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Abstract

The rapid and severe outbreak of COVID-19 caused by SARS-CoV-2 has heav-
ily impacted warehouse operations around the world. In particular, picker-to-parts
warehousing systems, in which human pickers collect requested items by moving
from picking location to picking location, are very susceptible to the spread of infec-
tion among pickers because the latter generally work close to each other. This paper
aims to mitigate the risk of infection in manual order picking. Given multiple pick-
ers, each associated with a given sequence of picking tours for collecting the items
specified by a picking order, we aim to execute the tours in a way that minimizes the
time pickers simultaneously spend in the same picking aisles, but without chang-
ing the distance traveled by the pickers. To achieve this, we exploit the degrees of
freedom induced by the fact that picking tours contain cycles which can be traversed
in both directions, i.e., at the entry to each of these cycles, the decision makers can
decide between the two possible directions. We formulate the resulting picking tour
execution problem as a mixed integer program and propose an efficient iterated local
search heuristic to solve it. In extensive numerical studies, we show that an aver-
age reduction of 50% of the total temporal overlap between pickers can be achieved
compared to randomly executing the picking tours. Moreover, we compare our
approach to a zone picking approach, in which infection risk between pickers can
be almost eliminated. However, compared to our approach, the results show that the
zone picking approach increases the makespan by up to 1066%.
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1 Introduction

Warehousing is an essential component of many supply chains (see, e.g., Boy-
sen et al. 2021) and has a strong influence on on-time deliveries and customer
satisfaction. High cost pressure, steadily increasing global retail sales volumes
(Statista 2019), and next- or same-day deliveries force warehouse managers to
improve the performance of their warehousing processes to meet the customer
expectations for fast delivery and to gain advantages over competitors (see, e.g.,
Weidinger 2018; Boysen et al. 2019).

The most labor-intensive warehousing activity is order picking, which is the pro-
cess of retrieving items from their storage locations to fulfill customer orders. Stud-
ies indicate that a large share of all order picking systems in Western Europe follow
the traditional picker-to-parts warehousing setup, in which pickers move through the
warehouse to retrieve the requested items from their storage locations (Napolitano
2012). The major drawback of such systems is the large fraction of unproductive
picker walking time (de Koster et al. 2007; Tompkins et al. 2010). While there are
technologies to automate order picking (see, e.g., Azadeh et al. 2019), warehouse
managers rely on manual order picking because human pickers are flexible and can
adapt to changes in real time compared to automated systems (Grosse et al. 2014).

The rapid spread of SARS-CoV-2 forces warehouse managers to reduce the risk
of spreading the virus to avoid a complete stop of the workflow due to infected pick-
ers. Because SARS-CoV-2 is mainly spread person-to-person through close contact,
and pickers work close to each other, the risk of virus transmission in manual order
picking is very high. As a response to COVID-19, warehouse managers initially
aimed at maintaining physical distance between pickers by restricting the number
of pickers allowed in a picking area at one time or by implementing one-way pick-
ing aisles to avoid congestion or picker blocking (DC Velocity 2020). Because such
safety measures make it hard to meet pre-pandemic picking performance due to
longer picking routes, Amazon, for example, launched a social distancing monitor
based on artificial intelligence, which visually alerts pickers when physical distance
is not maintained (Amazon 2020). Softeon, a global supply chain software vendor,
offers a software that alerts a picker if the picker’s next pick is in a picking aisle
which is already occupied by another picker (DC Velocity 2020).

This study aims at mitigating the risk of becoming infected or spreading
SARS-CoV-2 (or other infectious diseases) in manual order picking by minimiz-
ing the time pickers simultaneously spend in the same picking aisles, which sup-
ports maintaining social distancing practices. We assume that the risk of infection
is proportional to the time that pickers spend in close proximity to each other,
which is in accordance with the current state of knowledge (see, e.g., World
Health Organization 2020). We consider a rectangular single-block warehouse
layout (see Fig. 1) with a central depot and with parallel picking aisles that are
connected by a cross aisle at the front and at the rear of the picking aisles. Items
are stored in storage locations arranged along both sides of the picking aisles.

