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Abstract 
This study investigates how regional spillovers influence firms' climate investment decisions across EU regions 
using spatial econometric models. Using data from the European Investment Bank Investment Survey (EIBIS) 
2023, we address two key questions: what triggers firms to adopt greener profiles, and how spillover effects 
impact investment decisions in neighbouring regions. Our study, reveals the existence of significant spatial 
dependence in firms' climate investment decisions across EU regions, underscoring at the same time the 
interconnected nature of adaptation and mitigation efforts. Further, risk perceptions, financial capabilities, 
external conditions like economic and institutional frameworks and EU funds, play a key role in shaping climate 
investment choices both locally and in neighbouring regions. The results underscore the critical need for spatial 
considerations in climate policy development, suggesting that policies tailored to regional dynamics can more 
effectively foster climate resilience and climate investments. 
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1 Introduction 

Climate change is a global challenge that requires urgent and coordinated action from all sectors of society. 
Among these, firms have a crucial role to play in addressing the climate emergency, as their choices affect not 
only their performance but also the well-being of the communities and ecosystems, they operate in. While 
recent updates of the National Energy and Climate Plans (NECPs) (European Commission, 2023) indicate 
progress towards the 2030 energy and climate targets among EU members, persistent ambition gaps and varying 
responses across Europe underscore the need for concerted efforts. Both adaptation and mitigation efforts are 
essential to meeting these targets, requiring alignment and commitment from every EU member and region.  

To enhance the momentum of climate investments, it is crucial to extend our understanding beyond the firm-
level factors that influence climate-related investments, as highlighted in previous research (Kalantzis and 
Dominguez, 2023). Understanding the broader context, including local and regional dynamics and the related 
spillover effects, is essential in shaping these investments. By acknowledging these regional interdependencies, 
policy makers can adopt more informed decisions, maximizing positive impacts at both local and wider scales. 
This comprehensive approach allows for a more nuanced understanding of the interconnected nature of climate 
investments and the various forces at play that can either facilitate or hinder progress in achieving climate 
targets. 

 In a broad sense, regional spillovers are the impacts that policies and strategies in one region have on 
neighbouring regions (Eurostat, 2023). In our work, we consider the effects that firms' actions have on other 
firms in neighbouring regions. Spillover effects can create positive or negative externalities, depending on 
whether they benefit or harm other firms (Eurostat, 2023). They can also generate network effects, where the 
value of an action increases with the number of adopters. For example, if more firms invest in renewable energy 
sources, they may create economies of scale and reduce the costs for others. Regional spillovers can also foster 
learning and innovation, as firms can share knowledge and best practices with each other. To this end, regional 
spillovers are important because they can amplify or hinder the diffusion of climate-friendly practices among 
firms (Carrico, 2021).  

Our study reveals significant spatial dependence in climate investments across EU regions, underscoring the 
interconnectedness of firms' climate actions. Regions with similar levels of climate measure adoption tend to 
cluster geographically, highlighting the importance of considering regional dynamics in policy design. Key drivers 
of climate investments, such as firms' strategies, climate risk awareness, and energy costs, not only influence 
local decisions but also extend their impact to neighboring regions through spillover effects. These findings 
suggest that both firm-level actions and regional characteristics play crucial roles in shaping climate investments, 
with important implications for regional policy harmonization and the amplification of climate adaptation and 
mitigation efforts. 

Climate investments by firms are increasingly recognized as a critical component in the global fight against 
climate change. However, these efforts often generate spillover effects that transcend regional boundaries, 
influencing markets beyond their immediate geographic scope (Awasthy et al., 2022). Understanding these 
spatial dependencies is essential for unraveling the complex mechanisms that drive climate-related investments 
and for designing policies that can effectively harness these spillovers to achieve broader environmental goals. 
Hence, our research is driven by two central questions: First, what triggers firms to adopt greener profiles, 
particularly in terms of adaptation and mitigation efforts? Second, how do firms' actions and characteristics, 
alongside specific regional attributes, influence climate investment decisions in neighboring regions?  

Spatial clustering in the adoption of climate measures can arise from various factors, such as peer influence, 
industry-specific networks, or regional climate initiatives. These factors, by transcending regional boundaries, 
can create significant cross-regional spillover effects (Dharshing, 2017). From an empirical standpoint, capturing 
these complex spatial dependencies requires a methodological framework that goes beyond traditional 
estimation techniques like Ordinary Least Squares Regression (OLS). OLS models, while useful, may yield biased 
estimates due to their inability to account for spatial dynamics, thereby overlooking the interconnectedness of 
regional climate actions (Le Sage and Pace, 2009). 

To address this gap, our study employs spatial econometric models that are specifically designed to account for 
the cross-regional spillovers and spatial dependencies inherent in climate investment decisions. We utilize the 
latest data from the European Investment Bank Investment Survey (EIBIS) 2023 to investigate how these regional 



2 | How regional spillovers shape EU firms’ climate investments 

spillovers influence firms' decisions to invest in climate adaptation and mitigation measures. Notably, to 
rigorously analyze the spatial dynamics of climate investment decisions, we applied spatial autocorrelation tests, 
including Moran’s I and Local Moran’s I, to assess whether our dependent variables exhibit spatial agglomeration 
characteristics. The significance of spatial autocorrelation guided our decision to employ spatial econometric 
models, ensuring that the cross-regional spillovers and spatial dependencies were appropriately captured. 
Specifically, we utilized both the Spatial Autoregressive Model (SAR) and the Spatial Error Model (SEM), selected 
based on the results of Lagrange Multiplier (LM) tests, including the standard and robust versions of LM error 
and LM lag tests. These models were crucial in identifying whether spatial dependence is present in the 
dependent variable or in the error term, thereby allowing for a more accurate estimation of the drivers of firms' 
climate investments. 

To our knowledge, this is one of the few studies in the EU to examine the drivers of both firms’ adaptation and 
mitigation efforts using survey data within a spatial econometric framework. The existing literature has 
extensively analyzed the primary drivers of firms' climate investments, identifying factors such as climate risk 
perceptions, income, financial capabilities, and stakeholder pressure as significant influences (Kalantzis and 
Dominguez, 2023; Kalantzis et al., 2021; Bryan et al., 2009). Moreover, the role of external conditions, including 
economic and institutional frameworks, local governance quality, and technological diffusion, has been 
acknowledged as critical in shaping firms' investment decisions (Siedschlag and Yan, 2021). Recognizing the 
significance of spatial spillover effects, particularly in the context of clean technology diffusion and carbon 
emission dynamics, our study extends the scope of existing research by providing deeper insights into the spatial 
interdependence of firms' climate actions across EU regions. 

The remainder of the paper is organized as follows. Section 2 presents the literature. Data and variables 
descriptions are presented in Section 3. Section 4 illustrates the econometric methodology and the models’ 
specifications. Results are reported in Section 5 and discussed in Section 6. Finally, Section 7 provide policy 
implications and concludes.  

2 Literature review  

2.1 Drivers of firms’ climate investments 
The literature suggests that an increased awareness of climate change impacts is a key factor influencing 
adaptation and mitigation investments; firms that recognize the physical risks of climate change tend to be more 
proactive in seeking solutions to enhance resilience and reduce vulnerability (Kalantzis and Dominguez, 2023; 
Kalantzis et al., 2021; Hoffman et al., 2009; Bryan et al., 2009). However, as evidenced in the EIB Investment 
Report (2024), the awareness of other types of risks, i.e., transition risks associated to the cost of shifting to a 
low-carbon economy, are linked to firm’s climate change actions. Another factor that is believed to influence 
climate investments is related to energy costs (Kalantzis and Dominguez, 2023; Stucki, 2019) highlights that firms 
with significant energy costs can achieve productivity improvements through green investments. This trend 
suggests that energy costs concerns are likely to drive firms towards adopting more sustainable strategies.   

Income and financial capability significantly influence a firm's decision to invest in climate actions. While 
awareness of climate issues is crucial, the financial ability to afford climate-related investments is just as 
important. Studies, including those by Girma et al. (2008) and Bryan et al. (2009), have shown that firms with 
better access to finance are more motivated to innovate and invest in climate measures. Conversely, limited 
financial access can represent a major barrier to such investments, especially for adaptation (Kalantzis and 
Dominguez, 2023; IMF, 2021). Pressure from various stakeholders, including governments, citizens, and 
employees, plays a crucial role in driving firms towards greener investment strategies (Cadez et al., 2018). 
Regulatory bodies are particularly influential in driving corporate climate strategies as demonstrated by Damert 
et al. (2017) and Yunus (2017). Additionally, also the general public is becoming increasingly pivotal in advocating 
for climate change actions (Hjelmqvist, 2020), driving businesses to adopt more environmentally friendly 
practices in response to societal pressure.  

