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Abstract
In this paper, a newmethod for computing an enclosure of the nondominated set ofmultiobjec-
tive mixed-integer quadratically constrained programs without any convexity requirements
is presented. In fact, our criterion space method makes use of piecewise linear relaxations
in order to bypass the nonconvexity of the original problem. The method chooses adaptively
which level of relaxation is needed in which parts of the image space. Furthermore, it is
guaranteed that after finitely many iterations, an enclosure of the nondominated set of pre-
scribed quality is returned. We demonstrate the advantages of this approach by applying it
to multiobjective energy supply network problems.

Keywords Mixed-integer nonlinear programming · Multiobjective optimization · Box
enclosure · Adaptive piecewise linear relaxation · Energy supply networks

Mathematics Subject Classification 65K05 · 90C11 · 90C26 · 90C29 · 90C35

1 Introduction

Multiobjective optimization problems arise if there is more than one objective of interest
and the objectives are in conflict with each other, i.e. in general it is not possible to obtain a
solution that is optimal w.r.t. each of the objective functions simultaneously. Therefore, the
nondominated set (cf. Definition 2.1) consists of so-called optimal compromises. To have an
overview of (at least some of) these optimal compromises is an advantage as one can observe
the interplay between the objective functions in a more direct and easy way. Especially in
real-world applications, it occurs rather rarely that only one objective is of interest. This is
also the case in our application, where we are looking for energy supply network plans which
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are optimal w.r.t. the occurring costs as well as its accompanying CO2-emissions. Naturally,
a network plan being low in emissions is more costly and vice versa. Thus, having a list
of optimal compromises between these two extreme solutions helps the political decision-
makers to get a broader picture of the situation.

In most cases, solving a multiobjective optimization problem (MOP) numerically means
that one computes either an enclosure (cf. [23–26]) or an approximation (cf. [5, 10, 17, 30,
33]) of the nondominated set. This is due to the fact that the nondominated set is in general
infinite. In the linear case, it is also possible to compute the entire nondominated set (cf.,
e.g., [47]). In this paper, we introduce a deterministic approach to compute an enclosure of
the nondominated set with a prescribed quality ε > 0. Although the focus of our algorithm
is to compute such an enclosure, it also returns an approximation of the nondominated set,
namely a finite set of ε-nondominated points of (MOP) (see Definition 2.3).

In this work, we present two new methods to compute such enclosures. The first method
(see Algorithm 2) tackles the problemmore directly without being too complicated. In fact, it
is a slight modification of the method presented in [23] in the way that we use the Restricted
Weighted Sum Method (cf. [31, 32]) to obtain nondominated points of the problem. While
being very effective for problems where single objective subproblems can be solved very
quickly, it is not applicable (in terms of efficiency) to more complex problems—which
can happen even with a comparably small number of variables in the nonconvex mixed-
integer setting. Furthermore, this approach depends heavily on the availability of solvers
for the resulting single objective problems. These drawbacks are addressed with the second
method, where we combine the direct approach with piecewise linear relaxations to bypass
the nonlinearities of the original problems—and therefore only single objectivemixed-integer
linear programming (MILP) problems have to be solved, where powerful solvers are available
(cf. [14, 29]). The accuracy of these relaxations is chosen adaptively by the method itself
during the solution process. Consequently, it is possible to use different levels of accuracy in
different parts of the criterion space, which can be of importance if also the relaxed problems
are difficult to solve.

This approach is the first of its kind for a (MOP). In [24] a method is presented to solve
multiobjective convex mixed-integer optimization problems via relaxations. It makes use of
cuts in the criterion space in order to discard infeasible integer assignments as well as to
separate parts that do not belong to the image of the feasible set. In [25] the authors present
the first deterministic method being able to deal with multiobjective mixed-integer noncon-
vex problems. However, the method presented there is based on a branch-and-bound scheme
in the decision space which is a fundamental difference from the methods presented in this
paper. Note further that due to clarity and conciseness, we restrict ourselves to nonconvex
quadratically constrained problems in this paper as this is of relevance to our application.
However, the presented method can be straightforwardly generalized to polynomially con-
strained programs using reduction techniques to decompose polynomials into quadratic and
bilinear terms (cf., e.g., [45] and Remark 4.3).

The manuscript is organized as follows: After introducing preliminary notions in Sect. 2
we define enclosures and related notions as well as provide a basic approach for computing
such an enclosure in Sect. 3. In Sect. 4 we introduce and relate piecewise linear relaxations of
(MOP) to so-called lower bound sets of the nondominated set, which results in a new proce-
dure for computing an enclosure using adaptively chosen relaxations presented in Sect. 5. We
further prove correct and finite termination of this procedure. In Sect. 6 we demonstrate the
advantages of using this novel approach by applying it to different instances of an energy sup-
ply network optimization problem, which are in fact nonconvexmultiobjectivemixed-integer
quadratically constrained problems. Finally, a conclusion is drawn in Sect. 7.
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2 Notations and definitions

Throughout we write x ≤ y for x, y ∈ R
k if for any i ∈ [k] := {1, . . . , k} we have that

xi ≤ yi . In the same manner we write x < y if xi < yi for any i ∈ [k].
The ingredients of a general multiobjective optimization problem are the continuous com-

ponents fi : R
n+m → R, i ∈ [k], of the objective function f = ( f1, . . . , fk)� : R

n+m → R
k ,

the continuous components hi : R
n+m → R, i ∈ [p], of the equality constraint function

h = (h1, . . . , h p)
� : R

n+m → R
p and the continuous components gi : R

n+m → R, i ∈ [q],
of the inequality constraint function g = (g1, . . . , gq)� : R

n+m → R
q . For all of these

functions, we only allow quadratic and bilinear terms. The corresponding multiobjective
optimization problem is then given by

min f (x) s.t. h(x) = 0, g(x) ≤ 0, x ∈ X := XC × XI , (MOP)

where XC = [�C , uC ] � R
n and XI = [�I , uI ] ∩ Z

m
� R

m are non-empty boxes1 with
�C , uC ∈ R

n, �C < uC , and �I , uI ∈ Z
m, �I < uI , respectively. These boxes represent the

box constraints of the continuous and integer variables, respectively. If m = 0, i.e. if there
are no integrality constraints for any variable, we call (MOP) a continuous multiobjective
optimization problem, and if n = 0 we call it a pure integer multiobjective optimization
problem.Note that the components of the occurring functions f , g, and h are neither assumed
to be linear nor convex. For a survey on solution methods for general versions of (MOP) we
refer the reader to [22]. Single objective versions of (MOP) we denote by MIQCP (or more
general MINLP) problems. Interested readers are referred to [1, 6, 9, 36, 43, 52].

As we may require integrality of some variables and due to the possible non-convexity of
the occurring functions of (MOP) we obtain its possibly nonconvex feasible set

S = {x ∈ X | h(x) = 0, g(x) ≤ 0} ,

which we assume to be nonempty, as well as its possibly nonconvex image set

f (S) =
{
f (x) ∈ R

k | x ∈ S
}

.

We define the projection of the feasible set on R
m by

SI = {
xI ∈ Z

m | ∃ xC ∈ R
n : (xC , xI ) ∈ S

}
,

whichwe call the set of feasible integer assignments of (MOP). For a given integer assignment
x̂ I ∈ Z

m we define the sets

Sx̂I = {
x ∈ S | xI = x̂ I

}
and Xx̂I = {

x ∈ X | xI = x̂ I
}
,

describing the feasible and box-feasible solutions corresponding to x̂ I , respectively. Notice
that Sx̂I = ∅ holds, provided that x̂ I ∈ Z

m\SI . Since we assume all constraint functions to
be continuous and by the definition of X , the feasible set S is compact. Furthermore, by the
continuity of the objective functions, we know that f (S) is also compact andwe can therefore
find a box B = [z�, zu] ⊆ R

k with f (S) ⊆ int(B) for some z�, zu ∈ R
k, z� ≤ zu, z� 
= zu .

In general, the k objective functions of (MOP) are in conflict with each other, i.e. we cannot
assume that there is a solution x̄ ∈ S minimizing all objective functions simultaneously. This
motivates the concepts of (non-)dominance and efficiency (cf. [20]).

1 A closed n-dimensional box is defined as [�, u] := ({�} + R
n+) ∩ ({u} − R

n+) = {x ∈ R
n | � ≤ x ≤ u},

where �, u ∈ R
n , l < u. The open box is defined as (�, u) := ({�}+ int(Rn+))∩ ({u}− int(Rn+)) = {x ∈ R

n |
� < x < u}.
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Definition 2.1 (1) Let y1, y2 ∈ R
k . Then y1 dominates y2 (and y2 is dominated by y1) if

y1i ≤ y2i for all i ∈ [k] and y1j < y2j for some j ∈ [k].
We write y1 ≤ y2, y1 
= y2. If even y1i < y2i for all i ∈ [k], then y1 strictly dominates
y2 (and y2 is strictly dominated by y1) and we write y1 < y2.

(2) Let y ∈ R
k and N ⊂ R

k . Then the vector y is (strictly) dominated by the set N if there
exists a vector ŷ ∈ N (strictly) dominating y. Similarly, if y is not (strictly) dominated
by N we call y (weakly) nondominated by N .

(3) A point x̄ ∈ S is called an efficient solution of (MOP) if there exists no x ∈ S such
that f (x) dominates f (x̄). If there exists no x ∈ S such that f (x) strictly dominates
f (x̄), then x̄ is called a weakly efficient solution of (MOP). The set of (weakly) efficient
solutions of (MOP) is called its (weakly) efficient set.

(4) A point ȳ ∈ f (S) is called a (weakly) nondominated point of (MOP) if there exists no
y ∈ f (S) (strictly) dominating ȳ. The set of (weakly) nondominated points of (MOP) is
called its (weakly) nondominated set and is denoted by N (and Nw).

Remark 2.2 (1) Note that N = {
f (x) ∈ R

k | x ∈ S is efficient
}
.

(2) Note that even if we assume all objective and constraint functions of (MOP) to be convex
(or linear), the nondominated set of (MOP) can be disconnected and nonconvex due to
integrality constraints (e.g., c.f. [16, Figure 1]).

The goal of multiobjective optimization is to determine the nondominated setN of a given
(MOP). As the setN can be infinite or of a very complicated structure it can be impossible to
compute it exhaustively using numerical methods. Therefore, numerical methods for multi-
objective optimization mostly focus on computing a finite approximationA ofN subsequent
to the following three goals (cf. [49]):

• Coverage all parts of the nondominated setN should be represented in the approximation
A.

• Uniformity the points of the approximationA should be distributed uniformly along the
nondominated set N .

• Cardinality the setA should contain an appropriate number of points naturally depending
on the number and extent of the cost functions.

Another approach of numerically solving an (MOP) is—instead of computing a sole
approximation—to compute a coverage of the nondominated set N as presented in, e.g.,
[23–26]. Besides the introduction of enclosures of the nondominated set, the authors present
a branch-and-bound framework for computing such an enclosure of the nondominated set
with a prescribed quality. As we are aiming at the same goal in this paper, we present the
enclosure-related notions in more detail in Sect. 3.

However, speaking of enclosures of a certain quality we come to the issue of obtaining
convergence of numerical methods mostly only in the limit, i.e. after possibly infinitely many
iterations. In general, this is overcome by using termination criteria together with specific
tolerances—in fact, one terminates a method if it computed a solution satisfying an a-priori
chosen criterion up to a specified tolerance. In single objective optimization, one way to use
such tolerances is embodied in branch-and-bound methods which iteratively compute lower
and upper bounds of the optimal value while checking if the gap between these two becomes
smaller than the prescribed tolerance. In particular, these methods terminate with so-called
ε-optimal solutions. This concept can also be applied to nondominance in multiobjective
optimization.
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Definition 2.3 Let ε > 0. A point ȳ ∈ f (S) is called a (weakly) ε-non-do-mi-na-ted point
of (MOP) if there exists no y ∈ f (S) such that y + εe (strictly) dominates ȳ, where e ∈ R

k

denotes the all-one vector. Similarly, a solution x̄ ∈ S is called (weakly) ε-efficient for (MOP)
if there is no x ∈ S such that f (x)+εe (strictly) dominates f (x̄). The set of ε-nondominated
points is denoted by Nε .