We assume that each picker is given a sequence, in which the picking orders
are to be executed. A picking order comprises a single or multiple customer

@ Springer



Cost-neutral reduction of infection risk in picker-to-parts... 153

picking aisles .
| rear cross aisle
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Legend:

[] item storage location
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front cross aisle

Fig. 1 An example of a rectangular single-block warehouse layout

orders. For each picking order, the picking tour along the storage locations is
given. A common feature of picking tours is that they contain cycles which can
be traversed in both directions, i.e., the decision maker can choose between the
two possible directions at the entry to each of these cycles. Figure 2 gives an
example of different execution possibilities (see Fig. 2(b)—(e)) of a picking tour
(see Fig. 2(a)). The double circle marked by d represents the central depot, the
other double circles indicate the front/rear locations of each picking aisle, and the
standard circles denote the picking positions. The picking tour is represented by
the solid lines. The front/rear end locations of picking aisles at which a degree of
freedom occurs are marked red. Here, the picker can decide whether to enter the
respective picking aisle (if so, we indicate this by a red vertical arc) or to proceed
along the front/rear cross aisle (if so, we indicate this by a red horizontal arc).
For each of the four depicted execution possibilities, the time periods in which
the picker occupies a certain picking aisle differ. Consequently, to reduce virus
transmission among pickers, we seek to execute the tours such that the time that
pickers spend simultaneously in the same picking aisles is minimized. Note that
the decision on how the picking tours are executed does not affect the distance
traveled by the pickers.

The risk of infection in the cross aisles is not considered because cross aisles are
generally significantly wider than the picking aisles, and thus, wide enough to allow
pickers to pass each other while maintaining a social distance. Moreover, the risk of
virus transmission via goods is assumed to be negligible for the following reason:
when a picker moves to the storage location of a requested item, she' does not touch
the surrounding items. The risk of infection via goods can be further decreased by
regularly disinfecting hands.

! For the sake of readability, we have decided to speak exclusively of female pickers. Of course, a picker
can also be of any other gender.
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Fig. 2 Example of different execution possibilities (b)—(e) of the picking tour given in (a)

In Fig. 3, we show the impact of different executions of picking tours on the total
time pickers spend together in the same picking aisles. To this end, we consider an
instance with four picking tours, each associated with one of four pickers. In the
upper part of Fig. 3(a), the picking tours are illustrated by the sequence in which
the picking aisles are visited by the respective picker. The number in a rectangle
indicates the picking aisle, and the length of a rectangle represents the time period
the respective picker spends in this picking aisle. For example, picker 1 starts in
picking aisle 1 (from # =0 to # = 6) and from there proceeds to picking aisles 4 (from
t=12tot=16), 5 (from t = 18 to t = 20), 6 (from ¢t =22 to t = 28), and so on. In the
lower part of Fig. 3(a), we report the time that the pickers simultaneously spend in
the same picking aisles resulting from the given execution of the picking tours. We
assume that in the case in which n pickers occupy a picking aisle at a point in time,
0.5 - n - (n — 1) overlaps occur. Executing the picking tours given in Fig. 3(a) leads
to a total temporal overlap of Z= 102. Modifying the execution of the picking tours
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Fig. 3 Total temporal overlap between pickers (Z) for different picking tours

of pickers 1 and 4 as shown in the upper part of Fig. 3(b) leads to a reduction in the
temporal overlap by approximately 80%. The example also shows that the length of
the rectangles in Fig. 3(a) is the same as in Fig. 3(b), i.e., the distance traveled (or
time required) by each picker is not affected.

