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Abstract
The rapid and severe outbreak of COVID-19 caused by SARS-CoV-2 has heav-
ily impacted warehouse operations around the world. In particular, picker-to-parts 
warehousing systems, in which human pickers collect requested items by moving 
from picking location to picking location, are very susceptible to the spread of infec-
tion among pickers because the latter generally work close to each other. This paper 
aims to mitigate the risk of infection in manual order picking. Given multiple pick-
ers, each associated with a given sequence of picking tours for collecting the items 
specified by a picking order, we aim to execute the tours in a way that minimizes the 
time pickers simultaneously spend in the same picking aisles, but without chang-
ing the distance traveled by the pickers. To achieve this, we exploit the degrees of 
freedom induced by the fact that picking tours contain cycles which can be traversed 
in both directions, i.e., at the entry to each of these cycles, the decision makers can 
decide between the two possible directions. We formulate the resulting picking tour 
execution problem as a mixed integer program and propose an efficient iterated local 
search heuristic to solve it. In extensive numerical studies, we show that an aver-
age reduction of 50% of the total temporal overlap between pickers can be achieved 
compared to randomly executing the picking tours. Moreover, we compare our 
approach to a zone picking approach, in which infection risk between pickers can 
be almost eliminated. However, compared to our approach, the results show that the 
zone picking approach increases the makespan by up to 1066%.
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1 Introduction

Warehousing is an essential component of many supply chains (see, e.g., Boy-
sen et  al. 2021) and has a strong influence on on-time deliveries and customer 
satisfaction. High cost pressure, steadily increasing global retail sales volumes 
(Statista 2019), and next- or same-day deliveries force warehouse managers to 
improve the performance of their warehousing processes to meet the customer 
expectations for fast delivery and to gain advantages over competitors (see, e.g., 
Weidinger 2018; Boysen et al. 2019).

The most labor-intensive warehousing activity is order picking, which is the pro-
cess of retrieving items from their storage locations to fulfill customer orders. Stud-
ies indicate that a large share of all order picking systems in Western Europe follow 
the traditional picker-to-parts warehousing setup, in which pickers move through the 
warehouse to retrieve the requested items from their storage locations (Napolitano 
2012). The major drawback of such systems is the large fraction of unproductive 
picker walking time (de Koster et al. 2007; Tompkins et al. 2010). While there are 
technologies to automate order picking (see, e.g., Azadeh et  al. 2019), warehouse 
managers rely on manual order picking because human pickers are flexible and can 
adapt to changes in real time compared to automated systems (Grosse et al. 2014).

The rapid spread of SARS-CoV-2 forces warehouse managers to reduce the risk 
of spreading the virus to avoid a complete stop of the workflow due to infected pick-
ers. Because SARS-CoV-2 is mainly spread person-to-person through close contact, 
and pickers work close to each other, the risk of virus transmission in manual order 
picking is very high. As a response to COVID-19, warehouse managers initially 
aimed at maintaining physical distance between pickers by restricting the number 
of pickers allowed in a picking area at one time or by implementing one-way pick-
ing aisles to avoid congestion or picker blocking (DC Velocity 2020). Because such 
safety measures make it hard to meet pre-pandemic picking performance due to 
longer picking routes, Amazon, for example, launched a social distancing monitor 
based on artificial intelligence, which visually alerts pickers when physical distance 
is not maintained (Amazon 2020). Softeon, a global supply chain software vendor, 
offers a software that alerts a picker if the picker’s next pick is in a picking aisle 
which is already occupied by another picker (DC Velocity 2020).

This study aims at mitigating the risk of becoming infected or spreading 
SARS-CoV-2 (or other infectious diseases) in manual order picking by minimiz-
ing the time pickers simultaneously spend in the same picking aisles, which sup-
ports maintaining social distancing practices. We assume that the risk of infection 
is proportional to the time that pickers spend in close proximity to each other, 
which is in accordance with the current state of knowledge (see, e.g., World 
Health Organization 2020). We consider a rectangular single-block warehouse 
layout (see Fig. 1) with a central depot and with parallel picking aisles that are 
connected by a cross aisle at the front and at the rear of the picking aisles. Items 
are stored in storage locations arranged along both sides of the picking aisles.

We assume that each picker is given a sequence, in which the picking orders 
are to be executed. A picking order comprises a single or multiple customer 
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orders. For each picking order, the picking tour along the storage locations is 
given. A common feature of picking tours is that they contain cycles which can 
be traversed in both directions, i.e., the decision maker can choose between the 
two possible directions at the entry to each of these cycles. Figure  2 gives an 
example of different execution possibilities (see Fig. 2(b)–(e)) of a picking tour 
(see Fig. 2(a)). The double circle marked by d represents the central depot, the 
other double circles indicate the front/rear locations of each picking aisle, and the 
standard circles denote the picking positions. The picking tour is represented by 
the solid lines. The front/rear end locations of picking aisles at which a degree of 
freedom occurs are marked red. Here, the picker can decide whether to enter the 
respective picking aisle (if so, we indicate this by a red vertical arc) or to proceed 
along the front/rear cross aisle (if so, we indicate this by a red horizontal arc). 
For each of the four depicted execution possibilities, the time periods in which 
the picker occupies a certain picking aisle differ. Consequently, to reduce virus 
transmission among pickers, we seek to execute the tours such that the time that 
pickers spend simultaneously in the same picking aisles is minimized. Note that 
the decision on how the picking tours are executed does not affect the distance 
traveled by the pickers.