Remark 2.4 Depending on the considered problem (MOP) one could also use another vector
instead of e. E.g., this could be useful if the attained magnitudes of the objective functions
differ largely. For an example see the explanations of the numerical examples in Sects. 3
and6.

3 Enclosures and local bounds

In [23, 24, 26] the authors present methods for solving problems like (continuous or convex
versions of) (MOP). The aim of these methods is to find an enclosure of the nondominated
set N . Following the sandwiching idea of single objective branch-and-bound methods, an
extension to the multiobjective setting is needed.

Definition 3.1 Let L,U ⊆ R
k be two finite sets satisfyingN ⊆ L + R

k+ andN ⊆ U − R
k+.

Then L is called a lower bound set,U is called an upper bound set, and the set E := E(L,U )

defined as

N ⊆ E (L,U ) :=
(
L + R

k+
)

∩
(
U − R

k+
)

=
⋃
�∈L

⋃
u∈U ,
�≤u

[�, u]

is called enclosure of the nondominated set N of (MOP).

For transferring the gap termination criterion to the multiobjective setting we need some
sort of quality measure for the set E(L,U ). In [23–26] the authors use the so-called width
w(E) which is defined as the optimal value of the problem

max
�,u

s(�, u) s.t. � ∈ L, u ∈ U , � ≤ u, (W (E))

where s(�, u) := min{ui − �i | i ∈ [k]} represents the shortest edge length of a given box
[�, u]. The justification for the choice of this width measure is given by the following lemma.

Lemma 3.2 (cf. [26, Lemma 3.1]) For sets L,U ⊆ R
k with N ⊆ L + R

k+ and some ε > 0
let w(E) < ε. Then the relation

E (L,U ) ∩ f (S) ⊆ Nε (1)

holds, i.e. for any feasible point x ∈ S with f (x) ∈ E weknow that f (x) is an ε-nondominated
point of (MOP).

Due to Lemma 3.2, finding lower and upper bound sets L,U and thus an enclosure E with
w(E) < ε becomes important. In fact, computing such an enclosure is the aim of themethods
from [23, 24], whereas in the branch-and-bound based method from [26] the authors use the
width measure in the preimage space to declare a box sufficiently branched. As we propose
a criterion space method, we focus on computing an enclosure E such that w(E) < ε. In
order to do so, we make use (as done in [23–25]) of the concept of Local Lower and Local
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Upper Bounds (LLBs and LUBs, respectively) which is an extension of the work in [15, 34]
and also [21].

In [15] the authors call a set Y ⊆ R
k stable if there are no elements in Y dominating

each other, i.e. for any two distinct y1, y2 ∈ Y there are i, j ∈ [k] such that y1i < y2i and
y2j < y1j . One can immediately see that for any (MOP) the corresponding nondominated set
N is stable. We start with the definition of local upper bounds as introduced in [34].

Definition 3.3 Let N ⊆ f (S) be a finite and stable set. Then the lower search region for N
is

s (N ) := {
y ∈ int (B) | y′

� y for every y′ ∈ N
}
,

and the lower search zone for some u ∈ R
k is given by

c(u) := {y ∈ int (B) | y < u} .

A set U = U (N ) is called local upper bound set given N if

(i) s (N ) = ⋃
u∈U (N ) c(u),

(ii) c
(
u1

)
� c

(
u2

)
for any u1, u2 ∈ U (N ) with u1 
= u2.

Each point u ∈ U (N ) is called a local upper bound (LUB).

In [23, 24] the authors extended the concept of LUBs to so-called Local Lower Bounds.

Definition 3.4 Let N ⊆ int (B) be a finite and stable set. Then the upper search region for
N is

S (N ) := {
y ∈ int (B) | y′

� y for every y′ ∈ N
}
,

and the upper search zone for some � ∈ R
k is given by

C(�) := {y ∈ int (B) | � < y} .

A set L = L (N ) is called a local lower bound set given N if

(i) S (N ) = ⋃
�∈L(N ) C(�),

(ii) C
(
�1

)
� C

(
�2

)
for any �1, �2 ∈ L (N ) with �1 
= �2.

Each point � ∈ L (N ) is called a local lower bound (LLB).

In [26] the authors show that given a stable set N , the corresponding local upper bound
set is uniquely determined. In the same manner, one can show that also the corresponding
local lower bound set is unique. The following result from [23] relates the concept of local
lower/upper bounds to lower/upper bounds as introduced in Definition 3.1.

Lemma 3.5 (cf. [23, Corollary 3.6]) Suppose that the sets N 1 ⊆ f (S) and N 2 ⊆
int(B)\ (

f (S) + int(Rk+)
)
are finite and stable. Then U (N 1) is an upper bound set and

L(N 2) is a lower bound set in the sense of Definition 3.1.

As the local lower and upper bound sets depend on the stable set N , we have to update
both if we add a new point y to the set N . These procedures come from [34, Algorithm 3],
[23, Algorithm 2]. In Algorithm 1 we provide the scheme for updating a local upper bound
set. Similar to [34] we use the following notation: for y ∈ R

k, c ∈ R and i ∈ [k] we define
y−i := (y1, . . . , yi−1, yi+1, . . . , yk)

� and
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Algorithm 1 Updating a Local Upper Bound Set
Require: Local upper bound set U (N ) and update point y ∈ f (S)

1: A = {u ∈ U (N ) | y < u}
2: for i ∈ [k] do
3: Bi = {

u ∈ U (N ) | yi = ui and y−i < u−i
}

4: Pi = ∅
5: end for
6: for i ∈ [k] do
7: for u ∈ A do
8: Pi = Pi ∪ {(

yi , u−i
)}

9: end for
10: end for
11: for i ∈ [k] do
12: Pi = {

u ∈ Pi | u � u′ for all u′ ∈ Pi ∪ Bi , u′ 
= u
}

13: end for
14: U (N ∪ {y}) = (U (N ) \ A) ∪ ⋃

i∈[k] Pi
return Updated local upper bound set U (N ∪ {y})

(c, y−i ) := (y1, . . . , yi−1, c, yi+1, . . . , yk)
� .

In order to obtain an algorithm for updating a local lower bound set L(N ) w.r.t. an update
point y ∈ int(B), one can modify Algorithm 1 in the following way. We replace U (N ) by
L(N ), and change the following:

• Step 1 to A = {� ∈ L (N ) | y > �},
• Step 3 to Bi = {� ∈ L (N ) | yi = �i and y−i > �−i },
• Step 12 to Pi = {

� ∈ Pi | � � �′ for all �′ ∈ Pi ∪ Bi , �′ 
= �
}
.

Furthermore, by analyzing the update procedure of U (N ) w.r.t. a point y ∈ f (S), one
can relate the local upper bounds from U (N ) to the ones from U (N ∪ {y}) in the following
way: for a local upper bound u ∈ U (N ∪ {y}) we have either u ∈ U (N ) or u = (

yi , u′−i

)
for some i ∈ [k] and u′ ∈ U (N ). For the latter case, we call u′ the parent of u. Otherwise, u
is its own parent.

Lemma 3.6 [23, Lemma 3.8] Let u ∈ U (N ∪ {y}) be a local upper bound. Then its parent
u′ ∈ U (N ) is unique.

Similarly, we define the parents of a given local lower bound �. Furthermore, the analogue
of Lemma 3.6 holds also for any local lower bound � ∈ L (N ∪ {y}).

In [15, 34] the authors present a general scheme for computing an approximation of the
nondominated set of a multiobjective optimization problem (cf., e.g., [15, Algorithm 2]).
In [23] the authors extend this scheme for computing an enclosure E of N which, in fact,
consists of boxes [�, u], where � is a local lower and u a local upper bound, and satisfies
w(E) < ε for given ε > 0. Both methods make use of the search zones determined by a
given local upper bound u.

For this paper, we use a slightly modified approach of these as a basic scheme which is
written in Algorithm 2.

In Algorithm 2, we loop through the set Uloop, i.e. the set of local upper bounds at the
beginning of the iteration. If the current local upper bound u is part of a not sufficiently small
box (see Step 5), we try to improve this local upper bound, i.e. find a nondominated point in
the search region determined by u. In order to do so, we solve the weighted-sum problem

min α� f (x) s.t. x ∈ S and f (x) < u − δe, (WSP (α; u))
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Algorithm 2 General scheme for computing an enclosure of the nondominated set relying
on a scalarization technique.

Require: box B =
[
z�, zu

]
with f (S) ⊆ int(B), termination tolerance ε > 0 and off-set factor δ > 0

1: Initialize nondominated set N = ∅, set of local lower bounds L =
{
z�

}
and set of local upper bounds

U = {
zu

}
2: while w(E) ≥ ε do
3: Uloop = U
4: for u ∈ Uloop do
5: if there exists � ∈ L with � ≤ u and s(�, u) ≥ ε then
6: if there exists y ∈ N with y < u − δe then
7: Update U w.r.t. y using Algorithm 1
8: Update L w.r.t. y using modified Algorithm 1
9: else
10: Update L w.r.t. u − δe using modified Algorithm 1
11: end if
12: end if
13: end for
14: end while

return Enclosure E (L,U ) satisfying w(E) < ε

for some weight vector α ∈ int(Rk+). Note that if the weight vector α has only strictly
positive entries we know that any global solution x̄ of (WSP (α; u)) is efficient for (MOP)
(cf. [4, Lemma 1.5.2],[20, p. 214f]), i.e. ȳ = f (x̄) ∈ N and ȳ < u − δe. Furthermore, we
know that there exists y ∈ N with y < u − δe if and only if (WSP (α; u)) has a solution. In
sum, this means that we can decide whether to enter and execute the if-statement in Step 6
after solving (WSP (α; u)) for a strictly positive weight vector α. This weight vector could be
chosen always the same, e.g., α = (1, . . . , 1)�/k. But one could also compute it individually
for any u, as done for the numerical examples presented later in this work. For example,
one could compute the weight vector α for the problem (WSP (α; u)) using a computation
technique proposed in [48]. Given the current local upper bound of interest u ∈ U (N ), where
N is the current approximation of N , for any i ∈ [k] let yi ∈ N be a defining point of the
i–th component of u, i.e. for any i ∈ [k] we have yii = ui and yi−i < u−i . We then solve the
system

⎛
⎜⎝
y11 . . . y1k
...

...

yk1 . . . ykk

⎞
⎟⎠

⎛
⎜⎝

α̃1
...

α̃k

⎞
⎟⎠ =

⎛
⎜⎝
1
...

1

⎞
⎟⎠ , (2)

and set α := |α̃|/‖α̃‖2. Note that α is the normal vector of the hyperplane determined by
the points y1, . . . , yk . Using (WSP (α; u)), Algorithm 2 can be seen in the context of the
so-called Adaptive Weighted Sum Method as presented in [31, 32].

Remark 3.7 For a clear definition of defining points we refer to [34]. Furthermore, in [34]
the authors present methods for updating local upper bound sets together with the sets of
defining points, i.e. an algorithm doing the same as Algorithm 1, but also updating the
corresponding defining points (see [34, Algorithm 5]). In fact, [34, Algorithm 5] is used in
any implementation of the present paper instead of Algorithm 1. We waived to present [34,
Algorithm 5] in detail to keep things more concise.