To the best of our knowledge, the resulting picking tour execution problem
(PTEP) constitutes a novel setting, which has not been studied in the literature so far
but is of high relevance in real-world warehouses. The contributions of our paper are
the following:

e We formally describe the PTEP as a mixed integer program and propose an effi-

cient iterated local search heuristic (ILS) to provide solutions for large-sized
problem instances.
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e In extensive numerical studies, we test the performance of our PTEP model
using the optimization software Gurobi. Our formulation is able to solve small
and medium instances but is not able to consistently solve large instances within
a given time limit. Moreover, we compare the performance of ILS to those of
Gurobi solving PTEP. The results clearly demonstrate the ability of ILS to find
high-quality solutions within reasonable runtimes.

e Additional experiments show that reductions between 17% and 100% of the total
temporal overlap between pickers can be achieved compared to randomly execut-
ing the picking tours without increasing the distance traveled by pickers.

e To provide managerial insights, we compare our PTEP to a zone picking
approach, in which the risk of infection spread is almost eliminated. The results
show that the zone picking approach strongly increases the makespan compared
to our approach.

The remainder of the paper is structured as follows: In Sect. 2, we discuss the related
literature. In Sect. 3, we introduce the PTEP and present a mixed integer formula-
tion. Our ILS is detailed in Sect. 4. Section 5 is devoted to the numerical studies. In
Sect. 6, we compare the PTEP to a zone picking approach, followed by a conclusion
in Sect. 7.

2 Literature review

Because traveling is considered the most time-consuming warehousing activity,
research mainly focuses on reducing the average distance traveled (or time required)
by pickers for collecting the items of a given set of picking orders. Travel distance
depends on the design of the following four planning problems: warehouse layout
(configuration of the warehouse, including the number of blocks and the number,
length, and width of the picking aisles and cross aisles in each block), picker rout-
ing (determining the picking tour through the warehouse and the retrieval sequence
of the items), order batching (grouping or splitting of customer orders), and storage
assignment (assignment of items to storage locations).

The PTEP is closely related to picker routing problems (PRPs), which, in general,
aim at determining a cost-minimal picking tour along the storage locations defined
by a picking order (see, e.g., Ratliff and Rosenthal 1983). The most well-studied
PRP in the literature is the standard single picker routing problem (standard SPRP),
which can be defined as follows: Given a single-block parallel-aisle warehouse with
a central depot and dedicated storage, i.e., each item is available from one storage
location, the standard SPRP seeks the cost-minimal picking tour for collecting the
items defined by a picking order. For an extensive review on PRPs, we refer the
reader to Masae et al. (2019). Contrary to PRPs, in our PTEP, the picking tour is
already given as input, and it can be generated by an arbitrary solution method for
the PRP. Moreover, in the PTEP, picking tours are executed such that the tempo-
ral overlap between pickers is minimized, whereas previous research on PRPs has
mainly concentrated on determining picking tours such that the distance traveled (or
time required) by pickers is minimized.
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The risk of infection spread in warehousing operations is only considered in
Ardjmand et al. (2021). The authors study an order batching problem which aims
at grouping customer orders into (larger) picking orders such that the total order
picking time, the makespan, and the time in which pickers are picking closer than
at a specified physical distance are minimized. To solve the resulting problem,
they propose three multi-objective metaheuristics. Ardjmand et al. (2021) do
not aim to reduce the risk of infection by optimizing the routing of pickers but
assume that pickers are fixedly routed according to an S-shape routing policy.

