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Abstract
This work deals with the efficient numerical characterization of Pareto stationary 
fronts for multiobjective optimal control problems with a moderate number of cost 
functionals and a mildly nonsmooth, elliptic, semilinear PDE-constraint. When 
“ample” controls are considered, strong stationarity conditions that can be used to 
numerically characterize the Pareto stationary fronts are known for our problem. We 
show that for finite dimensional controls, a sufficient adjoint-based stationarity sys-
tem remains obtainable. It turns out that these stationarity conditions remain useful 
when numerically characterizing the fronts, because they correspond to strong sta-
tionarity systems for problems obtained by application of weighted-sum and refer-
ence point techniques to the multiobjective problem. We compare the performance 
of both scalarization techniques using quantifiable measures for the approximation 
quality. The subproblems of either method are solved with a line-search globalized 
pseudo-semismooth Newton method that appears to remove the degenerate behavior 
of the local version of the method employed previously. We apply a matrix-free, 
iterative approach to deal with the memory and complexity requirements when solv-
ing the subproblems of the reference point method and compare several precondi-
tioning approaches.

Keywords Multiobjective optimal control · Nonsmooth optimization · Stationarity 
conditions · Pareto optimality · Scalarization methods · Pseudo-semismooth Newton 
method
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1  Problem formulation

The prevailing notion of optimality in multiobjective optimization is that of optimal 
compromises or Pareto optimal points, see Definition 1. Evaluating the quality of 
Pareto optimal points typically involves interpreting the set of function values of 
all Pareto optimal points – the Pareto front. The aim of this paper is the efficient 
numerical characterization of the Pareto fronts of nonsmooth multiobjective optimal 
control problems with few objectives and an elliptic PDE-constraint with max-type 
nonsmoothness using generalized stationarity conditions, and the comparison of the 
numerical performance of a weighted-sum approach and a reference point method 
in terms of efficiency and discretization quality. For ease of presentation, we restrict 
this exposition to the case of two objectives only – though the scope of this paper 
can readily be extended to moderately many objective functions using hierarchical 
approaches, see [3, 4, 15]. Hence, we consider bicriterial problems of the form

In (P), the symbols y and u denote the state and control variables in the correspond-
ing state space V  and (possibly finite dimensional) control space U , respectively, the 
ji denote suitably well behaved scalar cost functionals, the �i are nonnegative regu-
larization parameters and B ∶ U → L2(�) denotes a control-to-right-hand-side map-
ping. For the detailed assumptions on the problem, we refer to Assumption 1.

Multicriterial optimization problems with nonsmooth PDE-constraints like (P) 
arise in various physical applications with conflicting objectives, see, e.g., [13, 16, 
19, 21]. The combination of generally only (Hadamard) directionally differenti-
able Nemytski operators in the constraint and the inherently nonsmooth structure 
of multiobjective optimization makes sensitivity and stationarity analysis as well as 
the numerical solution of these problems rather delicate. Their treatment typically 
requires specialized stationarity concepts and approaches that do not follow stand-
ard procedure for Gâteaux differentiable problems. The particular case of the PDE-
constraint in (P) is rather well understood in terms of existence and regularity of 
solutions and differentiability properties of the solution operator and has previously 
been addressed as a constraint in optimization problems in, e.g., [6, 7]. The spe-
cific structure of the PDE even allows for the derivation of strong stationarity sys-
tems when the control space is sufficiently rich, which has been considered in both 
scalar and multiobjective optimization with an arbitrary number of objectives, see 
[6, 7]. Stationarity conditions of intermediate strength based on the characterization 
of the subdifferentials of the solution operator to the constraining PDE have been 
addressed in [6] and the considerations in [7] show that C-stationarity and strong 
stationarity in fact coincide for ample controls.

Numerically, the Pareto stationary front of problem (P) has been character-
ized for two and three cost functionals and L2(�) controls [7] by combining a 

(P)
min
(y,u)

J(y, u) =

�
J1(y, u)

J2(y, u)

�
=

⎛
⎜⎜⎜⎝

j1(y) +
�1

2
‖u‖2

U

j2(y) +
�2

2
‖u‖2

U

⎞
⎟⎟⎟⎠

s.t. (y, u) ∈ V × U satisfies − �y + �max{0, y} = B(u) in V �.
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first-optimize-then-discretize approach and a pseudo-semismooth Newton (PSN) 
method, and by using a regularization approach. With multiple objectives, computa-
tion times can quickly become large with increased fineness of discretizations of the 
domain and the Pareto front, making efficient numerics a vital component to these 
simulations. In [5], the authors discussed a standard offline/online greedy reduced-
basis approach for (P) with a single scalar objective function and both low and high 
dimensional control/parameter space and compared the results to an adaptive way of 
generating the reduced basis along the solution process of the PSN.

In this paper, our goal is the efficient characterization of the Pareto stationary 
front of the bicriterial problem (P) for both L2(�)-controls as well as finite-dimen-
sional controls with specific structure to allow for a combination with the reduced-
basis approaches from [5] mentioned above. In the case of the L2(�)-controls, 
where strong stationarity conditions were derived in [7], this is essentially a refine-
ment of the numerical techniques employed in the same paper. For finite dimen-
sional controls, which are typically insufficiently “rich” to obtain strong stationarity 
conditions, however, this requires revisiting the optimality conditions and how they 
can be used to characterize the Pareto stationary fronts. Following the approaches in 
[7], we show that, in the case of finite dimensional controls, a sufficient stationarity 
system can still be obtained. Though a sufficient system for a necessary optimality 
condition is unfavorable in general, it turns out that the system we obtain is essen-
tially a strong stationarity system for the optimization problems corresponding to 
the weighted-sum method and the Euclidean reference point method and therefore 
a somewhat reasonable system to use for characterization of the Pareto stationary 
fronts. The nonlinear structure in the sets that are involved there, introduced by the 
nonsmoothness of the PDE, however, does not lend itself to use for characterization 
of the front directly. Instead, a linearization of the same system will be solved by 
a line-search stabilized PSN approach and combined with a sign condition that is 
checked a-posteriori. The line-search essentially eliminates the rare, mesh-depend-
ent non-convergence issue observed for the undamped PSN in [5, 7]. We will com-
pare the efficiency and the approximation quality of the front of the weighted-sum 
and the reference point approach using quantifiable quality measures.

The structure of this paper is as follows: We will shortly comment on the 
assumptions for this paper in Subsect. 1.1. Then, we recall the required notions of 
Pareto optimality and Pareto stationarity and state the respective first order sys-
tems for (non-)ample controls in Sect.  2. In the case U = L2(�) , the analytical 
results are analogous to those in [7] and the strong stationarity results are simply 
restated, whereas similar conditions in the case U = ℝ

p are shown to remain suf-
ficient only. In Sect. 3, we will shortly recall the weighted-sum method and the ref-
erence point method, and show that the sufficient system from the multiobjective 
setting is equivalent to strong stationarity systems for the scalarized systems. We 
explain how these methods can therefore be used to characterize the Pareto station-
ary front. The numerical implementation is explained in detail in Sect. 4, where we 
present a matrix-free preconditioned limited-memory generalized minimal residual 
(L-GMRES) method for the line-search globalized pseudo-semismooth Newton 
(gPSN) method that will be used to handle the density of the discretization matri-
ces in the reference point method and the convergence issues arising from the 
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nonsmoothness of the PDE-constraint, respectively. We further present two numeri-
cal examples – one with (FE-discretized) L2(�)-controls and one with inherently 
finite dimensional controls in Sect.  5. The interpretation of the numerical results 
is specifically focused on the effects of different preconditioning strategies for the 
reference point method. We introduce two quantities to measure the approximation 
quality of the two methods and use them as a basis for a performance comparison of 
the two scalarization approaches.