If (WSP (α; u)) is feasible, it is solved to optimality and its solution ȳ ∈ N is used to
update the local upper and lower bound sets. Afterward, it proceeds to the next iteration. If
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Fig. 1 Exemplary configuration during Algorithm 2 tackling an instance of Example 3.14. û ∈ U denotes the
current local upper bound of interest. The moving hyperplane σ T (x1; x2) together with the red dashed line
mimics the behavior of the (WSP (α; u))

otherwise (WSP (α; u)) is not feasible, we know that there is no nondominated point y of
(MOP) satisfying y < u − δe and therefore particularly y < u − εe. Therefore, we can use
u − δe to update the set of local lower bounds (see Step 10).

An exemplary situation during Algorithm 2 is depicted in Fig. 1, where û ∈ Uloop denotes
the current local upper bound of interest. The green boxes represent the current enclosure
based on the set of local upper bounds U and local lower bounds L , which depend on
the current approximation N of the Pareto set N . Note that the enclosure simultaneously
functions as the leftover search zone, i.e. the area where nondominated points can lie. The
dashed red line mimics the restrictions coming from (WSP (α; u)), i.e. we are only looking
for nondominated points in the lower left quadrant w.r.t. û − δe. Clearly, if in this area there
is no part of the Pareto set, we can update the lower bound set w.r.t. û − δe and declare the
search region determined by û as well-enough explored. Furthermore, in that picture one can
imagine the impact of enlarging δ, as the distance between the new potentially nondominated
point and the old ones increases if δ gets closer to ε.

Remark 3.8 We briefly describe the method from [23] as it is closely related to ours from
Algorithm 2.

The method from [23] iterates through the elements of the list of local lower bounds L in
an outer loop and through the elements of the list of local upper bounds U in an inner loop.
Given �̂ ∈ L , it iteratively chooses û ∈ U satisfying �̂ ≤ û and s(�̂, û) > ε. After fixing a
pair (�̂, û) it solves the following optimization problem, where � = �̂ and u = û are set,

min t s.t. (t, x) ∈ R × S and f (x) − � − t (u − �) ≤ 0. (PSP (�, u))

Problem (PSP (�, u)) can be interpreted as Pascoletti-Serafini problem (cf. [46]) with ref-
erence point �̂ and direction û − �̂. Subsequently, it solves an optimization problem that
ensures that one obtains a nondominated point ȳ. Note that for an optimal solution (x̄, t̄) of
(PSP (�, u)) the point x̄ ∈ S is only guaranteed to be weakly efficient (cf. [46]). If ȳ satisfies
some specific criterion (cf. [23, Section 4.3]), it is used to update the sets of local lower
and upper bounds. If otherwise, ȳ does not satisfy this criterion, the point �̂ + t̃(û − �̂) is
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used to update the local lower bound set, where t̃ ≥ 0.5 is computed in a way that strict
nondominance of �̂+ t̃(û− �̂)w.r.t.N is ensured. We decided to avoid solving problems like
(PSP (�, u)) since preliminary numerical experiments pointed in the direction that solving
(PSP (�, u)) is computationally not as efficient as solving (WSP (α; u)) for our test instances.
Furthermore, by doing so, one avoids the procedure for ensuring strict nondominance of the
update points.

After running through both loops, it is guaranteed that any new box [�new, unew] evolving
from the above-described updates satisfies

(
unew − �new

)
i ≤ max

{
ε, 0.5

(
uold − �old

)
i

}
(3)

for at least one index i ∈ [k], where �old and uold are local lower and upper bounds from
the beginning of the iteration satisfying �old ≤ �new ≤ unew ≤ uold (cf. [23, Theorem 4.2]).
Using that, the authors prove correctness and finiteness of the proposed method and provide
an upper bound on the number of iterations until termination (cf. [23, Lemma 4.3] and [23,
Theorem 4.5]). Due to the modifications in our method, we obtain the decrease estimate for
the boxes (4) which differs from (3).

We proceed with proving correctness and finiteness of Algorithm 2.

Lemma 3.9 Let U be the local upper bound set at some arbitrary point in Algorithm 2. Then
U is an upper bound set in the sense of Definition 3.1.

Proof We initialize the setU = {zu}. During Algorithm 2 the setU is updated only in Step 7.
The update procedure takes place w.r.t. a point y ∈ N and therefore particularly y ∈ f (S).
Thus, by correctness of Algorithm 1 we obtain that U is a local upper bound set w.r.t. some
set N1 ⊆ f (S). The claim follows by Lemma 3.5. ��
Lemma 3.10 Let L be the local lower bound set at some arbitrary point in Algorithm 2. Then
L is a lower bound set in the sense of Definition 3.1.

Proof We initialize the set L = {z�}. During Algorithm 2 the set L is updated only in
the Steps 8 and 10. If updated in Step 8, L is updated w.r.t. a point y ∈ N and therefore in
particular y /∈ f (S)+ int(Rk+). If otherwise updated in Step 10, it is updated w.r.t. y = û−δe
for some local upper bound û ∈ U . Since we only enter Step 10, if there exists no ȳ ∈ N
satisfying ȳ ≤ û − δe we particularly know that y = û − δe /∈ f (S) + int(Rk+). Hence, by
correctness of the modified version of Algorithm 1 for local lower bounds we obtain that L
is a local lower bound set w.r.t. some set N2 ⊆ int(B)\( f (S) + int(Rk+)). The claim follows
by Lemma 3.5. ��

The above results show that the sets L andU are lower and upper bound sets in the sense
of Definition 3.1 at any time of Algorithm 2. To show that also the output sets are sets of that
type, we have to ensure that the sets N1 ⊆ f (S) and N2 ⊆ int(B)\( f (S) + int(Rk+)) are
finite. If we show that Algorithm 2 is itself finite, i.e. terminates after a finite number of steps,
the finiteness of N1 and N2 follows immediately. In order to show finiteness of Algorithm 2
we start with a result about the decrease of certain edge lengths during one iteration of the
method. The following is essentially the same as the corresponding results in [23]. However,
as some adaptions have to be made, we present the adapted proofs in detail.

Theorem 3.11 Let ε > δ > 0 and z�, zu ∈ R
k be the input parameters of Algorithm 2.

Moreover, let Lstart and Ustart be the local lower and upper bound sets at the beginning
of some iteration in Algorithm 2, i.e. at the begin of the while-loop of some iteration.
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Accordingly denote by Lend,Uend the sets at the end of this iteration. Then for any �e ∈ Lend

and any ue ∈ Uend with �e ≤ ue there exist �s ∈ Lstart and us ∈ Ustart such that the following
hold:

(1) �s ≤ �e ≤ ue ≤ �s , i.e. the width does not increase during one iteration.
(2) There exists an index j ∈ [k] such that

(
ue − �e

)
j < max

{(
us − �s

)
j − δ, ε

}
. (4)

Proof Let �e ∈ Lend and ue ∈ U end with �e ≤ ue. We denote by P(�e), P(ue) ⊆ R
k the

sets containing the parent history of �e and ue in the current iteration, i.e. their parents, their
parents’ parents and so on until the ancestors of �e and ue belonging to Lstart and U start. By
Lemma 3.6 we have that

∣∣P (
�e

) ∩ L
∣∣ = 1 and

∣∣P (
ue

) ∩U
∣∣ = 1 (5)

at any point in the current iteration, i.e. for any assignment of L and U during the while-
loop, and therefore in particular we obtain �s ∈ P(�e) ∩ Lstart and us ∈ P(ue) ∩ U start. By
the definition of parents and the corresponding update procedures given in Algorithm 1 and
its adaption for local lower bounds, we know that �p ≤ �c and uc ≤ u p , where �c and uc are
the children of �p and u p , respectively. Hence, we obtain that

�s ≤ � ≤ �e for all � ∈ P
(
�e

)
, ue ≤ u ≤ us for all u ∈ P

(
ue

)
, (6)

and therefore (1) is satisfied.
We now show that also (2) holds. We assume for a contradiction that there exist �e ∈ Lend

and ue ∈ U end with �e ≤ ue such that for any � ∈ Lstart and u ∈ U start with � ≤ �e ≤ ue ≤ u
and any index i ∈ [k] we have that

(
ue − �e

)
i ≥ max

{
(u − �)i − δ, ε

}
. (7)

In particular, (7) holds for the ancestors of �e and ue in Lstart and U start, namely �s and us .
We consider now the point in Algorithm 2, where us is chosen in the for-loop. Note that us

might not be the first local upper bound fromUloop considered in the for-loop and therefore
it might be the case that us /∈ Ucurrent, whereUcurrent is the current assignment ofU . However,
since for any i ∈ [k] we have that (ue − �e)i ≥ ε we know that for any �′ ∈ P(�e) ∩ Lcurrent

we have that (us − �′)i ≥ ε for any i ∈ [k], where Lcurrent denotes the current assignment of
L . Hence, we have that

s
(
�′, us

) ≥ ε (8)

and we therefore enter the if-statement in Step 5. Similarly, we fix u′ ∈ P(ue) ∩ Ucurrent.
Note that

�s ≤ �′ ≤ �e and ue ≤ u′ ≤ us .

We denote by Lupdated and Uupdated the assignments of L and U after the current iteration
of the for-loop is executed. We have to distinguish two main cases, namely we enter the
if-statement in Step 6 (case A) or we do not (case B).

(A) In that case we enter the if-statement in Step 6, i.e. there exists y ∈ N with y < us −δe.
We have to distinguish two cases.
Case A.1 y < u′. Then u′ would be removed during the update of Ucurrent using Algo-
rithm 1, i.e. u′ /∈ Uupdated. Now, we have the candidates

ui = (
yi , u

′−i

)
, for i ∈ [k],
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from which at least one belongs to Uupdated by (5). Say u j ∈ Uupdated. Using (6), we
compute

(
ue − �e

)
j ≤

(
u j − �e

)
j
≤ y j − �sj <

(
us − �s

)
j − δ,

a contradiction to (7).
Case A.2 y ≮ u′. Then there exists j ∈ [k] with u′

j ≤ y j . Again, using (6), we compute

(
ue − �e

)
j ≤ (

u′ − �e
)
j ≤ y j − �sj <

(
us − �s

)
j − δ,

a contradiction to (7).
(B) Assume now that we do not enter the if-statement in Step 6, i.e. there exists no y′ ∈ N

with y′ < us − δe =: y. We have to distinguish two cases.
Case B.1 �′ < y. Then �′ would be removed during the update of Lcurrent using Algo-
rithm 1 for local lower bounds, i.e. �′ /∈ Lupdated. Now, we have the candidates

�i = (
yi , �

′−i

)
, for i ∈ [k],

from which at least one belongs to Lupdated by (5). Say � j ∈ Lupdated. Using (6), we
compute

(
ue − �e

)
j ≤

(
ue − � j

)
j
≤ usj − y j = δ < ε,

a contradiction to (7).
Case B.2 �′

≮ y. Then there exists j ∈ [k] with �′
j ≥ y j = usj − δ, i.e. particularly

s(�′, us) ≤ δ < ε, a contradiction to (8).

Obtaining a contradiction in all possible cases shows that our assumption (7) cannot be true
and therefore statement (2) is also true, which completes the proof. ��

Knowing that in every iteration of Algorithm 2 for any pair (�e, ue) we obtain a decrease
w.r.t. the edge length for at least one edge j ∈ [k] we are able to prove that Algorithm 2
terminates after finitely many iterations.

Theorem 3.12 Let ε > δ > 0 and z�, zu ∈ R
k be the input parameters of Algorithm 2. We

define

� := ∥∥zu − z�
∥∥∞ and κ := k

⌈
� − ε

δ

⌉
+ 1.

Then the number of iterations of Algorithm 2, i.e. the number of iterations of the while-
loop, is bounded by max {1, κ}. Hence, Algorithm 2 is finite.

