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Abstract
We consider INAR(1) processes modulated by an unobserved strongly dependent
0 − 1 process. The observed process exhibits zero inflation and long memory. A
simple method is proposed for estimating the INAR-parameters without modelling
the unobserved modulating process. Asymptotic results for the estimators are derived,
and a zero-inflation test is introduced. Asymptotic rejection regions and asymptotic
power under long-memory alternatives are derived.A small simulation study illustrates
the asymptotic results.

Keywords INAR process · Zero-inflation · Long-range dependence · Modulation

1 Introduction

Time series that consist of counts often exhibit zero inflation (see e.g. Young et al.
2022 and references therein). For instance, instrumental detection limits can lead
to an increased number of zeroes. Also ecological data sets tend to contain a large
proportion of zeroes that are classified by ecologists as "false zero counts" (Martin
et al. 2005). Examples can also be found in other areas such as medicine, psychology,
traffic or insurance, among others (Young et al. 2022). In this paper we consider zero
inflation generated by a long-memory process. This is in contrast to the statistical
literature where zero inflation processes are usually assumed to be iid or at most
weakly dependent. The issue of zeroes occuring in long batches has been discussed in
the recent applied literature. In many applications, zero inflation is related to missing
values due to faulty measurement devices, instrumental detection limits or biological
reasons. Also, the occurence of batches of zeroes may be caused by other unobserved
time series (see e.g. Che et al. 2018). A natural approach to handling such data is to use
models that exhibit long-range dependence with respect to zero inflation. Note that, in
a related paper, Möller et al. (2018) discuss models that tend to produce relatively long
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2528 J. Beran, F. Droullier

runs of zeroes (e.g. ZT-Bar(1) processes).However, asymptotically, the autocorrelation
function of their models decays exponentially and is thus summable. In contrast, the
models considered here have long memory in the sense that autocorrelations decay
hyperbolically and are not summable. Note also that a long-memory INAR model,
a so-called fractional INARFIMA, is suggested in Quoreshi (2014). However, the
INARFIMA model, as specified by Quoreshi, is not well defined, because it relies
on a fractional thinning operator that yields infinity when applied to non-negative
sequences.

More specifically, we consider INAR(1) processes modulated in a multiplicative
way by an unobserved strongly dependent 0 − 1 process. Thus, the observed process
is assumed to be of the form

Y j = W ( j) X j ( j = 1, 2, ...) (1)

where the stationary 0–1-processW ( j) ( j ∈ N) is independent of the INAR(1) process
X j ( j ∈ N), and the autocovariances γW (k) = cov(W ( j),W ( j + k)) are such that

γW (k) ∼
k→∞ cγ,Wk2d−1y (2)

for some constants 0 < cγ,W < ∞, d ∈ (0, 1
2 ). Note that Eq. (2) implies that the

spectral density

fW (λ) = 1

2π

∞∑

k=−∞
γW (|k|) e−ikλ (3)

has a pole at the origin, of the form

fW (λ) ∼
λ→0

c f ,W |λ|−2d (4)

where c f ,W = cγ,Wπ−1�(2d) sin(π/2 − πd) (Zygmund 1968; Beran et al. 2013,
Theorem 1.3). We will use the notation

p0,W = P (W ( j) = 0) = 1 − P (W ( j) = 1) (5)

More specifically, we will assume X j to be a Poisson INAR(1) process (McKenzie
1985; Al-Osh and Alzaid 1987) defined by

X j = α ◦ X j−1 + ε j

where α ∈ (0, 1), and ε j are iid Poisson variables with intensity λ. The thinning
operator "◦" (Steutel and Van Harn 1979; Gauthier and Latour 1994) means that,
conditionally on X j−1, α ◦ X j−1 is a binomial random variable generated by X j−1
Bernoulli trials with success probability α. The unknown parameters are α and λ.
Alternatively, onemay also use the parameterization α andμX = E(X j ) = λ/(1−α).
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Two questions regarding model Eq. (1) are addressed in this paper: a) estimation
of the INAR(1) paramters α and μX without modelling the unobservable process W ;
b) testing for zero-inflation as specified by model Eq. (1).

Since the introduction of INARmodels byMcKenzie (1985) andAl-Osh andAlzaid
(1987), the literature on integer-valued time series based on binomial thinning (Steutel
and Van Harn 1979) has grown steadily. Some references are Du and Li (1991); Gau-
thier and Latour (1994); Da Silva and Oliveira (2004); Freeland and McCabe (2004);
Freeland and McCabe (2005); Gourieroux and Jasiak (2004); Jung et al. (2005); Puig
and Valero (2007); Drost et al. (2008); Park and Kim (2012); Pedeli and Karlis (2013);
Schweer and Weiss (2014); Pedeli et al. (2015) and Jentsch and Weiss (2019). Excel-
lent overviews on integer-valued processes and references can be found for instance
in Weiss (2018) and Davis et al. (2021). Testing for zero-inflation in INAR(1) models
is discussed in a recent paper by Weiss et al. (2019). Also see Pavlopoulos and Karlis
(2008); Barreto-Souza (2015); Weiss (2013), and Bourguignon and Weiss (2017) for
over- and underdispersed INAR processes. References to long-memory processes can
be found for instance in Beran (1994); Giraitis et al. (2012); Beran et al. (2013) and
Pipiras and Taqqu (2017).

The paper is organized as follows. Basic results are established in Sect. 2. Question
a) is addressed in Sect. 3. In Sect. 4, a test is developed for the null hypothesis of
a non-inflated INAR(1) process against the alternative of a zero-inflated process as
defined in Eq. (1). Asymptotic rejection regions are derived, as well as an asymptotic
lower and upper bound for the power of the test. A small simulation study in Sect. 5
illustrates the results. Final remarks in Sect. 6 conclude the paper. Proofs are given in
the appendix.