1.1  Notation and assumptions on the data

We endow V = H1

0
(�) with the inner product ⟨�,�⟩V = ∫

�
∇� ⋅ ∇� + �� dx for 

�,� ∈ V  and the induced norm ‖ ⋅ ‖V = ⟨⋅ , ⋅⟩1∕2
V

 . Its topological dual space is writ-
ten as V � = H−1(�) . The space Y  denotes V ∩ H2(�) with topological dual space Y ′ . 
We also set H = L2(�) . For functions in Y, the Laplacian is understood in the non-
variational sense and the Dirichlet Laplacian � ∶ H → Y � is understood in the very 
weak sense (see [12], Section 1.9). Our assumptions on the data are as follows:

Assumption 1 

1) 𝛺 ⊂ ℝ
d for d ∈ ℕ ⧵ {0} is a bounded domain that is convex or possesses a C1,1

-boundary (cf. [10, Section 6.2]),
2) j1, j2 ∶ Y → ℝ are weakly lower semicontinuous, twice continuously Fréchet-
differentiable and bounded from below,
3) �1 ≥ 0 , 𝜎2 > 0 , � ≥ 0,
4) U = ℝ

p for p ∈ ℕ ⧵ {0} and ‖ ⋅ ‖U denotes the Euclidean norm or U = H and 
‖ ⋅ ‖U denotes the L2-norm,
5) B ∶ U → H possesses the following property:

5a) If U = ℝ
p the operator B ∶ U → H is linear (and therefore automati-

cally bounded) and the pairwise intersection of the sets {bi ≠ 0} ⊂ 𝛺 of 
bi∶=B(ei) ∈ H , where ei, i = 1,… , p denote the unit vectors in U , are Leb-
esgue nullsets and none of the bi are zero.
5b) If U = H the operator B ∶ U → H is unitary.

2  A sufficient condition for pareto stationarity

Structurally, this section follows [7] closely, where the case U = H = L2(�) is dealt 
with and carries over immediately, yielding strong stationarity conditions for the Pareto 
stationary points. For the case where U = ℝ

p , however, the same reasoning does not 
hold up – specifically, the system obtained by similar arguments will only be sufficient 
in general. The main issue in the analysis is the well-known fact that strong stationarity 
conditions typically require ample controls. Note that the results presented in this sec-
tion can readily be generalized to an arbitrary finite number of objective functionals.
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We start by summarizing the main properties of the solution operator S to the 
PDE-constraint in the next lemma as a minor extension to [7, Lemma 4.2]. Note 
that, since we will mostly focus on the case U = ℝ

p , we do not obtain analogous 
results to all the results stated in [7, Lemma 4.2] for the case U = H.

Lemma 1 (Properties of the solution operator S ) Let u ∈ U be a control with associ-
ated state y = S(u) . Then: 

 1) There is a solution operator S ∶ U → Y  that is Lipschitz continuous and Had-
amard directionally differentiable, where the derivative S�(u;h) = w ∈ Y for given 
direction h ∈ U is the unique solution to 

 This especially implies the Y-regularity of the state variable y.
 2) If U = ℝ

p , then the map 

 is a linear and bounded left inverse of B ∶ U → H.
 3) The map S�(u;⋅) ∶ U → Y  is Lipschitz continuous and allows for a Lipschitz con-

tinuous left inverse given by 

 where B† is any linear, bounded left inverse of B.
 4) There exists a linear and bounded left inverse B† of B that does not depend on u 

such that 

 for every w ∈ Y  , where B†∗ ∶ U → H is the Hilbert adjoint of the left inverse 
B
†.

Proof Let u ∈ U be arbitrarily given and y = S(u) ∈ Y  . Notice that the Y-regularity 
also follows from Proposition 2.1 in [6]. 

1) The linearity and boundedness of B imply Lipschitz continuity and Hadamard 
differentiability analogously to Proposition 2.1 and Theorem 2.2 in [6] and due 
to the chain rule, the directional derivative of the solution operator w = S

�(u;h) 
solves 

(1)−𝛥w + 𝜅1{y=0} max{0,w} + 𝜅1{y>0}w = B(h) in V �.

(2)B̃
† ∶ H → U, v ↦ 𝜈 = (𝜈i)1≤i≤p with 𝜈i =

⟨v, bi⟩H
‖bi‖2H

S
�(u;⋅)† ∶ Y → U, w ↦ B

†
(
−𝛥w + 𝜅1{y=0} max{0,w} + 𝜅1{y>0}w
���������������������������������������������������������

∈H

)
,

⟨
u,S�(u;⋅)†(w)

⟩
U
=
⟨
(−𝛥 + 𝜅1{y>0})B

†∗(u),w
⟩
Y �,Y

−𝛥w + 𝜅1{y=0} max{0,w} + 𝜅1{y>0}w = B(h) in V �.
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2) Note that the operator B̃† is well defined due to Assumption 1-5). Clearly, the 
operator is linear and bounded. The left inverse quality remains to be proved. Let 
ũ ∈ U = ℝ

p and v = Bũ =
∑p

j=1
bjũj ∈ H . For every i ∈ {1,… , p} , we have that 

 where the second to last equality holds due to the H-orthogonality of the bi ’s 
induced by Assumption 1-5).

3) The Lipschitz continuity of the linearized solution operator is implied by the form 
of the linearization (1). Existence of a left inverse is clear due to part 1 if U = ℝ

p 
and since B is unitary if U = H . Thus existence of a left inverse of S�(u;⋅) and its 
Lipschitz continuity are obvious from the explicit definition.

4) First assume that U = H and that B is a unitary operator. Then, by definition, we 
obtain that B†∗ = B. Consequently, for u ∈ U and y = S(u) , 

 where �y = 0 a.e. on {y = 0} is a consequence of [7, Lemma 4.1]. Thus, using 
part 3) and (3), we find that 

 for every w ∈ Y  , where the last line follows due to the definition of the very 
weak Dirichlet Laplacian.Now assume that U = ℝ

p . We show that B̃† is the 
desired left inverse. For u ∈ U , y = S(u) and any i ∈ {1,… , p} , we have that 
{y = 0} ∩ {biui ≠ 0} is a nullset, because 

 where the first inclusion is again a consequence of [7, Lemma 4.1] and the sec-
ond inclusion is due to Assumption 1-5). Thus, for any i ∈ {1,… , p} , we infer 

 Due to part 2), we obtain that 

�
B̃
†(v)

�
i
=

⟨v, bi⟩H
‖bi‖2H

=

p�
j=1

ũj

⟨bj, bi⟩H
‖bi‖2H

= ũi
⟨bi, bi⟩H
‖bi‖2H

= ũi,

(3)

⟨B†∗(u), �1{y=0} max{0,w}⟩
H
= ⟨B(u), �1{y=0} max{0,w}⟩

H

= ⟨−�y + �max{0, y}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 0 a.e. on {y= 0}

, �1{y=0} max{0,w}⟩H = 0,

⟨
u,S�(u;⋅)†(w)

⟩
U
=
⟨
u,B†

(
− 𝛥w + 𝜅1{y=0} max{0,w} + 𝜅1{y>0}w

)⟩
U

=
⟨
B
†∗(u),

(
− 𝛥 + 𝜅1{y>0}

)
w
⟩
H
+
⟨
B
†∗(u), 𝜅1{y=0} max{0,w}

⟩
H

=
⟨
B
†∗(u),

(
− 𝛥 + 𝜅1{y>0}

)
w
⟩
H

=
⟨(

− 𝛥 + 𝜅1{y>0}

)
B
†∗(u),w

⟩
Y �,Y

{biui ≠ 0} ∩ {y = 0} ⊂ {biui ≠ 0} ∩ {B(u) = 0} ⊂ {biui ≠ 0} ∩ {biui = 0},

⟨1{y=0} max{0,w}, biui⟩H
‖bi‖2H

= 0.
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 for every w ∈ Y  . Consequently, 

 for every w ∈ Y .
    ◻

As usual, we denote the well-defined reduced cost functional as 
Ĵ ∶ U → ℝ

2,Ĵ(u) = J(S(u), u) . Having established the properties of the solution 
operator, we are ready to review the different notions of Pareto optimality and the 
optimality conditions that will play a role later on.

Definition 1 (Pareto Optimality) Let ȳ, ū with ȳ = S(ū) and ū ∈ U . The control ū is 
called: 

1) a local weak Pareto optimal point of (P) if an r > 0 exists such that there is no 
u ∈ U satisfying 

2) a local Pareto optimal point of (P) if an r > 0 exists such that there is no u ∈ U 
satisfying 

 where the latter inequality is strict for at least one i;
3) a local proper Pareto optimal point of (P) if there are r,C > 0 such that for every 

u ∈ U satisfying ‖u − ū‖U < r and Ji(S(u), u) ≤ Ji(ȳ, ū) for some index i ∈ {1, 2} , 
there exists an index m ∈ {1, 2} ⧵ {i} with 

4) a global (weak/proper) Pareto optimal point of (P) if the previous conditions hold 
with r = ∞;

The image sets of all controls that are (local/global) (weak/proper) Pareto optimal 
under the cost functional are called the Pareto fronts corresponding to the respective 
sense of optimality.

