013).

The goal of spatial cross-validation is to maximize the distance between train-
ing and test folds. In this context, a cluster refers to a fold whereby k denotes the 
number of equally sized folds to be partitioned and the point coordinates (latitude 
and longitude) represent the features. The feature space is a two-dimensional scatter-
plot as depicted in Fig. 1. The algorithm arranges the folds in a way that minimizes 
the average distances within each fold and maximizes the average distance between 
the folds. This effectively decreases spatial autocorrelation between training and test 
data.

Using spatial and non-spatial partitioning, our nested resampling strategy pro-
vides four alternatives to calculate cross-validation errors which are:

(1)	 non-spatial model selection + non-spatial model assessment,
(2)	 non-spatial model selection + spatial model assessment,
(3)	 spatial model selection + spatial model assessment, and
(4)	 spatial model selection + non-spatial model assessment.

The first alternative is the conventional “off-the-shelf” approach typically applied 
in the hedonic literature, although nesting is not common yet. In contrast, the third 
option describes a pure spatial approach that should reduce spatial dependence 
between training and test observations to a minimum but may result in too pessi-
mistic expectations of predictive performance. As the prediction goal in a housing 
context is not a pure spatial one, the second and fourth alternative could potentially 
provide a fair compromise in the trade-off between reduction of spatial autocorrela-
tion and the extrapolation range introduced into the model.

To arrive at a final model that can predict the holdout data, all steps of the algo-
rithm need to be executed once again, whereby the cross-validation in the outer loop 
is replaced by the holdout sample such that the full information from 2019 is used to 
train a model that predicts apartment rents from the first quarter of 2020 (Varma and 
Simon, 2006; Simon, 2007). Analogous to the nested resampling for the estimation 
of prediction error, optimal hyperparameters for the final prediction model are once 
again derived using spatial and non-spatial grid search CV resulting in two alterna-
tives for the true error rate.

Based on the true error rates, we benchmark predictive performance and deter-
mine the bias in error estimates. Model accuracy and precision are assessed using 
the coefficient of determination (R2), the mean absolute error (MAE), the mean 
absolute percentage error (MAPE), and the root mean squared error (RMSE). To 
measure variation in the residuals, we calculate the interquartile range (IQR), the 
coefficient of dispersion (COD) and an error bucket that includes the proportion of 
predictions within 10 % of the true value (PE10). The mean percentage error (MPE) 
is used as a measure of biasedness. Subsequently, the asymptotic properties of all 
estimators are evaluated by comparing the distributions of error estimates resulting 
from the respective resampling strategies to the distributions of the true prediction 
errors.
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Results

This section first presents the final model specifications and evaluates differences 
in hyperparameters selected by the automated grid search CV. Second, the results 
of the error-based model assessment are reported to determine the bias for the 
respective resampling strategies, and the asymptotic behavior of the estimators is 
discussed. Third, we investigate the residual spatial autocorrelation in each of the 
estimated models to draw conclusions on whether differences in the selected levels 
of regularization and the related model performance are linked to overfitting spatial 
structures in the data.

Model Selection

All variables listed in Table 1 were kept in the final model specification of the lin-
ear model. Following the principle to avoid overfitting, only the squared term for 
the building age and no interaction terms were additionally included. The resulting 
model specification serves as a baseline for all subsequent model alternatives and is 
hereinafter referred to as model specification “A”. We estimate an alternative model 
specification “B”, which does not consider locational and neighborhood character-
istics in the regressor matrix, to see how the results change in the absence of spatial 
controls. All remaining modeling decisions for the linear models outlined below are 
based on specification A and were adopted for specification B. If not stated other-
wise, the presented results refer to specification A. The respective regression outputs 
of the least squares estimator are shown in Appendix Table 6.