The EIB Investment Report (2023) recognizes the key role of public funds in driving firms' climate investments, 
especially in vulnerable regions and sectors. In particular, EU funds significantly impact firms' adaptation 
investments, providing both financial support and a comprehensive framework to enhance adaptation 



Literature review| 3 

strategies. Several studies in the literature also acknowledge the influence of external conditions, including 
economic and institutional frameworks, local governance quality, and technological diffusion, on shaping firms' 
investment decisions (see for example Yarrow and Chen, 2023; Siedschlag and Yan, 2021; Hrovatin et al., 2016; 
Cagno et al., 2013; Montalvo Corral 2003). This suggests that firms in more prosperous, stable, and innovative 
regions might be better positioned to undertake substantial climate-related investments. Moreover, the 
literature focusing on climate change studies has been increasingly recognizing the importance of analysing 
spatial spillover (or indirect) effects for designing effective climate change policies. Siedschlag and Yan (2021) 
for instance revealed that companies in the same industry or region significantly influence each other in terms 
of climate investment choices. This finding highlights the powerful role of spillover effects in shaping corporate 
environmental strategies and thus the need to delve deeper into these dynamics to formulate targeted policies 
and strategies that effectively promote and support climate investment decisions across various industries and 
regions. 

2.2 Regional spillover effects in climate change studies 
As climate change research evolves, there is a growing need to examine not only direct impacts but also spatial 
spillover effects to extensively capture the broader implications of climate change actions. Previous scholars in 
regional science posited that spatial dependence affects the economic behaviour of neighbouring regions 
(Elhorst, 2003). An emerging stream of literature investigates spillover effects in the adoption rates of clean 
technologies, particularly photovoltaic (PV) systems. One part of this research focuses on the role of 
geographical similarities (like global solar radiation) on PV diffusion, that can lead to the formation of “solar 
clusters” between neighbouring regions (Schaffer and Brun, 2015). Peer effects, also known as imitation 
behaviours, are often cited as determinants of investment in PV systems (Robinson and Ra, 2015; Bollinger and 
Gillingham, 2012). The existence of skilled labour clusters could also drive cross-regional spillovers in terms of 
knowledge diffusion (Schaffer and Brun, 2015), positively impacting PV adoption in neighbouring areas. The 
application of spatial econometric techniques in climate change literature is proving instrumental in more 
accurately identifying the magnitude of spillover effects. This methodological advancement allows for a deeper 
understanding of region-specific effects of climate change (Batabyal and Folmer, 2020). This literature, including 
works by Dharshing (2017) and Balta-Okzan (2015), observes a tendency for PV adoption rates to clustering and 
confirms the existence of spatial agglomeration. 

Another body of literature focuses on spillover effects linked to the influential factors of energy efficiency, 
especially in the Chinese context. Du et al. (2016) and Ma et al. (2022), using spatial autoregressive techniques, 
observe evidence of spatial diffusion of energy efficiency across provinces, as energy efficiency improvements 
in each province tend to spill over to adjacent provinces. Similarly, Noonan et al. (2013), reveal analogous 
mechanics also in the residential sector in the US, highlighting the presence of "contagion" effects in the 
adoption of energy-efficient systems in neighbourhoods, indicating a pattern of spatial dependence. Direct and 
indirect effects do not always align, as illustrated by Wu et al. (2020) within the agricultural sector. While 
agricultural industrial agglomeration positively influences local energy efficiency directly, it paradoxically leads 
to negative spillovers. Key production factors like capital and technology tend to migrate to peripheral regions, 
thereby weakening the agricultural energy efficiency in core areas. These findings contribute to highlight the 
complex nature of spillover dynamics, that can diverge with respect to direct effects as showed by Pan et al. 
(2018); the authors studied the relationship between carbon emissions mitigation and energy efficiency and 
found that the direction of direct and indirect effects diverges. While the direct effect is positive, indicating that 
increased mitigation efforts within a region lead to improved energy utilization and innovation, the indirect 
effect is negative, suggesting that mitigation efforts may inadvertently lead to inefficient energy use in 
neighbouring areas. Similar patterns were found by Cheng et al (2023), who studied more broadly the drivers of 
green technologies innovations and found that while import trade and outward foreign direct investment within 
a region can act as catalysts for innovation in adjacent regions, the associated spillover effects tend to be 
negative. 

A notable stream of literature focuses on carbon emissions, particularly in China, analysing spillover effects of 
different factors that may affect air pollution. Several authors found that carbon emissions in China present 
significant spatial agglomeration characteristics, highlighting the importance to capture the increasingly complex 
cross-regional spillover effects (Nan et al., 2022; Wang et al., 2021; Wang, 2020; Zeng et al., 2019; You and Lv, 
2018; Cheng et al., 2013). Interestingly, Wang et al. (2021) observed that provinces with high (low) carbon 
emissions tend to be geographically close to other high-emission (low-emission) provinces. Numerous studies 
have highlighted a variety of spillover effects from different variables, underscoring the complex interplay of 
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factors influencing emission levels across regions. Zeng et al. (20190 revealed that both emission reduction and 
renewable energy policies not only decrease local air pollutant emissions but also affect neighbouring provinces, 
suggesting a cross-regional impact of climate policies. Direct and indirect effects, as we have seen, can also 
diverge in terms of their direction. For instance, You and Lv (2018) found that economic globalization has a 
notably negative indirect effect on CO2 emissions, strong enough to offset its positive direct effect. This leads to 
an overall negative total effect, suggesting that countries surrounded by highly globalized nations experience 
improved environmental quality.  

A growing number of scholars recognize the importance to spatial spillovers in the analysis of climate change 
impact on environmental, economic, and social dimensions. Batabyal and Folmer (2020) acknowledged that 
regional impacts of climate change vary and are often dissimilar across different areas. However, there are few 
studies focusing on regional or spatial dimensions of climate change compared to those concentrating on its 
global aspects. Schleypen et al. (2022) employed spatial econometric tools to assess climate change's impact on 
EU regions' sectoral labour productivity and revealed the existence of significant spillover effects. Similarly, 
Zeenat Fouzia et al. (2019) explored the varied impacts of different climate-related disasters on the US labor 
market, highlighting not only the heterogeneous effects of climate-related disasters but also their related 
temporal and spatial spillover effects. These studies highlight the complex and multifaceted impact of climate 
change on labor markets, emphasizing the necessity for comprehensive, region-specific approaches. 

While the literature on climate change has explored spillover effects related to technology adoption, energy 
efficiency and carbon emissions, with a particular focus on China, there is a wide gap concerning the study of 
cross-regional dynamics in climate change investments, especially in the European context. In Europe, regional 
actions can have significant spillover effects and influence neighbouring regions, underscoring the key role of 
spatial interdependence in policy formulation (Schleypen et al., 2022). Therefore, investigating spillover effects 
related to the adoption of adaptation and mitigation strategies in the EU is crucial to reveal how strategies in 
one region influence neighbouring areas, guiding more effective climate actions. Addressing this gap can provide 
valuable insights into the interconnected nature of climate actions and the collective response required to tackle 
climate change effectively. Hence, in the present work we aim to address this gap, focusing on unveiling how 
regional and neighbours’ choices and actions shape firms' decisions on climate investments. 

3 Data and variables 

3.1 Data 
To evaluate the impact of firm-level characteristics and regional conditions on climate change investments, our 
analysis utilizes cross-sectional data for 215 EU regions. Firm-specific data were collected from the European 
Investment Bank Investment Survey (EIBIS) 2023 and collapsed to the regional (NUTS 2) level to align with our 
spatial econometrics approach. Additionally, we incorporated regional-level control variables, capturing the 
economic and institutional framework, as well as indicators of innovation and carbon emissions. The European 
Investment Bank Investment Survey stands as a unique source of information on investment activities and needs 
of firms within the European Union. Conducted annually since 2016, it encompasses a representative sample of 
over 12,000 firms from various sectors and sizes, ensuring its representativeness at the EU, country, sectoral, 
and firm size levels (Harasztosi et al., 2020). EIBIS primarily focuses on gathering data on firms' investment 
activities, financing requirements, and their responses to climate-related challenges. The latter includes inquiries 
into firms' perceptions of climate risks and opportunities, their strategies for climate change adaptation and 
mitigation, and their investments in green technologies and practices. The survey uses a stratified sampling 
methodology, drawing its sample from the Bureau van Dijk ORBIS database. Table A1 in Annex A describes the 
variables used and presents their main descriptive statistics. 