The risk of infection in the cross aisles is not considered because cross aisles are 
generally significantly wider than the picking aisles, and thus, wide enough to allow 
pickers to pass each other while maintaining a social distance. Moreover, the risk of 
virus transmission via goods is assumed to be negligible for the following reason: 
when a picker moves to the storage location of a requested item, she1 does not touch 
the surrounding items. The risk of infection via goods can be further decreased by 
regularly disinfecting hands.

picking aisles

Legend:

item storage location

central depot

front cross aisle

rear cross aisle

Fig. 1  An example of a rectangular single-block warehouse layout

1 For the sake of readability, we have decided to speak exclusively of female pickers. Of course, a picker 
can also be of any other gender.
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In Fig. 3, we show the impact of different executions of picking tours on the total 
time pickers spend together in the same picking aisles. To this end, we consider an 
instance with four picking tours, each associated with one of four pickers. In the 
upper part of Fig. 3(a), the picking tours are illustrated by the sequence in which 
the picking aisles are visited by the respective picker. The number in a rectangle 
indicates the picking aisle, and the length of a rectangle represents the time period 
the respective picker spends in this picking aisle. For example, picker  1 starts in 
picking aisle 1 (from t = 0 to t = 6) and from there proceeds to picking aisles 4 (from 
t = 12 to t = 16), 5 (from t = 18 to t = 20), 6 (from t = 22 to t = 28), and so on. In the 
lower part of Fig. 3(a), we report the time that the pickers simultaneously spend in 
the same picking aisles resulting from the given execution of the picking tours. We 
assume that in the case in which n pickers occupy a picking aisle at a point in time, 
0.5 ⋅ n ⋅ (n − 1) overlaps occur. Executing the picking tours given in Fig. 3(a) leads 
to a total temporal overlap of Z = 102. Modifying the execution of the picking tours 

d
(a)

d

(b)

d

(c)

d

(d)

d

(e)

Fig. 2  Example of different execution possibilities (b)–(e) of the picking tour given in (a)
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of pickers 1 and 4 as shown in the upper part of Fig. 3(b) leads to a reduction in the 
temporal overlap by approximately 80%. The example also shows that the length of 
the rectangles in Fig. 3(a) is the same as in Fig. 3(b), i.e., the distance traveled (or 
time required) by each picker is not affected.

To the best of our knowledge, the resulting picking tour execution problem 
(PTEP) constitutes a novel setting, which has not been studied in the literature so far 
but is of high relevance in real-world warehouses. The contributions of our paper are 
the following:

• We formally describe the PTEP as a mixed integer program and propose an effi-
cient iterated local search heuristic (ILS) to provide solutions for large-sized 
problem instances.

t 0 5 10 15 20 25 30 35 40 45 50 55 60 65

1
2
3
4
5
6

# overlaps Z = 102

(a)

Picker 1 1 234 5 6 7

Picker 2 1 23 34 5 67

Picker 3 1234567

Picker 4 1234567

t 0 5 10 15 20 25 30 35 40 45 50 55 60 65

1# overlaps Z = 20

(b)

Picker 1 12 3 4567

Picker 2 1 23 34 5 67

Picker 3 1234567

Picker 4 1 2 3 4 567

Fig. 3  Total temporal overlap between pickers (Z) for different picking tours
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• In extensive numerical studies, we test the performance of our PTEP model 
using the optimization software Gurobi. Our formulation is able to solve small 
and medium instances but is not able to consistently solve large instances within 
a given time limit. Moreover, we compare the performance of ILS to those of 
Gurobi solving PTEP. The results clearly demonstrate the ability of ILS to find 
high-quality solutions within reasonable runtimes.

• Additional experiments show that reductions between 17% and 100% of the total 
temporal overlap between pickers can be achieved compared to randomly execut-
ing the picking tours without increasing the distance traveled by pickers.

• To provide managerial insights, we compare our PTEP to a zone picking 
approach, in which the risk of infection spread is almost eliminated. The results 
show that the zone picking approach strongly increases the makespan compared 
to our approach.

The remainder of the paper is structured as follows: In Sect. 2, we discuss the related 
literature. In Sect. 3, we introduce the PTEP and present a mixed integer formula-
tion. Our ILS is detailed in Sect. 4. Section 5 is devoted to the numerical studies. In 
Sect. 6, we compare the PTEP to a zone picking approach, followed by a conclusion 
in Sect. 7.

2  Literature review

Because traveling is considered the most time-consuming warehousing activity, 
research mainly focuses on reducing the average distance traveled (or time required) 
by pickers for collecting the items of a given set of picking orders. Travel distance 
depends on the design of the following four planning problems: warehouse layout 
(configuration of the warehouse, including the number of blocks and the number, 
length, and width of the picking aisles and cross aisles in each block), picker rout-
ing (determining the picking tour through the warehouse and the retrieval sequence 
of the items), order batching (grouping or splitting of customer orders), and storage 
assignment (assignment of items to storage locations).

The PTEP is closely related to picker routing problems (PRPs), which, in general, 
aim at determining a cost-minimal picking tour along the storage locations defined 
by a picking order (see, e.g., Ratliff and Rosenthal 1983). The most well-studied 
PRP in the literature is the standard single picker routing problem (standard SPRP), 
which can be defined as follows: Given a single-block parallel-aisle warehouse with 
a central depot and dedicated storage, i.e., each item is available from one storage 
location, the standard SPRP seeks the cost-minimal picking tour for collecting the 
items defined by a picking order. For an extensive review on PRPs, we refer the 
reader to Masae et al. (2019). Contrary to PRPs, in our PTEP, the picking tour is 
already given as input, and it can be generated by an arbitrary solution method for 
the PRP. Moreover, in the PTEP, picking tours are executed such that the tempo-
ral overlap between pickers is minimized, whereas previous research on PRPs has 
mainly concentrated on determining picking tours such that the distance traveled (or 
time required) by pickers is minimized.
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The risk of infection spread in warehousing operations is only considered in 
Ardjmand et al. (2021). The authors study an order batching problem which aims 
at grouping customer orders into (larger) picking orders such that the total order 
picking time, the makespan, and the time in which pickers are picking closer than 
at a specified physical distance are minimized. To solve the resulting problem, 
they propose three multi-objective metaheuristics. Ardjmand et  al. (2021) do 
not aim to reduce the risk of infection by optimizing the routing of pickers but 
assume that pickers are fixedly routed according to an S-shape routing policy.