Proof If κ ≤ 1, then � ≤ ε and Algorithm 2 terminates without entering the while-loop.
Therefore, let κ > 1. We write �1 = z� and u1 = zu and for any l ≥ 1 let Ll and Ul be

the assignments of L and U at the begin of the l-th execution of the while-loop.
By Theorem 3.11, we know that for any l ≥ 2 and any �l ∈ Ll and ul ∈ Ul there exist

�l−1 ∈ Ll−1 and ul−1 ∈ Ul−1 with �l−1 ≤ �l ≤ ul ≤ ul−1 as well as an index i l ∈ [k] such
that

(
ul − �l

)
i l

< max
{(

ul−1 − �l−1
)
i l

− δ, ε
}

. (9)
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Suppose now that Algorithm 2 has more than κ iterations. Then there exist �κ ∈ Lκ and
uκ ∈ Uκ with s(�κ , uκ ) ≥ ε. For any i ∈ [k] we define

n(i) = ∣∣{l ∈ {2, . . . , κ} | i = i l}∣∣.
As κ > k��−ε

δ
� there exists at least one index j ∈ [k] with n ( j) ≥ ��−ε

δ
�+ 1. Iterative use

of (9) yields that

s
(
�κ , uκ

) ≤ uκ
j − �κ

j < u1j − �1j − n( j)δ ≤ zuj − z�j −
⌈

� − ε

δ

⌉
δ

≤ � − � − ε

δ
δ ≤ ε,

a contradiction to s(�κ , uκ ) ≥ ε. Hence,we have thatw(Eκ) < ε andAlgorithm2 terminates.
��

Corollary 3.13 Let ε > δ > 0 and z�, zu ∈ R
k be the input parameters of Algorithm 2. Then

after finitely many iterations of the while-loop, an enclosure E of the nondominated setN
satisfying w(E) < ε is returned.

Proof Theorem 3.12 tells us that Algorithm 2 terminates after at most κ calls of the while-
loop, i.e. the output set Eκ satisfies w(Eκ ) < ε. By Lemma 3.9 and Lemma 3.10 we know
that the set L , resp. U , is a lower, resp. upper, bound set in the sense of Definition 3.1. In
particular, this holds for Lκ and Uκ . Thus, Eκ is an enclosure of the nondominated set N
satisfying w(Eκ ) < ε. ��
We conclude this section with an example together with the numerical results. Note that for
the numerical realization, we did not exactly implement Algorithm 2, but a modification in
a way that we do not iterate through all local upper bounds in every call of the while-loop.
Instead, at the begin of any while-loop we determine a local upper bound û ∈ U such
that there exists � ∈ L with � ≤ û and s(�, û) = w(E) and then perform the loop for û
only. By doing so, we avoid performing computations for local upper bounds u ∈ Uloop

which do not belong to the current U anymore. However, finiteness of this procedure is not
guaranteed by Theorem 3.12 anymore. But if it terminates after finitely many steps, then we
still havew(E) < ε. Furthermore, we use a normalized shortest edge calculation, i.e. instead
of s(�, u) = mini∈[k] {ui − �i } we compute it via:

s (�, u) = min
i∈[k]

{
ui − �i

zui − z�i

}
.

Consequently, the termination tolerance ε is not an absolute measure anymore, but a relative
one. This normalized approach guarantees that differences in the magnitude of the different
objective functions are taken into account.

Example 3.14 We consider the optimization problem:

min x = (x1, . . . , xn)
� s.t. 0 = bi

(
‖x − mi‖22 − r2

)
, i ∈ [m]

0 ≤ bi
(
x j − mi

j

)
, i ∈ [m], j ∈ [n],

1 =
m∑
i=1

bi , 0 ≤ x,

bi ∈ {0, 1}, i ∈ [m].

(Circles)
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Fig. 2 Computational results on first instance in Example 3.14. Left: nondominated points of (Circles) obtained
by Algorithm 2 with WSM. Right: enclosure given by the LLBs and LUBs

Fig. 3 Computational results on second instance in Example 3.14. Two different viewpoints of the enclosure
computed by Algorithm 2 with WSM

We consider two different instances of (Circles):

• Thefirst one is determined byn = 2, r = 1,m = 3 aswell asm1 = (3, 0)�,m2 = (2, 1)�
and m3 = (0, 3)�. The result of Algorithm 2 with relative tolerance ε = 0.0125 (this
is the equivalent of an absolute tolerance of ε = 0.05) and off-set factor δ = 0.95ε is
depicted in Fig. 2. One can observe that the gap in the nondominated set is realized in
the enclosure via the edge with corner at (2, 2)�. The corresponding local upper bound
is not dominated by any point in the nondominated set and therefore the method updates
the local lower bounds with the point u − δe.

• The second instance is determined by n = 3, r = 1, m = 3 as well as m1 = (1, 0, 0)�,
m2 = (0, 1, 0)� and m3 = (0, 0, 1)�. The result of Algorithm 2 with relative tolerance
ε = 0.05 (this is the equivalent of the absolute tolerance of ε = 0.1) and off-set factor
δ = 0.95ε is depicted in Fig. 3. Again, similar to the two-dimensional case, we have a
region in the image space with local upper bounds not dominated by any nondominated
point of the problem. We observe the same behavior.

All numerical computations in this paper are realized using the Python-package (cf. [41])
of the SCIP optimization suite (cf. [7]) and are carried out on a machine with Intel Core
i7-8565U processor and 32GB of RAM. In Fig. 2 (Right) and Fig. 3 the enclosure obtained
by the method is depicted. One can observe a significant increase in computational time
going from two dimensions to three. In Fig. 2 (Left) the approximation of the nondominated
set is depicted.
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4 Piecewise linear relaxations and lower bounding

Aswe have seen, usingAlgorithm 2we are able to compute an enclosure of the nondominated
set of a given (MOP). However, as all the weighted-sum problems that have to be solved
during Algorithm 2 are still MINLP problems in general, there may arise inconvenience
while tackling, e.g., larger instances (see Sect. 6). One idea to cope with this issue is to
bypass the non-linearity of the problems, e.g., trying to solve just MILP problems.

We have seen before that the idea of computing enclosures instead of a finite approxi-
mation of the nondominated set is somehow lifted from the single objective setting to the
multiobjective one. In the same spirit, we are going to use an idea coming from single objec-
tive optimization in regard to solving MINLP problems. In [13, 40, 45] several methods
for solving MINLP problems, e.g., a (MOP) with k = 1, by iteratively solving adaptively
refined convex or linear MIP relaxations of the original problem are presented. Note that
there is plenty of literature and ongoing research in the area of efficiently computing linear
or convex relaxations (or approximations) of nonlinear problems (cf., e.g., [6, 12, 13, 28,
38, 44, 53]). Although the basic idea—but not the realization—of consequently refining the
relaxations and therefore guaranteeing convergence of the sequence of optimal values of the
relaxed problems to the optimal value of the original problem is the same, the respective ter-
mination criteria of the algorithms from [45] on the one hand and [13, 40] on the other hand
differ. In the latter, both algorithms terminate if the maximal possible constraint violation of
the relaxed problem in comparison to the original problem is below an a-priori given, but
arbitrarily small error bound. Morally speaking, we say that the original MINLP problem is
solved to optimality if we computed an optimal solution of a relaxation violating the nonlinear
constraints only in an acceptable manner. The authors prove that under certain assumptions
on the chosen relaxation technique, the proposed methods terminate after a finite number of
steps.

In [45] the authors terminate their algorithm by the gap criterion which is known from
classical branch-and-boundmethods. The algorithm uses parts of the optimal solutions of the
relaxed problems to fix variable values in the original problem, e.g., one can fix all integer
variables in the MINLP problem to take the corresponding values of the relaxed solution
and obtain an NLP problem which—if it is feasible—might be easier to solve and then gives
an upper bound on the optimal value. In case of fixing the integer variables of the relaxed
solution (x̃C , x̃ I ) in the MINLP problem the resulting NLP problem has the following form

min f (x) s.t. x ∈ Sx̃I . (redMOP(x̃ I ))

Furthermore, as before, the lower bound on the optimal value is consequently improved
by refining the relaxations. In every step, the smallest available upper bound and the best
lower bound is used to sandwich the optimal value of the original MINLP problem and
terminate the algorithm if the gap between these bounds is small enough. However, it is not
obvious that the resulting NLP problems become feasible at any time during the procedure,
and therefore there is no guarantee that any upper bound is available for the gap criterion at
all. Nevertheless, in practice, it is rather unlikely to produce exclusively infeasible integer
assignments with the solution of the relaxed problems, in particular with increasing accuracy.

In this paper, we want to merge both ideas as the use of upper bounds together with the
gap criterion may cause termination even if the maximal possible constraint violation of the
relaxation is not below the tolerance and therefore accelerate the computations. In fact, we
use the scheme presented in [13] to preserve the theoretically ensured convergence of the
method, but also add the upper bounding part as well as the gap termination criterion from
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[45] to avoid unnecessary computations. Furthermore, the relaxation techniques used in [13]
are able to handle general nonlinear functions, whereas the techniques in [45] are based on
the so-called McCormick relaxations for bilinear and multilinear terms (cf. [42]) and are
therefore only able to handle general polynomial terms. For this paper, we restrict ourselves
to the explicit handling of quadratic and bilinear terms as these are the only ones appearing
in our application (see Sect. 6). However, the method presented in the remainder of this paper
is capable of handling general nonlinearities if an adequate relaxation technique is available.
We start by introducing the necessary notions.

Definition 4.1 Let (MOP) be given. Further let S̃ ⊆ R
n+m be a set and f̃ : R

n+m → R
k a

k-vector-valued function such that S ⊆ S̃ and f̃ (x) ≤ f (x) for any x ∈ S. Then we call

min f̃ (x) s.t. x ∈ S̃, (RMOPS̃)

a relaxation of (MOP). We denote the nondominated set of (RMOPS̃) by N S̃ .

Note that, if k = 1, we have that the optimal value f̃ (x̃∗) of (RMOPS̃) is a lower bound on
the optimal value f (x∗) of (MOP). For brevity we assume without loss of generality that
the objective f in (MOP) is linear. This is also motivated by our energy supply network
considered in Sect. 6 Consequently, f needs no further relaxation and for the remainder of
that paper a relaxation (RMOPS̃) is characterized by its feasible set S̃. Given two different

relaxations S̃ and Ŝ, we call the relaxation S̃ finer than Ŝ if S̃ ⊆ Ŝ. Again, if k = 1, for two
relaxations S̃ ⊆ Ŝ we have that the optimal value f (x̂∗) of the relaxation Ŝ is a lower bound
on the optimal value f (x̃∗) of the relaxation S̃. There is a plenty of possibilities to obtain
relaxations of a given (MOP). One way is to use the concept of piecewise linear under- and
overestimators (cf., e.g., [11, 13, 28]).

Definition 4.2 Let h(x1, . . . , xn) be a nonlinear real-valued function with compact domain
Dh ⊂ R

n appearing in (MOP), e.g., as a constraint function.

• We call a continuous piecewise linear function hu : Dh → R a piecewise linear under-
estimator of h if hu(x) ≤ h(x) for all x ∈ Dh .

• We call a continuous piecewise linear function ho : Dh → R a piecewise linear overes-
timator of h if h(x) ≤ ho(x) for all x ∈ Dh .

• We callRh = (hu, ho), where hu is a piecewise linear underestimator and ho a piecewise
linear overestimator of h, a piecewise linear relaxation of h.

Given a piecewise linear relaxation Rh of a term h, we obtain a relaxation in the sense
of Definition 4.1 by replacing any appearance of h by an additional variable ĥ and adding
the constraints hu(x) ≤ ĥ and ĥ ≤ ho(x). Indeed, this yields a relaxation in the sense of
Definition 4.1 by the fact that

{
(h(x), x) ∈ R

1+n | x ∈ Dh
}

⊆ { (
ĥ, x

)
∈ R

1+n | hu(x) ≤ ĥ ≤ ho(x) for all x ∈ Dh
}
.