2 Basic results

2.1 Expected value and autocovariance function

Let Y j be generated by model Eq. (1) where X j is a Poisson INAR(1) process. We
will use the notation 1{A} for the indicator function of a set (or event) A. Moreover,
we define

p0,W = P (W ( j) = 0) , p0,Y = P
(
Y j = 0

)
, p0,X = P

(
X j = 0

)
,

μX = E
(
X j

)
, μW = E [W ( j)] , μY = E

(
Y j

)
,

γX (k) = cov
(
X j , X j+k

)
, γW (k)

= cov (W ( j) ,W ( j + k)) , γY (k) = cov
(
Y j ,Y j+k

)
( j, k ≥ 0).

Also, for k < 0, we set γX (k) = γX (−k), γW (k) = γW (−k), γY (k) = γY (−k), and,
for λ ∈ [−π, π ],

fX (λ) = 1

2π

∞∑

k=−∞
γX (k) e−ikλ
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2530 J. Beran, F. Droullier

fW (λ) = 1

2π

∞∑

k=−∞
γW (k) e−ikλ

fW X (λ) = 1

2π

∞∑

k=−∞
γW (k) γX (k) e−ikλ

fY (λ) = 1

2π

∞∑

k=−∞
γY (k) e−ikλ

Due to mutual independence and stationarity of the two processes X j and W ( j) we
have

μY = μWμX

and

γY (k) = E [W (0)W (k)] E [X0Xk] − μ2
Wμ2

X

= μ2
XγW (k) + μ2

WγX (k) + γW (k) γX (k) (6)

Noting that

γX (k) = αkμX (k ≥ 0)

where μX = λ/(1 − α), assumption Eq. (2) implies

γY (k) ∼
k→∞ μ2

Xcγ,Wk2d−1 (7)

and

fY (λ) = μ2
X fW (λ) + μ2

W fX (λ) + fW X (λ) ∼
λ→0

μ2
Xc f ,W |λ|−2d (8)

Thus, although the original process X j has exponentially decaying autocovariances,
the observed process Y j inherits long memory from the modulating process W ( j).

Example 1 Let Z j ( j ∈ Z) be a stationary Gaussian process with zero mean, variance
one and spectral density function fZ such that

fZ (λ) ∼
λ→0

c f ,Z |λ|−2d

for some 0 < c f ,Z < ∞, d ∈ (0, 1
2 ). Also, let κ �= 0, and denote by 	 and φ the

standard normal distribution and density function respectively. Then the process

W ( j) = 1
{
Z j ≤ κ

}
( j ∈ Z)
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On strongly dependent zero-inflated... 2531

is stationary with expected value μW = 	(κ) and spectral density

fW (λ) ∼
λ→0

c f ,W |λ|−2d

where c f ,W = c f ,Zϕ(κ).

Example 2 Another example of a modulating process with long memory can be
obtained from a renewal reward process defined by

W̃ (t) = ξ01 {0 ≤ t < τ0} +
∞∑

j=−1

ξ j1
{
τ j−1 ≤ t < τ j−1 + Tj

}
(t > 0) (9)

where τ j ( j = 1, 2, ...) is a renewal process with intensity ν, and ξ j ∈ {0, 1} are
iid random variables with pξ = P(ξ j = 1) ∈ (0, 1), independent of the process τ j .
Moreover, the interarrival times Tj = τ j − τ j−1 are assumed to have a finite expected
value E(T ) = μ and a marginal distribution function FT such that

1 − FT (u) ∼ cF,T u
−a (u → ∞)

for some constants 0 < cF,T < ∞, 1 < α < 2. Finally, to achieve stationarity, the
distribution function of τ0 is assumed to be given by Fτ0(x) = μ−1

∫ x
0 (1− FT (u))du.

Then W̃ is a continuous time stationary process with expected value μW = pξ and
autocovariance function

γW̃ (u) = cov
(
W̃ (0) , W̃ (u)

)
= pξ

(
1 − pξ

)
P (τ0 > u) ∼

u→∞ cγ,Wu2d−1

where

d = 1 − a

2
∈

(
1

2
, 1

)

Setting W ( j) = W̃ ( j) ( j = 1, 2, ...), we obtain a discrete time stationary zero–one
process with long memory as defined by Eq. (4) (see e.g. Beran et al. 2013, and
references therein).

2.2 Samplemean and sample autocovariances

Standard methods for estimating the parameters of a Poisson INAR(1) process include
moment and conditional least squares estimation. For both methods, estimators are
functions of the sample mean and the lag-one sample autocorrelation. It is therefore
of interest to study the effect of modulation on these statistics.

Consider first the sample mean ȳn = n−1 ∑n
j=1 Y j as an estimator of μY . With

respect to the expected value we have E(ȳn) = μWμX . Thus, ȳn is biased, unless
P(W (t) = 1) = 1. The asymptotic distribution of ȳn follows from the asymptotic
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2532 J. Beran, F. Droullier

distribution of w̄n = n−1 ∑n
j=1 W ( j), as stated in the next theorem. We will use the

notation

ν (d) = 2 sin πd

d (2d + 1)
� (1 − 2d)

Also, "→d" and "→p" will denote convergence in distribution and in probability
respectively.