Another closely related problem concerns the blocking of pickers. The stud-
ies that exist on picker blocking consider additional travel distance (or time) that 
occurs when, for example, pickers meet and passing one another is not possible 
due to narrow picking aisles. Gue et al. (2006) investigate the effect of pick den-
sity on picker blocking in warehousing systems with high space utilization, in 
which pickers move in an S-shape fashion along unidirectional picking aisles, and 
passing by other pickers is not allowed. To avoid blocking, the authors discuss 
different routing methods, e.g., forcing a blocked picker to leave the picking aisle 
and proceed along a picker-free picking aisle to continue order picking. Pan and 
Shih (2008) and Parikh and Meller (2009) investigate a multiple-picker setting 
with congestion considerations from a queuing theory perspective: Pan and Shih 
(2008) present a throughput model for a picker-to-parts warehouse involving mul-
tiple pickers and narrow picking aisles, which simultaneously considers the total 
travel time and the congestion effect. A picker is routed according to the S-shape 
routing policy, and in case that an aisle is already occupied by another picker, 
she has to wait in a buffer zone until the other picker leaves the picking aisle. 
Parikh and Meller (2009) develop analytical models to estimate picker idle time 
in a wide-aisle distribution center, in which picker blocking occurs if a picker 
blocks access to a picking position of another picker. Zhang et al. (2009) consider 
workflow congestion in the context of material handling equipment interruptions 
in a manufacturing or warehousing facility. The authors combine a probabilistic 
and physics-based model to evaluate the expected link travel time when interrup-
tions occur. Two heuristic algorithms are developed to solve the combined opti-
mization model. Hong et  al. (2012) introduce an integrated batching and batch 
sequencing problem for a narrow-aisle order picking system that aims at minimiz-
ing the sum of travel time, pick time, and congestion delays. To address realisti-
cally sized instances, the authors present a simulated annealing heuristic. Chen 
et al. (2013, 2014) consider a warehousing system with narrow picking aisles, in 
which picker congestion has to be avoided. Chen et al. (2013) propose a routing 
algorithm based on ant colony optimization for two pickers and Chen et al. (2014) 
for multiple pickers. Schrotenboer et  al. (2017) develop a genetic algorithm to 
evaluate the tradeoff between delays caused by so-called picker interactions and 
the time required to avoid an interaction. An interaction delay occurs, for exam-
ple, when a picker blocks access to a storage location from which another picker 
needs to collect an item. To conclude, methods on picker blocking cannot be used 
to solve the PTEP because picker blocking problems assume that passing one 
another is not possible.
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3  The picking tour execution problem

In this section, we provide a detailed description of the PTEP (see Sect. 3.1) and 
present a mathematical formulation (see Sect. 3.2).

3.1  Problem description

The PTEP considers a rectangular single-block warehouse with parallel picking 
aisles (see Fig. 1). Let A denote the ordered set of picking aisles, which are num-
bered in ascending order from the leftmost to the rightmost picking aisle. We use 
a weighted graph G = (V ,E) to describe a picking order within a warehouse. Set V 
indicates the vertices including the front (rear) locations ea ( e′a ) of each picking aisle 
a ∈ A, the depot d, and the picking positions vi of each requested item i ∈ I, where I 
denotes the set of requested items of the picking order. Set E consists of an unlim-
ited number of parallel edges between every pair of adjacent vertices. The weight of 
each edge represents the travel distance (or time) between two adjacent vertices. An 
example of a warehouse graph with |A| = 7 picking aisles and |I| = 9 picking posi-
tions is given in Fig. 4. For simplicity, the figure represents the parallel edges con-
necting adjacent vertices by a single dashed edge.

The items of a given set of picking orders have to be collected. Let K denote 
the set of pickers, where each picker k ∈ K is associated with an ordered set Ok 
of so-called tour subgraphs. A tour subgraph o is a subgraph of G from which a 
directed picking tour can be constructed such that every arc of the directed pick-
ing tour corresponds to exactly one edge in o. Note that the PTEP works inde-
pendent of the underlying warehouse layout and routing policy because any rout-
ing policy used in any warehouse layout can be described such that the output is 
a tour subgraph, which is used as input to the PTEP and ILS. In Fig. 2(a), a tour 
subgraph returned by the optimal routing policy is depicted, and in Fig. 2(b)–(e), 
we show the four directed picking tours that can be constructed from the tour 

2 2 2 2 2 2

2 2 2 2 2 2

4

2 2

2

2
1

4

1

4

2

5

1

3

3

2

4

d

e′1

e1

e′2

e2

e′3

e3

e′4

e4

e′5

e5

e′6

e6

e′7

e7

v1 v2

v3

v4

v5

v6

v7

v8

v9

Fig. 4  An example of a warehouse graph with |A| = 7 picking aisles and |I| = 9 picking positions
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subgraph in Fig. 2(a). Theorem 1 states the formal properties of a tour subgraph 
and has been proved by Ratliff and Rosenthal (1983).

Theorem  1 (Properties of a tour subgraph) A tour subgraph has the following 
properties: 

1. Vertices vi and vertex d have nonzero even degree in o.
2. Excluding vertices with zero degree, o is connected.
3. Every vertex in o has even or zero degree.

The PTEP aims to construct directed picking tours from given tour subgraphs 
such that the total temporal overlap between pickers is minimized. Therefore, we 
describe the procedure for constructing directed picking tours (see Theorem  2, 
proved by Ratliff and Rosenthal (1983)), and we show that picking tours generally 
contain cycles which can be traversed in both directions.

Theorem 2 (Procedure for constructing directed picking tours) Given a valid tour 
subgraph, the directed picking tour can be constructed as follows: 

1. Start the tour at the depot vertex d.
2. If there is a pair of unused parallel arcs in the tour subgraph incident to the cur-

rent vertex, use an arbitrary one of them to get to the next vertex. Continue with 
step 2.

3. If there are any unused single arcs in the tour subgraph (i.e., not one of a pair 
of parallel arcs), use an arbitrary one of them to get to the next vertex. Continue 
with step 2.

4. If there is a pair of parallel arcs in the tour subgraph with one arc used and one 
arc still unused, use the unused arc to get to the next vertex. Continue with step 2.

5. Stop. The directed picking tour is complete.

In Theorem 2, a degree of freedom occurs in steps 2 and 3, respectively, i.e., 
each of these steps identifies a vertex associated with a degree of freedom. Fig-
ure 5 shows the two edge configurations for which degrees of freedom occur in 
a single-block parallel-aisle warehouse layout. For both configurations, there are 
two ways for selecting the next arc, and thus, at the entry ea to the respective 
cycle, the decision maker can decide between the two possible directions, repre-
sented by 0 and 1. Note that these degrees of freedom only occur at the front or 
rear end of a picking aisle.