Analogously to [7], we obtain the following corresponding primal optimality 
conditions.

Theorem 1 (Optimality Conditions – Primal Form) 

�
u, B̃†

�
𝜅1{y=0} max{0,w}

��
U

=

p�
i=1

ui

⟨𝜅1{y=0} max{0,w}, bi⟩H
‖bi‖2H

= 𝜅

p�
i=1

⟨1{y=0} max{0,w}, uibi⟩H
‖bi‖2H

= 0

⟨u,S�(u;⋅)†(w)⟩U =
�
u, B̃†

�
− 𝛥w + 𝜅1{y=0} max{0,w} + 𝜅1{y>0}w

��
U

=
��

− 𝛥 + 𝜅1{y>0}

�
B̃
†
∗
(u),w

�
Y �,Y

,

‖u − ū‖U < r, Ji(S(u), u) < Ji(ȳ, ū) for i = 1, 2;

‖u − ū‖U < r, Ji(S(u), u) ≤ Ji(ȳ, ū) for i = 1, 2,

Ji(ȳ, ū) − Ji(S(u), u) ≤ C(Jm(S(u), u) − Jm(ȳ, ū));



442 M. Bernreuther et al.

1 3

1) If ū ∈ U with associated state ȳ = S(ū) is a local weak Pareto optimal point of 
(P), then there exists no direction h ∈ U satisfying 

2) If ū ∈ U  with associated state ȳ = S(ū) is a local proper Pareto opti-
mal point of (P) with constants r,C > 0 , then for every h ∈ U  with 
⟨j�
i
(ȳ),S�(ū;h)⟩Y �,Y + 𝜎i⟨ū, h⟩U < 0 for some i ∈ {1, 2} ,  there exists an 

m ∈ {1, 2} ⧵ {i} with 

Proof See [7, Theorem 3.1].    ◻

Accordingly, we obtain the corresponding notions of Pareto stationarity.

Definition 2 (Pareto Stationarity) Let ū ∈ U and ȳ = S(ū) . The control ū is called: 

1) a weak Pareto stationary point of (P) if there is no h ∈ U satisfying 

2) a Pareto stationary point of (P) if there is no h ∈ U satisfying 

 where the latter inequality is strict for at least one i;
3) a proper Pareto stationary point of (P) if there is a C > 0 such that for all h ∈ U 

with ⟨j�
i
(ȳ),S�(ū;h)⟩Y �,Y + 𝜎i⟨ū, h⟩U < 0 for some i ∈ {1, 2} , there exists an 

m ∈ {1, 2} ⧵ {i} with 

Remark 1 By definition, all proper Pareto optima are Pareto optima, which in turn 
all are weak Pareto optima. The same holds locally. As a consequence of Theorem 1, 
all local weak Pareto optima are weakly Pareto stationary and all local proper Pareto 
optima are properly Pareto stationary. However, Pareto stationarity is generally not 
necessary for local Pareto optimality.  ◊

In the case of L2(�)-controls, the version of Tucker’s/Motzkin’s theorem of the 
alternative in infinite dimensions in [7, Lemma 4.4] provides the existence of the 
multipliers appearing in the system of strong stationarity conditions. In the case of 
finite dimensional controls, we unfortunately have to deal with generally nonlinear 

(4)⟨j�
i
(ȳ),S�(ū;h)⟩

Y �,Y
+ 𝜎i ⟨ū, h⟩U < 0 for i = 1, 2.

−
�⟨j�

i
(ȳ),S�(ū;h)⟩

Y �,Y
+ 𝜎i ⟨ū, h⟩U

�

≤ C
�⟨j�

m
(ȳ),S�(ū;h)⟩Y �,Y + 𝜎m ⟨ū, h⟩U

�
.

⟨j�
i
(ȳ),S�(ū;h)⟩

Y �,Y
+ 𝜎i ⟨ū, h⟩U < 0 for i = 1, 2;

⟨j�
i
(ȳ),S�(ū;h)⟩

Y �,Y
+ 𝜎i ⟨ū, h⟩U ≤ 0 for i = 1, 2,

−
�⟨j�

i
(ȳ),S�(ū;h)⟩

Y �,Y
+ 𝜎i ⟨ū, h⟩U

�

≤ C
�⟨j�

m
(ȳ),S�(ū;h)⟩

Y �,Y
+ 𝜎m ⟨ū, h⟩U

�
.



443

1 3

Efficient scalarization in nonsmooth PDE-MOOC

subsets of the spaces involved, and, as it turns out, an extension of the existence 
results to arbitrary subsets does not hold. Hence, we can only recover one of the 
implications when the result is generalized to potentially nonlinear subsets of Hil-
bert spaces.

Lemma 2 Suppose W is a nonempty subset of a real Hilbert space V and 
v�
1
,… , v�

N
∈ V

� are given. Assume that there exists � ∈ ℝ
N with �i ≥ 0 for 

i = 1,… ,N such that

Then there exists no z ∈ W such that

Furthermore, if 𝜆i > 0 for all i = 1,… ,N , then there exists no z ∈ W such that

with the inequality holding strictly for at least one i.

Proof Assume that there exists a z ∈ W with ⟨v′
i
, z⟩V < 0 for all i = 1,… ,N . This 

would imply that

which is a contradiction. Analogously, if 𝜆i > 0 for all i = 1,… ,N , then there exists 
no z ∈ W such that ⟨v′

i
, z⟩V ≤ 0 for all i = 1,… ,N with the inequality holding 

strictly for at least one i, which shows the claim.    ◻

It follows that the technique used to show [7, Theorem 4.5] now yields a sufficient 
system only, i.e., we obtain the following sufficient adjoint-based optimality system.

Theorem 2 (Sufficient adjoint-based system) 

1. Assume that there exists an adjoint state p̄ and a multiplier �̄� such that ū, ȳ, p̄, �̄� 
satisfy the coupled system 

N�
i=1

�i = 1 and

N�
i=1

�i ⟨v�i ,w⟩V ≥ 0 for all w ∈ W.

⟨v�
i
, z⟩V < 0 for all i = 1,… ,N.

⟨v�
i
, z⟩V ≤ 0 for all i = 1,… ,N,

N�
i=1

𝜆i ⟨v�i , z⟩V < 0,

(5a)ū ∈ U, ȳ ∈ Y , p̄ ∈ H, �̄� ∈ ℝ
2,

(5b)�̄�i ≥ 0 for i = 1, 2,

2∑
i=1

�̄�i = 1,
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 Then ū ∈ U is a weak Pareto stationary point of (P).
2. Assume that ū, ȳ, p̄, �̄� satisfy the system (5), where the inequality in (5b) is strict, 

i.e. �̄�i > 0 for i = 1, 2 . Then ū is a proper Pareto stationary point of (P) (and thus 
also a Pareto stationary point).

Proof Let ū, ȳ, p̄, �̄� that solve (5) be given. Inserting (5d) into (5c), yields

According to Lemma 2, this implies that

is valid for no w ∈ Im(S�(ū;⋅)) . Since S�(ū;S�(ū;⋅)†(w)) = w for all w ∈ Im(S�(ū;⋅)) 
and due to the explicit form of S�(ū;⋅)† provided by Lemma 1-1, we have that

is valid for no w ∈ Im(S�(ū;⋅)) ⊂ Y  . Since Im(S�(ū;⋅)) under the map S�(ū;⋅)† is U , 
this is equivalent to weak Pareto stationarity. For part 2, ordinary Pareto stationar-
ity immediately follows from Lemma 2 and we will show that this implies proper 
Pareto stationarity analogously to [7, Theorem  4.5 iii)]. To that end, assume that 
there is h ∈ U such that ⟨j�

i
(ȳ),S�(ū;h)⟩Y �,Y + 𝜎i⟨ū, h⟩U < 0 for some i ∈ {1, 2} . Just 

like in the proof of part 1, we obtain that

and applying the form of S�(ū;⋅)† provided by Lemma 1-4) again, this implies that

for all w ∈ Im(S�(ū;⋅)) and therefore

(5c)

−𝛥ȳ + 𝜅max{0, ȳ} = B(ū) in V �,

�
− 𝛥p̄ + 𝜅1{ȳ>0}p̄,w

�
Y �,Y

≤
2�
i=1

�̄�i⟨j�i(ȳ),w⟩Y �,Y
for all w ∈ Im(S�(ū;⋅)),

(5d)p̄ +

2∑
i=1

�̄�i𝜎iB
†∗(ū) = 0 in H.