Theorem 1 Let the process W be such that

Zn,W = w̄n − μW√
var (w̄n)

→
d

ZW (n → ∞)

where ZW is a standard normal random variable. Then, under the assumptions given
above,

n
1
2−d ȳn − μWμX√

c f ,W ν (d)
→
d

μX ZW

Remark 1 In Theorem 1, the assumption that Xt is an INAR(1) process is not needed.
More generally, the result holdswhenever themodulating processW has the properties
given above, the modulated process Yt is defined by Eq. (1), and Xt is a weakly
stationary process with expected value μX and summable autocovariances γX (k).

An analogous result can be obtained for sample autocovariances. In particular,

γ̂Y (k) = n−1
n−k∑

j=1

(
Y j − ȳn

) (
Y j+k − ȳn

)
(k ≥ 0)

converges in probability to

γY (k) = μ2
XγW (k) +

(
μ2
W + γW (k)

)
γX (k)

Thus, the asymptotic bias of the unadjusted sample autocovariance is equal to

Bγ (k) = γY (k) − γX (k) = μ2
XγW (k) +

(
μ2
W + γW (k) − 1

)
γX (k) (10)

3 Conditional estimators

The modulating process W is usually not observable. Therefore the question arises
whether consistent estimation of the INAR(1) parameters characterizing X j is pos-
sible, without having to model the unobserved process W . A simple approach is to
make use of the fact that P(Y j = X j |Y j > 0) = 1. For instance, we may consider
conditional moment estimators.
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More specifically, for a Poisson INAR(1) process with intensity λ, we have μX =
E(X) = λ/(1 − α) and

E
(
X j |X j > 0

) = μX

1 − exp (−μX )
=: g (μX )

Moreover,

E
(
1
{
Y j > 0

}
Y j

) = E
(
1 {W ( j) = 1} 1 {

X j > 0
}
X j

)

= (
1 − p0,W

)
μX

E
(
1
{
Y j > 0

}) = (
1 − p0,W

)
(1 − exp (−μX ))

and hence

R = E
(
1
{
Y j > 0

}
Y j

)

E
(
1
{
Y j > 0

}) = E
(
X j |X j > 0

)

Therefore,

Rn = n−1 ∑n
j=1 1

{
Y j > 0

}
Y j

n−1
∑n

j=1 1
{
Y j > 0

}

provides a consistent nonparametric estimator of E(X j |X j > 0). This motivates the
definition of a conditional moment estimator of μX as the solution μ̂X of

g
(
μ̂X

) = Rn (11)

It is straightforward to prove that Eq. (11) provides a consistent estimator:

Theorem 2 Let μ̂X be defined by Eq. (11 ). Then

μ̂X →
p

μX .

Remark 2 In Theorem 2, the assumption that Xt is an INAR(1) process is not needed.
Suppose that Xt is a nonnegative integer valued weakly stationary process with a
summable autocovariance function γX . Then, calculating E(Xt |Xt > 0), the function
g and the nonparametric estimator Rn can be adapted accordingly to obtain a consistent
estimator μ̂X via (??).

While consistency of μ̂X is not influenced by the modulating process, this is not
true for the asymptotic distribution of μ̂X . This is discussed in Theorem 4 (Sect. 4).

The usual moment estimator of the INAR(1)-parameter α is obtained by the
lag-one sample autocorrelation. However, as we saw above, for the modulated
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2534 J. Beran, F. Droullier

process Y j sample autocovariances are asymptotically biased estimators of γX .
We may therefore consider an estimator based on the conditional autocovariance
cov(Y j ,Y j+1|Y j ,Y j+1 > 0). By analogous arguments as above it is easy to see that

cov
(
Y j ,Y j+1|Y j ,Y j+1 > 0

) = cov
(
X j , X j+1|X j , X j+1 > 0

)
. (12)

However, in terms of the INAR(1) parameters α andμX , the right hand side of Eq. (12)
is a rather complicated nonlinear function. As it turns out, a much simpler expression
can be obtained for the noncentered conditional moment E(X j X j+1|X j , X j+1 > 0).
Specifically, for a Poisson INAR(1) process the following formulas hold:

Lemma 1 Let X j be a Poisson INAR(1) process with parameters μX and α. Then

P
(
X j X j+1 > 0

) = 1 − 2e−μX + e−2μX eμXα

and

E
(
X j X j+1|X j , X j+1 > 0

) = αμX + μ2
X

1 − 2 exp (−μX ) + exp (−2μX ) exp (μXα)

A consistent nonparametric estimator of E(X j X j+1|X j , X j+1 > 0) is given by

En = n−1 ∑n−1
j=1 1

{
Y jY j+1 > 0

}
Y jY j+1

n−1
∑n−1

j=1 1
{
Y jY j+1 > 0

}

Setting

h (α, μX ) = αμX + μ2
X

1 − 2 exp (−μX ) + exp (−2μX ) exp (μXα)

we define α̂ by

h
(
α̂, μ̂X

) = En (13)

where μ̂X is obtained from (11). Equation (13) provides a consistent estimator:

Theorem 3 Let α̂ be defined by Eq. (13). Then

α̂ →
p

α

4 Testing for zero inflation

4.1 Definition of the test statistic

In this section,we consider the question how to test for zero-inflation due tomodulation
as specified by Eqs. (1), (5), (2) and (3). As before, we assume that the modulating
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On strongly dependent zero-inflated... 2535

process W is not observable. Using the notation

p0,X = P
(
X j = 0

) = exp (−μX ) , p0,Y = P
(
Y j = 0

)
, p0,W = P (W (t) = 0)

we may formulate the null hypothesis H0 and the alternative H1 as

H0 : p0,Y = p0,X , H1 : p0,Y > p0,X

For some general results on zero-inflation tests for INAR processes, see e.g. the recent
paper by Weiss et al. (2019). Note that in our situation, we are testing explicitly for
zero-inflation in themarginal distribution.Wemay therefore use a very simple statistic
that compares the empirical relative frequency of zeroes with the frequency modelled
by an INAR(1) process. Since P(Y j = X j |Y j > 0) = 1, we suggest to use the
consistent conditional estimator of μX defined in Eq. (11). Thus, let μ̂X be defined by
Eq. (11), and let

p̂0,X = exp
(−μ̂X

)

and

p̃0,Y = 1

n

n∑

t=1

1 {Yt = 0}

We define the test statistic

Tn = p̃0,Y − p̂0,X

Then, under H0, Tn converges to zero in probability, whereas under the alternative
H1, it converges to a positive constant. Asymptotic rejection regions are derived in the
following section.

4.2 Asymptotic rejection regions

Before deriving the asymptotic distribution of Tn , we need to consider the joint asymp-
totic distribution of μ̂X and p̃0,X . The following notation is adopted fromWeiss et al.
(2019):

σ11 = μX
1 + α

1 − α
(14)

σ22 = e−μX

⎡

⎣1 − e−μX + 2e−μX

∞∑

j=1

μ
j
X

j !
α j

1 − α j

⎤

⎦ (15)

and

σ12 = −μXe
−μX

1 + α

1 − α
(16)
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2536 J. Beran, F. Droullier

Also, denote by

r0,X = p0,X
1 − p0,X

the odds ratio based on p0,X .

Theorem 4 Let

ζn = √
n

(
μ̂X − μX , p̃0,Y − p0,X

)

and suppose that H0 holds. Then

ζn →
d

ζ

where ζ = (ζ1, ζ2) is a zero mean bivariate normal random variable with covariance
matrix �ζ = (ci j )i, j=1,2. The entries in �ζ are defined by

c11 = σ11 + 2μXr0,X p
−1
0,Xσ12 + μ2

Xr
2
0,X p

−2
0,Xσ22

(
1 − μXr0,X

)2 (17)

c22 = σ22 (18)

c12 = σ12 + μXr0,X p
−1
0,Xσ22

1 − μXr0,X
(19)

The asymptotic distribution of Tn under H0 is given by the following Theorem:

Theorem 5 Under H0,

√
nTn →

d
σT ZT

where ZT is a standard normal variable,

σ 2
T = e−2μX σ11 + 2e−μX σ12 + σ22

(
1 − μXr0,X

)2

and σi j are given by Eqs. (14), (16), (15).

Based on Theorem 5, asymptotic rejection regions at a level of significance α ∈
(0, 1) can be defined by

Tn > z1−α

σT√
n

(20)

where z1−α denotes the (1 − α)−quantile of a standard normal variable.

123



On strongly dependent zero-inflated... 2537

4.3 Asymptotic power

We consider the asymptotic distribution of Tn under the alternative as specified by
Eqs. (1), (2), (4) and (5) with 0 < p0,W < 1. Note first that

p̃0,Y = 1

n

n∑

j=1

1
{
Y j = 1

} = 1

n

n∑

j=1

1
{
X j = 0

} + 1

n

n∑

j=1

1
{
Y j = 0, X j > 0

}

converges in probability to

P (Yt = 0) = p0,X + P (W (t) = 0, Xt > 0)

= p0,X + p0,W
(
1 − p0,X

)

On the other hand, p̂0,X converges in probability to p0,X . Therefore, under H1,

Tn →
p

p0,W
(
1 − p0,X

)
> 0

and

lim
n→∞ P

(
Tn > z1−α

σT√
n

)
= 1

A more detailed result is given by the following Theorem. We will use the notation

Sn,1,W =
n∑

j=1

(
1 {W ( j) = 0} − p0,W

)

ϕ (x) = 1√
2π

e− 1
2 x

2

ν (d) = 2 sin πd

d (2d + 1)
� (1 − 2d)

and

q = p0,X√
c f ,W ν (d)

Theorem 6 Suppose that H1 holds, as specified by Eqs. (1), (2), (4) and (5) with
0 < p0,W < 1. Moreover, assume that

Sn,1,W√
var

(
Sn,1,W

) →
d

Z1,W (21)
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2538 J. Beran, F. Droullier

Table 1 Simulated mean (first
number) and variance (second
number) of unconditional and
conditional estimates of μX and
α under H0. For each
combination of parameters and
sample size, the results are based
on 10,000 simulations

μX = 0.5 with λ = 0.4, α = 0.2
n ȳ μ̂X α̂uncond α̂cond

100 0.50, 0.8 0.49, 2.6 0.18, 1.2 0.26, 7.6

200 0.50, 0.8 0.50, 2.6 0.19, 1.2 0.26, 13.2

400 0.50, 0.8 0.50, 2.4 0.20, 1.2 0.26, 20.8

800 0.50, 0.8 0.50, 2.4 0.20, 1.6 0.24, 27.2

1000 0.50, 1.0 0.50, 3.0 0.20, 1.0 0.23, 28.0

μX = 1 with λ = 0.4, α = 0.6

100 1.00, 3.9 0.98, 6.5 0.56, 0.8 0.51, 7.0

200 1.00, 3.8 0.99, 6.6 0.58, 0.8 0.56, 11.0

400 1.00, 4.0 0.99, 6.8 0.59, 0.8 0.59, 16.4

800 1.00, 4.0 1.00, 6.4 0.60, 0.8 0.61, 25.6

1000 1.00, 4.0 1.00, 7.0 0.60, 1.0 0.62, 29.0

where Z1,W is a standard normal random variable. Then, for n large enough,

nd− 1
2

1

q + q−1n2d−1 ϕ
(
qn

1
2−d

)
≤ 1 − P

(√
nTn > z1−α

) ≤ nd− 1
2
1

q
ϕ

(
qn

1
2−d

)

(22)

Remark 3 Note that the rate at which the two bounds in Eq. (22) tend to zero, as n →
∞, is slower for larger values of d. Thus, the power of the test becomes weaker with
increasing long memory in the modulating processW . Also note that, with increasing
d, the bounds become less sharp.