Fig. 5  Degrees of freedom 
resulting from Theorem 2

0

1
ea

(a)

0

1
ea

(b)
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In Fig. 5(a), the picker reaches vertex ea via the upper arc. At ea , the picker can 
decide which of the edge pairs marked 0 or 1 she traverses first. Note that the picker 
traverses both edges of a parallel edge pair before she traverses the edges of the 
other edge pair. Such a configuration occurs in tour subgraphs in which the picking 
aisles are entered and left from the same cross aisle. In Fig. 5(b), the picker reaches 
vertex ea via the upper arc. At ea , both of the edges belong to the same cycle. Here, 
the picker returns to vertex ea via the unselected edge, e.g., if edge 0 is selected first, 
she returns to vertex ea via edge 1.

As described, the picker’s decision influences the time periods in which she occu-
pies a certain picking aisle without changing the distance traveled by the picker. We 
use this observation to minimize the time that pickers simultaneously work in the 
same picking aisles.

3.2  Mathematical model formulation

This section introduces the notation used in the PTEP model and presents a math-
ematical model formulation for the PTEP.

Set Πk
o
 contains all possibilities for executing tour subgraph o ∈ Ok by picker 

k ∈  K, where � ∈ Πk
o
 . Binary variable �

�
 denotes whether execution possibility 

� ∈ Πk
o
 is selected ( �

�
 = 1) or not ( �

�
 = 0). We assume discrete points in time t ∈ T. 

Because each execution possibility � ∈ Πk
o
 represents a picking tour, the points in 

time at which picker k ∈ K is in picking aisle a ∈ A executing tour subgraph o ∈ Ok 
can be determined before solving the PTEP model and are represented by set Ta� , 
where Ta� ⊆ T.

Finally, binary variable xn
at

 indicates whether n ∈ N pickers are in picking aisle 
a ∈ A at time t ∈ T ( xn

at
 = 1) or not ( xn

at
 = 0), where N is the set of possible numbers 

of pickers that simultaneously occupy a picking aisle.
Using the notation summarized in Table 1, the PTEP can be formulated as the 

following mixed integer program.

Table 1  Overview of the notation used in the PTEP model

Sets
A Ordered set of picking aisles (index: a)
K Set of pickers (index: k)
N Set of possible numbers of pickers that simultaneously occupy a picking aisle (index: n)
Ok Ordered set of tour subgraphs associated with picker k ∈ K (index: o)
T Set of discrete points in time (index: t)
T
a�

Set of discrete points in time at which a picker is in picking aisle a ∈ A if execution pos-
sibility � ∈ Πk

o
 is selected, where T

a�
 ⊆ T (index: t)

Πk

o
Set of all possibilities for executing tour subgraph o ∈ Ok of picker k ∈ K (index: �)

Binary decision variables
xn
at

1, if n pickers are in picking aisle a ∈ A at time t ∈ T; 0, otherwise
�
� 1, if execution possibility � ∈ Πk

o
 is selected; 0, otherwise
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subject to

Objective function (1) minimizes the total temporal overlap between pickers. Con-
straints  (2) ensure that binary variable xn

at
 is correctly defined by linking xn

at
 (left 

side) to the number of pickers at each point in time t ∈ T and in each picking aisle 
a ∈ A (right side). To determine the number of pickers, we sum over all selected 
decision variables �

�
 for which a picker occupies picking aisle a ∈  A at point in 

time t ∈ T. Constraints (3) ensure that the binary decision variable xn
at

 is chosen at 
most once for each picking aisle a ∈ A and point in time t ∈ T, i.e., only n pickers 
(or none) can simultaneously occupy a picking aisle. Constraints (4) guarantee that 
exactly one decision variable �

�
 is selected for each tour subgraph o ∈ Ok assigned 

to picker k ∈ K, i.e., exactly one directed picking tour is executed from the execution 
possibilities of the respective tour subgraph. Finally, the binary decision variables 
are defined in constraints (5) and (6), respectively.

4  An iterated local search for the picking tour execution problem

We define binary variable �k
j
 ∈ {0, 1} , where index j = 1,… , nk

o
 denotes the j-th 

degree of freedom of tour subgraph o ∈ Ok of picker k ∈ K. Index j is defined in 
ascending order based on its occurrence in the tour subgraph from left to right. Note 
that the j-th degree of freedom is associated with the entry at ea (or e′

a
 ) to a cycle at 

which picker k ∈ K can decide whether to traverse picking aisle a ∈ A that is adjacent 
to vertex ea (or e′

a
 ) or to proceed along the front (or rear) cross aisle. Binary variable 

�
k
j
 takes value 0 if picker k ∈ K enters picking aisle a ∈ A that is adjacent to vertex ea 

(or e′
a
 ) associated with the j-th degree of freedom, and 0 otherwise. Note that there 

are |Πk
o
| = 2nko possibilities for executing tour subgraph o ∈ Ok of picker k ∈ K.
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In Fig. 6, a pseudocode overview of the basic ILS framework is given, which can be 
described as follows: First, the initial solution is determined by randomly setting the 
binary variable �k

j
 for each picker k and degree of freedom j, i.e., we randomly define 

whether the picker first traverses the picking aisle associated with j (i.e., �k
j
 = 0 ) or pro-

ceeds along the respective cross aisle (i.e., �k
j
 = 1 ). Second, the local search is applied to 

an initial solution s. The neighborhood s′ used in the local search step is defined by all 
possible inversions of one of the binary decision variables �k

j
 . Third, an incumbent 

solution s′ is generated by perturbating s. The strength of the perturbation is defined 
dynamically as follows: At iteration � , �

�max

∑
k∈K

∑
o∈Ok �Πk

o
� randomly chosen decision 

variables are inverted, where �max denotes the number of iterations without improving 
the best found solution. Fourth, the local search is applied to s′ . The generated solution 
s′′ is accepted as the new current solution if it is better than the current solution s, i.e., if 
f (s��) < f (s) , where f (⋅) denotes the total temporal overlap between pickers. To achieve 
a good tradeoff between the solution quality and the runtime of our algorithm, the ILS 
terminates after �max = 10. Higher numbers of iterations slightly improve the average 
solution quality but significantly increase the runtimes.

5  Numerical studies

This section presents the numerical studies (i) to assess the performance of our PTEP 
formulation using Gurobi, (ii) to compare the performance of ILS to that of Gurobi 
solving PTEP, and (iii) to give managerial insights with respect to the potential avoid-
ance of temporal overlaps between pickers. In Sect. 5.1, we describe the test instances, 
and in Sect. 5.2, we present the results of our computational experiments.