Thus, given (MOP) with nonlinear terms hi , i ∈ I, for some finite index set I together with
piecewise linear relaxations Rhi , i ∈ I, and proceeding as above, we obtain a relaxation of
(MOP) with feasible set denoted by S̃R or simply by R, where R is the collection of all
Rhi . For the remainder of that paper we only consider relaxations coming from piecewise
linear relaxations of all appearing nonlinear terms of (MOP). One can see immediately that
given two relaxations R and R′ we have that R′ ⊆ R if and only if for any nonlinear term
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h appearing in (MOP) we have R′
h ⊆ Rh , i.e. hu(x) ≤ h′

u(x) and h′
o(x) ≤ ho(x) for

all x ∈ Dh . Consequently, by improving the piecewise linear under- and overestimators we
refine the corresponding relaxation. Accordingly with [11], wemeasure the quality of a given
piecewise linear relaxation Rh of a nonlinear term h by

• the overestimation error

ε(h,Rh)
o := max

x∈Dh
ho(x) − h(x),

• the underestimation error

ε(h,Rh)
u := max

x∈Dh
h(x) − hu(x),

• and the overall relaxation error ε
(h,Rh)
rel := max

{
ε
(h,Rh)
u , ε

(h,Rh)
o

}
.

Clearly, the relaxation error decreases while refining relaxations, i.e. for two relaxations

R′
h ⊆ Rh we have that ε

(h,R′
h)

rel ≤ ε
(h,Rh)
rel .

Naturally, we can also extend this concept to measure the quality of a relaxation R of a
given (MOP). In fact, the overestimation error of R is defined by

εRo := max

{
ε

(
hi ,Rhi

)
o | hi appears in (MOP) and Rhi ∈ R for i ∈ I

}
.

Similar for the underestimation error. The overall relaxation error is then given by εRrel :=
max{εRo , εRu }. Similar as before, if R′ ⊆ R for two relaxations R and R′ we have that

εR
′

rel ≤ εRrel .

Let us now briefly introduce the relaxation technique of interest for that paper, namely the
so-called McCormick piecewise linear relaxations (cf. [42]).

Remark 4.3 As already mentioned, we put the focus in this paper on the ingredients neces-
sary for our application. As there appear only bilinear and quadratic constraints, we restrict
ourselves to the description of exactly this case. However, by decomposing general polyno-
mials into bilinear and quadratic terms one can apply the method from this work to general
polynomially constrained problems. For example, the polynomial x3y can be decomposed
into

x1 = x2,

x2 = xy,

x3 = x1x2,

where xi , i = 1, 2, 3, are additional variables.

We start with the bilinear case, i.e. h(x, y) = xy, with compact domain

Dh =
{
(x, y) ∈ R

2 | x� ≤ x ≤ xu, y� ≤ y ≤ yu
}

.

TheMcCormick piecewise linear relaxation depends on a so-called partition (or triangulation)
of the domain Dh . For our purpose it is enough to consider simple partitions of the intervals
[x�, xu] and [y�, yu] in r equidistant intervals. Consequently, we obtain gridpoints xi =
x� + i(yu − x�)/r and yi = y� + i(yu − y�)/r for i ∈ {0, . . . , r} with corresponding
intervals [xi−1, xi ] and [yi−1, yi ] for i ∈ [r ].
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Fig. 4 McCormick relaxations of the bilinear term xy using one partition per variable (green) and two partitions
per variable (red). (Color figure online)

For any i, j ∈ [r ] and any (x, y) ∈ [xi−1, xi ] × [y j−1, y j ] the linear underestimator

function on Di j
h := [xi−1, xi ] × [y j−1, y j ] is given by

hi ju (x, y) := max
{
xi−1y + y j−1x − xi−1y j−1, xi y + y j x − xi y j

}
,

and the linear overestimator is given by

hi jo (x, y) := min
{
xi−1y + y j x − xi−1y j , xi y + y j−1x − xi y j−1

}
.

The piecewise linear under- and overestimator functions hu and ho are then given by con-
catenation as shown in Fig. 4.

Note that hu and ho are continuous piecewise linear functions and hu(x, y) ≤ h(x, y) ≤
ho(x, y) for all (x, y) ∈ Dh , i.e. hu is a piecewise linear underestimator and ho is a piecewise
linear overestimator of h in the sense of Definition 4.2. We denote the piecewise linear
relaxation based on r equidistant partitions for each variable byRr

xy . The resulting relaxation
error is given by

ε
(h,Rr

h)
rel =

(
xu − x�

) (
yu − y�

)

4r2
.

Although the quadratic case is just a special case of the bilinear case we give the explicit
formulation. Therefore, let h(x) = x2 with Dh = {x ∈ R | x� ≤ x ≤ xu}. We consider
again the partition in r equidistant intervals, i.e. Di

h = [xi−1, xi ] for i ∈ [r ]. For any i ∈ [r ]
and any x ∈ Di

h the linear underestimator is given by

hiu(x) := max
{
2xi−1x − x2i−1, 2xi x − x2i

}
,

and linear overestimator is given by

hio(x) := (xi−1 + xi ) x − xi−1xi .
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The resulting relaxation error corresponding to r equidistant partitions is

ε
(h,Rr

h)
rel =

(
xu − x�

)2
4r2

.

Clearly, for the McCormick piecewise linear relaxations we have that ε
(h,Rr

h)

rel → 0 for
r → ∞, i.e. using the McCormick piecewise linear relaxation technique, for any ε > 0 we

find r ∈ N such that ε
(h,Rr

h)

rel < ε.

Remark 4.4 In [45] the authors provide an adaptive partitioning scheme, i.e. there is no
requirement for equidistant intervals. New breakpoints are added in parts of the variable
domains close to the value of the previous solution in order to refine the relaxation. The
idea is to only partition on regions of the variable domain that appear to influence optimality
the most. In contrast, using uniformly distributed break points, one runs the risk of refining
in uninteresting regions of the variable domain and therefore unnecessarily blowing up the
problem. The scheme presented in [45] could also be incorporated2 into the methods of the
present paper. But for simplicity of presentation and since the equidistant procedure works
very well for our application, we restrict ourselves to the equidistant partitioning scheme
presented in this paper.

After we have introduced the relaxations of interest for the present paper, we now relate
relaxations (RMOPS̃) and lower bounds of the nondominated set N of (MOP). For the ease
of notation,we subsequently assume that for a given relaxation S̃wehave that f (S̃) ⊆ int(B).
We obtain the following lemma.

Lemma 4.5 Let f (x̃) ∈ N S̃ for some x̃ ∈ S̃ and some relaxation S̃ of (MOP). Then f (x̃) is
nondominated by N , i.e. f (x̃) ∈ int(B)\( f (S) + int(Rk+)).

Proof Assume for a contradiction that there is some ȳ ∈ S such that f (ȳ) dominates f (x̃).
This contradicts ȳ ∈ S ⊆ S̃ together with the nondominance of f (x̃) w.r.t. (RMOPS̃). ��

The above lemma tells us that any stable set Ñ consisting of nondominated points of
possibly different relaxations of a given (MOP) is nondominated w.r.t. N . Therefore, by
employing Lemma 3.5, we obtain a lower bound set L(Ñ ) of the nondominated set N . If
we have furthermore any potentially nondominated—and therefore particularly stable—set
N ⊆ f (S) available, we obtain an enclosure E(L(Ñ ),U (N )) of the nondominated set in the
sense of Definition 3.1 again by Lemma 3.5. That is the core idea of the method presented
in the next section.

We finalize this section with some aspects concerning the sets N and Ñ . We want to make
use of the idea from [45], where the optimal value is sandwiched between lower bounds
coming from relaxed problems and upper bounds coming from solutions of the reduced
problems. In the multiobjective setting, the lower bound is not a single value anymore, but a
stable set consisting of optimal solutions of possibly different relaxations, namely Ñ . In the
same spirit, also the upper bound is not a single value but a stable set consisting of potentially
nondominated points, namely N . As we want to somehow decrease this set N towardsN , it
is updated w.r.t. nondominance, i.e. if we compute a new potentially nondominated point y,
we add it to N if y is nondominated w.r.t. N . Furthermore, we discard any points in N which
are dominated by y. This is written in Algorithm 3.

2 Note that the argument showing that the refinement technique presented in this paper satisfiesAssumption 5.1
heavily relies on the equidistant partitioning scheme.
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Algorithm 3 Updating the set N w.r.t. a point y ∈ f (S)

Require: Stable set N and update point y ∈ f (S)

1: Set N = N \ {
y′ ∈ N | y ≤ y′}

2: if y is nondominated w.r.t. N then
3: Set N = N ∪ {y}
4: end if

return Updated set N

By doing so, we ensure that N stays stable and consequently improves towards N as
shown in the next lemma. Note that since N ⊆ f (S) we have that N is nondominated w.r.t.
N , i.e. N actually approximates N from above.

Lemma 4.6 Let N1 be a stable input set and let y ∈ f (S). Then Algorithm 3 returns a stable
set N2. Furthermore, either N1 ⊆ N2 or there exists y′ ∈ N1 such that y dominates y′.

Proof We have to distinguish two base cases. Firstly, assume there exists no y′ ∈ N1 with
y ≤ y′. Then either y is not nondominated w.r.t. N1 and we have that N1 = N2, or y is
nondominated w.r.t. N1 and we have that N1 ⊂ N2 = N1 ∪ {y}. In both cases, we have that
N2 is stable.

Secondly, assume that there exist yi ∈ N1 with y ≤ yi , i ∈ [s] for some s ∈ N. Due
to the stability of N1 we have that y is nondominated w.r.t. N1\{yi | i ∈ [s]}. Hence,
N2 = (N1\{yi | i ∈ [s]}) ∪ {y} and N2 is stable. Further, if y = y1 we have that N1 = N2.
If otherwise, we have that y dominates y1. ��
Let us now turn to the set Ñ which is meant to approachN from below, i.e. we only want to
use the best relaxed solutions available. In that setting, we call a nondominated point ỹ of a
relaxation S̃ better than a nondominated point ŷ of a relaxation Ŝ, if ŷ dominates ỹ. Note that
if y′ dominates ỹ we know that S̃ � S′ holds for the corresponding relaxations. In a similar
but reversed way as for N , we update the set Ñ as written in Algorithm 4.

Algorithm 4 Updating the set Ñ w.r.t. a point y ∈ int(B) \ (
f (S) + int

(
R
k+
))

Require: Stable set Ñ and update point y ∈ int(B) \
(
f (S) + int

(
R
k+

))

1: Set Ñ = Ñ \
{
ỹ ∈ Ñ | ỹ ≤ y

}

2: if Ñ is nondominated w.r.t. y then
3: Set Ñ = Ñ ∪ {y}
4: end if

return Updated set Ñ

We obtain the analogue to Lemma 4.6. Note that by Lemma 4.5 we know that Ñ is
nondominated w.r.t. N , i.e. Ñ actually approximates N from below.

Lemma 4.7 Let Ñ1 be a stable input set and let y ∈ int(B)\( f (S) + int(Rk+)). Then Algo-
rithm 4 returns a stable set Ñ2. Furthermore, either Ñ1 ⊆ Ñ2 or there exists ỹ ∈ Ñ1 such
that ỹ dominates y.

Proof We have to distinguish two base cases. Firstly, assume there exists no ỹ ∈ Ñ1 with
ỹ ≤ y. Then either Ñ1 is not nondominated w.r.t. y and we have that Ñ1 = Ñ2, or Ñ1 is
nondominated w.r.t. y and we have that Ñ1 ⊂ Ñ2 = Ñ1 ∪ {y}. In both cases, we have that
Ñ2 is stable.
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Secondly, assume that there exist ỹi ∈ Ñ1 with ỹi ≤ y, i ∈ [s] for some s ∈ N. Due
to the stability of Ñ1 we have that Ñ1\{ỹi | i ∈ [s]} is nondominated w.r.t. y. Hence,
Ñ2 = (Ñ1\{ỹi | i ∈ [s]}) ∪ {y} and Ñ2 is stable. Further, if y = ỹ1 we have that Ñ1 = Ñ2.
If otherwise, we have that ỹ1 dominates y. ��

5 General scheme

We have seen at the end of Sect. 3 that Algorithm 2 is able to compute an enclosure as
well as an approximation of the nondominated set of a given (MOP). However, if nonlinear
constraint functions are present in (MOP), the scalarized problems arising duringAlgorithm2
are MINLP problems. At the end of Sect. 3 we have also seen that if the used solver, like,
e.g., SCIP, is capable of handling the occurring nonlinear constraints one could solve the
scalarized single objective problems directly. Nevertheless, if the complexity of (MOP) and
therefore the one of the resulting MINLP problems increases, the run time of solvers like
SCIP for computing a solution to such an MINLP problem may increase, too. Note that for
any computed nondominated point in our approximation, we have to solve at least one such
MINLP problem, so even a small increase of computational time per problem may cause a
tremendous upturn of run time of the whole procedure.