Another closely related problem concerns the blocking of pickers. The stud-
ies that exist on picker blocking consider additional travel distance (or time) that
occurs when, for example, pickers meet and passing one another is not possible
due to narrow picking aisles. Gue et al. (2006) investigate the effect of pick den-
sity on picker blocking in warehousing systems with high space utilization, in
which pickers move in an S-shape fashion along unidirectional picking aisles, and
passing by other pickers is not allowed. To avoid blocking, the authors discuss
different routing methods, e.g., forcing a blocked picker to leave the picking aisle
and proceed along a picker-free picking aisle to continue order picking. Pan and
Shih (2008) and Parikh and Meller (2009) investigate a multiple-picker setting
with congestion considerations from a queuing theory perspective: Pan and Shih
(2008) present a throughput model for a picker-to-parts warehouse involving mul-
tiple pickers and narrow picking aisles, which simultaneously considers the total
travel time and the congestion effect. A picker is routed according to the S-shape
routing policy, and in case that an aisle is already occupied by another picker,
she has to wait in a buffer zone until the other picker leaves the picking aisle.
Parikh and Meller (2009) develop analytical models to estimate picker idle time
in a wide-aisle distribution center, in which picker blocking occurs if a picker
blocks access to a picking position of another picker. Zhang et al. (2009) consider
workflow congestion in the context of material handling equipment interruptions
in a manufacturing or warehousing facility. The authors combine a probabilistic
and physics-based model to evaluate the expected link travel time when interrup-
tions occur. Two heuristic algorithms are developed to solve the combined opti-
mization model. Hong et al. (2012) introduce an integrated batching and batch
sequencing problem for a narrow-aisle order picking system that aims at minimiz-
ing the sum of travel time, pick time, and congestion delays. To address realisti-
cally sized instances, the authors present a simulated annealing heuristic. Chen
et al. (2013, 2014) consider a warehousing system with narrow picking aisles, in
which picker congestion has to be avoided. Chen et al. (2013) propose a routing
algorithm based on ant colony optimization for two pickers and Chen et al. (2014)
for multiple pickers. Schrotenboer et al. (2017) develop a genetic algorithm to
evaluate the tradeoff between delays caused by so-called picker interactions and
the time required to avoid an interaction. An interaction delay occurs, for exam-
ple, when a picker blocks access to a storage location from which another picker
needs to collect an item. To conclude, methods on picker blocking cannot be used
to solve the PTEP because picker blocking problems assume that passing one
another is not possible.
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Fig.4 An example of a warehouse graph with IAl = 7 picking aisles and |/l = 9 picking positions

3 The picking tour execution problem

In this section, we provide a detailed description of the PTEP (see Sect. 3.1) and
present a mathematical formulation (see Sect. 3.2).

3.1 Problem description

The PTEP considers a rectangular single-block warehouse with parallel picking
aisles (see Fig. 1). Let A denote the ordered set of picking aisles, which are num-
bered in ascending order from the leftmost to the rightmost picking aisle. We use
a weighted graph G = (V, E) to describe a picking order within a warehouse. Set V
indicates the vertices including the front (rear) locations e, (¢) of each picking aisle
a € A, the depot d, and the picking positions v; of each requested item i € I, where /
denotes the set of requested items of the picking order. Set E consists of an unlim-
ited number of parallel edges between every pair of adjacent vertices. The weight of
each edge represents the travel distance (or time) between two adjacent vertices. An
example of a warehouse graph with |Al = 7 picking aisles and |/l = 9 picking posi-
tions is given in Fig. 4. For simplicity, the figure represents the parallel edges con-
necting adjacent vertices by a single dashed edge.

The items of a given set of picking orders have to be collected. Let K denote
the set of pickers, where each picker k € K is associated with an ordered set OF
of so-called tour subgraphs. A tour subgraph o is a subgraph of G from which a
directed picking tour can be constructed such that every arc of the directed pick-
ing tour corresponds to exactly one edge in o. Note that the PTEP works inde-
pendent of the underlying warehouse layout and routing policy because any rout-
ing policy used in any warehouse layout can be described such that the output is
a tour subgraph, which is used as input to the PTEP and ILS. In Fig. 2(a), a tour
subgraph returned by the optimal routing policy is depicted, and in Fig. 2(b)—(e),
we show the four directed picking tours that can be constructed from the tour

@ Springer



Cost-neutral reduction of infection risk in picker-to-parts... 159

Fig.5 Degrees of freedom 0 0
resulting from Theorem 2 ” |
=2=0=1 =0— 1
€a €a
(a) (b)

subgraph in Fig. 2(a). Theorem 1 states the formal properties of a tour subgraph
and has been proved by Ratliff and Rosenthal (1983).