The Moran’s I statistic of the OLS residuals rejects the null hypothesis of spatial 
randomness in price formation processes at a close-to-zero level of significance. The 
likelihood-ratio (LR) tests of a restriction of the SDM confirms the common factor 
hypothesis and implies the presence of both endogenous as well as exogenous inter-
action effects, leading to the acceptance of the SDM. The relevance of the SDEM 
was further investigated as an alternative spatial model. Again, the LR-tests reject a 
simplification of the SDEM with p values close to zero. We subsequently consider 
both the SDM as well as the SDEM as spatially conscious linear model alternatives. 
As spatial density of observations tapers toward the outskirts, we follow Pace et al. 
(2000) for the specification of W and choose a κ-nearest neighbors (κ-nn) matrix 
where each observation has a fixed number of κ neighbors. After evaluating differ-
ent values for κ between 10 and 100, we eventually set the number of neighbors to 
30, as this yields fair error estimates without diluting spatial effects in the lag terms. 
Overall, results remain robust for different choices of κ as well as for distance-based 
matrices with different boundaries.

The optimal hyperparameters selected by the grid search CV after 100 evalua-
tions are shown in Table  3. For the random forest, there are no structural differ-
ences in the number of trees b nor the number of features m considered at each split, 
although spatial tuning seems to favor slightly higher values of m. Notable devi-
ations can be observed in the minimum node size that determines the depth and, 
thus, the complexity of the individual trees in the forest. The non-spatial grid search 
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CV consistently prefers a minnode between one and two, which is significantly lower 
compared to the spatial model that has on average a minimum node size of five. A 
minnode of one provides the trees with the flexibility to have virtually infinite vertical 
growth, allowing them to remove all noise from the data (Kok et al., 2017). Or as 
expressed by Mullainathan and Spiess (2017), a tree which grows one leaf for each 
observation in the data “[…] will have perfect fit, but of course this is really perfect 
overfit”, consequently yielding unsatisfactory predictions for unseen data.

A similar pattern can also be observed for the XGB. Again, there are no remarka-
ble differences in the size of the column subsample m

p
 . However, the spatial instantia-

tion of the resample call in the inner loop requires on average only 405 boosting 
rounds versus 593 boosting rounds for the non-spatial CV. Although the rate η at 
which the boosting algorithm learns at each round is more conservative in the non-
spatial model, a higher number of nrounds indicates excessive error corrections that 
may result in a model that overfits the residuals. The selection of less complex mod-
els compared to the non-spatial tuning persists for model specification B, although 
the higher complexity of the non-spatial random forest is now even more distinct. 
These findings corroborate our hypotheses derived from studies in other fields such 
as Le Rest et al. (2014), Roberts et al. (2017) as well as Meyer et al. (2019), who 
state that non-spatial partitioning during resampling is associated with the choice of 
overly complex models if the data exhibits spatial dependence.

Model Assessment

The subsequent section discusses how the differences in model selection affect 
model accuracy and whether increased complexity is indeed linked to overfitting 
and vice versa. Therefore, we analyze the bias and the asymptotic properties of our 
estimated models by comparing the true one quarter ahead prediction error to the 
expected error rates resulting from the respective resampling strategies outlined in 
the “Performance Evaluation” section. Bias is measured as the difference between 
the true error rate and the expected error rate. The aggregated performance meas-
ures are presented in Table 4.

The re-substitution errors from the linear models are significantly lower than the 
true error rates on all accounts, which, however, is not surprising (Efron, 1983). 
Whereas this overoptimism is smallest for the SDM, the error estimates of the 
SDEM are even more biased than those of the OLS model. This is mainly attribut-
able to the relatively weaker predictive performance of the SDEM, since re-substi-
tution errors of both spatial models are only marginally different from each other. 
Having said that, it is worth mentioning that spatial autoregressive models are pri-
marily designed for statistical inference rather than out-of-sample predictions.

For the non-parametric models, one can see an improvement in all performance 
measures compared to the linear models, which is not surprising and in line with 
the literature (see Antipov and Pokryshevskaya, 2012; Yoo et  al., 2012; Gu and 
Xu, 2017; Kok et al., 2017; Mullainathan and Spiess, 2017; Čeh et al., 2018; Bogin 
and Shui, 2020; Pace and Hayunga, 2020). With respect to predictive power, the 
XGB yields the most accurate results, closely followed by the RFR. Interestingly, 
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performance measures do not seem noticeably affected by the resampling strategy in 
the inner loop for hyperparameter tuning despite the higher levels of regularization 
in the spatial models. Hence, predictive power is almost identical no matter whether 
spatial dependence has been accounted for during tuning or not.