5 Simulations

We consider the model Y j = W ( j)X j where W ( j) = W̃ ( j) and W̃ is the renewal
reward process defined in Eq. (9). The following INAR(1) parameters are used: a)
μW = 0.5 with λ = 0.4 and α = 0.2; b) μW = 1 with λ = 0.4 and α = 0.6.
For W we consider μW = p0,W =0.5, 0.9, 1, and d =0.1, 0.4. In the simula-
tions of the zero-inflation test we also add a case of extreme long memory, with
d = 0.49. For each parameter combination and sample sizes n =100, 200, 400,
800 and 1000, ten thousand simulations were carried out. Simulated means and vari-
ances of the conditional moment estimates μ̂X , as defined in Eq. (11) and α̂cond ,
as defined in Eq. (13), are shown in Tables 1 (μW = 1), 2 and 3 (μW =0.5, 0.9).
For comparison, the unconditional estimates ȳ and α̂uncond are also given. Under
H0, we observe an undisturbed INAR(1) process. As expected, the conditional esti-
mates have a larger variance than the unconditional ones (Table 1). Under H1, we
have μW < 1, so that ȳ underestimates μX . Due to zero inflation, the absolute
value of the bias increases as μW decreases. In contrast, no relevant finite sample
bias is observed for the conditional estimator μ̂X . For the unconditional estimator
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Table 4 Simulated relative rejection frequencies based on asymptotic rejection regions defined by Eq. (20)
with a level of significance of 0.05. For each combination of parameters and sample size, the results are
based on 10,000 simulations

H0
μX = 0.5 with λ = 0.4, α = 0.2 μX = 1 with λ = 0.4, α = 0.6

n = 100 200 400 800 1000 n = 100 200 400 800 1000

0.04 0.04 0.04 0.04 0.05 0.03 0.02 0.02 0.02 0.02

H1 with μW = 0.5, d = 0.1

0.43 0.64 0.86 0.97 0.98 0.70 0.92 0.99 0.99 1.00

H1 with μW = 0.5, d = 0.4

0.39 0.59 0.80 0.93 0.95 0.64 0.84 0.94 0.97 0.98

H1 with μW = 0.5, d = 0.49

0.38 0.57 0.77 0.89 0.91 0.60 0.80 0.90 0.95 0.96

H1 with μW = 0.9, d = 0.1

0.09 0.12 0.17 0.26 0.25 0.10 0.13 0.26 0.38 0.47

H1 with μW = 0.9, d = 0.4

0.12 0.14 0.19 0.24 0.30 0.12 0.17 0.22 0.30 0.39

H1 with μW = 0.9, d = 0.49

0.10 0.13 0.17 0.25 0.28 0.12 0.17 0.23 0.33 0.37

of α, the effect of zero-inflation is much less clear. A noticeable bias of the uncon-
ditional estimator can only be observed for p0,W = 0.5 and d = 0.1. A possible
reason for the rather minor effect is that the potential bias under zero-inflation may
be compensated by a modified lag-one autocorrelation of the observed process due to
dependence in W .

Tables 4 show results for the zero-inflation test based on Eq. (20). Under H0,
the simulated levels are reasonably close to the nominal value of 0.05. As expected,
for smaller values of p0,W , the test has higher power. The effect of long memory is
less obvious for mild zero-inflation (p0,W = 0.9). For p0,W = 0.5, the simulation
results show a clearer picture, with a tendency for slightly lower power when d is
large.

Finally, Table 5 shows results for the case where X j is generated by an INAR(2)
process (Alzaid and Al-Osh 1990), but is misspecified as an INAR(1) model. Specif-
ically, we simulate X j = α1 ◦ X j−1 + α1 ◦ X j−2 + ε j where (α1, α2) = (0.2, 0.2)
and (0.6, 0.2) respectively, and ε j are iid Poisson variables with λ = 0.4. For
(α1, α2) = (0.6, 0.2), the simulated rejection frequencies under H0 are very close
to the nominal level of 0.05. For (α1, α2) = (0.2, 0.2), rejection frequencies tend to
be slightly too high. A possible explanation is that for α1 = 0.6 the relative influence
of X j−1 on X j is much stronger than for α1 = 0.2. In this sense, the INAR(2) process
is closer to an INAR(1) process for larger values of the ratio α1/α2, and the misspec-
ification is less noticeable. On the other hand, under H1, rejection probabilities tend
to be higher for α1 = 0.2. This may be explained, at least partially, by the fact that
for this parameter setting the level of significance is higher than the nominal level of
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Table 5 Simulated relative rejection frequencies under misspecification. The results are based on 10,000
simulations of an INAR(2) process with (α1, α2) = (0.2, 0.2) and (0.6, 0.2) respectively, and ε j iid Poisson
variableswithλ = 0.4. The alternative considered here isμW = 0.5,with d = 0.1 and d = 0.4 respectively.
For each simulated series, a (misspecified) INAR(1) model was fitted using the methods in Sect. 3 and the
test defined in Sect. 4 was applied, at a nominal level of significance of 0.05