3.2 Dependent variables 
To investigate our research questions, we construct a set of variables representing green investment strategies 
of EU firms using EIBIS 2023 data: adaptation intensity, mitigation intensity and degree of greenness. At the 
regional level, our study differentiates between specific adaptation and mitigation efforts while also providing a 
comprehensive analysis of climate action measures through the “degree of greenness” variable. Specifically, we 
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compute the three variables, assuming that all mitigation or adaptation measures are equally important, by first 
summing climate measures adopted for each firm, and then we aggregate these sums at the regional NUTS2 
level. This aggregation is weighted based on the value-added reported by the firms, resulting in weighted 
average number of measures for each region. The choice of using value-added weights in aggregating firm-level 
data to the NUTS2 level allows us to highlight the role of economically significant firms in driving regional climate 
investments.1 The variables are described in detail as follows: 

i. Adaptation intensity: weighted (by value added) average number of adaptation measures adopted by firms 
per NUTS2 region:  

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑁𝑈𝑇𝑆2 =
∑ (𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠𝑖 × 𝑉𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑𝑖)

𝑛
𝑖=1

∑ 𝑉𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑𝑖
𝑛
𝑖=1

 

where: 

• Adaptation Measuresi is the sum of adaptation measures (ranging from 0 to 3) adopted by firm i; 

• Value-addedi is the value-added of firm i; 

• n is the number of firms in the NUTS2 region. 

The measures considered for adaptation include: 

o Strategies for changing procedures and/or operations to increase organizational resilience; 
o Technological, engineering, or nature-based solutions to avoid or reduce exposure to climate risks; 
o Insurance products designed to offset climate-related losses, such as parametric insurance. 

ii. Mitigation intensity: weighted (by value added) average number of mitigation measures adopted by firms 
per NUTS2 region.: 

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑁𝑈𝑇𝑆2 =
∑ (𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠𝑖 ×  𝑉𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑𝑖)

𝑛
𝑖=1

∑ 𝑉𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑𝑖
𝑛
𝑖=1

 

where Adaptation Measuresi is the sum of adaptation measures (ranging from 0 to 5) adopted by firm i. 
These measures include: 

o Adoption of new, less polluting business areas and technologies; 
o Improvements in energy efficiency, including heating and cooling systems, and the implementation of 

energy-smart technologies or EMAS; 
o Onsite or offsite renewable energy generation; 
o Initiatives for waste minimization and recycling; 
o Adoption of sustainable transport options, such as fuel-efficient and hybrid/electric vehicles, electric 

rolling stock. 

iii. Degree of Greenness: weighted (by value added) average number of green actions (encompassing both 
adaptation and mitigation measures) adopted by firms within a region: 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑁𝑈𝑇𝑆2 =
∑ (𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠𝑖 × 𝑉𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑𝑖)

𝑛
𝑖=1

∑ 𝑉𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑𝑖
𝑛
𝑖=1

 

where Total Measuresi is the sum of adaptation and mitigation measures adopted by firm I (ranging from 0 
to 8). The degree of greenness variable offers a more comprehensive understanding of firms' overall 
engagement in climate action. In fact, while adaptation and mitigation address different aspects of climate 
response, the degree of greenness allows for an assessment of overall environmental commitment and 
actions by firms, encompassing both climate strategies. 

Then, to facilitate the interpretability and comparability of our findings across regions, we normalized our 
aggregated indicators using the min-max method, followed by a logarithmic transformation. This approach 
allowed us to standardize the data across regions, converting them into proportions that range from 0 to 1 
(where 1 represents the full adoption of all available measures), while also handling potential skewness in the 
distribution of the indicators. Figure A in Appendix A displays box plots for the three main outcome variables. 

                                                                 

1  More information about the estimations of the weighting scheme can be found at Normal dot (Rev02 January 2009) (eib.org). 

https://www.eib.org/attachments/survey/eibis-methodology-report-en.pdf
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3.3 Explanatory variables 
In our analysis, the explanatory variables are collected from EIBIS 2023 and can be summarized into two main 
factors: i) the complementarity between mitigation and adaptation investments, and ii) firm characteristics and 
perceptions. Further, we also include a set of iii) regional level characteristics, whose data are retrieved from 
European Commission datasets. 

Complementarity between Mitigation and Adaptation Investments 

Capturing the complementarity between adaptation and mitigation in climate action is crucial because it allows 
for a comprehensive understanding of how these strategies can be synergically implemented to enhance climate 
resilience in firms. Adaptation strategies, aimed at reducing vulnerability to climate change impacts, can be more 
effective when combined with mitigation efforts and vice-versa, as also emerged in the literature recognizing 
the complementarity between the two strategies (see for example Srivastava et al., 2023; Landauer et al. 2019; 
Landauer et al., 2015; Dang et al., 2003). Hence, to explore the interplay between mitigation and adaptation, 
our approach involves using one of these measures as a predictor of the other in our analysis. Specifically, when 
examining adaptation intensity as dependent variable, we use the previous year's mitigation intensity as an 
explanatory variable, and vice versa. Using previous years data helps in mitigating potential endogeneity issues. 
It is important to note that both mitigation and adaptation intensities related to previous year are calculated as 
our main dependent variables, using weighted aggregation and log transformation. 

Firm Characteristics and Perceptions 

Our analysis also includes a set of variables representing the regional share of firms with specific characteristics 
and perceptions. These variables, originally dichotomous at the firm level, have been aggregated to the regional 
level using weights based on firms’ added value. They include the share of firms at the regional level: i) for whom 
the impact of climate change (e.g., extreme weather events or changes in weather patterns) is a major concern, 
ii) that view the transition to stricter climate standards and regulations as a significant risk, iii) for whom energy 
costs are a major obstacle to investment activities, iv) that consider access to finance a major barrier to their 
investment activities, v) using a formal strategic business monitoring system to compare current performance 
against strategic key performance indicators, vi) that set and monitor targets for their own GHG emissions.  

These variables provide a nuanced view of the regional business environment, highlighting how various firm-
level factors and perceptions contribute to climate investment strategies. Previous literature supports the 
selection of our explanatory variables, demonstrating a clear link between these factors and firms' climate 
investment decisions (see for example Kalantzis and Dominguez, 2023; Kalantzis et al., 2021; Stucki, 2019; 
Hoffman et al., 2009; Bryan et al., 2009). 

Regional characteristics 

In our analysis, we incorporate several regional-level variables to account for broader economic and 
environmental factors that could influence climate investments, as also demonstrated in the literature (Yarrow 
and Chen, 2023; Siedschlag and Yan, 2021; Hrovatin et al., 2016; Cagno et al., 2013; Montalvo Corral 2003). 
These characteristics, chosen for their relevance and robustness, include the following variables:  

a) Basic Framework: this variable is a sub-index of the Regional Competitiveness Index (RCI) developed by the 
DG Regional and Urban Policies of the European Commission (2022). This NUTS2 level indicator encompasses 
five pillars: institutions, macroeconomic stability, infrastructures, health, and basic education. These factors 
are key drivers in all types of economies and provide a comprehensive view of the foundational aspects that 
support regional development and competitiveness. 

b) Innovation: to capture regional innovation and knowledge creation within firms, we use data from The 
Regional Innovation Scoreboard 2023 (European Commission, 2023), specifically the indicator of R&D 
expenditures in the business sector, expressed as a percentage of GDP. R&D investment serves as a key 
indicator of a region's innovation potential, representing how firms are active in developing new knowledge 
and technologies. 

c) EU funds: As we have seen before, the EIB's Investment Survey (2023) acknowledges the crucial role of public 
funding in propelling climate investments by firms. Hence, we included a set of variables capturing EU 
financing for adaptation and mitigation (or both) projects, related to the 2014-2020 European Structural and 
Investment Funds (ESIF) (European Commission, 2023). The variables are expressed in billions of euros (and 
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transformed in log to control for outliers) and provides insight into the level of EU support for climate-related 
projects in each region. 

d) CO2 Emissions: to capture regional environmental factors, we use data on total GHG emissions (in kton 
CO2eq) at NUTS2 level from the Emissions Database for Global Atmospheric Research (EDGAR) (European 
Commission, Joint Research Centre, 2023). We express emissions as a percentage of regional GDP and 
transform them into log to control for outliers, obtaining a measure of the environmental footprint relative 
to economic size. 

4 Methodology 

This study follows a systematic approach to investigate the drivers of firms’ climate investments across EU 
regions, incorporating spatial econometric techniques to account for the spatial dependencies inherent in the 
data. The methodological framework comprises several key steps. First, we begin by assessing whether our 
dependent variables exhibit spatial autocorrelation, which is the tendency for regions to display similar climate 
investment behaviours based on their geographical proximity. Detecting spatial autocorrelation is crucial 
because it indicates that traditional econometric models, such as Ordinary Least Squares (OLS), may yield biased 
or inefficient estimates if spatial dependencies are ignored. Therefore, identifying spatial autocorrelation 
informs the subsequent choice of appropriate spatial econometric models that can accurately capture these 
dependencies. After detecting spatial autocorrelation, we estimate baseline non-spatial models to understand 
the primary drivers of climate investments. These models provide a reference point, helping us to compare the 
results with those obtained from spatial econometric models. Guided by the results of the spatial 
autocorrelation tests, we employ Spatial Autoregressive Models (SAR) and Spatial Error Models (SEM) to address 
the issues raised by spatial dependencies. 