Theorem 1 (Properties of a tour subgraph) A tour subgraph has the following
properties:

1. Vertices v; and vertex d have nonzero even degree in o.
2. Excluding vertices with zero degree, o is connected.
3. Every vertex in o has even or zero degree.

The PTEP aims to construct directed picking tours from given tour subgraphs
such that the total temporal overlap between pickers is minimized. Therefore, we
describe the procedure for constructing directed picking tours (see Theorem 2,
proved by Ratliff and Rosenthal (1983)), and we show that picking tours generally
contain cycles which can be traversed in both directions.

Theorem 2 (Procedure for constructing directed picking tours) Given a valid tour
subgraph, the directed picking tour can be constructed as follows:

Start the tour at the depot vertex d.

If there is a pair of unused parallel arcs in the tour subgraph incident to the cur-

rent vertex, use an arbitrary one of them to get to the next vertex. Continue with

step 2.

3. If there are any unused single arcs in the tour subgraph (i.e., not one of a pair
of parallel arcs), use an arbitrary one of them to get to the next vertex. Continue
with step 2.

4. Ifthere is a pair of parallel arcs in the tour subgraph with one arc used and one
arc still unused, use the unused arc to get to the next vertex. Continue with step 2.

5. Stop. The directed picking tour is complete.

N =

In Theorem 2, a degree of freedom occurs in steps 2 and 3, respectively, i.e.,
each of these steps identifies a vertex associated with a degree of freedom. Fig-
ure 5 shows the two edge configurations for which degrees of freedom occur in
a single-block parallel-aisle warehouse layout. For both configurations, there are
two ways for selecting the next arc, and thus, at the entry e, to the respective
cycle, the decision maker can decide between the two possible directions, repre-
sented by 0 and 1. Note that these degrees of freedom only occur at the front or
rear end of a picking aisle.
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Table 1 Overview of the notation used in the PTEP model

Sets

A Ordered set of picking aisles (index: a)

K Set of pickers (index: k)

N Set of possible numbers of pickers that simultaneously occupy a picking aisle (index: n)

ot Ordered set of tour subgraphs associated with picker k£ € K (index: o)

T Set of discrete points in time (index: 7)

T,. Set of discrete points in time at which a picker is in picking aisle a € A if execution pos-
sibility 7 € I¥ is selected, where T, C T (index: 1)

H’; Set of all possibilities for executing tour subgraph o € O% of picker k € K (index: )

Binary decision variables

n
at

o, 1, if execution possibility z € Hﬁj is selected; 0, otherwise

X 1, if n pickers are in picking aisle a € A at time 7 € T; 0, otherwise

In Fig. 5(a), the picker reaches vertex e, via the upper arc. At e, the picker can
decide which of the edge pairs marked O or 1 she traverses first. Note that the picker
traverses both edges of a parallel edge pair before she traverses the edges of the
other edge pair. Such a configuration occurs in tour subgraphs in which the picking
aisles are entered and left from the same cross aisle. In Fig. 5(b), the picker reaches
vertex e, via the upper arc. At e,, both of the edges belong to the same cycle. Here,
the picker returns to vertex e, via the unselected edge, e.g., if edge 0 is selected first,
she returns to vertex e, via edge 1.

As described, the picker’s decision influences the time periods in which she occu-
pies a certain picking aisle without changing the distance traveled by the picker. We
use this observation to minimize the time that pickers simultaneously work in the
same picking aisles.

3.2 Mathematical model formulation

This section introduces the notation used in the PTEP model and presents a math-
ematical model formulation for the PTEP.