Distinctive differences between spatial and non-spatial cross-validation can be 
observed for the outer resampling loop though. Compared to the true predictive per-
formance, non-spatial CV errors are overly optimistic for both the RFR as well as 
the XGB. In contrast, spatial CV consistently yields overly pessimistic but more reli-
able approximations of prediction errors compared to non-spatial CV errors. It is, 
moreover, noteworthy that non-spatial hyperparameter tuning combined with spatial 
performance evaluation results in the most pessimistic cross-validation errors for all 
measures except the MAE and the MAPE of the random forest. The understatement 
of predictive accuracy is not surprising in this case since the model was trained with 
the objective to interpolate and subsequently validated by extrapolating to a new 
spatial domain, thus yielding non-optimal results.

The bias in non-spatial cross-validation errors is even more distinctive in panel 
B of Table 4. In contrast, the spatially conscious cross-validation errors now closely 
resemble the true prediction errors, thereby reducing bias to a minimum. As already 
anticipated, the results indicate that over-optimism in non-spatial CV is likely to 
originate from spatial structures being overfitted to covarying but non-causal regres-
sors during model training. This is particularly noticeable when locational and 
neighborhood controls are missing such that the spatial information content in the 
residuals is picked up by other attributes that are structured in space. Accounting 
for spatial dependence in the inner resampling loop had once again only a minor 
impact on both model accuracy and bias. Noteworthy, the non-parametric models 
are now outperformed by the SDM in terms of predictive accuracy, which drops 
only marginally compared to specification A. This demonstrates the high robustness 
of the SDM, which is able to capture spatial effects through the spatial lag terms 
even in a scenario where locational control variables are not available. As stated by 
Doszyń (2020), machine learning methods require a very good data basis to take 
advantage of their flexibility, whereas less complex models are more robust in situa-
tions where extensive data is not available. The superiority of the SDM in the speci-
fication without spatial control variables moreover corroborates the findings of Pace 
and Hayunga (2020) who demonstrate that most of the improvement in accuracy 
achieved by machine learning models over parametric spatial models results from 
exploiting spatial structures in the data by creating spatially disaggregated models.

Figure  4 presents the asymptotic distribution of the absolute percentage error. 
The density plots reveal a higher variance and a lower kurtosis for prediction errors 
estimated by spatial CV opposed to the true error distribution. In comparison, non-
spatial CV underestimates prediction errors, particularly in the lower tails of the dis-
tribution where errors are close to zero. For both the RFR and the XGB, non-spa-
tial error estimates are centered around values that are considerably lower than the 
true means whereas spatial error estimates are more dispersed. This is affirmed by 
both the higher deviation of spatial error estimates from the median true error rep-
resented by the coefficient of dispersion as well as their larger spread illustrated by 
the interquartile range. These findings again confirm our expectations derived from 
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literature in other spatial modeling fields (see Le Rest et  al., 2014; Roberts et  al., 
2017; Schratz et al., 2019).

Residual Spatial Autocorrelation

Finally, we analyze the spatial autocorrelation found in the residuals of the models 
after calculating the Moran’s I statistic to investigate whether overfitting is related to 
the exploitation of spatial dependence structures in the data. Since the relative mag-
nitude of the Moran’s I is only meaningful for identical spatial weight matrices, we 
also calculate the Z-scores as a standardized measure, which allows us to compare 
the spatial autocorrelation of in-sample and out-of-sample residuals (Anselin, 1995). 
The results are presented in Table 5.