In Sect. 4 we have presented ideas and concepts from single objective optimization of
MINLP problems which are meant to reduce complexity and therefore facilitate the compu-
tations while solving a scalar MINLP problem. Now one could think of choosing a specific
relaxationR and then using one of the present algorithms for computing a representation (or
enclosure) of the nondominated set of the relaxed mixed-integer linear (or convex) problem,
see, e.g., [47, 51] for the biobjective linear case and [24] for the multiobjective convex case,
or even Algorithm 2 or [23]. One could argue that if the relaxation R satisfies some quality
criterion, e.g., a small enough estimation error εRrel , the approximation (or enclosure) ofNR
can be considered to be an approximation (or enclosure) of N , similar as proposed in [13]
for the single objective case. Note that convergence then only relies on the theory of the used
multiobjective method.

However, computing such a relaxation and solving the arising problem using an available
solutionmethodmaybevery time-consuming as the complexity, evenof the relaxedproblems,
may increase with ongoing refinement—in particular, as the number of integer variables
increases while tightening the relaxations. One strategy for avoiding this is trying to use
cheap relaxations whenever possible and refining them only when necessary, e.g., only in
specific parts of the image space. This idea of adaptively refining the relaxations while
computing an enclosure of the nondominated set of (MOP) is the core of this work. Note
that one could additionally incorporate adaptivity in the variable domains into the refinement
procedure (see Remark 4.4).

In the following, we present an algorithm similar to Algorithm 2 which makes use of these
ideas in order to compute an enclosure of the nondominated set without solving scalarized
MINLP problems, but only MILP and NLP problems (see Algorithm 5).
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Algorithm 5 General scheme for computing an enclosure of the nondominated set relying
on relaxation and scalarization techniques.

Require: box B =
[
z�, zu

]
with f (S) ⊆ int(B), termination tolerance εencl > 0, off-set factor εencl > δ > 0,

initial relaxation RI , estimation error tolerance εrel > 0
1: Initialize potentially nondominated set N = ∅ and set of local upper bounds U = {zu}
2: Initialize set of best relaxed solutions Ñ = ∅ and set of local lower bounds L = {z�}
3: Initialize the sets E = E(L,U ), D (U ) =

{(
zu ,RI

)}
and D(Ñ ) = ∅

4: while w(E) ≥ εencl do
5: Uloop = U
6: for u ∈ Uloop do
7: if there exists � ∈ L with � ≤ u and s(�, u) ≥ εencl then
8: done = false
9: while done = false do
10: Set Rcurrent = min

{Ru ,R′}, where
(
u,Ru) ∈ D(U ) and R′

�

min
{
Rỹ |

(
ỹ,Rỹ

)
∈ D

(
Ñ

)
and ỹ < u − εencle

}

11: Set relaxation S̃ = SRcurrent

12: if there exists ỹ = f (x̃) ∈ N S̃ with ỹ < u − δe then
13: if Ñ is nondominated w.r.t. ỹ then
14: Update Ñ and L w.r.t. ỹ usingAlg. 4 and 1 for local lower bounds and setRỹ = Rcurrent

15: if ε
Rcurrent
rel < εrel then

16: Update N andU w.r.t. ỹ using Alg. 3 and 1 and setRu = Rcurrent for any new local
upper bound u

17: done = true
18: else
19: if there exists solution y to (redMOP(x̃ I )) with y < u − δe then
20: Update N and U w.r.t. y using Alg. 3 and 1 and set Ru = Rcurrent for any new

local upper bound u
21: done = true
22: else
23: ChooseR with Rcurrent � R and set Ru = R
24: end if
25: end if
26: else
27: ChooseR with Rcurrent � R and set Ru = R
28: end if
29: else
30: Update L w.r.t. u − δe using Algorithm ??
31: done = true
32: end if
33: end while
34: end if
35: end for
36: end while

return Enclosure E(L,U ) satisfying w(E) < εencl and approximation N ofNεencl

Before starting the procedurewe fix a relaxation technique guaranteeing that the relaxation
error quality criterion, namely εRrel < εrel , is satisfied after a finite number of refinement steps.
We introduce the set consisting of all such relaxations

	 := {R | εRrel < εrel
}
,

and assume the following for the remainder of the paper.
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Assumption 5.1 For any relaxation technique and any initial relaxationRI . LetRI
� R1

�

R2
� . . . be a chain of strictly decreasing relaxations. Then for any εrel > 0 there exists an

s ∈ N with εR
s

rel < εrel , i.e. Rl ∈ 	 for all l ≥ s.

Remark 5.2 We should mention that there is a wide range of alternative relaxation techniques
in the literature, including the use of convex underestimators (cf. [2, 3, 37, 50]) instead of
piecewise linear ones. One could then either solve the resulting convex MINLP problems
or combine them with outer approximation techniques (cf. [18, 27, 35, 39, 54]). However,
here we restrict ourselves to the case of piecewise linear relaxations since the relaxation error
computation and especially convergence in the sense of Assumption 5.1 is straightforward.
For the above-mentioned approaches, one has to ensure that both of these requirements are
fulfilled.

Furthermore, if R ∈ 	 we consider any feasible point x̃ ∈ S̃ of the corresponding relaxed
problem (RMOPS̃) based on the feasible set S̃ = SR as a feasible point of (MOP), i.e.
x̃ ∈ S. Consequently, by Lemma 4.5 for any efficient point x̃ ∈ S̃ of (RMOPS̃) we have that
f (x̃) ∈ N . This means, that for a relaxation R ∈ 	 we consider any nondominated point
of (RMOPS̃) as a nondominated point of (MOP). For ease of notation, we write x̃ ∈ S if
x̃ ∈ SR for someR ∈ 	 for the remainder of that paper. Note that Assumption 5.1 holds for
the McCormick piecewise linear relaxations introduced in Sect. 4.

In Step 3, we initialize the set

D(U ) := {(u,R) | u ∈ U , R caused the computation of u} ,

consisting of any present local upper bound together with the relaxationRwhich was needed
to obtain this specific local upper bound.We say that the relaxationR caused the computation
of a local upper bound u if u entered the set of local upper bounds after it was updated w.r.t.
a point y whose computation relied on R. This could be either the case if y is the solution
of the relaxed problem corresponding to R and R ∈ 	 or if y is a nondominated point of
(redMOP(x̃ I )), where x̃ I was computed using the relaxation R. Furthermore, we initialize
the set

D
(
Ñ

)
:=

{
(ỹ,R) | ỹ ∈ Ñ , R caused the computation of ỹ

}
,

consisting of solutions of relaxed problems together with their corresponding relaxation R.
Suppose now we are at the beginning of the l-th call of the outer while-loop in Step 4

and we have that w(E) ≥ εencl. We fix the set Uloop to be the current assignment of the set
of local lower bounds U and start the for-loop in Step 6. In that for-loop, let û ∈ Uloop

such that there exists � ∈ L with � ≤ û and s(�, û) ≥ εencl, i.e. the search zone determined
by � and û is not yet well enough explored and we set done = false. We use the indicator
done to determine whether we achieved an improvement w.r.t. û, i.e. the inner while-loop
ensures that we concentrate on û until wemade some improvement.We say that we improved
û if we entered one of the if-statements in the Steps 15 and 19 or the else-statement in
Step 29 as in these steps either a potentially nondominated point y with y < û − δe is found
or the search region c(û) is declared to be well enough explored.

However, given the current local upper bound û we have to choose an appropriate relax-
ation Rcurrent for executing our computations. This is realized in Step 10. We choose a
relaxation at least as fine as the relaxation which led to û, i.e.Rû ⊇ Rcurrent. Furthermore, if
there exists some relaxed solution ỹ ∈ Ñ with ỹ < û−εencle we choose a strictly finer relax-
ation thanRỹ , i.e. we ensure thatRỹ

� Rcurrent. Note that the strictness of the inclusion is not
necessary for the convergence of Algorithm 5 since the method also refines the relaxations if
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Fig. 5 A strict refinement of the relaxation is needed in order to obtain solutions closer to the desired area as
it is dominated by ỹ

the incumbent relaxed solution did not lead to an improvement of the lower bound set. How-
ever, for some problems, it may be of advantage to refine the relaxations more aggressively
instead of solving cheaper problems that do not have a high chance of leading to a significant
improvement of the lower bound set. In fact, not forcing the inclusion Rcurrent ⊆ Rỹ to be
strict makes it impossible to find a relaxed solution y′ dominating ỹ, and therefore satisfying
û− εencle ≤ y′, as can be seen in Fig. 5. The possible negative effect of not forcing strictness
can be seen in the comparison of Figs. 7 and8, where we can observe an increase in runtime
as well as in the number of problems to be solved. However, refining too aggressively may
also be a problem as it may result in solving harder problems than necessary. From our first
observations, it is a good strategy to take the coarsest possible relaxation without losing the
strictness of the inclusion—at least with using our basic refinement strategy.

After that we initialize the relaxation S̃ = SRcurrent , solve (WSP (α; u)) with u = û for
some α ∈ int(Rk+) and feasible set S̃ and then decide whether we are able to enter the if-
statement in Step 12. If (WSP (α; u)) is infeasible, we declare the current search region c(û)

as well enough explored by the same arguments as in Algorithm 2, and set done = true. If,
otherwise, there exists a solution ỹ to (WSP (α; u)) we check if Ñ is nondominated w.r.t. ỹ,
i.e. if ỹ improves the set Ñ . If that is not the case, i.e. if there exists y′ ∈ Ñ with ỹ ≤ y′, we
have to restart the inner while-loop with a finer relaxation as the current one did not lead
to any improvement. If otherwise, Ñ is nondominated w.r.t. ỹ, it is reasonable to move on
as ỹ suggests an improvement of û. Consequently, we update the sets Ñ and L w.r.t. ỹ and
save the corresponding relaxation. If now the relaxation is fine enough in the sense of [13],
i.e. Rcurrent ∈ 	, we consider ỹ as a nondominated point of (MOP), update the sets N and
U w.r.t. ỹ and set done = true. If otherwise, the relaxation is not yet fine enough we try to
make use of the idea from [45], i.e. using parts of the relaxed solution to set up the reduced
problem (redMOP(x̃ I )). We solve the corresponding (WSP (α; u)) and if it has a solution we
obtain a potentially nondominated point, i.e. update the sets N and U and set done = true.
If it is infeasible, we have to restart with a finer relaxation, sinceRcurrent suggested wrongly
that we would find a potentially nondominated point.
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Remark 5.3 Note that it is not necessary to solve the (WSP (α; u)) corresponding to
(redMOP(x̃ I )) to global optimality. Since we aim to find a feasible point x ∈ S satisfy-
ing f (x) < û − δe—and this is already incorporated in the constraints—it suffices to find
a feasible point for (WSP (α; u)). Furthermore, even solving to global optimality would
not guarantee finding an efficient solution f (x) ∈ N for (MOP) since we are restricted to
a specific integer assignment. However, it may speed up the algorithm investing the time
in computing global solutions of the possibly nonconvex (WSP (α; u)) depending on the
structure and complexity of (MOP).