Set Hﬁ contains all possibilities for executing tour subgraph o € OF by picker
k € K, where 7 € Hfj. Binary variable o, denotes whether execution possibility
T E Hfj is selected (6, = 1) or not (¢, = 0). We assume discrete points in time t € T.
Because each execution possibility 7 € Hfj represents a picking tour, the points in
time at which picker k € K is in picking aisle a € A executing tour subgraph o € O
can be determined before solving the PTEP model and are represented by set 7,
where T, CT.

Finally, binary variable x” indicates whether n € N pickers are in picking aisle
a€Aattimetr€T (x) =1)ornot (x =0), where N is the set of possible numbers
of pickers that simultaneously occupy a picking aisle.

Using the notation summarized in Table 1, the PTEP can be formulated as the
following mixed integer program.
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man—ZZ Z M X (1)

a€A t€T neN:n>2

subject to

Z (n—l)-th+IZZZ Z o, VieT:acA )

neN:n>2 keK 0Ok zellX : 1T,

Y w <1 VieTacA 3)

nenN:n>2

Y o,=1 VkeKoec0

nellk )
x' €{0,1} VneN:n>2teT,a€A 3)
o, €{0,1} VkeK;oeOnelll (6)

Objective function (1) minimizes the total temporal overlap between pickers. Con-
straints (2) ensure that binary variable x7 is correctly defined by linking x7 (left
side) to the number of pickers at each point in time ¢ € T and in each picking aisle
a € A (right side). To determine the number of pickers, we sum over all selected
decision variables o, for which a picker occupies picking aisle a € A at point in
time ¢ € T. Constraints (3) ensure that the binary decision variable x/} is chosen at
most once for each picking aisle a € A and point in time ¢ € 7, i.e., only n pickers
(or none) can simultaneously occupy a picking aisle. Constraints (4) guarantee that
exactly one decision variable o, is selected for each tour subgraph o € O* assigned
to picker k € K, i.e., exactly one directed picking tour is executed from the execution
possibilities of the respective tour subgraph. Finally, the binary decision variables
are defined in constraints (5) and (6), respectively.

4 An iterated local search for the picking tour execution problem

We define binary variable nj’.‘ € {0,1}, where index j =1, ... ,nﬁ denotes the j-th
degree of freedom of tour subgraph o € OF of picker k € K. Index j is defined in
ascending order based on its occurrence in the tour subgraph from left to right. Note
that the j-th degree of freedom is associated with the entry at e, (or €/) to a cycle at
which picker k € K can decide whether to traverse picking aisle a € A that is adjacent
to vertex e, (or /) or to proceed along the front (or rear) cross aisle. Binary variable
z; * takes value 0 1f picker k € K enters picking aisle a € A that is adjacent to vertex e,
(or e') associated with the j-th degree of freedom, and 0 otherwise. Note that there
are |H"| =27 possibilities for executing tour subgraph o € O* of picker k € K.
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generate initial solution s by randomly setting the binary variable wf for each picker &k and degree of freedom j
s « LocalSearch(s)
K1
while £ < Kpax do
s' « Perturbation(s,
s « LocalSearch(s")
if f(s”) < f(s) then

s« s"

")

K — 1
end if
K—kKrk+1

end while
return s

Fig.6 Overview of the iterated local search algorithm

In Fig. 6, a pseudocode overview of the basic ILS framework is given, which can be
described as follows: First, the initial solution is determined by randomly setting the
binary variable ﬂj’.‘ for each picker k and degree of freedom j, i.e., we randomly define
whether the picker first traverses the picking aisle associated with j (i.e., n'j{‘ =0) or pro-
ceeds along the respective cross aisle (i.e., n';‘ =1). Second, the local search is applied to
an initial solution s. The neighborhood s’ used in the local search step is defined by all
possible inversions of one of the binary decision variables 7rlk Third, an incumbent
solution s’ is generated by perturbating s. The strength of the perturbation is defined
dynamically as follows: At iteration k., é Dkek Docok |Hf)| randomly chosen decision

variables are inverted, where k., denotes the number of iterations without improving
the best found solution. Fourth, the local search is applied to s”. The generated solution
s” is accepted as the new current solution if it is better than the current solution s, i.e., if
f(s") < f(s), where f(-) denotes the total temporal overlap between pickers. To achieve
a good tradeoff between the solution quality and the runtime of our algorithm, the ILS
terminates after «,,, = 10. Higher numbers of iterations slightly improve the average

solution quality but significantly increase the runtimes.