4.1 Spatial autocorrelation test 
We applied a spatial autocorrelation analysis to assess whether our dependent variables present spatial 
agglomeration characteristics. Detecting spatial autocorrelation is crucial, as it necessitates the selection of an 
appropriate spatial econometric model to explain the relationships between various factors and the intensity of 
climate change measures adoption. First, Moran’s I test (Moran, 1948) was applied to investigate potential 
spatial autocorrelation. Specifically, Moran’s I is a global indicator of spatial dependence and can be calculated 
as follows:  

𝐼 =
𝑛 ∑ ∑ 𝑤𝑖𝑗(𝑦𝑖 − 𝑦̅)(𝑦𝑗 − 𝑦̅)𝑛

𝑗=1
𝑛
𝑖=1

𝑛 ∑ ∑ 𝑤𝑖𝑗 ∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2𝑛
𝑗=1

𝑛
𝑖=1

 

(1) 

where, n is the number of spatial units; yi and yj represent climate measures (adaptation or mitigation) adoption 
intensity of region i and j; 𝑦̅ is the mean value of y of all regions; wij denotes the element of the ith row and the 
jth column of the spatial weight matrix the spatial weighting matrix. The global Moran’s I index value ranges 
from 1 to -1. A value greater than 0 suggests positive spatial autocorrelation, indicating a tendency for similar 
values to cluster together, while a negative value suggests a spatial pattern of dispersion or divergence across a 
geographical area. 

We also considered local Moran's I index to measure whether the high and low values for local areas tend to 
agglomerate in space and identify local patterns of spatial autocorrelation: 

𝐼𝑖 =
𝑛(𝑦𝑖 − 𝑦̅)

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

∑ 𝑤𝑖𝑗(𝑦𝑖 − 𝑦̅)

𝑛

𝑗=1

 

(2) 
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A positive value of the index indicates that climate measures adoption intensity has a positive spatial 
autocorrelation and presents spatial agglomeration; on the other hand, a negative correlation suggests the 
presence of a spatial pattern where values at a given location are significantly different from their immediate 
neighbours (Anselin, 1995). 

Further, to detect spatial autocorrelation and determine the appropriate spatial econometric model, we employ 
Lagrange Multiplier (LM) tests (Anselin et al., 1996), including the standard LM error (LM-ERR) and LM lag (LM-
LAG) tests, along with their robust variants. Specifically, these tests help identify whether spatial dependence is 
present in the dependent variable (LM-LAG) or in the error term (LM-ERR). The robust versions of these tests 
provide additional accuracy, particularly in the presence of multiple spatial effects or when the standard tests 
provide ambiguous results. Specifically, to select the appropriate model in our analysis we implement by 
Lagrange Multiplier (LM) tests (Anselin et al., 1996). The SAR model is chosen when the LM-LAG test is significant, 
indicating spatial dependence in the dependent variable. In contrast, the SEM model is selected when the LM-
ERR test identifies spatial dependence in the error term, addressing spatially correlated unobserved factors 
without directly modelling regional spillover effects). The choice between SAR and SEM models shapes the 
interpretation of spatial effects in our analysis (Anselin et al., 1998); SAR model emphasizes direct spillover 
effects between regions, making it ideal for studying how climate investment decisions in one region influence 
neighboring regions. In contrast, SEM model focuses on capturing unobserved spatial processes that might be 
driving correlated errors across regions. 

4.2 Spatial econometric models 
Firstly, we construct non-spatial cross-section models to analyse the drivers of firms’ climate investments, as 
follows: 

ln 𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑖 = 𝛼0 + 𝛼1 ln 𝑎𝑑𝑎𝑝𝑡(𝑡 − 1)𝑖 + 𝛼2 ln 𝑚𝑖𝑡𝑖𝑔(𝑡 − 1)𝑖 +  𝛼3𝐶𝑖 + 𝛼4𝑋𝑖 + 𝜀𝑖 

(3) 

ln 𝑚𝑖𝑡𝑖𝑔𝑖 = 𝛽0 + 𝛽1 ln 𝑎𝑑𝑎𝑝𝑡(𝑡 − 1)𝑖 + 𝛽2𝐶𝑖 + 𝛽3𝑋𝑖 + 𝜀𝑖 

(4) 

ln 𝑎𝑑𝑎𝑝𝑡𝑖 = 𝜃0 + 𝜃1 ln 𝑚𝑖𝑡𝑖𝑔(𝑡 − 1)𝑖 + 𝜃3𝐶𝑖 + 𝜃4𝑋𝑖 + 𝜀𝑖 

(5) 

where i represent the region; 𝛼 denotes the intercept term; ln 𝑎𝑑𝑎𝑝𝑡𝑖 and ln 𝑚𝑖𝑡𝑖𝑔𝑖 represent the outcome 
variables of region i and ln 𝑎𝑑𝑎𝑝𝑡𝑖(𝑡 − 1) and ln 𝑚𝑖𝑡𝑖𝑔𝑖(𝑡 − 1) the explanatory variables at time t-1 of region i; 
Ci is a vector of explanatory variables representing firms’ perceptions and characteristics; Xi is a vector including 
the regional characteristics and  𝜀𝑖 is the error term. 

The employment of spatial econometric models in our study is justified by the presence of spatial 
autocorrelation, which suggests that climate investment decisions by firms in one region are influenced by those 
in neighbouring regions. However, the application of spatial econometric techniques to survey data introduces 
specific challenges due to inherent limitations; these include potential biases that may arise from the so-called 
“size effect” and the omission of spatially correlated units (Lardeux and Merly-Alpa, 2018). Despite these 
challenges, our methodology is designed to counteract these limitations by utilizing a robust and representative 
sample size. This approach ensures that our models capture the intricate spatial dynamics at play, providing 
meaningful insights into the regional interdependencies that shape firms' climate investment behaviours across 
the Europe. 

Anselin et al. (2008) propose two approaches for addressing spatial autocorrelation: firstly, by incorporating 
spatial dependence by adding a spatially lagged term of the dependent variable, as in the Spatial Autoregressive 
Model (SAR); secondly, by integrating a spatially correlated component into the error term, typical of the Spatial 
Error Model (SEM). Hence, upon establishing the presence of spatial autocorrelation, we proceed with the 
implementation of SAR and SEM models. Then, the appropriate model is selected according to the results of the 
LM tests. 
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Specifically, the SAR model assumes that the value of the dependent variable in one region affects the 
dependent variable in a proximate region and thus captures the spatial dependency in the dependent variable 
itself. The SAR model can be specified as follows: 

ln 𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑖 = 𝛼0 + ρ ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

ln 𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑖 + 𝛼1 ln 𝑎𝑑𝑎𝑝𝑡(𝑡 − 1)𝑖 + 𝛼2ln 𝑚𝑖𝑡𝑖𝑔(𝑡 − 1)𝑖 +  𝛼3𝐶𝑖 + 𝛼4𝑋𝑖

+ 𝑢𝑖 + 𝜀𝑖 

(6) 

ln 𝑎𝑑𝑎𝑝𝑡𝑖 = 𝛽0 + ρ ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

ln 𝑎𝑑𝑎𝑝𝑡𝑖 + 𝛽1 ln 𝑚𝑖𝑡𝑖𝑔(𝑡 − 1)𝑖 + 𝛽2𝐶𝑖 + 𝛽3𝑋𝑖 + 𝑢𝑖 + 𝜀𝑖 

(7) 

ln 𝑚𝑖𝑡𝑖𝑔𝑖 = 𝜃0 + ρ ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

ln 𝑚𝑖𝑡𝑖𝑔𝑖 + 𝜃1 ln 𝑎𝑑𝑎𝑝𝑡(𝑡 − 1)𝑖 + 𝜃2𝐶𝑖 + 𝜃3𝑋𝑖 + 𝑢𝑖 + 𝜀𝑖 

(8) 

where ρ represents the spatial autoregressive coefficient (a positive and statistically significant value of ρ implies 
that the levels of mitigation or adaptation measures adoption tend to spill over and have a positive effect on 
climates investments in neighbouring regions); 𝑤𝑖𝑗 is the spatial weight matrix; within the right-end side of the 

equation, ln 𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑖, ln 𝑎𝑑𝑎𝑝𝑡𝑖 and ln 𝑚𝑖𝑡𝑖𝑔𝑖 represent the spatial lag terms, denoting the interaction 
effect of the related dependent variable in a given region with the same dependent variable in neighbouring 
regions; μi represents a spatial specific effect; all the other parameters are described above. 