5.1  Test instances

Our experiments are based on the instances of Henn and Wäscher (2012), originally 
designed for the order batching problem. The instances consider a single-block par-
allel-aisle warehouse with ten parallel picking aisles, each containing 90 different 

generate initial solution s by randomly setting the binary variable πk
j for each picker k and degree of freedom j

s ← LocalSearch(s)
κ ← 1
while κ ≤ κmax do

s ′ ← Perturbation(s, κ)
s ′′ ← LocalSearch(s ′)
if f (s ′′) < f (s) then

s ← s ′′

κ ← 1
end if
κ ← κ+ 1

end while
return s

Fig. 6  Overview of the iterated local search algorithm
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items (45 on the left and 45 on the right). The depot is located below the entry of 
the leftmost picking aisle in the front cross aisle. The physical dimensions of the 
warehouse are as follows: An order picker has to cover 1 length unit (LU) (or 1 time 
unit) to get from the depot to the front cross aisle. The distance between the front 
cross aisle and the first storage location of a picking aisle is 1 LU, and the distance 
between two neighboring picking aisles is 5 LUs. The authors assume two differ-
ent demand scenarios, i.e., uniformly distributed demand (UDD) and class-based 
demand (CBD). For UDD, items are randomly assigned to storage locations. For 
CBD, they define three classes with high  (A), medium  (B), and low  (C) demand 
frequencies. Class A contains 10% of the items that account for 52% of the demand, 
class B 30% of the items that account for 36% of the demand, and class C 60% of 
the items that account for 12% of the demand. Items of class A are stored in picking 
aisle a = 1, items of class B in picking aisles a = 2 to a = 4, and items of class C in 
picking aisles a = 5 to a = 10. The authors consider groups of 40 instances, which 
are identified by the demand scenario and the number of picking orders (20, 40, 60, 
80, and 100). The number of items per picking order is randomly drawn from the 
interval [2, 25].

In our experiments, we consider |K|  =  {2, 5, 10, 20, 40} pickers and 
|Ok| = {2, 5, 10, 20} tour subgraphs per picker k ∈ K . To use the instances of Henn 
and Wäscher (2012) for our experiments, we make the following adjustments: We 
select the first 2, 5, 10, or 20 picking orders from an instance of Henn and Wäscher 
(2012), who originally assume 20, 40, 60, 80, or 100 picking orders, to generate 
|Ok|  = {2, 5, 10, 20} tour subgraphs. Moreover, their instances consider a single 
picker and thus cannot be used directly for our experiments. However, given that 
40 instances were generated per instance group, we select the first 2, 5, 10, 20, or 
40 instances of a group, and we use, e.g., the two selected instances for the case of 
|K| = 2 pickers, one for each of the pickers, the 5 selected for |K| = 5 pickers, and so 
on.

As described before, any routing policy can be used to generate a tour subgraph. 
In the numerical experiments, tour subgraphs are generated by the exact algorithm 
of Ratliff and Rosenthal (1983), which is called “optimal” routing policy in the fol-
lowing, the largest gap routing policy by Hall (1993), the S-shape routing policy by 
Goetschalckx and Ratliff (1988), and a newly introduced S-shape+ routing policy. 
Figure 7 illustrates the tour subgraphs that result from the optimal (a), the largest 
gap (b), the S-shape (c), and the S-shape+ (d) routing policy for a given picking 
order. For each tour subgraph, we indicate the degrees of freedom by �k

j
 . The rout-

ing policies are described as follows:

• Largest gap: According to the largest gap policy, the leftmost and the rightmost 
picking aisle are completely traversed if picks are required in there. The other 
picking aisles that contain a picking position are entered and left from the same 
cross aisle such that the largest gap is not traversed. A gap represents the distance 
between (i) any two adjacent picking positions, (ii) the first picking position and 
the front cross aisle, or (iii) the last picking position and the rear cross aisle. 
In the case of (i), a picking aisle is accessed via the front (or rear) cross aisle, 
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Fig. 7  Example of tour subgraphs based on (a) optimal, (b) largest gap, (c) S-shape, and (d) S-shape+ 
routing policies
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whereas in the case of (ii) or (iii), a picking aisle is accessed from the rear (ii) or 
the front cross aisle (iii). The largest gap policy provides a single degree of free-
dom at the beginning of the tour.

• S-shape: In the S-shape routing policy, a picker enters picking aisles in an alter-
nating manner from the front and the rear cross aisle and traverses them com-
pletely (if picks are required in there) or not at all (if no pick is required in there).

• S-shape+: As in the S-shape routing policy, in S-shape+, picking aisles are 
entered in an alternating manner from the front and the rear cross aisle and tra-
versed completely (if picks are required). The difference between these two rout-
ing policies is the following: In the standard S-shape routing policy, the picker 
directly travels from the front location of the rightmost picking aisle to be visited 
to the depot without accessing the other front locations of the picking aisles (see 
Fig. 7(c)). Thus, all picks are executed on the way to the rightmost picking aisle 
that contains a picking position. In the S-Shape+ routing policy, the picker suc-
cessively accesses each front location of the picking aisles on the way back to 
the depot. As shown in Fig. 7(d), this leads to a tour subgraph which allows the 
picker to skip required picking aisles on the way from the depot to the rightmost 
picking aisle to be visited and then to access the skipped picking aisles on the 
way back to the depot. Both routing policies lead to the same distance traveled by 
the picker but differ in the number of degrees of freedom they offer. The S-shape 
routing policy contains only one degree of freedom at the beginning of the tour, 
whereas the S-shape+ routing policy offers multiple degrees of freedom and 
therefore provides greater flexibility in designing the picker routes.

Combining the above described parameter values leads to 160 instance groups, 
which are identified by the demand scenario (UDD or CBD), the number of pick-
ers |K|, the number of tour subgraphs per picker |Ok| , and the routing policy used to 
generate the respective tour subgraphs. For each instance group, we generate five 
instances, i.e., 160⋅5 = 800 instances in total.