We turn now to proving correctness and finiteness of Algorithm 5.

Lemma 5.4 Let Ñ be the set of best relaxed solutions at some arbitrary point in Algorithm 5.
Then Ñ ⊆ int(B)\( f (S) + int(Rk+)) and Ñ is stable.

Proof We initialize the set Ñ = ∅. During Algorithm 5 the set Ñ is updated only in Step 14.
The update takes place w.r.t. a point ỹ ∈ int(B)\( f (S) + int(Rk+)) by Lemma 4.5. Thus, by
correctness of Algorithm 4 we obtain that Ñ ⊆ int(B)\( f (S) + int(Rk+)) and Ñ is stable. ��
Lemma 5.5 Let N be the set of potentially nondominated points at some arbitrary point in
Algorithm 5. Then N ⊆ f (S) and N is stable.

Proof We initialize the set N = ∅. During Algorithm 5 the set N is updated only in Steps 16
and 20. In both cases the update takes place w.r.t. a point y ∈ f (S)—note that in Step 16 we
have Rcurrent ∈ 	 and therefore ỹ ∈ f (S). Thus, by correctness of Algorithm 3 we obtain
that N ⊆ f (S) and N is stable. ��
Similar to Sect. 3 we prove correctness of the sets U and L .

Lemma 5.6 Let U be the local upper bound set at some arbitrary point in Algorithm 5. Then
U is an upper bound set in the sense of Definition 3.1.

Proof We initialize the set U = {zu}. During Algorithm 5 the set U is updated only in
Steps 16 and 20. In both casesU is updated w.r.t. a point y ∈ f (S)—note that in Step 16 we
have Rcurrent ∈ 	 and therefore ỹ ∈ f (S). Thus, by correctness of Algorithm 1 we obtain
that U is a local upper bound set w.r.t. the set N ⊆ f (S). The claim follows by Lemma 3.5.

��
Lemma 5.7 Let L be the local lower bound set at some arbitrary point in Algorithm 5. Then
L is a lower bound set in the sense of Definition 3.1.

Proof We initialize the set L = {z�}. DuringAlgorithm 5 the set L is updated only in Steps 16
and 20. If updated in Step 16, L is updated w.r.t. a point ỹ ∈ int(B)\( f (S) + int(Rk+)). If
otherwise updated in Step 20, it is updated w.r.t. y = û − δe for some local upper bound
û ∈ U . Since we only enter Step 20, if there exists no ȳ ∈ N S̃ satisfying ȳ ≤ û − δe we
particularly know that y = û − δe /∈ f (S) + int(Rk+). Hence, by correctness of Algorithm 1
adapted to local lower bounds we obtain that L is a local lower bound set w.r.t. some set
N ′ ⊆ int(B)\( f (S) + int(Rk+)). Note that Ñ ⊆ N ′. The claim follows by Lemma 3.5. ��
After proving that at any point inAlgorithm 5 the sets N , Ñ , L andU satisfy the requirements,
we proceed by showing termination of Algorithm 5 after finitely many iterations of the outer
while-loop. For that purpose, we first prove that the inner while-loop is terminated after
a finite number of iterations.
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Lemma 5.8 Let εencl > δ > 0, εrel > 0, RI and z�, zu ∈ R
k be the input parameters

of Algorithm 5. Moreover, let û ∈ Uloop be the local upper bound chosen in the for-loop
at some arbitrary point of Algorithm 5. Assume that there exists � ∈ L with � ≤ û and
s
(
�, û

) ≥ εencl. Then after finitely many iterations of the inner while-loop we have that
done = true.

Proof We have to show that after finitely many iterations we either enter one of the if-
statements in Steps 15 or 19 or we enter the else-statement in Step 29. For a contradiction,
we assume that none of them is entered after finitelymany iterations of the innerwhile-loop.
Then, every iteration is executedwith a relaxation strictly finer than the one before. This is due
to the fact that any already executed iteration of the inner while-loop terminated either with
Step 23or Step 27. Thus,wehave an infinite chain of relaxationsR1

� R2
� . . . � Rl

� . . .,
whereRl denotes the relaxation corresponding to the l-th iteration of the inner while–loop.
Now, by Assumption 5.1 there exists s ∈ N such that Rs ∈ 	 and therefore εR

s

rel < εrel .
Hence, in the sth iteration of the inner while-loop we either enter the if-statement in
Step 12 or the else-statement in Step 29. By our assumption, we do not enter the else-
statement. By Lemma 4.5 we have that Ñ ⊆ int(B)\( f (S) + int(Rk+)) and therefore Ñ is
nondominated w.r.t. N . By the fact that Rs ∈ 	 we have that ỹ ∈ N and therefore we enter
the if-statement in Step 13 and subsequently the one in Step 15, a contradiction. ��
Similar to Algorithm 2 we can prove some decrease in some edge lengths after any iteration
of the outer while-loop.

Theorem 5.9 Let εencl > δ > 0, εrel > 0, RI and z�, zu ∈ R
k be the input parameters of

Algorithm 5. Moreover, let Lstart and Ustart be the local lower and upper bound sets at the
beginning of some iteration in Algorithm 5, i.e. at the begin of the outer while-loop of some
iteration. Accordingly denote by Lend,Uend the sets at the end of this iteration. Then for any
�e ∈ Lend and any ue ∈ Uend with �e ≤ ue there exist �s ∈ Lstart and us ∈ Ustart such that
the following hold:

(1) �s ≤ �e ≤ ue ≤ �s , i.e. the width does not increase during one iteration.
(2) There exists an index j ∈ [k] such that

(
ue − �e

)
j < max

{(
us − �s

)
j − δ, εencl

}
.

Proof The proof of part (1) works exactly the same as in the proof of Theorem 3.11. We
therefore directly show part (2). Assume for a contradiction that there exist �e ∈ Lend and
ue ∈ U end such that for any � ∈ Lstart and u ∈ U start with � ≤ �e ≤ ue ≤ u and any index
i ∈ [k] we have that

(
ue − �e

)
i ≥ max

{
(u − �)i − δ, εencl

}
. (10)

In particular, (10) holds for the ancestors of �e and ue in Lstart and U start, namely �s and us .
We consider now the point in Algorithm 5, where us is chosen in the for-loop in Step 6.
Recall that we have introduced the sets P(�e) and P(ue) in the proof of Theorem 3.11. Note
that us might not be the first local upper bound from Uloop considered in the for-loop and
therefore it might be the case that us /∈ Ucurrent, where Ucurrent is the current assignment
of U . However, since for any i ∈ [k] we have that (ue − �e)i ≥ εencl we know that for
�′ ∈ P(�e) ∩ Lcurrent we have that (us − �′)i ≥ εencl for any i ∈ [k], where Lcurrent denotes
the current assignment of L . Hence, we have that

s
(
�′, us

) ≥ εencl (11)

123



Journal of Global Optimization (2023) 87:97–132 123

and we therefore enter the if-statement in Step 7. Similarly, we fix u′ ∈ P(ue) ∩ Ucurrent.
Note that

�s ≤ � ≤ �e and ue ≤ u ≤ us (12)

for any � ∈ P(�e) ∩ L and u ∈ P(ue) ∩ U and for any L and U . We denote by Lupdated

and Uupdated the assignments of L and U at the end of that iteration of the for-loop. As the
exit from the inner while-loop can happen in three different ways, we have to distinguish
three main cases, namely, if we set done = true in Step 17 (case A), if we set done = true
in Step 21 (case B) or if we set done = true in Step 31 (case C). Note that Lemma 5.8
guarantees that after finitely many iterations of the inner while-loop one of the three above
options is actually chosen.

(A) In that case we entered the if-statement in Step 15, i.e. there exists ỹ ∈ f (S) with
ỹ < us − δe. We have to distinguish two cases.
Case A.1 ỹ < u′. Then u′ would be removed during the update of Ucurrent using Algo-
rithm 1, i.e. u′ /∈ Uupdated. We have the candidates

ui = (
ỹi , u

′−i

)
, for i ∈ [k],

from which at least one belongs to Uupdated by (5). Say u j ∈ Uupdated. Using (12), we
compute

(
ue − �e

)
j ≤

(
u j − �e

)
j
≤ ỹ j − �sj <

(
us − �s

)
j − δ,

a contradiction to (10).
Case A.2 ỹ ≮ u′. Then there exists j ∈ [k]with u′

j ≤ ỹ j . Again, using (12), we compute
(
ue − �e

)
j ≤ (

u′ − �e
)
j ≤ ỹ j − �sj <

(
us − �s

)
j − δ,

a contradiction to (10).
(B) In that case we entered the if-statement in Step 19, i.e. there exists y ∈ f (S) with

y < us − δe. Again, we have to distinguish two cases, which both work exactly the same
as the ones from (A).

(C) In that case we entered the else-statement in Step 29, i.e. there exists no ỹ ∈ N S̃ with
ỹ < us − δe =: y. Therefore, the set L is updated w.r.t. y. We have to distinguish two
cases.
Case C.1 �′ < y. Then �′ would be removed during the update of Lcurrent using Algo-
rithm 1 adapted to local lower bounds, i.e. �′ /∈ Lupdated. We have the candidates

�i = (
yi , �

′−i

)
, for i ∈ [k],

from which at least one belongs to Lupdated by (5). Say � j ∈ Lupdated. Using (12), we
compute

(
ue − �e

)
j ≤

(
ue − � j

)
j
≤ usj − y j = δ < εencl,

a contradiction to (10).
Case C.2 �′

≮ y. Then there exists j ∈ [k] with �′ ≥ y j = usj − δ, i.e. particularly
s(�′, us) ≤ δ < εencl, a contradiction to (11).

Obtaining a contradiction in all possible cases shows that our assumption (10) cannot be true
and therefore statement (2) is true, which completes the proof. ��
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Similar as in the case of Algorithm 2, Theorem 5.9 enables us to prove finiteness of Algo-
rithm 5.

Theorem 5.10 Let εencl > δ > 0, εrel > 0, RI and z�, zu ∈ R
k be the input parameters of

Algorithm 5. We define

� := ∥∥zu − z�
∥∥∞ and κ := k

⌈
� − εencl

δ

⌉
+ 1.

Then the number of iterations of Algorithm 5, i.e. the number of iterations of the outer
while-loop, is bounded by max {1, κ}. Furthermore, Algorithm 5 terminates after finitely
many steps.

Proof The proof for bounding the number of calls of the outer while-loop works exactly
the same as the one of Theorem 3.12. Termination after finitely many steps follows by the
fact that in every iteration of the outer while-loop, the inner while-loop is only called
finitely many times as shown in Lemma 5.8. ��
Corollary 5.11 Let εencl > δ > 0, εrel > 0, RI and z�, zu ∈ R

k be the input parameters of
Algorithm 5. Then after finitely many iterations of the outer while-loop an enclosure E of
the nondominated set N satisfying w(E) < εencl is returned.

Proof Theorem 5.10 tells us that Algorithm 5 terminates after at most κ iterations of the outer
while-loop, i.e. the output set Eκ satisfies w(Eκ ) < εencl. By Lemma 5.6 and Lemma 5.7
we know that the set L , resp.U , is a lower, resp. upper, bound set in the sense of Definition 3.1
at any point of Algorithm 5. In particular, this holds for Lκ andUκ . Thus, Eκ is an enclosure
of the nondominated set N satisfying w(Eκ ) < εencl. ��
Remark 5.12 Note that one could also use two different off-set factors such that 0 < δ <

δ̃ < εencl. The idea is that for a relaxed solution ỹ we expect the eligible solutions y of
(redMOP(x̃ I )) to satisfy ỹ + ρe < y for some sufficiently small ρ > 0. If now ỹ satisfies
ỹ < u − δe too tightly, e.g., if ỹ + ρe ≮ u − δe, we do not find any point y with the
desired property in Step 19 and therefore would refine the relaxation. This is not a problem in
general, as we expect ρ → 0 for finer relaxations, i.e. at some point we either do not find any
admissible points ỹ anymore and therefore declare the search region c(u) for well enough
explored, or we find admissible points y. However, this may be very time-consuming as we
might have to refine the relaxations and repeat the computations a few times. Thus, using
two different off-set factors δ and δ̃ may help in terms of run time by being more restrictive
for ỹ by requiring ỹ < u − δ̃e in Step 12 in comparison to y where we require y < u − δe
in Step 19, where 0 < δ < δ̃.