The spatial linear models successfully reduce spatial autocorrelation in the in-
sample residuals, although there is still spatial information content left, which is 
consistent with the findings of Pace and Hayunga (2020). The non-spatial cross-vali-
dation errors of the random forest exhibit spatial autocorrelation of roughly the same 
magnitude as the spatial linear models. Interestingly, spatially cross-validated errors 
show a significantly higher degree of spatial autocorrelation that even exceeds the 
Z-score of the simple OLS model. The same applies to the boosted trees, although 
this method seems to understand spatial structures in the data slightly better. This 
may seem counterintuitive at first but knowing that non-spatial error estimates are 
biased downwards, the substantial differences in residual spatial autocorrelation 
between the spatial and the non-spatial cross-validation errors indicate that spatial 
partitioning in the outer resampling loop indeed prevents the models from exploiting 
unexplained spatially autocorrelated information from the test data during training. 
By and large, the outcomes are consistent for panel B but, unsurprisingly, the mag-
nitude of spatial autocorrelation is in general higher as opposed to specification A, 
which further substantiates our hypotheses and underlines the importance of spatial 
cross-validation. Consistent with the results from section 4.2, the SDM does have a 
superior understanding of spatial dependence structures in the data compared to all 
other models when spatial variables are not considered.

Conclusion

Recent literature has brought forth an increasing body of evidence that demonstrates 
a superior predictive performance of machine learning algorithms compared to para-
metric models for complex spatial regression problems involving the estimation of 
house prices and rents. In non-parametric models, predictive performance is widely 
measured using resampling techniques such as cross-validation, which can be 
thought of as an out-of-sample experiment inside the original sample. This requires 
the statistical independence of the data to yield unbiased and meaningful predic-
tion error estimates that can be used for model selection and model assessment. The 
inherent spatial dependence in house price and rent formation processes gives rea-
son to question the validity of cross-validation errors in a hedonic context. Hence, 
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this study investigates the adequacy of conventional k-fold cross-validation for the 
purpose of model selection and model assessment in an algorithmic hedonic context 
using tree-based boosting and bagging methods and proposes a spatially conscious 
alternative that attempts to reduce bias in cross-validation errors by accounting for 
the spatial proximity of observations.

Despite using a nested resampling strategy and applying column subsampling in 
our bagging and boosting algorithms to prevent overfitting, our results demonstrate 

a b

Fig. 4   a Distribution of the Absolute Percentage Error for Models including Spatial Controls. b Dis-
tribution of the Absolute Percentage Error for Models excluding Spatial Controls. Notes: The density 
plots present the expected distribution of the absolute percentage error resulting from the respective 
resampling strategies in comparison to the true out-of-sample distribution of the absolute percentage 
error from the holdout sample. The line type represents the resampling strategy used in the inner loop 
for model selection (non-parametric models only) and the line color represents the resampling strategy 
applied in the outer loop for model assessment. The true out-of-sample distribution is represented in 
black. The shaded areas depict the interquartile range, which is the area between the first quartile and the 
third quartile of the true absolute percentage error with the middle line representing the median
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that failing to account for spatial dependence during the cross-validation procedure 
still has two undesirable consequences. First, hyperparameter tuning using non-
spatial grid search CV favors the selection of overly complex models that overfit 
spatial dependence structures in the training data, thereby compromising the mod-
els’ generalizability. Second, performance estimates are artificially inflated through 
the exploitation of spatial dependence structures during model training, resulting in 
overly optimistic error estimates when compared to the true prediction errors.

In nested resampling approaches these two problems go hand in hand since the 
selection of overly complex models in the inner resampling loop is masked by over-
optimistic accuracy measures during model assessment in the outer resampling loop. 
This can lead to spurious confidence in a model that overestimates predictive accu-
racy as nesting aims to simulate unseen data throughout the entire workflow of an 
algorithm, therefore suggesting unbiased error estimates (Varma and Simon, 2006). 
In contrast, spatial grid search CV prefers a higher level of regularization, thereby 
introducing extrapolation into the models, which results in error estimates that are 
slightly too pessimistic, yet closer to the true error rates.

An analysis of the residual spatial autocorrelation provides evidence that the spa-
tially conscious cross-validation technique hinders the algorithm from exploiting 
spatial dependence structures, thereby preventing overfitting. To see how the results 
vary with the extent to which spatial information is reflected in the feature space, we 
evaluate a second model alternative that does not consider spatial control variables. 
In this scenario, over-optimism in predictive accuracy is even more distinctive when 
spatial autocorrelation is not accounted for, whereas the spatial CV procedure yields 
almost unbiased estimates of the true prediction error that converge asymptotically 
closer to the true error distribution.