H0
(α1, α2) = (0.2, 0.2) (α1, α2) = (0.6, 0.2)
n = 100 200 400 800 1000 n = 100 200 400 800 1000

0.04 0.05 0.06 0.09 0.10 0.08 0.08 0.07 0.05 0.04

H1 with d = 0.1

0.59 0.82 0.96 0.99 0.99 0.62 0.56 0.45 0.46 0.53

H1 with d = 0.4

0.53 0.76 0.91 0.97 0.98 0.63 0.56 0.49 0.48 0.53

0.05. Generally speaking, one may conjecture that the test is likely to be fairly robust
to mild deviations from an INAR(1) model. If serious deviations from the ideal model
are expected, a modification of the test may be preferable (see Remarks 1 and 2 ). An
interesting task for future research is to develop adaptive tests for zero-inflation that
are applicable without the need of specifying which member of a certain family of
"ideal models" (e.g. the family of all INAR(p) models with p = 1, 2, ...) generates
the unmodulated process X j .

6 Final remarks

In this paper, we introduced a zero-inflated INAR(1) model where zero-inflation is
caused by a long-memory process. Parameter estimation and testing for zero-inflation
was considered. Various extensions of this model are of interest. For instance, modu-
lation may occur at the level of the innovations of the INAR(1) process. The structure
of this type of modulated INAR(1) processes is much more complex, and will be
considered elsewhere. Another obvious extension is to consider model (1), however
replacing X j by a general INAR(p) process. It is expected that the methods considered
here can be extended to this case using analogous arguments as for p = 1.

Finally note that instead using the test statistic discussed in Sect. 4, onemay consider
the lengths of zero runs (for related results see e.g. Jazi et al. 2012, Qi et al. 2019).
An advantage of the test considered here is its simplicity. In particular, under the
alternative, the distribution of runs can be quite complicated. On the other hand,
the estimator of μX used here, omits parts of the information that may be useful for
detecting deviations from the null hypothesis. The development of more efficient tests,
for instance based on runs, is an interesting task for future research.
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7 Appendix—Proofs, Tables

7.1 Proofs

Proof of Theorem 1 First of all, E(ȳn) = μWμX = p0,WμX , because the two
processes X and W are independent of each other. Moreover,

n−1
n∑

j=1

Y j = n−1
n∑

j=1

W ( j)
(
X j − μX

) + μXn
−1

n∑

j=1

W ( j)

= μWμX + n−1
n∑

j=1

W ( j)
(
X j − μX

) + μXn
−1

n∑

j=1

(W ( j) − μW )

= μWμX + n−1Sn,1 + μXn
−1Sn,2.

Now,

E
[
W ( j)

(
X j − μX

)] = 0

and

∣∣cov
(
W ( j)

(
X j − μX

)
,W ( j + k)

(
X j+k − μX

))∣∣ =
∣∣∣γW (k) + μ2

W

∣∣∣ |γX (k)|
≤ c |γX (k)|

for a suitable constant 0 < c < ∞. Therefore

n−1
n∑

j=1

Y j − μWμX = Op

(
n− 1

2

)

Furthermore,

Sn,2 = w̄n − μW = √
var (w̄n)Zn,W

Now Eqs. (7) and (8) imply

var (w̄n) ∼
n→∞ c f ,W ν (d) n2d−1
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(see e.g. Beran et al. 2013, Corollary 1.2). Since d > 0, n−1Sn,1 is asymptotically
negligible and the result follows. ��
Proof of Theorem 2 The function g is monotonically increasing, with limμ→0 g (μ) =
1 and limμ→∞ g (μ) = ∞. Since Rn ≥ 1, Eq. (11) has a unique solution. Moreover,
W is a stationary 0 − 1−process, and

cov
(
1
{
Y j > 0

}
Y j , 1

{
Y j+k > 0

}
Y j+k

) = cov
(
Y j ,Y j+k

) = γY (k)

= μ2
XγW (k) + μ2

WγX (k) + γW (k) γX (k)

Tschebyschev’s inequality then implies

n−1
n∑

j=1

1
{
Y j > 0

}
Y j →p E (1 {Y > 0} Y ) = (

1 − p0,W
)
μX

and

n−1
n∑

j=1

1
{
Y j > 0

} →p
(
1 − p0,W

)
(1 − exp(−μX ))

so that

Rn →
p

μX

1 − exp (−μX )

��
Proof of Lemma 1 First of all,

P
(
X j X j+1 > 0

) =
∞∑

k=1

μk
X

k! e
−μX

[
1 − (1 − α)k + (

1 − e−λ
)
(1 − α)k

]

=
∞∑

k=1

μk
X

k! e
−μX

[
1 − e−λ (1 − α)k

]

= (
1 − e−μX

) − e−(λ+μX )+μX (1−α)
∞∑

k=1

[μX (1 − α)]k

k! e−μX (1−α)

= (
1 − e−μX

) − e−μX
(
1 − e−μX (1−α)

)

= 1 − 2e−μX + e−2μX eμXα

Then

E
(
X j X j+1|X j , X j+1 > 0

) = E
(
X j X j+1

)

P
(
X j X j+1 > 0

) = γX (1) + μ2
X

P
(
X j X j+1 > 0

)

123



On strongly dependent zero-inflated... 2545

= αμX + μ2
X

1 − 2 exp (−μX ) + exp (−2μX ) exp (μXα)