2�
i=1

�̄�i ⟨j�i(ȳ) + 𝜎i(−𝛥 + 𝜅1{ȳ>0})B
†∗(ū),w⟩

Y �,Y
≥ 0 for all w ∈ Im(S�(ū;⋅)).

⟨j�
i
(ȳ),w⟩

Y �,Y
+ 𝜎i ⟨(−𝛥 + 𝜅1{ȳ>0})B

†∗(ū),w⟩
Y �,Y

< 0 for i = 1, 2

⟨j�
i
(ȳ),S�(ū;S�(ū;⋅)†(w))⟩

Y �,Y
+ 𝜎i ⟨ū,S�(ū;⋅)†(w)⟩U < 0 for i = 1, 2

2�
i=1

�̄�i ⟨j�i(ȳ) + 𝜎i(−𝛥 + 𝜅1{ȳ>0})B
†∗(ū),w⟩

Y �,Y
≥ 0 for all w ∈ Im(S�(ū;⋅)).

2�
i=1

�̄�i (⟨j�i(ȳ),S�(ū;S�(ū;⋅)†(w))⟩
Y �,Y

+ 𝜎i⟨ū,S�(ū;⋅)†w⟩Y �,Y ) ≥ 0
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for all v ∈ U . Hence

for k ∈ {1, 2} ⧵ {i} .    ◻

Additionally, we make the following observations.

Corollary 1 Consider the setting of Theorem 2 with U = ℝ
p . If (5d) is replaced by

 in Theorem 2-1) or -2) and the sign condition

is added, then the resulting system is sufficient (but generally not necessary) for 
weak/proper Pareto stationarity.

Proof Assume that ū, ȳ, p̄, �̄� satisfy the system (5a)-(5c), (6) and (7) with �̄�i ≥ 0 for 
i = 1, 2 . For arbitrary h ∈ U set w = S

�(ū;h) . It follows that

Thus since �̄�i ≥ 0 and 
2∑
i=1

�̄�i = 1 the inequality

cannot be true for all i = 1, 2 . This implies the desired weak Pareto stationarity. 
(Proper) Pareto stationarity can be shown analogously.   ◻

2�
i=1

�̄�i (⟨j�i(ȳ),S�(ū;v)⟩
Y �,Y

+ 𝜎i⟨ū, v⟩Y �,Y ) ≥ 0

0 < −⟨j�
i
(ȳ),S�(ū;h)⟩Y �,Y + 𝜎i⟨ū, h⟩U

≤
1

min
l=1,2

𝛼l
⟨j�
k
(ȳ),S�(ū;h)⟩Y �,Y + 𝜎k⟨ū, h⟩U

(6)B
∗(p̄) +

2∑
i=1

�̄�i𝜎iū = 0 in U.

(7)⟨1{ȳ=0} max{0,w}, p̄⟩
H
≤ 0 for all w ∈ Im(S�(ū;⋅)),

−

2�
i=1

�̄�i𝜎i⟨ū, h⟩U = ⟨B∗(p̄), h⟩U = ⟨p̄,B(h)⟩H
= ⟨−𝛥w + 𝜅1{ȳ>0}w + 𝜅1{ȳ=0} max{0,w}, p̄⟩

H

≤ ⟨−𝛥w + 𝜅1{ȳ>0}w, p̄⟩H = ⟨−𝛥p̄ + 𝜅1{ȳ>0}p̄,w⟩Y �,Y

≤
2�
i=1

�̄�i ⟨j�i(ȳ),w⟩Y �,Y
.

⟨j�
i
(ȳ),w⟩

Y �,Y
+ 𝜎i ⟨ū, h⟩U < 0
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3  Connection to scalarization methods

As shown in Sect. 2, we can obtain an adjoint based system that is sufficient for 
Pareto stationarity. When we base numerical characterizations of the Pareto sta-
tionary front on this system, since it is potentially not necessary for Pareto sta-
tionarity, we may lose out on points on the front. In this section, we want to show 
that the adjoint system from Theorem 2 is a strong stationarity system for prob-
lems arising in two well-known scalarization methods – i.e., using the adjoint 
multiobjective stationarity system is not a worse approach than straight forward 
scalarization. We will briefly explain the scalarization methods – the weighted-
sum method (cf., e.g., [8]) and the reference point method (cf., e.g., [14, 17]) 
– and how we intend to use them to characterize the Pareto stationary front.

3.1  Weighted‑sum method (WSM)

For weights �1, �2 ≥ 0 with �1 + �2 = 1 , the optimization problem

is called the weighted-sum problem (with non-negative weights �1, �2 ) correspond-
ing to (P). The weighted-sum method is based on solving (P� ) for varying � . The 
primal optimality conditions for the WSM are given in the following theorem.

Theorem 3 Let �1, �2 ≥ 0 with �1 + �2 = 1 and denote � = (�1, �2) . Let the control 
ū ∈ U be locally optimal for (P� ) and let ȳ = S(ū) ∈ Y  be the associated state. Then

Proof The claim follows analogously to [7, Theorem 3.1].   ◻

A control ū ∈ U with associated ȳ = S(ū) is called a stationary point of (P� ) if 
(8) is satisfied.

Corollary 2 Let �1, �2 ≥ 0 with �1 + �2 = 1 and denote � = (�1, �2) . Then the follow-
ing statements are equivalent: 

1. A control ū ∈ U with associated state ȳ = S(ū) ∈ Y  is a stationary point of (P�).
2. There exists p̄ such that ū, ȳ, p̄ satisfy the system (5) with �̄� = 𝛼.

Proof The corollary follows analogously to the proof of Theorem 2. However, since 
the problem is inherently scalar, the reverse implication of Lemma 2 is obtained for 
free and we obtain equivalence.   ◻

min
(y,u)

�1J1(y, u) + �2J2(y, u)

s.t. (y, u) ∈ V × U satisfies − �y + �max{0, y} = B(u) in V �,

(P�)

(8)
2�
i=1

𝛼i
�⟨j�

i
(ȳ),S�(ū;h)⟩Y �,Y + 𝜎i⟨u, h⟩U

�
≥ 0 for all h ∈ U.
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Corollary 2 especially implies that the adjoint system (5) is a strong stationarity sys-
tem for the weighted-sum problem (P� ), i.e., that it is equivalent to the primal neces-
sary stationarity conditions (8) of the weighted-sum problem. Accordingly, it is rea-
sonable to characterize the stationary points of the weighted-sum problems using the 
system (5). However, system (5) may have multiple solutions, and (in the case of the 
finite dimensional controls) we cannot solve it numerically because of the variational 
inequality (5c) on the possibly unknown and nonlinear set Im(S�(ū;⋅)) . In practice, we 
therefore modify (5c)-(5d) and instead consider the system 

 which coincides with the strong stationarity system in the case U = H . If U = ℝ
p , 

we additionally check the sign condition

for p̄ a posteriori. If the condition is satisfied, then the solution is still a solution to 
(5) and therefore a weak Pareto stationary point, see Corollary 2. In the weighted-
sum algorithm, we can now set �1 = 1 − �2 and solve the stationarity system of the 
WSM for varying �2 ∈ [0, 1] , where �2 ≠ 0 is required to guarantee well-posedness 
of the problems. Specifically, we introduce an additional small parameter 𝛼tol > 0 
and choose �2 in [�tol, 1 − �tol] . The final procedure of the WSM is summarized in 
Algorithm 1.

(9a)ū ∈ U, ȳ ∈ Y , p̄ ∈ H, �̄� ∈ ℝ
2

(9b)�̄�i ≥ 0 for i = 1, 2,

2∑
i=1

�̄�i = 1,

(9c)−𝛥ȳ + 𝜅max{0, ȳ} = B(ū) in V �,

(9d)−𝛥p̄ + 𝜅1{ȳ>0}p̄ =

2∑
i=1

�̄�ij
�
i
(ȳ) in V �,

(9e)B
∗(p̄) +

2∑
i=1

�̄�i𝜎iū = 0 in U,

(10)p̄ ≤ 0 a.e. in {ȳ = 0}
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The result of Algorithm 1 is a discrete approximation of the set of weakly Pareto 
stationary points and the corresponding front.