5 Numerical studies

This section presents the numerical studies (i) to assess the performance of our PTEP
formulation using Gurobi, (ii) to compare the performance of ILS to that of Gurobi
solving PTEP, and (iii) to give managerial insights with respect to the potential avoid-
ance of temporal overlaps between pickers. In Sect. 5.1, we describe the test instances,
and in Sect. 5.2, we present the results of our computational experiments.

5.1 Test instances
Our experiments are based on the instances of Henn and Wéscher (2012), originally

designed for the order batching problem. The instances consider a single-block par-
allel-aisle warehouse with ten parallel picking aisles, each containing 90 different
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items (45 on the left and 45 on the right). The depot is located below the entry of
the leftmost picking aisle in the front cross aisle. The physical dimensions of the
warehouse are as follows: An order picker has to cover 1 length unit (LU) (or 1 time
unit) to get from the depot to the front cross aisle. The distance between the front
cross aisle and the first storage location of a picking aisle is 1 LU, and the distance
between two neighboring picking aisles is 5 LUs. The authors assume two differ-
ent demand scenarios, i.e., uniformly distributed demand (UDD) and class-based
demand (CBD). For UDD, items are randomly assigned to storage locations. For
CBD, they define three classes with high (A), medium (B), and low (C) demand
frequencies. Class A contains 10% of the items that account for 52% of the demand,
class B 30% of the items that account for 36% of the demand, and class C 60% of
the items that account for 12% of the demand. Items of class A are stored in picking
aisle a = 1, items of class B in picking aisles a = 2 to a = 4, and items of class C in
picking aisles a = 5 to a = 10. The authors consider groups of 40 instances, which
are identified by the demand scenario and the number of picking orders (20, 40, 60,
80, and 100). The number of items per picking order is randomly drawn from the
interval [2, 25].

In our experiments, we consider |KI = {2,5,10,20,40} pickers and
|O%| = {2,5, 10,20} tour subgraphs per picker k € K. To use the instances of Henn
and Wischer (2012) for our experiments, we make the following adjustments: We
select the first 2, 5, 10, or 20 picking orders from an instance of Henn and Wéscher
(2012), who originally assume 20, 40, 60, 80, or 100 picking orders, to generate
|O%| = {2,5,10,20} tour subgraphs. Moreover, their instances consider a single
picker and thus cannot be used directly for our experiments. However, given that
40 instances were generated per instance group, we select the first 2, 5, 10, 20, or
40 instances of a group, and we use, e.g., the two selected instances for the case of
IKl = 2 pickers, one for each of the pickers, the 5 selected for Kl = 5 pickers, and so
on.

As described before, any routing policy can be used to generate a tour subgraph.
In the numerical experiments, tour subgraphs are generated by the exact algorithm
of Ratliff and Rosenthal (1983), which is called “optimal” routing policy in the fol-
lowing, the largest gap routing policy by Hall (1993), the S-shape routing policy by
Goetschalckx and Ratliff (1988), and a newly introduced S-shape+ routing policy.
Figure 7 illustrates the tour subgraphs that result from the optimal (a), the largest
gap (b), the S-shape (c), and the S-shape+ (d) routing policy for a given picking
order. For each tour subgraph, we indicate the degrees of freedom by 7rj’.‘ . The rout-
ing policies are described as follows:

e Largest gap: According to the largest gap policy, the leftmost and the rightmost
picking aisle are completely traversed if picks are required in there. The other
picking aisles that contain a picking position are entered and left from the same
cross aisle such that the largest gap is not traversed. A gap represents the distance
between (i) any two adjacent picking positions, (ii) the first picking position and
the front cross aisle, or (iii) the last picking position and the rear cross aisle.
In the case of (i), a picking aisle is accessed via the front (or rear) cross aisle,
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whereas in the case of (ii) or (iii), a picking aisle is accessed from the rear (ii) or
the front cross aisle (iii). The largest gap policy provides a single degree of free-
dom at the beginning of the tour.