In contrast, the SEM is given by: 

ln 𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑖 = 𝛼0 + 𝛼1 ln 𝑎𝑑𝑎𝑝𝑡𝑖(𝑡 − 1) + 𝛼2 ln 𝑚𝑖𝑡𝑖𝑔𝑖(𝑡 − 1) + 𝛼3𝐶𝑖 + 𝛼4𝑋𝑖 + 𝑢𝑖 + 𝜑𝑖 

(9) 

ln 𝑎𝑑𝑎𝑝𝑡𝑖 = 𝛽0 + 𝛽1 ln 𝑚𝑖𝑡𝑖𝑔𝑖 (𝑡 − 1) + 𝛽2𝐶𝑖 + 𝛽3𝑋𝑖 + 𝑢𝑖 + 𝜑𝑖 

(10) 

ln 𝑚𝑖𝑡𝑖𝑔𝑖 = 𝜃0 + 𝜃1 ln 𝑎𝑑𝑎𝑝𝑡𝑖 (𝑡 − 1) + 𝜃2𝐶𝑖 + 𝜃3𝑋𝑖 + 𝑢𝑖 + 𝜑𝑖 

(11) 

𝜑𝑖 = 𝜆 ∑ 𝑤𝑖𝑗𝜑𝑖 +

𝑛

𝑗=1

𝜀𝑖 

(12) 

where 𝜑𝑖 represents the error component that includes the spatial autocorrelation effect with λ being the 
coefficient of spatial autocorrelation in the error term. 

The construction of the spatial weighting matrix is a pivotal aspect of these models. For our analysis, based on 
Dharshing (2017), we utilize a row-standardized contiguity spatial weighting matrix. This matrix is based on 
geographical contiguity, where weights are assigned to neighbouring regions based on their shared borders or 
distances. In a row-standardized weights matrix (W), the elements of W are adjusted so that the sum of the 
weights in each row equals unity. Row standardization ensures that the influence of each spatial unit is 

proportionally distributed across its neighbours. Formally, let 𝑊 = [𝑤𝑖𝑗] be an n x n spatial weights matrix, 
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where 𝑤𝑖𝑗 represents the weight from spatial unit i to spatial unit j. The row-standardization process transforms 

W into W* (a row-standardized matrix), where each element 𝑤𝑖𝑗 is given by: 

𝑤∗
𝑖𝑗 =

𝑤𝑖𝑗

∑ 𝑤𝑖𝑘
𝑛
𝑘=1

 

(13) 

where ∑ 𝑤𝑖𝑘
𝑛
𝑘=1  is the sum of the weights in the ith row of the original weight matrix W. 

5 Results 

5.1 Spatial correlation analysis  
Figure 1 visually depicts the regional distribution of climate measures adoption intensity, also considering 
individual measures (adaptation and mitigation) revealing distinct clusters of regions that are more or less active 
in addressing climate change. The existence of these clusters suggests that regions geographically proximate to 
each other tend to exhibit similar patterns in the intensity of climate change measure adoption. In other words, 
when a region exhibits a higher or lower level of climate change measures adoption, neighbouring regions' firms 
are more likely to make similar decisions. This underscores the potential presence of spatial dependence in the 
data.  
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Figure 1. Firms’ degree of greenness, adaptation intensity and mitigation intensity, by NUTS 2 region and quartile 

Degree of greenness Adaptation intensity 

 

  

Mitigation intensity 

 

 

Source: authors’ elaboration based on EIBIS (2023). 

 

Spatial autocorrelation in the dependent variables has been first tested performing Morans’ by using formula 
(1). The results are represented in Table 2. The test statistics for all variables are significant at 1%, suggesting 
the presence of spatial autocorrelation and thus the inappropriateness of OLS regressions. In such cases, the 
OLS model, which assumes independence among observations, may lead to biased and inconsistent estimates 
(Anselin and Bera, 1998). Therefore, employing spatial regression techniques is more appropriate in this context 
as they explicitly account for spatial dependencies, providing a more accurate representation of the 
determinants of firms' climate investment intensity. 
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Table 1. Moran’s I results  

 Moran’s I Z(I) P-value 

Degree of greenness 0.383 7.947 0.000 

Adaptation intensity 0.253 5.295 0.000 

Mitigation intensity 0.430 8.904 0.000 

 

The next step is to explore the local spatial correlations. We separately use the Moran scatterplots and the Local 

Indication of Spatial Association (LISA) figure to examine the existence of local spatial correlation of adoption 

intensity. Figure 2 reports the Moran scatterplots, where the blue line is the regression line of global Moran’s I 

test, and its slope represents the test statistic. Every dot in the graph represents the regional adoption intensity 

of climate change measures. The vertical axis represents the spatially lagged variable and the horizontal axis the 

original variable. In a Moran scatterplot, observations can indeed be spread across all four quadrants, 

Specifically, quadrant 1 (high-high, i.e., high values regions surrounded by other areas with high values) and 3 

(low-low) represent the positive spatial autocorrelation of the observed values, while quadrants 2 (high-low) 

and 4 (low-high) represent the negative spatial autocorrelation (i.e., spatial outliers). For both variables, most 

regions are in quadrants 1 and 3, with only a few in quadrants 2 and 4. This indicates a tendency for neighbouring 

areas to engage in similar levels of climate investment (positive spatial autocorrelation) and thus create clusters. 

However, especially for adaptation, we also have evidence of dissimilar values at neighbouring locations 

(negative spatial autocorrelation). This heterogeneity may suggest that the processes influencing the spatial 

distribution of the variables are not uniform across the study area. Different regions might be affected by 

different factors, or the same factor might have varying impacts in different locations. 
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Figure 2. Moran scatterplots  

Degree of greenness 

Moran’s I = 0.383 

Adaptation intensity 

Moran’s I = 0.253 

  

Mitigation intensity 

Moran’s I = 0.430 

 

 

  

The local Moran index of our dependent variables is calculated using formula (2) and illustrated using LISA (Local 
Indicators of Spatial Association) maps (Figure 3). The LISA maps reveal distinct patterns of local spatial 
autocorrelation across the European regions under study. Notably, the map illustrates several clusters where 
regional climate investments are significantly above (HH) or below the average (LL), providing a nuanced 
understanding of the spatial dynamics at play. Specifically, for both adaptation and mitigation, HH clusters are 
mainly concentrated in Northern, Central and Eastern Europe. These areas are likely to be at the forefront of 
climate mitigation actions, possibly due to strong environmental policies, availability of green technologies, or 
higher public awareness and corporate responsibility towards climate change. The concentration of these 
clusters suggests a regional commitment that could be driven by shared economic or legislative frameworks. 
Interestingly, LL clusters are predominant and spread in different areas of the continent, especially in Southern 
European countries like Italy, Spain, and Greece (for mitigation only). This pattern may reflect areas where 
mitigation efforts are less pronounced, which could be attributable to economic constraints, differing policy 
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priorities, or other regional challenges. Especially for mitigation, the map also reveals the existence of few 
outliers, especially LH clusters, denoting regions where mitigation efforts are lower than their peers.  

 

Figure 3. LISA cluster maps  

Degree of greenness Adaptation intensity 

  

Mitigation intensity 

 

 

Source: authors’ elaboration based on EIBIS (2023). 

5.2 Determinants of firms’ climate investments 
Firstly, we constructed non-spatial OLS models and employed Lagrange Multiplier (LM) tests to determine 
whether a Spatial Autoregressive Model (SAR) or a Spatial Error Model (SEM) is more appropriate to describe 
the data compared to a model without spatial interaction effects (You and Lv, 2018). Both the LM test and its 
robust variants are significant, confirming the presence of spatial dependence and indicating the need for a 
spatial econometric model (Zeng et al., 2019). The detailed results of these tests are reported in Table A2 of 
Annex A. For adaptation, both the LM-error and LM-lag test were also significant, suggesting spatial 
autocorrelation in the dependent variable itself. Given the dual significance of both tests, our decision to choose 
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the SAR model is guided by the study’s primary objective: to capture and analyze the spatial dynamics and 
spillover effects of climate investments across regions. The SAR model is particularly suited for this purpose, as 
it directly models the influence of neighboring regions, thereby providing deeper insights into how investments 
propagate across space. While SEM accounts for spatial dependencies in the error terms, it does not capture 
these spillover effects, which are central to our research focus. This limitation makes the SEM model less suitable 
for our analysis, where understanding the interconnectedness and regional spillover effects is paramount (Vega 
and Elhorst, 2013). Therefore, the SAR model was selected for the empirical analysis.  

Table 2 reports the regression results of SAR models for the three outcome variables. OLS and SEM regression 
results are reported in Table A3 and Table A4 in Appendix A. The indicators ρ and λ measure the total strength 
of spatial dependence between neighbouring regions for SEM and SAR, respectively (Dharshing, 2017). 