��
Proof of Theorem 3 First note that

E
(
1
{
Y jY j+1 > 0

}
Y jY j+1

) = E (1 {W ( j)W ( j + k) > 0})
E

(
1
{
X j X j+1 > 0

}
X j X j+k

)
,

E
(
1
{
Y jY j+1 > 0

}) = E (1 {W ( j)W ( j + k) > 0}) E (
1
{
X j X j+1 > 0

})

so that

E
(
1
{
Y jY j+1 > 0

}
Y jY j+1

)

E
(
1
{
Y jY j+1 > 0

}) = E
(
1
{
X j X j+1 > 0

}
X j X j+k

)

E
(
1
{
X j X j+1 > 0

})

= E(X j X j+1|X j , X j+1 > 0)

Then,

n−1
n−1∑

j=1

1
{
Y jY j+1 > 0

}
Y jY j+1 →

p
E

(
1
{
Y jY j+1 > 0

}
Y jY j+1

)

and

n−1
n−1∑

j=1

1
{
Y jY j+1 > 0

} →
p

E
(
1
{
Y jY j+1 > 0

})

implies

En →
p

E(X j X j+1|X j , X j+1 > 0)

Now, for any fixed μX > 0, h(α, μX ) is monotonically increasing in α with

lim
α→0

h (α, μX ) = μ2
X

(1 − exp (−μX ))2
= E2 (X |X > 0)

lim
α→1

h (α, μX ) = μX (μX + 1)

1 − exp (−μX )
= E

(
X2|X > 0

)

Hence, together with Theorem 2, we may conclude that, for n large enough, (13) has
a unique solution and α̂ →p α. ��
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Proof of Theorem 4 Recall that

p̃0,Y = 1

n

n∑

j=1

1
{
Y j = 0

}

and

g
(
μ̂X

) = n−1Sn
1 − p̃0,Y

where

g (μ) = μX

1 − p0,X
= μX

1 − exp (−μX )
= E

(
X j |X j > 0

)

and

Sn =
n∑

j=1

1
{
Y j > 0

}
Y j =

n∑

j=1

Y j = n ȳ

Under H0, we have

n−1Sn = ȳ = x̄

so that

g
(
μ̂X

) = x̄

1 − p̃0,Y
(23)

Since μ̂X is consistent, we may use a Taylor expansion

g
(
μ̂X

) = g (μX ) + g′ (μX )
(
μ̂X − μX

) + op
(
μ̂X − μX

)

to obtain

μ̂X − μX = 1

g′ (μX )

[
x̄

1 − p̃0,Y
− g (μX )

]
+ op

(
μ̂X − μX

)
(24)

Moreover, under H0, we also have p0,Y = p0,X and

1

1 − p̃0,Y
= 1

1 − p0,X

[
1 + p̃0,Y − p0,X

1 − p0,X
+ op

(
p̃0,Y − p0,X

)]

Now

x̄

1 − p̃0,Y
− g (μX ) = x̄ − μX

1 − p̃0,Y
+

(
μX

1 − p̃0,Y
− g (μX )

)
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= An + Bn

The second term can be written as

Bn = μX

1 − p̃0,Y
− g (μX )

= μX

1 − p0,X

[
1 + p̃0,Y − p0,X

1 − p0,X
+ op

(
p̃0,Y − p0,X

)] − g (μX )

= g (μX )
p̃0,Y − p0,X
1 − p0,X

+ op
(
p̃0,Y − p0,X

)

The first term can be simplified to

An = x̄ − μX

1 − p0,X
+ op

(
p̃0,Y − p0,X

)

Thus,

μ̂X − μX = 1

g′ (μX )
(An + Bn) + op

(
μ̂X − μX

)

= (x̄ − μX ) + g (μX )
(
p̃0,Y − p0,X

)

g′ (μX )
(
1 − p0,X

) + op
(
μ̂X − μX

) + op
(
p̃0,Y − p0,X

)

Applying Theorem 3.1.1 in Weiss et al. (2019), this can be simplified to

μ̂X − μX = Z1 + g (μX ) Z2(
1 − p0,X

)
g′ (μX )

n− 1
2 + op

(
n− 1

2

)

where Z = (Z1, Z2) is a zero mean bivariate random variable with covariance matrix
� = (σi j )i, j=1,2, as defined by Eqs. (14), (16), (15). Note furthermore that p0,X =
exp(−μX ),

g′ (μ) = 1 − (μ + 1) exp (−μ)

(1 − exp (−μ))2

so that

1

g′ (μX )
(
1 − p0,X

) = 1 − exp (−μX )

1 − (μX + 1) exp (−μX )

= 1

1 − μXr0,X

and

g (μX )

g′ (μX )
(
1 − p0,X

) = μX

1 − (μX + 1) exp (−μX )
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= μX

1 − p0,X

1

1 − μXr0,X

Thus, we obtain

μ̂X − μX = 1

1 − μXr0,X

(
Z1 + μX

1 − p0,X
Z2

)
n− 1

2 + op
(
n− 1

2

)

Moreover, by definition,

p̃0,Y − p0,X = n− 1
2 Z2 + op

(
n− 1

2

)

Therefore

ζn = √
n

(
μ̂X − μX , p̃0,Y − p0,X

) →
d

ζ

where ζ has the covariance matrix �ζ defined by Eqs. (17), (18) and (19). ��
Proof of Theorem 5 Note first that

p̂0,X = exp
(−μ̂X

) = p0,X exp
(− (

μ̂X − μX
))

= p0,X
(
1 − (

μ̂X − μX
) + op

(
μ̂X − μX

))