All experiments are conducted on a computing cluster running CentOS  7 with 
2 × Intel Xeon E5-2430v2 Processors at 2.50 GHz and 64 GB of memory per com-
pute node. Gurobi is used to solve the mixed integer program presented in Sect. 3.2, 
and each process runs multithreaded on 6 CPU cores. We restrict the solution time 
of Gurobi to 3600 s for all experiments. ILS is implemented in single-threaded C++ 
and compiled using GCC 8.2 with full optimizations enabled.

5.2  Computational results

In this section, we assess the performance of the PTEP model and of our ILS. More-
over, we provide managerial insights with respect to the potential avoidance of tem-
poral overlaps between pickers in the warehousing system under study.

Tables  2 and 3 present aggregate results for different routing policies on the 
UDD instances and Tables 4 and 5 on the CBD instances. Each table reports aver-
ages for groups of instances defined by the number of pickers (column K) and the 
number of tour subgraphs per picker (column |Ok| ). The remaining columns are 



166 M. Löffler et al.

1 3

divided into two blocks, where each block reports the results for one of the under-
lying routing policies.

In column f rand , we give the average temporal overlap of 1000 randomly generated 
solutions, i.e., we randomly construct directed picking tours from the respective tour 
subgraphs. In addition, we report the average of the total travel distance of pickers 
(column td ). All other values that are reported are provided as percentage deviation 
from the objective function value reported in column f rand . Column ub (%) ( lb (%)) 
denotes the percentage deviation of the best objective function (lower bound) values 

Table 2  Results on the UDD instances grouped by number of pickers |K| and number of tour subgraphs 
per picker |Ok| using the optimal and largest gap routing policy

Table 3  Results on the UDD instances grouped by number of pickers |K| and number of tour subgraphs 
per picker |Ok| using the S-shape and S-shape+ routing policy
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given by Gurobi. Column #opt indicates the number of instances solved to proven 
optimality. For ILS, the reported results are based on five runs on each instance. In 
column best  (%) ( avg  (%)), we show the percentage deviation of the best (average) 
solution value over the five runs. Column ta (s) gives the average runtimes in seconds.

In the following, we discuss the results of our experiments:
Comparison of ILS to Gurobi The results show that the number of pickers, the 

number of tour subgraphs per picker, and the routing policy significantly influence 
the performance of Gurobi. The main findings are as follows:

Table 4  Results on the CBD instances grouped by number of pickers |K| and number of tour subgraphs 
per picker |Ok| using the optimal and largest gap routing policy

Table 5  Results on the CBD instances grouped by number of pickers |K| and number of tour subgraphs 
per picker |Ok| using the S-shape and S-shape+ routing policy
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• Optimal: Using the optimal routing policy, Gurobi is able to solve 55 UDD 
instances and 74 CBD instances to optimality (UDD instances with |K| = {2, 5} 
and those with |K| = {10} assuming |Ok| = {2, 5} as well as all CBD instances 
with |K| = {2, 5, 10} ). On the UDD and CBD instances with |K| = 20, all instances 
with |Ok| = 2 are solved, and on the CBD instances with |Ok| = 5, four out of five 
instances are solved. On the instances with |K| = 40, Gurobi is not able to solve 
any of the UDD and CBD instances within the given runtime limit.

• Largest gap and S-shape: Most of the instances can be solved to optimality 
using the largest gap policy (148 out of 200 instances), i.e., all UDD and CBD 
instances with |K| = {2, 5, 10} , except a single CBD instance with |K| = 10 and 
|Ok| =  20. On the CBD instances with |K| =  20 and |Ok| = {2, 5} , Gurobi pro-
vides optimal solutions for all tested instances and on the UDD instances, for all 
except for a single instance. Even on the larger UDD and CBD instances with 
|K| =  40 and |Ok| =  2, Gurobi finds optimal solutions for all tested instances. 
Similar results can be observed for the case of the S-shape routing policy (146 
out of 200 instances are solved to optimality).

• S-shape+: The fewest of the instances can be solved using the S-shape+ rout-
ing policy (106 out of 200 instances), i.e., all UDD and CBD instances with 
|K| = {2, 5} and |Ok| = {2, 5, 10, 20} . On the larger UDD instances, Gurobi finds 
optimal solutions for all instances with |K| = 10 and |Ok| = 2, and for 4 out of 5 
instances with |K| = 20 and |Ok| = 2. In the case of larger CBD instances, Gurobi 
provides optimal solutions for all instances with |K| = {10, 20} and |Ok| = 2, and 
for 4 out of 5 instances with |K| = 10 and |Ok| = 5, and 3 out of 5 instances with 
|K| = 40 and |Ok| = 2.

The results show that Gurobi succeeds in solving small and medium instances 
within reasonable runtimes but is not able to consistently solve larger instances to 
optimality within the given time limit. The tables show that ILS finds the same or 
slightly worse solutions as Gurobi on the smaller and medium instances but clearly 
outperforms Gurobi on the larger instances: It is worth noting that the solution qual-
ity of ILS on the largest instances is close to the lower bound of Gurobi (in the cases 
in which the lower bound is not equal to zero). In addition, the results indicate a 
very good robustness of our ILS, i.e., the best solutions found by ILS deviate from 
the average solutions by only 0.5% for the UDD case and 0.6% for the CBD case. 
The runtimes of ILS are reasonable and stay below 10 minutes for all but the larg-
est instances with |K| = 40 and |Ok| = 20. The results of ILS clearly demonstrate that 
ILS is able to solve the largest instances within reasonable runtimes.

Performance of ILS for different routing policies In the following, we investi-
gate the performance of ILS for different routing policies. To this end, we compare 
the results of the arbitrary solution (see column “ f rand ”) with those obtained by our 
ILS (see column “ best ”) for the same picker routing policy. We use the reduction 
in temporal overlap between pickers to compare the results of an arbitrary solution 
to the PTEP with that obtained by our ILS for the same picker routing policy. This 
can be an insightful measure for managers if a fixed routing policy is used in their 
warehouse.
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The results show that ILS is able to significantly reduce the temporal overlap 
between pickers independent of the picker routing policy at hand. For example, on 
the smallest UDD and CBD instances with |K| = 2 and S-shape+ routing policy, ILS 
generates solutions that are completely free of temporal overlaps. Even on the larg-
est UDD (CBD) instances with |K| = {20, 40} , a reduction of 39% (35%) and 26% 
(23%) is achieved although the instances assume a warehouse with only 10 picking 
aisles. ILS achieves the smallest reduction in the temporal overlap between pickers 
in the case of S-shape and largest gap routing policies. For instance, even on the 
smallest UDD instances with |K| = 2, temporal overlaps between pickers cannot be 
completely avoided. This is because both routing policies provide only one degree 
of freedom in the routing: the picker performs the S-shape routing either via the 
leftmost or via the rightmost picking aisle to be visited, and the largest gap routing 
starts either along the front or the rear cross aisle.