Concerning the degree of greenness, SAR is the more appropriate model for our study. The coefficient λ is 0.370 
and significant at 1% level, indicating that the intensity of climate investment has a positive spatial 
agglomeration effect. The results of the regression indicate that both previous year adaptation and mitigation 
intensity influence the current overall investments in climate measures, with adaptation showing a slightly 
stronger coefficient. Furthermore, a higher perception of climate transition risks and energy costs as an obstacle 
to investments a significant and positive relationship with the dependent variable, representing a potential 
enabler for climate-related investments. The existence of strategic and monitoring schemes positively affect 
climate actions and both coefficients are positive and strongly significant. Conversely, financial constraints 
confirm to be a barrier for climate investments. Notably, regional characteristics play a key role in determining 
firms’ choices; the significant and positive value of the coefficient of the basic framework variable suggests the 
crucial role of local conditions for climate investments. EU funds for both adaptation and low-carbon projects 
show a strong positive association with the dependent variable, confirming the pivotal role of financial support 
from public funds. Lastly, CO2 emissions reveal a statistically significant and positive impact on the degree of 
greenness in the EU.  

In our study, the SAR model proves to be the optimal choice for both investigating the drivers of adaptation and 
mitigation investments. The significant λ coefficients for adaptation (0.447) and mitigation (0.445) at the 1% 
level indicate a positive spatial agglomeration effect for both types of investments, in line with Moran's results. 
Interestingly, the mitigation regression reveals a significant positive association between adaptation 
investments and mitigation choices. However, the adaptation model does not indicate a similar 
complementarity between these two types of investments (the related coefficient is not significant). Findings 
show that for both adaptation and mitigation, firms' characteristics such as risk perception, financial constraints, 
and monitoring systems significantly impact investment intensity. Specifically, awareness of physical risks boosts 
adaptation investments, while higher perception of climate transition risks enhances mitigation efforts, 
underscoring the crucial role of risk awareness in climate action. Financial constraints negatively impact both 
adaptation and mitigation investments, highlighting economic barriers in climate change response. The presence 
of strategic monitoring and emission targets positively influences investment in both areas. Moreover, regional 
characteristics including basic framework and innovation, along with EU funds, show a strong positive 
association with mitigation investment investments, in contrast, for adaptation investments only EU adaptation 
funds play a role albeit with a less robust level of significance.  
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Table 2. SAR regression results 
 

Degree of 
greenness 

Adaptation 
intensity 

Mitigation 
intensity 

ρ 0.370*** 
(0.067) 

0.447*** 
(0.078) 

0.445*** 
(0.062) 

Adaptation intensity (t-1) (in logs) 0.156*** 
(0.052) 

 0.232*** 
(0.056) 

Mitigation intensity (t-1) (logs) 0.137*** 
(0.044) 

0.015 
(0.056) 

 

Physical risk -0.008 
(0.027) 

0.115*** 
(0.038) 

 

Transition risk 0.058*** 
(0.021) 

 0.103*** 
(0.026) 

Energy costs 0.053*** 
(0.019) 

0.015 
(0.027) 

0.064*** 
(0.023) 

Financial constraints -0.049* 
(0.029) 

-0.080* 
(0.042) 

-0.061* 
(0.035) 

Strategic monitoring 0.067*** 
(0.020) 

0.065** 
(0.029) 

0.076*** 
(0.025) 

Climate targets 0.079*** 
(0.021) 

0.070** 
(0.030) 

0.087*** 
(0.026) 

Basic framework 0.029 
(0.023) 

0.019 
(0.031) 

0.082*** 
(0.028) 

Innovation 0.026 
(0.021) 

0.019 
(0.032) 

0.044* 
(0.027) 

EU adaptation funds (in logs)  0.028* 
(0.016) 

 

EU low-carbon funds (in logs)   0.052*** 
(0.010) 

EU adaptation and low-carbon funds (in logs) 0.026*** 
(0.007) 

  

CO2 (in logs) 0.042** 
(0.020) 

0.046 
(0.028) 

0.037 
(0.025) 

Intercept -0.025 
(0.026) 

-0.041 
(0.034) 

-0.028 
(0.031) 

N 215 215 215 

R2 0.516 0.113 0.491 

Note: Standard errors are in parenthesis. *, **, and *** denote statistical significance at the 10%, 5%, and 1%, 

respectively. 

 

5.3  Decomposition of effects  
The coefficients estimated by the SAR model alone cannot fully capture the spillover effects of the independent 
variables on the intensity of climate investments. To address this, we also estimate decomposed effects, which 
are presented in Tables 3-5 for the degree of greenness, adaptation, and mitigation dependent variables. Direct 
effects represent the immediate impact of an explanatory variable on the dependent variable within the same 
region. For example, an increase in climate risk awareness in one region directly boosts the intensity of climate 
investments within that region. Indirect effects, on the other hand, reflect the spillover impact that changes in 
an explanatory variable in one region have on the dependent variable in neighbouring regions (LeSage and Pace, 
2009). These effects are particularly important as they reveal how regional dynamics and firm-level actions can 
influence peers in neighbouring areas. For instance, if a region enhances its adaptation strategies, neighbouring 
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regions might also intensify their climate investments due to peer influence, shared environmental challenges, 
or competition. Total effects combine both direct and indirect impacts, offering a comprehensive view of how 
an explanatory variable influences climate investments across the entire network of regions. 

Overall results show that while direct effects are stronger, also the indirect effects are substantial, especially for 
firms’ characteristics. Further, most variables that were significant in the previous model exhibit spillover effects, 
indicating that changes in an explanatory variable within one region, holding all other variables constant, can 
significantly impact the climate investment intensity of neighbouring regions. 

The analysis for the degree of greenness shows that the direct, indirect, and total effects of firms’ characteristics 
are highly significant, except for financial constraints whose impacts seems to be confined to local settings 
without notable spillovers. Notably, the perception of transition risks, the burden of energy costs and financial 
constraints, and having in place both strategic and emissions monitoring systems lead to an increase in climate 
investments both locally and in adjacent regions, with other conditions being constant. Notably, EU funds for 
adaptation and low-carbon investments show both direct and indirect positive effects. Hence, all these factors 
collectively influence not only local climate activities but also potentially enable neighbouring regions to elevate 
their climate strategies. 

The decomposition analysis for both adaptation and mitigation investments reveal significant direct, indirect, 
and total effects of various firm and regional characteristics, with some notable differences. For adaptation, 
physical risks, financial constraints, strategic monitoring, and climate targets exhibit significant indirect effects, 
suggesting that these factors enhance adaptation investments locally and in neighbouring regions. However, it's 
important to note that spillover effects for adaptation are generally weaker compared to those observed for 
mitigation. Additionally, the coefficient for EU adaptation funds coefficient shows a significant impact only in its 
direct effect, indicating a localized influence without considerable spillovers.  

For mitigation, similar patterns emerge with transition risks, energy costs, and strategic measures showing 
significant effects in all categories, increasing mitigation efforts locally and in adjacent regions. In contrast, 
financial constraints again display only direct effects, reinforcing the idea that financial challenges 
predominantly affect local investments. Notably, adaptation investments positively influence mitigation efforts, 
both within the same region and in adjacent areas. Regional characteristics, except for CO2 emissions, 
demonstrate both direct and indirect positive influences on mitigation activities; basic framework conditions, 
innovation, and EU funds for low-carbon investments collectively strengthen local mitigation efforts and 
encourage neighbouring regions to enhance their mitigation strategies, underscoring the interconnected nature 
of regional climate actions. 
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Table 3. Direct, indirect, and total effects for the degree of greenness 

 Direct effect Indirect effect Total effect 

Adaptation intensity (t-1) (in logs) 0.162*** 

(0.054) 

0.086** 

(0.038) 

0.248*** 

(0.087) 

Mitigation intensity (t-1) (in logs) 0.143*** 

(0.045) 

0.075*** 

(0.028) 

0.218*** 

(0.069) 

Physical risk  -0.009 

(0.028) 

-0.005 

(0.015) 

-0.013 

(0.043) 

Transition risk 0.061*** 

(0.022) 

0.032** 

(0.015) 

0.093*** 

(0.036) 

Energy costs 0.055*** 

(0.019) 

0.029** 

(0.013) 

0.083*** 

(0.031) 

Financial constraints -0.051* 

(0.030) 

-0.027 

(0.017) 

-0.078* 

(0.046) 

Strategic monitoring 0.069*** 

(0.021) 

0.037** 

(0.015) 

0.106*** 

(0.034) 

Climate targets 0.082*** 

(0.022) 

0.043*** 

(0.016) 

0.125*** 

(0.035) 