3.2  Reference point method (RPM)

The reference point problem with Euclidean norm ‖⋅‖2 for a reference point z ∈ ℝ
2 

is given by

The reference point method is based on solving (Pz ) for varying reference points. 
As the next theorem shows, optimizers to the reference point problems are Pareto 
optimal.

Theorem 4 Every local (global) solution to (Pz ) such that z ∈ ℝ
2 with Ĵ(u) − z > 0 

holds, is also a local (global) Pareto optimal point of (P).

Proof We assume that ū ∈ U with ȳ = S(ū) is a local solution to (Pz ), i.e., 
there exists an r1 > 0 such that for all u ∈ U with ‖ū − u‖U < r1 the inequality 
Fz(ȳ, ū) ≤ Fz(S(u), u) is satisfied. Now, we assume that ū is not locally Pareto opti-
mal, which implies that for every r2 > 0 there exists uend ∈ U with ‖uend − ū‖ < r2 
and Ji(S(uend), uend) ≤ Ji(ȳ, ū) for i = 1, 2 , where the latter inequality is strict for 
at least one i. Since we can choose r2 arbitrarily small, S and Ji are continuous and 
Ji(ȳ, ū) − zi > 0 holds for i = 1, 2 by assumption, this implies that

where the second inequality is strict for at least one i. Since the Euclidean 
norm is strictly monotone [8, Definition 4.19], this implies the contradiction 
Fz(S(uend), uend) < Fz(ȳ, ū) and proves the first inclusion. The statement for global 
solutions follows immediately from the first statement by choosing r1 = ∞ .    ◻

min
(y,u)

Fz(y, u) =
1

2
‖J(y, u) − z‖2

2

s.t. (y, u) ∈ V × U satisfies − �y + �max{0, y} = B(u) in V �.

(Pz)

zi ≤ Ji(S(uend), uend) ≤ Ji(ȳ, ū), i = 1, 2,
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Primal stationarity conditions for (Pz ) are shown in the next theorem.

Theorem 5 Let the control ū ∈ U with associated state ȳ = S(ū) ∈ Y  be locally opti-
mal for (Pz ). Then, we have for all h ∈ U

Proof Due to the chain rule for Hadamard differentiable functions, this follows anal-
ogously to [7, Theorem 3.1].   ◻

A control ū ∈ U with associated state ȳ = S(ū) is called a stationary point of 
(Pz ) for z ∈ ℝ

2 if (11) is satisfied.

Corollary 3 Let the control ū ∈ U with associated state ȳ = S(ū) be given. 

1) The following are equivalent: 

(a) The control ū is a stationary point of (Pz).
(b) There exists an adjoint state p̄ such that ū, ȳ, p̄ satisfy 

2) The following are equivalent: 

(a) There exists z ∈ ℝ
2 such that the control ū is a stationary point of (Pz ) with 

0 ≠ J(ȳ, ū) − z ≥ 0 (or J(ȳ, ū) − z > 0).
(b) There exists � ∈ ℝ

2 with � ≥ 0 for i = 1, 2 (or 𝛼 > 0 ) and �1 + �2 = 1 such that 
the control ū is a stationary point of (P�).

Proof Part 1) follows analogously to the proof of Corollary 2.
To show part 2), let ū be a stationary point of (Pz ) with associated state ȳ = S(ū) 

such that 0 ≠ J(ȳ, ū) − z ≥ 0 . Then part 1) implies that there exists an adjoint state 

(11)
2�
i=1

�
Ji(ȳ, ū) − zi

��⟨j�
i
(ȳ),S�(ū;h)⟩Y �,Y + 𝜎i⟨ū, h⟩U

�
≥ 0.

(12a)ū ∈ U, ȳ ∈ Y , p̄ ∈ H

(12b)−𝛥ȳ + 𝜅max{0, ȳ} = B(ū) in V �,

(12c)
⟨−𝛥p̄ + 𝜅1{ȳ>0}p̄,w⟩Y �,Y ≤

2�
i=1

�
Ji(ȳ, ū) − zi

�⟨j�
i
(ȳ),w⟩Y �,Y

for all w ∈ Im(S�(ū;⋅)),

(12d)p̄ +

2∑
i=1

(
Ji(ȳ, ū) − zi

)
𝜎iB

†∗(ū) = 0 in H.
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p̄ such that ū, ȳ, p̄ solve (12). Accordingly, with normalized weight � and adjoint p̃ 
given by

system (5) is also satisfied. Thus Corollary 2 implies that ū is a stationary point of 
(P� ) with � ≥ 0 and �1 + �2 = 1 . The other implication follows analogously with-
out normalization by choosing the reference point z = J(ȳ, ū) − 𝛼 , since then 
0 ≠ J(ȳ, ū) − z = 𝛼 ≥ 0 . The cases with strict inequalities follow analogously.   ◻

Corollary 3 shows that primal stationarity in the two scalarization methods is essen-
tially equivalent. Also note that, except for rather degenerate choices of reference 
points, system (12) is equivalent to the adjoint multiobjective system (5), i.e., (5) is 
a strong stationarity condition for the reference point problem (Pz ). Again, we gener-
ally cannot solve (12) directly in the implementation when U = ℝ

p because of the vari-
ational inequality on a possibly unknown and nonlinear image set. We proceed analo-
gously to the modifications in the WSM, cf. (9), and instead solve 

 For U = L2(�) , this again coincides with the strong stationarity system from [7]. 
For U = ℝ

p we test for the sign condition (10) a posteriori. If it is satisfied as well, ū 
is a weak Pareto stationary point of (P).

Another central question for the RPM is how suitable reference points can be 
chosen in the numerical implementation. To this end, we follow the approach pre-
sented in [2]. Let kmax denote the maximal number of Pareto stationary points in 
the numerical implementation and let (y1, u1) denote an initial starting point with u1 
being a stationary point of the weighted-sum problem with weights �1 = 1 − �tol and 
𝛼2 = 𝛼tol ≪ 1 . Then the first reference point z2 (corresponding to the second point on 
the front) is chosen as

where h⟂, h∥ > 0 are scaling parameters. For i = 2,… , kmax − 2 the reference point 
zi+1 is chosen as

𝛼i = �̃�i
/ 2∑

j=1

�̃�j with �̃�i = Ji(ȳ, ū) − zi ≥ 0, p̃ = p̄
/ 2∑

i=1

�̃�i,

(13a)ū ∈ U, ȳ ∈ Y , p̄ ∈ H,

(13b)−𝛥ȳ + 𝜅max{0, ȳ} = B(ū) in V �,

(13c)−𝛥p̄ + 𝜅1{ȳ>0}p̄ =

2∑
i=1

(
Ji(ȳ, ū) − zi

)
j�
i
(ȳ) in V �,

(13d)B
∗(p̄) +

2∑
i=1

(
Ji(ȳ, ū) − zi

)
𝜎iū = 0 in U.

(14)z2 = J(y1, u1) −

(
h⟂

h∥

)
,
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with �⟂ = zi − J(yi, ui) and �∥ = (−�⟂
2
,�⟂

1
)T . Note that due to the strong weight-

ing of J1 at (y1, u1) , the Pareto front is approximately vertical in the area of the first 
reference point. This motivates the initial choice �∥ = (0,−1)T and �⟂ = (−1, 0)T.

Using this update technique, we end up with the reference point method stated in 
Algorithm 2.

Note that the stopping criterion implies that if kmax is large enough, then the upper 
left as well as the lower right corner points of the Pareto front coincide with those of 
the WSM. If 0 ≠ J(S(ū), ū) − z ≥ 0 holds for all ū ∈ P̃

sw

s
 , then the result of Algo-

rithm 2 is a discrete approximation of the set of weak Pareto stationary points and 
the corresponding Pareto front. If one wants to ensure this condition a priori, it is 
possible to, e.g., choose fixed reference points on shifted coordinate axes. The shift 
has to be performed such that all reference points are below the lower bounds on Ji , 
cf. [3].