In the following, we investigate the effect of (i) the number of pickers, (ii) the 
number of tour subgraphs per picker, and (iii) the demand scenario on the total tem-
poral overlap between pickers. Moreover, we briefly discuss the results with respect 
to the total travel distance of the pickers.

• For all routing policies, we observe that the larger the number of pickers |K|, 
the smaller the average reduction in the total temporal overlap between pickers. 
Obviously, in the case of a large number of pickers, there is less potential for 
reduction in comparison with a small number of pickers because the probability 
of temporal overlaps increases with the number of pickers. For instance, on the 
UDD instances using the S-shape+ routing policy, the average reduction ranges 
between 26% in the case of |K| = 40 and 100% for |K| = 2.

• The influence of the number of tour subgraphs per picker is hardly visible. For 
example, on the UDD instances with |K| = 20 using largest gap routing policy, 
the reductions achieved for |Ok| = {2, 5, 10, 20} are 24%, 23%, 23%, and 23%, 
respectively.

• For CBD, ILS generates solutions that are slightly worse compared to those 
for UDD. For example, for CBD, |K| = 40, and the S-shape+ routing policy, 
ILS yields a reduction of 23% on average compared to 26% for UDD.

• As expected, the optimal routing leads to the shortest picking tours, and the 
S-shape and S-shape+ routing policies result in the longest routes. This is 
because all picking aisles containing even a single item to be picked must be 
completely traversed.

Our numerical results show that large reductions in the total temporal overlap 
between pickers are achieved independent of the underlying routing policy. The 
smallest temporal overlap is observed for the optimal routing policy (see Tables 7, 
8, 9, and 10). With respect to picking performance, the optimal routing policy is 
obviously superior to the other routing policies because it leads to shorter picking 
tours. However, a shortcoming of using the optimal routing policy is that pickers 
may get confused by the complex routes, and therefore, tend to deviate from opti-
mal routing patterns (see, e.g., Elbert et  al. 2017). Deviating from given routes 
can have a negative impact on picking efficiency and also increase the risk of 
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infection spread. This effect is particularly strong if no modern technologies such 
as tablets, pick-by-light, or pick-by-voice are used to assist pickers.

To reduce infection risk in picker-to-parts warehousing systems through our 
PTEP, it is paramount that pickers follow prescribed routes. While pickers will 
not always follow prescribed routes in practice in non-pandemic periods for sev-
eral reasons (e.g., social interactions), in pandemic periods, pickers are more 
likely to do so to avoid infection. Moreover, although our PTEP is not able to 
completely prevent possibilities for social interaction, it significantly reduces 
them through exploiting the degrees of freedom that the routing policies offer.

6  Zone picking

In this section, we compare our approach to a zone picking approach, which is 
another possible way to reduce infection risk in picker-to-parts warehouses. To 
make a fair comparison possible, we choose the following setup for the zone pick-
ing approach:

• Warehouse layout: The picking area follows the single-block parallel-aisle ware-
house layout described in Sect. 5.1, but is divided into smaller zones, each with 
a single picker assigned to it. A zone comprises a fixed number of picking aisles, 
and each zone is associated with a handover location located in the front cross 
aisle. Figure  8 illustrates the zone picking system with different numbers of 
zones. Obviously, physical distancing practices are easy to implement, and infec-
tion risk between pickers can be almost eliminated in such systems.

• Parallel zone picking: We assume parallel zoning, i.e., the items of a picking 
order are simultaneously retrieved by multiple zone pickers in multiple zones as 
described in the following: Each zone picker is initially positioned at her hando-
ver location. Starting from the handover location, the zone pickers collect the 
picking order items from their zone according to an optimal routing pattern (see 
Ratliff and Rosenthal 1983). Once a zone picker has collected all picking order 
items from her zone, she returns to her handover location to deposit the items. 
Subsequently, she executes the next picking order from her picking list, starting 
from her handover location. We assume that each zone picker uses a bin with 
sufficient capacity for temporarily storing the picking order items and that each 
handover location has infinite storage capacity (buffer) for depositing items.

• Sequence for picking orders: The sequence according to which the picking 
orders have to be collected by the zone pickers is given.

• Consolidator: A consolidator collects the items of a single picking order from 
the relevant handover locations (i.e., those from which the picking order items 
are to be collected) on a single tour as follows: The consolidator starts at the 
depot, where she is equipped with a trolley with sufficient capacity for the items 
of a single picking order, proceeds along the front cross aisle to the relevant 
handover locations, and from the last visited handover location to the depot. The 
sequence according to which a consolidator visits the relevant handover loca-
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tions is determined in optimal fashion (concerning the objective of minimizing 
the completion time of a picking order). We assume that no effort for consolidat-
ing the items occurs at the depot. The consolidator collects the picking orders in 
the given picking sequence.

zone 1 zone 2

front cross aisle

(a) Picking area divided into 2 zones each with 5 picking aisles.

zone 1 zone 2 zone 3 zone 4 zone 5

front cross aisle

(b) Picking area divided into 5 zones each with 2 picking aisles.

zone 1 zone 2 zone 3 zone 4 zone 5 zone 6 zone 7 zone 8 zone 9 zone 10

front cross aisle

(c) Picking area divided into 10 zones each with a single picking aisle.

Legend:

item storage location

handover location

central depot

Fig. 8  Warehouse layout assumed in the zone picking system
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• Test instances: Our experiment is based on the instances described in Sect. 5.1. 
For both approaches, we use the exact algorithm of Ratliff and Rosenthal (1983) 
to determine a picking tour. For our PTEP, we consider |K| = {3, 6, 11} pickers 
and |Ok| = {2, 5, 10, 20} tour subgraphs per picker k ∈ K. For the zoning approach, 
the picking area is divided into 2, 5, and 10 zones comprising 5, 2, and 1 picking 
aisles, respectively. We assume |K| = {3, 6, 11} pickers, where the 3rd, 6th, and 
11th picker represents the consolidator. The number of picking orders in the zone 
picking system is defined as |O| = |Ok| ⋅ |K|. Combing the above described param-
eter values leads to 12 instance groups, which are identified by the number of 
pickers |K| and the number of picking orders in the system |O|. For each instance 
group, we generate 5 instances, i.e., 12 ⋅ 5 = 60 instances in total.