We conclude this section with the performance of the described method on the problem
of Example 3.14. Again, as for Algorithm 2, we did not exactly implement the procedure
given in Algorithm 5 but a slight modification. In fact, we do not iterate through all local
upper bounds in every iteration of the outer while-loop, but choose only one local upper
bound û where the current width is attained, i.e. û ∈ {u ∈ U | ∃� ∈ L : s(�, u) = w(E)}.
Again, finiteness of that implementation is not anymore guaranteed by Theorem 5.10. But
if it terminates after finitely many steps, we still have that w(E) < εencl. Again we use
a relative shortest edge calculation as described in Sect. 3. Furthermore, we use a relative
relaxation error calculation. For example, given a quadratic term h(x) = x2 on the interval
x� ≤ x ≤ xu we compute the relative relaxation error via

ε
(h,Rr

h)
rel =

(
xu − x�

)2
4r2

1

max{x2 | x� ≤ x ≤ xu} ,
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where r ∈ N is the number of considered equidistant partitions. Note that ε
(h,Rr

h)

rel → 0 for
r → ∞, i.e. refining relaxations by increasing the number of equidistant partitions satisfies
Assumption 5.1. Furthermore, note that the relaxation R only depends on the number of
equidistant partitions, i.e. we identify R by r in the following.

We consider the same instances of Example 3.14 as in Sect. 3. In the Figs. 6, 7 and 8,
the respective enclosure computed by Algorithm 5 is depicted on the left together with the
computational time and number of WSM problems solved, where we count the solution of
(RMOPS̃) and the corresponding (redMOP(x̃ I )) as one. On the respective right-hand side, for
each of these solved relaxed problems, we count the corresponding degree of relaxation—in
our case the number of equidistant partitions.

• Thefirst one is determined byn = 2, r = 1,m = 3 aswell asm1 = (3, 0)�,m2 = (2, 1)�
and m3 = (0, 3)�. The enclosure computed by Algorithm 5 with relative tolerance
εencl = 0.0125 (this is the equivalent of a standard tolerance of εencl = 0.05) and unique
off–set factor δ = 0.95εencl is depicted in Fig. 6 (Left). In Fig. 6 (Right) the usage counter
of each degree of relaxation is depicted. The relaxation degree equal to 1 corresponds
to the McCormick relaxation with no extra partition of the intervals, i.e. the intervals
are not partitioned at all. The relaxation degree equal to 2 corresponds to one additional
breaking point per considered interval, i.e. the original intervals are partitioned into two

Fig. 6 Computational results on first instance in Example 3.14. Left: enclosure given by LLBs and LUBs of
(Circles) obtained by Algorithm 5 with WSM. Right: counter of used degrees of relaxations

Fig. 7 Computational results on second instance in Example 3.14. Left: enclosure given by LLBs and LUBs
of (Circles) obtained by Algorithm 5 with WSM. Right: counter of used degrees of relaxations
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Fig. 8 Computational results on second instance in Example 3.14 with no strict inclusion in Step 10 of
Algorithm 5. Left: enclosure given by LLBs and LUBs of (Circles) obtained by Algorithm 5 with WSM.
Right: counter of used degrees of relaxations

intervals. One can see that the method uses maximally four partitions per interval, but
mostly one or two. We used a tolerance for the relative relaxation error of εrel = 0.01.
This yields the necessity of at least five partitions per variable, i.e. a degree of relaxation
equal to five, to satisfy the relaxation error criterion. We can see that the method does
not need to go all the way it is allowed to since four partitions seem to be enough. Of
course, if we increase the tolerance of the relative relaxation error, the number of needed
partitions decreases.

• The second one is determined by n = 3, r = 1, m = 3 as well as m1 = (1, 0, 0)�,
m2 = (0, 1, 0)� and m3 = (0, 0, 1)�. The enclosure computed by Algorithm 5 with
relative tolerance εencl = 0.05 (this is equivalent to an absolute tolerance of εencl = 0.1)
and unique off–set factor δ = 0.95εencl is depicted in Fig. 7 (Left). In Fig. 7 (Right) the
use counters of each relaxation are depicted. Again we used a relative relaxation error
tolerance of εrel = 0.01, which yields a minimum of five partitions per variable to obtain
an error smaller than the tolerance. In particular, that means that if the current number
of partitions is greater than five, we do not need to refine anymore. We can see that the
method makes extensive use of that, i.e. in most of the iterations a relaxation satisfying
the relaxation error criterion is chosen. In fact, the method decides early in the solution
process that coarse relaxations do not suffice to terminate the method. Together with the
fact that the degree of relaxation is inherited in the parent history of local upper bounds,
this yields that only a few problems are solved with degrees of relaxation 1 and 2. Then
the method sticks some time with degree of relaxation 4, while it needs relaxation degree
8 for a large number of problems. In Fig. 8 we have the same setting as in Fig. 7, but
do not require a strict inclusion in Step 10 of Algorithm 5. One can see the effect in
an increase in computational time and more problems to be solved. Furthermore, on the
right one can observe that the algorithm is trying to stick longer with a coarse relaxation
before actually going for the refinement step (see the increase of problemswith relaxation
degrees 1 and 4).

However, comparing the number of problems to be solved as well as especially the com-
putational time with the ones from Sect. 3, one can see that the power of available solvers like
SCIP dealing with quadratically constrained problems makes the use of relaxations redun-
dant in some cases, as e.g. the ones considered above. However, with increasing complexity
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of the problems one might have an advantage by only considering relaxations instead of the
original problem, as can be seen in the next section.

6 Application to themultiobjective optimization of decentralized
energy supply networks

In this section, we present numerical results of the described method on some network
optimization problem. In fact, aiming to model a decentralized energy supply network we
obtain aMIQCPproblem. The general network structure is a graph,where the nodes represent
individual consumers and the edges connect the consumer nodes with the so-called source
node, where energy is supplied. The mixed-integer character is coming from certain decision
options available in the optimization process, e.g., if a gas pipe is laid at some edge or not.
Furthermore, we take stationary models of energy flow into account, namely an equation
based on the Ohmic law for the electricity flow as well as the Darcy–Weisbach equation
for gas flow. As both of them contain bilinear or quadratic terms the resulting optimization
problem has thementionedMIQCP structure. As objective functions, we use the overall costs
for realizing a given network plan on the one hand and the carbon emissions of that network
plan on the other hand. Naturally, a cheap network plan results in high carbon emissions, and
a low carbon emission can be obtained by, e.g., investing in energy-efficient house renovation
which results in higher costs. Thus, we have a classical (MOP) with two conflicting objective
functions. Details regarding the modeling aspects can be found in [38] and more recently in
[19].

For the present paper, we consider three network instances of such decentralized energy
supply networks, namely: If e.g., we set up a single objective optimization problem with

network 1 ⊂ network 2 ⊂ network 3

# Nodes 12 20 39
# Binaries 108 189 360
# Variables 484 829 1570
# Constraints 620 1064 2014

cost minimization as objective function and put the carbon emissions to the constraints, we
obtain the following computational times

• network 1: 0.57 s
• network 2: 3.35 s
• network 3: > 3h,

using the SCIP solver with the standard settings3 from the pyscipopt-package (cf. [41]).
For testing the new method we use a relative width tolerance εencl = 0.03 as well as two

off-set factors δ̃ = 0.95εencl and δ = 0.8εencl. In the networkmodels the present nonlinearities
are of the following form:

• For modeling the low-voltage energy flow we use for instance

Re
i, j f

e
in,i, j = aeu j ūi, j , (13)

3 Note that the computational time needed for solving network 3 is drastically reduced if one increases
the tolerance for termination.
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where Re
i, j > 0 denotes the resistance of the underlying cable at arc (i, j), ae > 0 the

calorific multiplier of three-phase electric power flows, f ein,i, j is a variable representing
the electric power flow on arc (i, j) into j . The variable ui denotes the electrical voltage
at node i and the variable ūi, j = ui −u j the voltage drop on arc (i, j). Consequently, we
have a quadratic term u2i and a bilinear term uiu j appearing in (13). For the computation
of the corresponding relative relaxation errors the box constraints 360 ≤ ui , u j ≤ 440
are relevant. Thus, if we partition the corresponding intervals into r equidistant intervals,
i.e. use the relaxation Rr , we obtain

εR
r

rel = 802

4r2
1

max{x2 | 360 ≤ x ≤ 440} ,

and therefore the number of partitions of each interval to fall below a given tolerance εrel
is given by

r =
⌈
40

440

1√
εrel

⌉
.

Thus, if we require a relative relaxation error εrel = 0.01 we have to partition the
corresponding intervals into at least r = 1 partitions, i.e. we do not have to partition at
all.

• For modeling low-pressure gas supply we use a reformulation of the Darcy–Weisbach
equation avoiding the use of the sign-function as proposed in [8]. By doing so, we obtain
for instance

Rg
i, j q̄

2
i j ≤ p̄maxyi, j , (14)

where Rg
i, j > 0 denotes the resistance constant of the underlying gas pipeline on arc

(i, j), q̄i j the gas flow on arc (i, j), p̄max > 0 the maximal pressure loss allowed in
the network as well as a binary decision variable yi, j indicating if a gas pipe is laid at
arc (i, j). The relevant box constraints are −150 ≤ q̄i j ≤ 150 and partitioning into r
intervals, i.e. using relaxation Rr , we obtain

εR
r

rel = 3002

4r2
1

max{x2 | −150 ≤ x ≤ 150} ,

and therefore the number of partitions of each interval to fall below a given tolerance εrel
is given by

r =
⌈

1√
εrel

⌉
.

Thus, if we require a relative relaxation error εrel = 0.01 we have to partition the
corresponding intervals into at least r = 10 partitions. Note that even if we just require a
relative relaxation error εrel = 0.03 we still have to partition into at least r = 6 intervals.

In sum, this yields that—if we use r equidistant partitions for any variable appearing in any
nonlinear term of our problem—we fall below a relaxation error tolerance of εrel = 0.01 as
soon as we use a relaxationRr with r ≥ 10. Note that if we did not use the adaptive approach
given in Algorithm 5, but chose a relaxation with r ≥ 10 and then used a method for solving
multiobjective linear mixed-integer problems we would have to solve a problem with at least
10 · |Edges| additional integer variables, i.e. in the case of network 3 about 400 if we just
use the ones for the quadratic terms.
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Fig. 9 Computational results on network 3. Left: enclosure given by LLBs and LUBs of (Circles) obtained
by Algorithm 5 with WSM. Right: counter of used degrees of relaxations

Looking at the results for network 3 (see Fig. 9; the results for network 1 and
network 2 are similar) we can see that the method uses only the relaxationRr with r = 1,
i.e. the coarsest relaxation possible using the McCormick relaxations. This shows the power
of the proposed method dealing with the considered large network instances.

7 Conclusion

In the present work, a general MIQCP problem is considered and two novel methods for
computing an enclosure of the nondominated set are presented. For both of them, we proved
correct and finite termination aswell as demonstrated the respective advantages and disadvan-
tages. The implementation of the second approach is currently only able to deal with bilinear
and quadratic terms. However, one could handle general polynomial terms still relying on
McCormick relaxations. For general nonlinear terms, one has to go for a more elaborate
relaxation technique as presented in, e.g., [11]. However, these are only implementation
issues. As long as the relaxation technique satisfies Assumption 5.1 the theoretical results
presented in this paper still apply.
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