Theorem 4 implies

p̂0,X − p0,X = −p0,Xζ1n
− 1

2 + op
(
n− 1

2

)

and

√
nTn = p̃0,Y − p̂0,X

= ζ2 + p0,Xζ1 + op (1)

where ζ is defined in Theorem 4. Then formulas Eqs. (17),(18),(19) lead to

σ 2
T = lim

n→∞ n · var (Tn)

= var (ζ2) + 2p0,Xcov (ζ1, ζ2) + p20,Xvar (ζ1)

= σ22 + 2p0,Xσ12 + σ11 p20,X(
1 − μXr0,X

)2

= e−2μX σ11 + 2e−μX σ12 + σ22
(
1 − μXr0,X

)2

��
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Proof of Theorem 6 First note that

p̃0,Y = An + Bn

where

An = 1

n

n∑

j=1

1
{
X j = 0

} = p0,X + n− 1
2 Z2 + op

(
n− 1

2

)

and

Bn = 1

n

n∑

j=1

1
{
Y j = 0, X j > 0

}

= p0,W
(
1 − p0,X

) + n−1S1,n − n−1S2,n

with

n−1S1,n = n−1
n∑

j=1

1 {W ( j) = 0} − p0,W

n−1S2,n = n−1
n∑

j=1

1 {W ( j) = 0} 1 {
X j = 0

} − p0,W p0,X

Also note that

cov (1 {W ( j) = 0} , 1 {W ( j + k) = 0})
= cov (1 − W ( j) , 1 − W ( j + k))

= γW (k)

By assumption,

γW (k) ∼
k→∞ cγ,1,Wk2d−1

where

cγ,W = 2c f ,W� (1 − 2d) sin πd

(see e.g. Beran et al. 2013, Theorem 1.3). Moreover,

E
[
1 {W ( j) = 0} 1 {

X j = 0
}
1 {W ( j + k) = 0} 1 {

X j+k = 0
}]

= E [1 {W ( j) = 0} 1 {W ( j + k) = 0}] E [
1
{
X j = 0

}
1
{
X j+k = 0

}]

=
(
γ1,W (k) + p20,W

) (
γX (k) + p20,X

)
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E2 [
1 {W ( j) = 0} 1 {

X j = 0
}] = p20,W p20,X ,

and hence

cov
(
1 {W ( j) = 0} 1 {

X j = 0
}
, 1 {W ( j + k) = 0} 1 {

X j+k = 0
})

= p20,XγW (k) + p20,WγX (k) + γW (k) γX (k)

This implies

cov
(
1 {W ( j) = 0} 1 {

X j = 0
}
, 1 {W ( j + k) = 0} 1 {

X j+k = 0
}) ∼

k→∞ cγ,Wk2d−1 p20,X

Also,

E
(
1 {W ( j) = 0} 1 {W ( j + k) = 0} 1 {

X j+k = 0
})

= p0,X
(
γW (k) + p20,W

)

and

E (1 {W ( j) = 0}) E (
1 {W ( j + k) = 0} 1 {

X j+k = 0
}) = p0,X p

2
0,W

so that

cov
(
1 {W ( j) = 0} , 1 {W ( j + k) = 0} 1 {

X j+k = 0
}) = p0,XγW (k)

We then obtain

var
(
n−1 (S1 − S2)

)
= n−2 [var (S1) + var (S2) − 2cov (S1, S2)]

with

var (S1) =
n−1∑

k=−(n−1)

(n − |k|) γW (k) ∼
n→∞ c f ,W ν (d) n2d+1

var (S2) = p20,X

n−1∑

k=−(n−1)

(n − |k|) γW (k) + p20,W

np0,X−1∑

k=−(n−1)

(n − |k|) γX (k)

+ 2
n−1∑

k=−(n−1)

(n − |k|) γW (k) γX (k)

∼
n→∞ p20,Xc f ,W ν (d) n2d+1
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and

cov (S1, S2) = p0,X

n−1∑

k=−(n−1)

(n − |k|) γ1,W (k) ∼
n→∞ p0,Xc f ,W ν (d) n2d+1

Thus, overall

var
(
n−1 (S1 − S2)

)
∼

n→∞ c f ,W ν (d)
(
1 − p0,X

)2
n2d−1

Moreover, under the given assumptions, n
1
2−d(S1,n, S2,n) are asymptotically jointly

normal, so that

p̃0 =
d

p0,X + p0,X
(
1 − p0,X

) + nd− 1
2
√
c f ,W ν (d)

(
1 − p0,X

)
Z3 + op

(
nd− 1

2

)

where Z3 ∼ N (0, 1). Hence, we have

√
nTn = √

n
(
p̃0 − p̂0

)

= √
n p0,X

(
1 − p0,X

) + nd
√
c f ,W ν (d)

(
1 − p0,X

)
Z3 + op

(
nd− 1

2

)

For

�n = 1 − P
(√

nTn > z1−α

)

this yields

�n = 1 − P
(√

n p0,X
(
1 − p0,X

) + nd
√
c f ,W ν (d)

(
1 − p0,X

)
Z3 > z1−α

)
+ o (�n)

= P

(
Z3 > n

1
2−d p0,X√

c f ,W ν (d)

)
+ o (�n)

Inequality (22) then follows from

exp
(− 1

2 x
2
)

√
2π

(
x + x−1

) < 1 − 	(x) <
exp

(− 1
2 x

2
)

√
2πx

(Gordon 1941) by plugging in

x + x−1 = n
1
2−d p0,X√

c f ,W ν (d)
+ nd− 1

2

√
c f ,W ν (d)

p0,X

= n
1
2−d

(
q + q−1n2d−1

)

��
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7.2 Tables

See Tables 1, 2, 3 and 4.
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