In the following, we use the makespan, i.e., the time when all picking orders are 
completed, as performance measure for comparing the PTEP and the zone picking 
approach. In Table 6, we present aggregate results obtained by our ILS for the PTEP 
and by the zone picking approach on the UDD instances and the CBD instances. 
The table reports averages for groups of instances defined by the number of pick-
ers (column |K|) and the number of picking orders in the system (column |O|). The 
remaining columns are divided into two blocks, where the first block represents the 
results on the UDD instances and the second block those on the CBD instances. In 
column ATO, we give the average temporal overlap. Column MPTEP ( MZONE ) reports 
the average makespan required for the PTEP (zone picking approach). Column Δ (%) 
denotes the average percentage deviation between MZONE and MPTEP.

The results show that our PTEP approach strongly outperforms the zone pick-
ing approach with respect to makespan. For example, on the smallest instances with 
|K| =  3 pickers and |O| =  6 picking orders in the system, the average percentage 
deviation between the PTEP and the zone picking approach is approximately 40% in 
the UDD case (49% in the CBD case). Moreover, on these instances, our ILS finds 
solutions that are almost free of temporal overlaps between pickers. The larger the 
number of pickers |K|, the greater the deviation in makespan between the PTEP and 
the zone picking approach. For example, on the largest CBD instances with |K| = 11 
pickers and |O| = 220 picking orders in the system, the makespan obtained by the 
zone picking approach is on average 1066% higher than that obtained by our ILS for 
the PTEP.

To sum up, the zone picking approach presented above significantly increases the 
makespan although many favorable assumptions are made (e.g., no effort for consol-
idating the collected items at the depot, infinite storage capacity for depositing items 
at the handover locations). Clearly, the zone picking approach is able to prevent 
pickers from operating in close proximity to each other, and thus, to almost elimi-
nate the infection risk between pickers. Consequently, the tradeoff between basically 
no temporal overlap but excessive makespan (zone picking approach) and some tem-
poral overlap without raising costs (PTEP) must be evaluated by warehouse manag-
ers. Given medical tests and personal protective measures (e.g., vaccinations and/or 
mouth-nose protection masks), we believe that our PTEP is an interesting approach 
for warehouse managers to reduce infection risk between pickers without compro-
mising order picking performance.
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7  Conclusion

This paper aims to reduce the risk of infection in a picker-to-parts warehousing sys-
tem in which multiple pickers operate in the same picking area. To this end, we 
introduce the PTEP that generates directed picking tours from given tour subgraphs 
such that the time period in which pickers simultaneously occupy the same picking 
aisles is minimized. We formally describe the PTEP as a mixed integer program and 
provide an efficient ILS.

Our main finding is that significant reductions in the total temporal overlap 
between pickers can be achieved by exploiting the degrees of freedom that routing 
policies offer. On average, a reduction in approximately 52% is achieved in the UDD 
scenario, while the reduction in the CBD scenario is slightly lower with 49%. The 
smallest temporal overlap between pickers is achieved in the case of the optimal 
routing policy. The S-shape routing policy tends to perform worst.

We believe that our results are quite interesting for warehouse managers in times 
of pandemics: Avoiding temporal overlaps between pickers does not only reduce 
the infection risk, but also increases the order picking efficiency (e.g., by reducing 
in-aisle congestion). Moreover, the reductions are achieved without compromis-
ing order picking performance, i.e., without changing the distance traveled (or time 
required) by the pickers. The comparison of our approach to a zone picking approach 
reveals that the zone picking approach results in excessive makespan: the deviation 
between the PTEP and the zone picking approach amounts to 396% on average.

To further reduce temporal overlaps between pickers, our problem could be 
extended to incorporate modern warehousing concepts, such as scattered storage or 
multiple end depots. For example, with scattered storage, an item type can be avail-
able from several storage locations (see Goeke and Schneider 2018). Assigning the 
stock keeping units of a frequently requested item type to multiple storage locations 

Table 6  Results on the UDD and CBD instances
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could reduce the probability of pickers working close to each other. The PTEP could 
be extended to incorporate congestion in picking aisles and picker blocking, which 
is particularly relevant for warehouses with narrow picking aisles. Moreover, future 
research could investigate alternative objective functions for reducing the infec-
tion risk, e.g., one could minimize infection risk that results from pickers operating 
within a given physical distance for more than a critical period of time.

Pandemics or epidemics will certainly be given more focus in future research. 
Incorporating infection risks into well-known order picking problems will pose new 
challenges in the research on warehousing to ensure a safe order picking environ-
ment during pandemics.

Appendix: Additional results

Tables 7 and 8 present aggregate results for different routing policies on the UDD 
instances and Tables 9 and 10 on the CBD instances. Each table reports averages for 

Table 7  Results on the UDD instances grouped by number of pickers |K| and number of tour subgraphs 
per picker |Ok| using the optimal and largest gap routing policy
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groups of instances defined by the number of pickers (column K) and the number of 
tour subgraphs per picker (column |Ok| ). The remaining columns are divided into 
two blocks, where each block reports the results for one of the underlying routing 
policies.

In column f rand , we give the average temporal overlap of 1000 randomly gen-
erated solutions, i.e., we randomly construct directed picking tours from the 
respective tour subgraphs. Column ub ( lb ) indicates the average temporal overlap 
of the best objective function (lower bound) values given by Gurobi. For ILS, the 
reported results are based on five runs on each instance. In column best ( avg ), we 
show the average temporal overlap of the best (average) solution value over the 
five runs.

Table 8  Results on the UDD instances grouped by number of pickers |K| and number of tour subgraphs 
per picker |Ok| using the S-shape and S-shape+ routing policy
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Table 9  Results on the CBD instances grouped by number of pickers |K| and number of tour subgraphs 
per picker |Ok| using the optimal and largest gap routing policy
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