Despite their flexibility and higher accuracy compared to traditional parametric 
methods, machine learning techniques are often criticized for their black box char-
acter that impedes direct model interpretation as well as for their high computational 
burden. To empirically illustrate where the costs and benefits of these methods lie, a 
least squares model as well as a linear spatial autoregressive framework are further-
more used as points of reference to assess predictive accuracy. Whereas the boosting 
algorithm performs best when spatial controls are reflected in the model, the spatial 
durbin model outperforms the non-parametric model alternatives in the absence of 
spatial information in the regressor matrix, which stresses the importance of consid-
ering parametric model alternatives besides non-parametric models.

We conclude that in a real estate hedonic context, state-of-the-art cross-validation 
does not yield unbiased estimates of prediction error even when applying methods 
that intend to counteract overfitting. Resulting cross-validation errors should rather 
be interpreted as an estimate of the lower bound of the true error rate. In contrast, 
spatial cross-validation errors tend to be slightly too pessimistic but more reliable 
estimates of prediction errors. Likewise, the more conservative spatial cross-valida-
tion errors can be regarded as an upper bound of prediction errors.

That being said, in scenarios where the study area is very small and clearly delin-
eated so that spatial dependence structures do not vary significantly (i.e., on the 
submarket or ZIP-code level), spatial density of observations is high (i.e., CBD or 
city center), and spatial control variables are numerous, random partitioning of folds 
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may yield fair estimates of predictive performance. However, for typical use cases 
(i.e., predictions on the city-level or above) where spatial dependence structures 
and spatial density vary continuously across space, spatial cross-validation should 
be preferred for model selection and model assessment, since we believe that, in 
general, the cost of a slightly too pessimistic perception of predictive accuracy is 
lower than having spurious confidence in a model’s capability to predict unseen 
data. Overstatement of predictive accuracy may withhold appraisers, underwriters, 
lenders, as well as portfolio and investment managers from appropriately reflecting 
the uncertainties associated with appraised values in their decision making and risk 
management, potentially leading to adverse effects in capital allocation.

Future research in this field may apply model-agnostic interpretation techniques 
and analyze to what extent identified relationships are spurious when spatial depend-
ence is not accounted for to shed light on the role of spatial autocorrelation on the 
decision-making of the algorithms.

Table 5   Residual Spatial Autocorrelation

This table reports the spatial autocorrelation found in the residuals of the models. A positive and signifi-
cant Morans’ I signals spatial clustering of similar values whereas a negative and significant Morans’ I 
signals alternating values which indicates the presence of spatial outliers and/or spatial heterogeneity. 
The Z-score serves as a standardized value for comparison of the in-sample and out-of-sample statistics. 
It is calculated as the difference between the observed value of I and the expected value of I divided by 
the standard deviation of I, whereby the expected value of I is the theoretical mean defined as −1/(N-1), 
N being the number of observations

Panel A: Models including 
Spatial Controls

Panel B: Models excluding 
Spatial Controls

Method Resampling Strategy Morans’ I Z-score p value Morans’ I Z-score p value

  OLS holdout 0.17 55.44 0.00 0.29 95.36 0.00
re-substitution 0.27 19.30 0.00 0.39 27.48 0.00

  SDM holdout 0.03 10.17 0.00 0.03 10.23 0.00
re-substitution 0.16 11.60 0.00 0.17 11.76 0.00

  SDEM holdout 0.03 10.75 0.00 0.04 13.58 0.00
re-substitution 0.25 17.89 0.00 0.34 23.59 0.00

  RFR holdout (non-spatial tuning) 0.17 11.75 0.00 0.33 23.45 0.00
holdout (spatial tuning) 0.17 11.70 0.00 0.32 22.60 0.00
(1) non-spatial/non-spatial 0.03    9.79 0.00 0.18 61.22 0.00
(2) non-spatial/spatial 0.19  64.70 0.00 0.26 87.78 0.00
(3) spatial/spatial 0.19  62.80 0.00 0.26 87.91 0.00
(4) spatial/non-spatial 0.03    9.97 0.00 0.19 63.13 0.00