4  Numerical implementation

For the numerical realization and tests of the algorithms, we will assume that 
j1(y) =

1

2
‖y − yd‖2

H
 , j2(y) = 0 and �1 = 0 . We fix the domain � = (0, 1)2 and consider 

P1-type finite elements (FE) on a Friedrichs-Keller triangulation of the domain. The 
measure of fineness of the grids will be h > 0 , which denotes the inverse number of 
square cells per dimension – i.e., the grid will have 2∕h2 triangles. We write the coef-
ficient vector of the piecewise linear interpolant of a function w ∶ � → ℝ on the grid 
vertices in sans-serif font (i.e., � ∈ ℝ

N ) and use the same font for the matrices in the 

(15)zi+1 = J(yi, ui) + h∥ ⋅
�∥

‖�∥‖ + h⟂ ⋅
�⟂

‖�⟂‖ ,
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discretized settings. We resort to mass lumping for the nonlinear max-term in order 
to be able to evaluate it componentwisely. Inevitably, this introduces a numerical dis-
cretization error. Its effects decrease with increasing fineness of the discretization but 
increase with the coefficient � that scales the nonlinearity. The corresponding stiffness 
matrix � ∈ ℝ

N×N , mass matrix � ∈ ℝ
N×N and lumped mass matrix �̃ ∈ ℝ

N×N are 
given from the FE ansatz functions �i, i = 1,… ,N , as

Thus the FE approximation of (9c, e) introduced for the WSM is

for some given � ∈ ℝ
2 that satisfies (9a, b), where � is the FE-discretized version 

of the linear operator B and �∶=�0 where �x ∶ ℝ
N → ℝ

N×N maps a vector to the 
diagonal matrix that takes the Heaviside function with functional value x at 0 evalu-
ated for each entry of the vector as its diagonal entries. The matrix � = �p ∈ ℝ

p×p is 
the identity if U = ℝ

p , and � = � is the mass matrix if U = H . Note that this means 
that, depending on the space U , sometimes sans-serif notation would be appropri-
ate for the (discretized) control u. To avoid any misunderstandings, we will always 
denote u without sans-serif style. These finite dimensional systems are solved with 
a globalized version of a pseudo-semismooth Newton (PSN) method (which essen-
tially ignores the indicator functions’ dependence on the state in the continuous sys-
tem, i.e. the Heaviside functions’ dependence in the discretized system, when the 
linearization of the systems is computed). For more details on the PSN without glo-
balization, we refer to [5, 7]. The FE system matrix at iterates (�h, �h, u) reads as:

We proceed analogously for the RPM and discretize (13 b, d) using finite elements, 
which yields

These discretized systems are solved with a PSN method as well. The FE system 
matrix at iterates (�h, �h, u) reads as:

�ij = ⟨∇𝜑i,∇𝜑j⟩H , �ij = ⟨𝜑i,𝜑j⟩H , �̃ = diag

��supp(𝜑i)�
3

∶ i = 1,… ,N

�
.

(16)
⎛
⎜⎜⎝

��̄h + 𝜅�̃max{0, �̄h} − �ū

��̄h + 𝜅�̃𝛩(�̄h)�̄h − 𝛼1�(�̄h − �d)

�T �̄h + 𝛼2𝜎2�ū

⎞
⎟⎟⎠
= 0

(17)
⎛⎜⎜⎝

� + 𝜅�̃𝛩(�h) 0 − �

−𝛼1� � + 𝜅�̃𝛩(�h) 0

0 �T 𝛼2𝜎2�

⎞⎟⎟⎠
.

(18)

⎛⎜⎜⎜⎝

��̄h + 𝜅�̃max{0, �̄h} − �ū

��̄h + 𝜅�̃𝛩(�̄h)�̄h −
�

1

2
(�̄h − �d)T�(�̄h − �d) − z1

�
�(�̄h − �d)

�T �̄h +
�

𝜎2

2
ūT�ū − z2

�
𝜎2�ū

⎞⎟⎟⎟⎠
= 0.
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with

Remark 2 For both methods, the sign condition (10) is not added into the discretized 
stationarity system and instead verified a posteriori if U = ℝ

p .  ◊

Compared to the system matrix of the single objective case presented in [5], 
especially the system matrix of the RPM is more complicated and possesses a non-
sparse substructure. This is due to the matrices �(�h) and �(u) , which possess the 
dense terms �(�h − �d)(�(�h − �d))T and (�2�u)(�2�u)T . These can cause severe 
memory and runtime problems when the reference point problem is solved on fine 
finite element grids with a linear solver. Due to these restrictions, the reference point 
method’s subproblems will generally take longer to solve than the WSM, also on 
coarser grids.

One thing to keep in mind when applying the PSN method is that there is no 
guarantee of convergence as seen in the numerical examples in [7]. The method in 
fact shows failure to converge in practice, with the rate of failed attempts over the 
subproblems decaying as the grid discretization’s fineness is increased. This suggest 
some sort of degeneration of the undamped search directions that could be coun-
tered with a globalization mechanism.

Accordingly, the two questions that we will address in the remainder of this sec-
tion are the following: 

1) Can the non-convergence issue of the PSN method itself be removed?
2) Is it possible to reduce computation times and memory problems of the (linear) 

PSN steps in the reference point method to make it competitive in terms of com-
putation times?

4.1  Globalized PSN

The numerical experiments in [7] indicate that non-convergence of the PSN is an issue 
that strongly depends on (insufficiently fine) discretizations. As a stabilization approach 
independently of the grid fineness, we will present and test a line-search globalization 
of the PSN based on results for semismooth Newton methods as in, e.g., [9] and [11], 
which will be referred to as the gPSN method. Let us assume that we want to find a root 
of a function F ∶ ℝ

2N+p → ℝ
2N+p with system matrix G ∶ ℝ

2N+p → ℝ
(2N+p)×(2N+p) . 

(19)
⎛
⎜⎜⎝

� + 𝜅�̃𝛩(�h) 0 − �

�(�h) � + 𝜅�̃𝛩(�h) 0

0 �T �(u)

⎞
⎟⎟⎠

(20)�(�h)∶=(�(�d − �h))(�(�h − �d))T −
(
1

2
(�h − �d)T�(�h − �d) − z1

)
�,

(21)�(u)∶=(�2�u)(�2�u)
T +

(�2
2
uT�u − z2

)
�2�.
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This will either be (16) with system matrix (17) for the subproblems in the WSM or 
(18) with system matrix (19) for the subproblems in the RPM. We will employ a line-
search globalization with the merit function Λ ∶ ℝ

2N+p → ℝ, x ↦
1

2
‖F(x)‖2.

Remark 3 Note that the norm in the merit function Λ is the discrete equivalent of the 
norm in V � × V � × U . Hence it is generally expensive to evaluate, since we need to 
compute a Riesz representative. However, we will precompute the necessary factori-
zations to speed-up the computations to some extent.  ◊

The gPSN method is summarized in the following algorithm. Note that we cannot 
conclude – e.g., from theory on globalized semismooth Newton methods – that the 
algorithm converges without introducing a maximum number kmax of PSN steps and a 
minimum step length 𝜖2 > 0.

It turns out that there are examples, where Algorithm 3 converges while a refine-
ment of the grid does not yield convergence, see Sect. 5. However, it can still happen 
that the gPSN method does not converge. Obviously, it would not be a good idea to add 
the final iterate of the gPSN method to the Pareto set nonetheless. Instead, if within the 
RPM the PSN does not converge, we update the reference point as follows: If no previ-
ous solution to the reference point problem is available, we choose

If previous solutions to the reference point problem are available, we choose

Essentially, previous information is used repeatedly to find a new reference point by 
going into the same parallel direction. If the gPSN is used within the WSM and does 
not converge, we can simply proceed to the next discretized weight.

zi+1 = zi −

(
0

h∥

)
.

zi+1 = zi + h∥
�∥

‖�∥‖ .
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4.2  A Preconditioned Matrix‑Free L‑GMRES Method

We will now focus on how to speed-up the computation and how to overcome the 
difficulties arising from the dense terms in the RPM. Notice that both dense terms 
are rank-1-matrices. Therefore it is easy to implement the matrix-vector-product 
for some w ∈ ℝ

N and v ∈ ℝ
N with v = �(�h − �d) or v = �2�u:

This motivates the use of an iterative solver that only relies on matrix-vector-prod-
ucts in each PSN step for solving the reference point subproblem. Since the system 
is not symmetric positive definite, the CG method is not an alternative and we will 
use L-GMRES instead. As the performance heavily depends on the condition num-
ber of the system matrix (see [18]), which might be very large, especially for very 
small values of the regularization parameter �2 , we will precondition the method 
with one of the following preconditioners: 

1. a: The dense terms �(�h − �d)(�(�h − �d))T and (�2�u)(�2�u)T are omitted in 
an approximated system matrix that is used as a preconditioner.