Basic framework 0.030 

(0.024) 

0.016 

(0.013) 

0.045 

(0.036) 

Innovation 0.027 

(0.022) 

0.014 

(0.012) 

0.041 

(0.034) 

EU adaptation and low-carbon funds (in logs) 0.027*** 

(0.008) 

0.014*** 

(0.005) 

0.041*** 

(0.011) 

CO2 (in logs) 0.044** 

(0.021) 

0.023* 

(0.012) 

0.067** 

(0.032) 

Note: Standard errors are in parenthesis. *, **, and *** denote statistical significance at the 10%, 5%, and 1%, 

respectively. 
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Table 4. Direct, indirect, and total effects for adaptation intensity 

 Direct effect Indirect effect Total effect 

Mitigation intensity (t-1) (in logs) 0.016 

(0.059) 

0.011 

(0.042) 

0.026 

(0.101) 

Physical risk 0.121*** 

(0.040) 

0.086** 

(0.038) 

0.207*** 

(0.074) 

Energy costs 0.016 

(0.029) 

0.011 

(0.021) 

0.027 

(0.050) 

Financial constraints -0.085* 

(0.044) 

-0.060* 

(0.036) 

-0.145* 

(0.078) 

Strategic monitoring 0.069** 

(0.031) 

0.049* 

(0.026) 

0.118** 

(0.055) 

Climate targets 0.074** 

(0.032) 

0.052* 

(0.029) 

0.126** 

(0.059) 

Basic framework 0.020 

(0.033) 

0.014 

(0.024) 

0.034 

(0.057) 

Innovation 0.021 

(0.033) 

0.015 

(0.023) 

0.035 

(0.057) 

EU adaptation funds (in logs) 0.030* 

(0.017) 

0.021 

(0.013) 

0.051* 

(0.029) 

CO2 (in logs) 0.049 

(0.030) 

0.034 

(0.023) 

0.083 

(0.052) 

Note: Standard errors are in parenthesis. *, **, and *** denote statistical significance at the 10%, 5%, and 1%, 

respectively.   
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Table 5. Direct, indirect, and total effects for mitigation intensity 

 Direct effect Indirect effect Total effect 

Adaptation intensity (t-1) (in logs) 0.246*** 

(0.059) 

0.172*** 

(0.057) 

0.418*** 

(0.107) 

Transition risk 0.109*** 

(0.028) 

0.076*** 

(0.027) 

0.186*** 

(0.052) 

Energy costs 0.067*** 

(0.025) 

0.047** 

(0.021) 

0.115*** 

(0.044) 

Financial constraints -0.064* 

(0.037) 

-0.045 

(0.028) 

-0.110* 

(0.063) 

Strategic monitoring 0.081*** 

(0.027) 

0.057** 

(0.024) 

0.137*** 

(0.048) 

Climate targets 0.092*** 

(0.028) 

0.065*** 

(0.024) 

0.157*** 

(0.048) 

Basic framework 0.087*** 

(0.029) 

0.061*** 

(0.022) 

0.147*** 

(0.048) 

Innovation 0.047* 

(0.028) 

0.033 

(0.021) 

0.080* 

(0.048) 

EU low-carbon funds (in logs) 0.055*** 

(0.011) 

0.039*** 

(0.010) 

0.094*** 

(0.018) 

CO2 (in logs) 0.039 

(0.027) 

0.028 

(0.020) 

0.067 

(0.046) 

Note: Standard errors are in parenthesis. *, **, and *** denote statistical significance at the 10%, 5%, and 1%, 

respectively. 

6 Discussion 

The spatial analysis reveals the presence of spatial dependence in climate investments across EU regions at the 
NUTS2 level, highlighting the interconnectedness of firms' climate measure choices in neighbouring areas. 
Notably, regions with higher (lower) levels of climate measure adoption tend to be geographically proximate. 
This underscores the importance of considering regional nuances when formulating and implementing climate 
policies. These insights lay a critical groundwork for deeper exploration into the drivers of regional climate 
initiatives and the opportunities for policy harmonization to amplify climate adaptation and mitigation 
strategies. 

Specifically, firms’ own strategies affect peers’ decision to invest in climate measures, including both adaptation 
and mitigation. For example, setting and monitoring targets for GHG emissions influences not only local 
investment decision, but also amplifies collective environmental efforts across regions. This is particularly true 
in interconnected regional markets where firms are keenly observant of their peers' strategies. Similarly, climate 
risk awareness significantly influences firms' climate investment decisions, in line with previous findings 
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(Hoffman et al., 2009; Bryan et al., 2009; EIB 2023). Awareness not only drives local action but also spills over to 
neighbouring regions, underscoring how shared environmental challenges can lead to collaborative efforts and 
interconnected investment strategies across regions. In our analysis, the role of energy costs emerges as a key 
factor driving firms’ climate investment decisions, especially in the context of mitigation and overall green 
initiatives. Regions where firms face higher energy costs not only show a higher adoption intensity of climate 
measures but also exhibit spillover effects on neighbouring regions; this can be attributed to demonstration 
effects (e.g., observing the impacts achieved in abating energy costs, firms in adjacent areas may be encouraged 
to replicate a similar strategy) or the development of new, more energy-efficient technologies that spill over to 
neighbouring regions. Conversely, financial constraints negatively influence investment decisions, as also 
confirmed by Girma et al., 2008 and Bryan et al., 2009, highlighting economic disparities in addressing climate 
change. Further, financial barriers can have cross-regional implications on firms' engagement in adaptation 
actions. When firms face financial constraints, their peers in adjacent regions might perceive similar investments 
as risky or unfeasible, leading to a cautious approach towards climate initiatives. This phenomenon underscores 
the interconnected nature of regional economies and the importance of addressing financial barriers 
comprehensively to foster a collective move towards enhanced climate resilience. 

Regional-level characteristics also play a key role in shaping climate investments, especially mitigation, with 
indirect impacts to neighbouring areas. Improved conditions in a region, such as a robust economic and 
institutional framework, not only foster a supportive environment for local mitigation initiatives but can also 
lead to positive spillover effects in adjacent regions. This influence can be exerted through peer effects (Manski, 
1993), sharing of resources (including skills and knowledge) and best practices, and market dynamics (for 
example, if a region invests heavily in low-carbon technologies, it may create a market for these technologies 
that extends beyond its borders). Innovation, while significant only for mitigation investments, still indicates 
positive direct and indirect impact. Innovation is expected to play a crucial role in driving climate investments 
by introducing new technologies and processes that make climate actions more effective (Apostu et al., 2023). 
Notably, the role of EU funds is key in promoting both adaptation and mitigation investments, underlining the 
importance of policy-driven financial support. For mitigation this trend also extends beyond the immediate 
regional recipients, encouraging neighbouring regions to keep pace and align with emerging climate standards. 
When considering the regional degree of greenness, CO2 emissions emerge as a significant factor with positive 
spillover effects. This suggests that regions with higher CO2 emissions may be more inclined to adopt climate 
measures, possibly as a response to greater environmental pressures or regulatory measures aimed at reducing 
emissions (Seroka-Stolka, 2023), also influencing adjacent areas.  

Importantly, results revealed an interesting interplay between adaptation and mitigation actions when 
promoting climate action among firms. This is in line with both our expectations and the existing literature 
(Srivastava et al., 2022; Landauer et al. 2015; Dang et al., 2013). Notably, firms having adaptation strategies in 
place are more likely to implement mitigation measures, but not vice versa. This can underscore that firms 
focusing on adaptation measures might encounter increased obstacles, especially of a financial nature (IMF, 
2021), that can exacerbate when trying to invest in mitigation strategies. The complementarity between 
adaptation and mitigation also extends to neighbouring regions through spillover effects, amplifying collective 
response to climate change. This underscores the importance to encourage synergies and co-benefits between 
adaptation and mitigation measures, addressing at the same time trade-offs and conflicts that may arise 
between them (Landauer et al., 2019).  

7 Conclusions and policy implications 

Our study shows that firms’ climate investment decisions across Europe depend on regional dynamics. This 
means that we need to understand how climate actions are connected among firms and how space matters for 
policy making. We find that regions differ in their climate engagement, so a one-size-fits-all approach may not 
work. Instead, we need to design strategies that suit the specific features and needs of each region to boost the 
impact of climate investments. 

Building on the spatial econometric approach, our analysis reveals significant spatial dependence in firms' 
climate investment decisions across EU regions, underscoring at the same time the interconnected nature of 
adaptation and mitigation efforts. Results underscore the existence of regional clusters in climate action and 
highlights the importance of tailored policy interventions that leverage regional spillover effects, boosting 
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collective climate resilience. Moreover, our study reveals that both firm-level attributes, such as risk perception, 
and broader regional factors, including EU funds, play pivotal roles in shaping climate investment choices. These 
insights not only highlight the direct impact of firms’ strategies and regional characteristics on climate action but 
also demonstrate their influence on the climate investment decisions of neighbouring firms, suggesting a 
complex web of interdependencies that must be navigated to foster more effective and comprehensive climate 
policies.  