  XGB holdout (non-spatial tuning) 0.14    9.52 0.00 0.26 18.53 0.00
holdout (spatial tuning) 0.14  10.10 0.00 0.33 23.26 0.00
(1) non-spatial/non-spatial −0.01 −1.90 0.06 0.15 51.03 0.00
(2) non-spatial/spatial 0.16  54.67 0.00 0.23 75.07 0.00
(3) spatial/spatial 0.16  53.59 0.00 0.28 92.21 0.00
(4) spatial/non-spatial 0.01    2.55 0.01 0.21 71.22 0.00
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Appendix 1

Table 6   OLS Regression Output

Panel A: OLS Model including Spatial Controls

Variable Estimate Std. Error t-value p value Significance

(Intercept) −74.91 5.92 −12.65 0.00 ***
Continuous

  Living Area [log] 0.80 0.01    81.98 0.00 ***
  Age [years] 0.00 0.00 −20.11 0.00 ***
  Age squared 0.00 0.00    19.59 0.00 ***
  Entry date [years]  −0.02 0.01   −2.12 0.03 *
  Latitude1 1.45 0.12    12.17 0.00 ***
  Longitude1 0.67 0.06    11.68 0.00 ***

Discrete
  Rooms 0.04 0.00    10.05 0.00 ***
  Floor 0.00 0.00      5.29 0.00 ***

Binary [1 = yes, 0 = no]
  Bathtub  −0.04 0.00   −9.78 0.00 ***
  Refurbished 0.02 0.01      3.03 0.00 **
  Built-in kitchen 0.11 0.01    21.65 0.00 ***
  Balcony 0.02 0.00      3.84 0.00 ***
  Parking 0.03 0.01      4.88 0.00 ***
  Elevator 0.04 0.01      7.64 0.00 ***
  Terrace 0.04 0.01      5.99 0.00 ***

Distances
  NUTS centroid [km] −0.02 0.00 −13.02 0.00 ***
  Bakery [km] −0.01 0.01   −1.22 0.22
  Bar [km] −0.02 0.00   −3.73 0.00 ***
  Biergarten [km] −0.05 0.00 −14.71 0.00 ***
  Café [km] −0.02 0.01   −2.11 0.03 *
  School [km] −0.03 0.01   −2.35 0.02 *
  Supermarket [km] 0.02 0.01      1.20 0.23
  Bus station [km]  −0.04 0.00 −17.16 0.00 ***

Panel B: OLS model excluding Spatial Controls
(Intercept) 3.12 0.04    83.32 0.00 ***
Continuous

  Living Area [log] 0.84 0.01    76.62 0.00 ***
  Age [years] 0.00 0.00 −18.16 0.00 ***
  Age squared 0.00 0.00    21.45 0.00 ***
  Entry date [years]  −0.02 0.01   −2.25 0.02 *
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1. As modeling choices may differ depending on whether analysis or prediction is the main objective 
of a study, we concentrate primarily on prediction and do not wish to draw any causal inference or 
conclusions of the market under investigation.
2. Although the use of asking rents can been criticized since they may deviate from actual contract 
rents, multiple listing systems (MLS) provide a valuable data source for statistical learning 
applications due to their high frequency of occurrence and timely availability and have been 
repeatedly used in the algorithmic hedonic literature (e.g., Chiarazzo et al., 2014; Park and Bae, 
2015; Baldominos et al., 2018; Gröbel and Thomschke, 2018; Hu et al., 2019; Pérez-Rave et al., 
2019; Pace and Hayunga, 2020; Rico-Juan and Taltavull de La Paz, 2021). Considering vacancy 
rates for dwellings in Frankfurt well below 1 %, we can follow the rationale of Gröbel (2019) and 
assume that renters are price takers, such that there should be no notable differences between asking 
and contract rents. Besides that, deviations between asking and contract rents “[…] are not expected 
to lead to an error bias”, especially when hedonic characteristics are controlled for, as stated by 
Cajias (2018). We hence do not see any reason to question the validity of asking rents, especially in 
view of the objective of our study.
3. The systematic variation of rent formation processes across space should not introduce bias into 
cross-validation errors since machine learning algorithms do not assume fixed hedonic pricing 
coefficients but have the flexibility to differentiate between spatially heterogeneous environments. In 
this study, spatial heterogeneity is, therefore, put aside and the focus lies on spatial autocorrelation 
only.
4. Evidently, housing data not only exhibit high levels of spatial but also temporal dependence 
when pooled across time (Pace et al., 2000). In this study, we leave temporal aspects aside for future 
research and focus solely on space.