2. aBJ: A block Jacobi preconditioner is applied with the approximation described 
for the preconditioner a.

3. aBGS: A block Gauss-Seidel preconditioner is applied with the approximation 
described for the preconditioner a.

4. aILU: An incomplete LU factorization together with the approximation described 
for the preconditioner a is applied.

Of course the same iterative, preconditioned approach can be implemented for the 
WSM, with the only difference being that no approximation – by ignoring dense 
terms – is necessary for the preconditioner. Note that also standard Jacobi, Gauss-
Seidel, block Jacobi and block Gauss-Seidel and incomplete LU factorization pre-
conditioners were tested. But the first two did not give any speed-up and the last 
four were still significantly less effective than the preconditioners above due to 
the dense terms still remaining. As expected, it is quite important to use the block 
structure of the problem as much as possible and to avoid the dense terms.

Remark 4 As long as �2uT�u∕2 − z ≠ 0 , the invertibility of the aBJ preconditioner 
is ensured for the RPM, since the first two block diagonal elements are symmetric 
positive definite and the last block diagonal element is symmetric and either positive 
or negative definite (see (19)). Analogously in case of the WSM, the invertibility is 
always ensured.  ◊

For the four different preconditioners above, we propose three different update 
strategies. Those strategies are: 

(
vvT

)
w =

(
vTw

)
v.
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1. Never update: Only one preconditioner is generated for the first iteration of the 
first subproblem and then this preconditioner is used for all subproblems and all 
gPSN iterations.

2. Update once: One preconditioner is generated for each subproblem and then used 
for all gPSN iterations.

3. Always update: The preconditioner is generated for each gPSN iteration of each 
subproblem.

5  Numerical examples

In this section, we present numerical results for two examples – one with finite and 
one with infinite dimensional control space. First, the focus of our exposition will be 
on the performance of the RPM and the different preconditioning strategies. After 
the best update strategy is identified, we will compare RPM and WSM method.

In order to reasonably quantify the quality of the approximation of the respective 
Pareto (stationary) fronts, we employ two quality measures. The maximal distance 
between neighboring points on the Pareto front

will be our first measure. As a second measure of approximation quality, we will 
consider

which is the maximum shortest distance between points on the front divided by the 
average shortest distance and therefore bounded from below by one. If this quantity 
is small, this indicates that the approximation quality is somewhat uniform across 
the entire Pareto front, while a large value indicates that some parts of the Pareto 
front are approximated better than others are, i.e., a localized clustering.

Note that in all results presented here, the sign condition (see Remark 2) is satis-
fied and the gPSN method always converges.

Our code is implemented in Python3 and uses FEniCS [1] for the matrix assem-
bly. Sparse memory management and computations (especially L-GMRES) are 
implemented with SciPy [20]. All computations below were run on an Ubuntu 20.04 
notebook with 32 GB main memory and an Intel Core i7-8565U CPU.

5.1  The numerical examples

First we introduce the two examples. The parameters listed in Table 1 are fixed for 
the rest of this work.

(22)𝛥max ∶= max
a∈P̃f

min
b∈P̃f ⧵{a}

‖a − b‖2

(23)𝛥clust =
�P̃f �𝛥max∑

a∈P̃f

min
b∈P̃f ⧵{a}

‖a − b‖2
,
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5.1.1  Example 1 – Infinite dimensional controls

For the first numerical example the desired state is chosen as yd = 1�1
− 1�2

 with 
𝛺1 = {(x1, x2) ∈ 𝛺 ∶ x1, x2 > 1∕3} and 𝛺2 = {(x1, x2) ∈ 𝛺 ∶ x1, x2 < 2∕3} . This 
desired state is chosen to promote nonsmoothness. The control space U is chosen as 
H = L2(�) , the operator B as the identity on U and � is the mass matrix.

5.1.2  Example 2 – finite dimensional controls

For the second numerical example, we choose yd(x) =
(

1

2
− x1

)
sin(�x1) sin(�x2) . 

The space U is chosen as ℝ2 , � = �2 is the identity matrix in ℝ2×2 and the operator B is 
set to

where the definition is to be understood as L2-functions mapping x ∈ � to ℝ that are 
embedded into V ′ . For plots of the operator B and the desired state we refer to [5, 
Fig. 1 and 4].

5.2  Preconditioning the reference point method

In this section, we consider the different preconditioning approaches for the RPM. 
Therefore, we additionally choose the parameter �2 = 5 ⋅ 10−3 and the parameters 
h⟂ = 10 , h∥ = 0.1 in the RPM and �1 = 1 ⋅ 10−4 for the gPSN. Note that the arguably 
large value of �1 is necessary for the L-GMRES method to converge without precondi-
tioner, because the (sometimes badly conditioned) problem is numerically difficult to 
solve. The results for Example 1 are given in Table 2.

First of all, we can see that the computation time decreases for all precon-
ditioning approaches. Also the average number of L-GMRES iterations is very 
small (between 2 and 3.5) and increases only slightly for smaller step sizes 
h. The latter observation is in contrast to the performance of the non-precon-
ditioned solving, which starts out with a large number of average L-GMRES 
iterations that nonetheless significantly increases for smaller step sizes h. Fur-
thermore, we can see that cheaper preconditioners lead to a larger speed-up if 
the preconditioner is updated more often, i.e. with the preconditioning strategy 
always update the preconditioner aBJ still gives a significant speed-up of about 
35, but all other preconditioners cannot give a speed-up above 9. Nonetheless, 
the best preconditioning approach surprisingly is the never update strategy 

(B(u))(x) = 10 ⋅

{
u1x1x2, for x = (x1, x2) and x1 ≤

1

2
,

u2x
2

1
x2
2
, otherwise,

Table 1  Fixed parameters for 
the two numerical examples

gPSN RPM PDE

� � �2 kmax �tol � �

5 ⋅ 10−1 10−1 10−3 103 10−2 (0, 1)2 10
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combined with the preconditioner aBJ. This indicates that the problem structure 
does not change significantly with respect to the current reference point and thus 
a computationally expensive update of the preconditioner is unnecessary.

Next, we consider the results for Example 2, which can be found in Table 3.
We basically observe the same behavior as previously and again never update 

and aBJ is the best preconditioning approach. Note that this finite dimensional 
example is inherently better conditioned and thus combinations of more expensive 
preconditioners such as a, aBGS and aILU and expensive preconditioning strate-
gies such as update once and always update often lead to larger computation times 
compared to the performance in the absence of a preconditioner. Furthermore, 
the preconditioner aILU seems to behave unstably, since the number of average 
L-GMRES iterations increases significantly for smaller step sizes h. Note that aILU 
includes some parameters which could be varied and might improve this behavior, 
but we will not go into details here.

Next we consider a fixed step size h = 1∕100 and investigate the behavior of the 
different preconditioning approaches for varying �2 . We expect larger condition 
numbers for smaller values of �2 and therefore problems which are harder to solve 
numerically. Since the strategies update once and always update and the precon-
ditioner aILU did not prove useful, they are excluded from this considerations. The 
results can be found in Table 4 for Example 1 and in Table 5 for Example 2.

In both examples the average number of L-GMRES iterations increases slightly 
for smaller values of �2 . This increase is stronger for the first example. If, on the 
other hand, no preconditioner is used, there is a significant increase for smaller val-
ues of �2 . This is especially true for the first example, which starts with an average 
number of 18.75 iterations for �2 = 1 and ends with an average number of 501.07 
iterations for �2 = 10−3 . In the second example there is only an increase from 10.48 

Table 2  Example 1. Comparison of average L-GMRES iterations (av. it.) and speed-up (s.-up) of the 
RPM for different preconditioning approaches and different step sizes h for �2 = 5 ⋅ 10−3

1/h a aBJ aBGS aILU none

av. it. s.-up av. it. s.-up av. it. s.-up av. it. s.-up av. it. time [s]

Never update
 50 3.61 8.82 3.17 23.51 3.24 16.49 3.57 9.19 83.65 2.55 ⋅ 102

 100 3.53 14.64 3.36 42.04 3.21 26.53 3.44 17.62 257.46 2.02 ⋅ 103

 200 3.51 20.65 3.38 63.46 3.23 35.28 3.53 23.07 380.42 1.14 ⋅ 104

Update once
 50 2.55 10.37 2.92 17.71 2.88 10.01 2.10 7.92
 100 2.67 12.01 3.02 30.51 2.92 11.10 2.12 10.27
 200 2.85 9.40 3.19 39.75 2.98 8.04 2.34 8.20

Always update
 50 2.35 7.75 2.93 15.45 2.95 7.43 2.00 5.58
 100 2.43 9.04 3.02 26.94 2.99 8.29 2.03 7.32
 200 2.62 7.20 3.15 35.54 3.05 6.29 2.32 6.28
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to 52.10. Nonetheless in both examples preconditioning pays off and again the pre-
conditioner aBJ is the best. It results in a speed-up of 62.84 in the first example and 
a speed-up of 12.64 in the second example for �2 = 10−3.