To speed up the adoption of climate-friendly practices we suggest focusing on regions with low engagement or 
high spillover potential, and by using existing regional clusters of active firms as examples and sources of 
learning. We also need to think about how adaptation and mitigation actions work together to avoid conflicts 
and improve outcomes. To help us develop policies that can identify what works and what needs to be improved 
in adaptation or mitigation efforts, we measure the overall level of climate engagement, using the “greenness” 
degree. We can use insights from both firm-level and regional factors to create more effective strategies and 
policies to accelerate climate investments in a sustainable and fair way.  

Based on our findings, we propose policies that are specific to each region, that target regions with low 
engagement and use regions with high engagement as models for sustainable practices. We also propose 
financial instruments that support firms that are most affected by climate change and that encourage them to 
adopt both adaptation and mitigation strategies. We also propose to give more resources and support to regions 
that are behind in climate action, to help them catch up and move towards sustainable practices.  

Further, we emphasize the importance of using EU funds for climate investments across regions in the best way 
possible, making sure they support direct climate action initiatives and promote regional cooperation and 
knowledge sharing. We also propose to create mechanisms that help regions share best practices and learn from 
each other, to increase the adoption of effective measures and create a culture of learning and adaptation. 

While our analysis did not specifically examine spillover effects within and across different cohesion regions, the 
observed spatial dependencies and regional dynamics have important implications for cohesion policy. Our 
findings indicate that climate investment decisions are influenced by both firm-level attributes and broader 
regional factors, which suggests that regions with similar economic and social characteristics might benefit from 
tailored policies that consider these shared contexts. To foster regional convergence, cohesion policies should 
recognize the potential for spillovers between regions.  

To understand better how firm and regional factors affect neighbouring areas and to design more targeted 
policies, we need more research on the dynamics and channels of spatial spillovers. This includes looking at how 
adaptation and mitigation efforts can work together and how EU funds can help different regions adopt 
sustainable practices. Moreover, future research could further explore these dynamics by analyzing how the 
geographical distribution of regions within cohesion categories influences the strength and direction of spillover 
effects. This would help refine policies aimed at fostering regional convergence and ensuring that all regions can 
benefit from advancements in climate action. This research will help us make more effective climate policies and 
use EU funds in the best way possible to support wider and more efficient climate actions. 
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ANNEX A  
  
Figure A1. Distribution plots of the outcome variables 

 
 
 
 
Table A1. Descriptive statistics  

Variable  Obs. Mean  SD  Min  Max  5th perc. 95th perc. 

Degree of greenness (in logs)  215 0.31 0.07 0.12 0.52 0.19 0.42 

Adaptation intensity (in logs)  215 0.15 0.08 0.00 0.51 0.02 0.33 

Mitigation intensity (in logs)  215 0.40 0.09 0.15 0.56 0.23 0.52 

Adaptation intensity (t-1) (in logs)  215 0.13 0.08 0.00 0.39 0.02 0.28 

Mitigation intensity (t-1) (in logs)  215 0.38 0.10 0.06 0.60 0.21 0.53 

Physical risk  215 0.19 0.14 0.00 0.78 0.00 0.47 

Transition risk  215 0.26 0.16 0.00 0.83 0.00 0.55 

Energy costs  215 0.34 0.19 0.00 0.88 0.06 0.64 

Financial constraints  215 0.15 0.13 0.00 0.78 0.00 0.38 

Strategic monitoring  215 0.46 0.18 0.00 0.90 0.09 0.76 

Climate targets  215 0.40 0.18 0.00 0.84 0.08 0.70 

Basic framework  215 0.56 0.25 0.00 1.00 0.09 0.93 

Innovation  215 0.56 0.21 0.05 1.00 0.25 0.92 

EU adaptation funds (in logs)  215 0.47 0.37 0.00 1.36 0.00 0.99 

EU low-carbon funds (in logs)  215 0.49 0.59 0.00 3.44 0.01 1.77 

EU adaptation and low-carbon funds 
(in logs)  

215 0.77 0.65 0.00 3.48 0.02 1.93 

CO2 (in logs)  215 0.31 0.22 0.03 1.44 0.09 0.76 

Note: For variables transformed to logarithms, each value was incremented by 1 to avoid negative values.  
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Table A2. Testing results of LM and Robust LM-test  

  Test  Statistics  P-value  

Degree of greenness  LM-Lag test  26.850  0.000  

  Robust LM-lag test  4.893  0.027  

  LM-Error test  22.615  0.000  

  Robust LM-Error test  0.658  0.417  

Adaptation intensity  LM-Lag test  22.683  0.000  

  Robust LM-Lag test  1.216  0.270  

  LM-Error test  28.195  0.000  

  Robust LM-Error test  6.727  0.009  

Mitigation intensity  LM-Lag test  45.116  0.000  

  Robust LM-lag test  14.603  0.000  

  LM-Error test  30.649  0.000  

  Robust LM-Error test  0.136  0.712  
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Table A3. OLS regression results  

  Degree of 
greenness  

Adaptation 
intensity  

Mitigation 
intensity  

Adaptation intensity (t-1) (in logs)  0.147**    0.267***  

  (0.058)    (0.065)  

Mitigation intensity (t-1) (in logs)  0.193***  0.029    

  (0.048)  (0.063)    

Physical risk 0.001  0.125***    

  (0.030)  (0.043)    

Transition risk 0.049**    0.098***  

  (0.023)    (0.030)  

Energy costs  0.049**  0.004  0.060**  

  (0.021)  (0.031)  (0.027)  

Financial constraints  -0.058*  -0.089*  -0.073*  

  (0.032)  (0.047)  (0.040)  

Strategic monitoring  0.063***  0.074**  0.072**  

  (0.023)  (0.033)  (0.029)  

Climate targets 0.087***  0.056  0.109***  

  (0.023)  (0.034)  (0.030)  

Basic framework  0.054**  0.018  0.147***  

  (0.026)  (0.035)  (0.031)  

Innovation  0.039  0.049  0.060*  

  (0.024)  (0.035)  (0.031)  

EU adaptation funds (in logs)    0.033*    

    (0.018)    

EU low-carbon funds (in logs)      0.077***  
 

    (0.011)  

EU adaptation and low-carbon funds (in logs)  0.036***      

  (0.008)      

CO2 (in logs)   0.051**  0.056*  0.048  
 

(0.023)  (0.032)  (0.029)  

Intercept  0.040  0.004  0.081**  

  (0.026)  (0.037)  (0.032)  

N  215  215  215  

R2  0.514  0.156  0.456  

Note: Standard errors are in parenthesis. *, **, and *** denote statistical significance at the 10%, 5%, and 1%, 
respectively.  
  
Table A4. SEM regression results  
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  Degree of 
greenness  

Adaptation 
intensity  

Mitigation 
intensity  

λ  0.440***  0.487***  0.492***  

  (0.079)  (0.075)  (0.074)  

Adaptation intensity (t-1) (in logs)  0.135**    0.195***  

  (0.053)    (0.060)  

Mitigation intensity (t-1) (in logs)  0.164***  0.011    

  (0.050)  (0.066)    

Physical risk  -0.024  0.120***    

  (0.028)  (0.038)    

Transition risk  0.061***    0.111***  

  (0.021)    (0.027)  

Energy costs  0.044**  0.020  0.057**  

  (0.020)  (0.029)  (0.026)  

Financial constraints  -0.040  -0.084**  -0.043  

  (0.029)  (0.042)  (0.036)  

Strategic monitoring  0.082***  0.074**  0.096***  

  (0.022)  (0.031)  (0.028)  

Climate targets  0.072***  0.086***  0.073***  

  (0.021)  (0.031)  (0.027)  

Basic framework  0.053*  0.025  0.130***  

  (0.031)  (0.043)  (0.041)  

Innovation  0.014  0.002  0.042  

  (0.024)  (0.034)  (0.030)  

EU adaptation funds (in logs)    0.046**    

    (0.022)    

EU low-carbon funds (in logs)      0.060***  

      (0.013)  

EU adaptation and low-carbon funds (in logs)  0.036***      

  (0.009)      

CO2 (in logs)  0.029  0.031  0.032  

  (0.021)  (0.030)  (0.027)  

Intercept  0.073***  0.021  0.120***  

  (0.028)  (0.039)  (0.035)  

N  215  215  215  

R2  0.502  0.142  0.440  

Note: Standard errors are in parenthesis. *, **, and *** denote statistical significance at the 10%, 5%, and 1%, 
respectively.  
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