This table reports the ordinary least squares (OLS) regression outputs for the model including spatial 
controls in panel A and the model excluding spatial controls in panel B. The dependent variable is the 
log(rent), independent variables are listed in the left column accordingly. Significance codes: p < 0.001 
‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’, p < 0.1 ‘.’, p > 0.1 “. Std. Error: standard error. Panel A: F-statistic 
2245.00 (p value: 0.0000), AIC -4450.02, BIC -4276.96. Panel B: F-statistic 2968.00 (p value: 0.0000), 
AIC -2592.44, BIC -2488.61
1 The coefficients of the coordinates indicate that the rent in the study area increases on average ceteris 
paribus by 67% for one degree of longitude to the east and analogous by 145% for on the degree of lati-
tude to the north. We acknowledge that, in a linear context, interpretation of coordinates is very abstract 
and has limitations such as anisotropy across space. A more practical interpretation is that, in general, 
rents tend to increase towards the east/north of the city

Table 6   (continued)

Panel A: OLS Model including Spatial Controls

Variable Estimate Std. Error t-value p value Significance

Discrete
  Rooms    0.03 0.00      6.32 0.00 ***
  Floor    0.01 0.00      6.43 0.00 ***

Binary [1 = yes, 0 = no]
  Bathtub −0.05 0.00 −10.78 0.00 ***
  Refurbished 0.03 0.01      4.53 0.00 ***

  Built-in kitchen 0.15 0.01    26.57 0.00 ***
  Balcony 0.02 0.01      2.94 0.00 **
  Parking 0.01 0.01      1.52 0.13
  Elevator 0.10 0.01    16.78 0.00 ***
  Terrace 0.03 0.01      4.06 0.00 ***
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5. One limitation of the selected k-means clustering cross-validation strategy (Brenning, 2012) is that 
full independence between training and test data can only be achieved if the distance between each pair 
of training and test observation exceeds the spatial autocorrelation range (Brenning, 2005; Le Rest et al., 
2014). This is unlikely to be the case for all observations in our resampling instantiation, especially for 
data points located at the borders of the spatial clusters. Nonetheless, we believe that the number of 
observations in each test fold is large enough to counteract structural overfitting, such that the impact on 
aggregated results should be minor. Following the suggestion of Roberts et al. (2017), we refrain from 
further reducing the number of k folds in the cross-validation procedure since this would withhold too 
much information during training and may introduce unnecessary extrapolation into the models.
6. All analyses and model estimations were executed using the open-source statistical programming 
language R under the version 4.0.4 (R Core Team, 2021). All machine learning algorithms and 
resampling techniques were employed using the mlr3 framework implemented by Lang et al. (2019), 
which is an ecosystem that facilitates a standardized interface to many existing packages in the R 
environment. To obtain reproducible results and to ensure that the instantiation of the resampling 
calls do not vary between the different models, which could distort the results, all outputs were 
produced with the same random number generator using the set.seed function in R.
7. Estimations were executed on a standard 1.80GHz processor with four cores, eight logical 
processors and eight gigabytes of RAM using a 64-bit Windows operating system. After 
parallelization, the in-sample estimation of the random forest required between 11 and 20 hours for 
each of the four estimated resampling alternatives, whereby spatial tuning in the inner resampling 
loop reduced estimation time by up to 43%. The much more efficient extreme gradient boosting 
algorithm needed only about 3 to 3.5 hours respectively with the spatial tuner being slightly less 
time-consuming. During the one quarter ahead prediction, where cross-validation only needs to 
be performed for hyperparameter tuning in the inner loop, estimation time dropped to 3.5 hours 
for the bagging algorithm and to approximately 30 minutes for the boosting algorithm. The spatial 
linear models required less than 30 minutes each and the least squares estimator less than a second. 
Estimation time was significantly lower for the alternative model specification B for all models.
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