Table 3  Example 2. Comparison of average L-GMRES iterations (av. it.) and speed-up (s.-up) of the 
RPM for different preconditioning approaches and different step sizes h for �2 = 5 ⋅ 10−3

1/h a aBJ aBGS aILU none

av. it. s.-up av. it. s.-up av. it. s.-up av. it. s.-up av. it. time [s]

Never update
     50 2.79 3.43 2.78 4.16 2.95 3.21 2.79 3.37 9.97 1.79 ⋅ 101

 100 2.78 6.46 2.62 11.18 2.81 5.54 7.00 0.55 40.50 1.91 ⋅ 102

 200 2.72 14.73 2.38 59.41 2.67 12.83 15.23 0.98 197.35 3.85 ⋅ 103

Update once
 50 2.10 0.94 2.19 2.87 2.05 1.20 2.04 0.70
 100 2.11 0.67 2.20 7.19 2.08 1.00 6.01 0.40
 200 2.18 0.53 2.16 30.25 2.12 0.70 12.95 0.74

Always update
 50 2.05 0.67 2.17 2.36 2.05 0.88 2.17 0.48
 100 2.09 0.52 2.20 6.08 2.07 0.74 5.99 0.35
 200 2.15 0.41 2.16 25.44 2.11 0.53 12.95 0.65

Table 4  Example 1. Comparison of average L-GMRES iterations (av. it.) and speed-up (s.-up) of the 
RPM for different preconditioning approaches and different values of �2 for fixed step size h = 1∕100

�2 a aBJ aBGS none

av. it. s.-up av. it. s.-up av. it. s.-up av. it. time [s]

100 2.50 2.95 2.50 6.60 2.86 3.57 18.75 6.44 ⋅ 10−1

10−1 3.47 5.82 2.98 14.46 3.12 8.59 57.65 2.34 ⋅ 100

10−2 3.37 15.08 3.27 40.73 3.12 25.18 201.42 8.92 ⋅ 100

10−3 3.53 19.46 3.46 62.84 3.28 40.75 501.07 1.73 ⋅ 101

Table 5  Example 2. 
Comparison of average 
L-GMRES iterations (av. it.) 
and speed-up (s.-up) of the RPM 
for different preconditioning 
approaches and different 
values of �2 for fixed step size 
h = 1∕100

�2 a aBJ aBGS none

av. it. s.-up av. it. s.-up av. it. s.-up av. it. time [s]

100 2.53 1.35 2.30 3.71 2.63 1.61 10.48 2.46 ⋅ 10−1

10−1 2.61 2.03 2.21 5.30 2.11 2.90 13.41 4.50 ⋅ 10−1

10−2 2.75 5.13 2.59 9.24 2.71 4.60 28.12 8.91 ⋅ 10−1

10−3 2.68 9.68 2.88 12.64 2.93 6.78 52.10 1.41 ⋅ 100
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5.3  Comparison of the RPM and the WSM

In this section, we want to compare the performance of the reference point method 
and the weighted-sum method both in terms of computation times and discretiza-
tion quality. We choose a step size of h = 1∕100 , a tolerance �1 = 10−5 in the gPSN 
and h⟂ = 1 , h∥ = 0.2 in the RPM. We will consider �2 = 1 for both examples. This 
means that the problems are relatively well conditioned, but the Pareto fronts are 
harder to approximate than for smaller values of �2.

In order to make the results of the RPM and the WSM qualitatively comparable, 
we first run the RPM, which yields a number of discretization points on the front. 
Afterwards we run the WSM with kmax (the number of Pareto points) chosen as the 
number of discretization points generated by the RPM. At this point we have the 
same number of discretization points on the respective approximated fronts. How-
ever, the WSM tends to cluster the discretization points. In order to obtain compa-
rable approximation quality, we then double the number of points in the WSM until 
the maximal distance for points on the Pareto front (see (22)) is below the maximal 
distance for the RPM. Afterwards, the parameter h∥ is halved as often as kmax in the 
WSM was doubled before to compare the evolution of the quality measures �max and 
�clust for an increasing size of the approximated Pareto front.

The Pareto fronts are shown in Fig. 1.
We can see that both methods approximate the same curve. But the WSM shows 

a clustering behavior in the lower right corner whilst giving only a poor approxima-
tion in the remainder of the Pareto front. This already indicates that some refine-
ment of the weights’ distribution is generally well advised for the WSM. In Fig. 2, 
the evolution of the quality measures for the WSM and RPM for the procedure 
described above is shown.

In the left figures, we can see that for the WSM the number of points on the 
Pareto front needs to be doubled seven times in order to reach a maximal distance 
of points on the Pareto front that is smaller than that of the RPM. Furthermore 
the approximation quality decreases every time the size of the Pareto front is dou-
bled. This is due to the clustering behavior in the lower right corner. As a result, an 
unnecessarily large number of points on the Pareto front is needed to reach a desired 
maximal distance �max . On the other hand, with the RPM, the approximation quality 

Fig. 1  Pareto fronts from WSM and RPM for step size 1∕h = 100 and �2 = 1
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even decreases whilst h∥ is halved. This behavior can be seen in the right figures and 
is even better than expected. Note that the size of the Pareto front is approximately 
doubled when h∥ is halved.

The question remains, which method performs better in terms of computational 
cost. A comparison of the results from the RPM and the first and last result from the 
WSM in the procedure of doubling the number of discretization points is shown in 
Table 6.

The observation for both examples are similar with respect to sizes of the Pareto 
fronts and the measures of approximation quality. Also whilst the RPM is slightly 
slower than the WSM if the same size for the Pareto front is used, it is about 28 
times faster than the WSM when an at least equally good approximation quality is 
desired.

6  Conclusion

If the controls on the right-hand-side of the constraining PDE to (P) are finite dimen-
sional, then conditions that imply primal stationarity can be found. Those conditions 
can be interpreted as strong stationarity systems of scalarization methods. They are, 
however, not usable numerically because they contain unknown nonlinearities in the 
spaces that the conditions are formulated in. Modifying the conditions, we ended 

Fig. 2  Evolution of measures of approximation quality ( �max and �clust ) for the WSM with respect to dou-
bling the number of discretization points on the Pareto front and for the RPM with respect to halving h∥ 
with �2 = 1 and step size 1∕h = 100
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up with linear systems as in the case of ample controls. We have shown that both 
WSM and RPM can be applied to characterize the front of Pareto stationary points 
for this nonsmooth problem. The reference point method performs significantly bet-
ter when both approximation quality and computation time are considered, as long 
as preconditioning is used intelligently in GMRES. In our tests, the preconditioning 
strategy aBJ without updates performs the best. We also saw that the line-search 
globalized version of the PSN method leads to better performance and convergence 
of the method over the basic version with uncontrolled step lengths. A simple reduc-
tion of the step size numerically does not appear to guarantee this behavior.
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Table 6  Comparison of computation time and approximation quality for RPM and WSM with �2 = 1 . 
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until a maximal distance on the Pareto front below that of RPM is reached. The step size is chosen as 
h = 1∕100

Time [s] �
max

�
clust |P̃f |

Ex 1 RPM 2.42 ⋅ 100 1.90 ⋅ 10−1 3.62 ⋅ 100 13
WSM (first) 1.41 ⋅ 100 6.83 ⋅ 10−1 1.28 ⋅ 101 13
WSM (last) 6.99 ⋅ 101 1.34 ⋅ 10−1 1.62 ⋅ 102 832

Ex 2 RPM 1.61 ⋅ 100 1.97 ⋅ 10−1 2.78 ⋅ 100 14
WSM (first) 1.04 ⋅ 100 9.88 ⋅ 10−1 1.38 ⋅ 101 14
WSM (last) 4.49 ⋅ 101 1.81 ⋅ 10−1 1.62 ⋅ 102 896
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