e S-shape: In the S-shape routing policy, a picker enters picking aisles in an alter-
nating manner from the front and the rear cross aisle and traverses them com-
pletely (if picks are required in there) or not at all (if no pick is required in there).

e S-shape+: As in the S-shape routing policy, in S-shape+, picking aisles are
entered in an alternating manner from the front and the rear cross aisle and tra-
versed completely (if picks are required). The difference between these two rout-
ing policies is the following: In the standard S-shape routing policy, the picker
directly travels from the front location of the rightmost picking aisle to be visited
to the depot without accessing the other front locations of the picking aisles (see
Fig. 7(c)). Thus, all picks are executed on the way to the rightmost picking aisle
that contains a picking position. In the S-Shape+ routing policy, the picker suc-
cessively accesses each front location of the picking aisles on the way back to
the depot. As shown in Fig. 7(d), this leads to a tour subgraph which allows the
picker to skip required picking aisles on the way from the depot to the rightmost
picking aisle to be visited and then to access the skipped picking aisles on the
way back to the depot. Both routing policies lead to the same distance traveled by
the picker but differ in the number of degrees of freedom they offer. The S-shape
routing policy contains only one degree of freedom at the beginning of the tour,
whereas the S-shape+ routing policy offers multiple degrees of freedom and
therefore provides greater flexibility in designing the picker routes.

Combining the above described parameter values leads to 160 instance groups,
which are identified by the demand scenario (UDD or CBD), the number of pick-
ers IKl, the number of tour subgraphs per picker |O*|, and the routing policy used to
generate the respective tour subgraphs. For each instance group, we generate five
instances, i.e., 160-5 = 800 instances in total.

All experiments are conducted on a computing cluster running CentOS 7 with
2 x Intel Xeon E5-2430v2 Processors at 2.50 GHz and 64 GB of memory per com-
pute node. Gurobi is used to solve the mixed integer program presented in Sect. 3.2,
and each process runs multithreaded on 6 CPU cores. We restrict the solution time
of Gurobi to 3600 s for all experiments. ILS is implemented in single-threaded C++
and compiled using GCC 8.2 with full optimizations enabled.

5.2 Computational results

In this section, we assess the performance of the PTEP model and of our ILS. More-
over, we provide managerial insights with respect to the potential avoidance of tem-
poral overlaps between pickers in the warehousing system under study.

Tables 2 and 3 present aggregate results for different routing policies on the
UDD instances and Tables 4 and 5 on the CBD instances. Each table reports aver-
ages for groups of instances defined by the number of pickers (column K) and the
number of tour subgraphs per picker (column |O¥|). The remaining columns are
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Table2 Results on the UDD instances grouped by number of pickers IK| and number of tour subgraphs
per picker |O¥| using the optimal and largest gap routing policy

Optimal routing policy Largest gap routing policy
Gurobi ILS Gurobi ILS
K] |0% g i pront W

ub (%) 1b(%) #opt ta (s) best (%) avg (%) ta (s) ub (%) b (%)  #opt ta (s) best (%) avg (%) ta (s)

2 2 39 1344 100 100 5/5 0.13 -100  -100 001 55 1465 -89 -89 55 0.12 -89 -89 0.01
2 5 94 3391 99 99 55 022 -99 -97 0.02 104 3662 -84 -84 55 021 -84 -83 0.02
210 179 6842 99 99 5/5 041 -99 -98 0.05 192 7321 -8 86 55 043 -85 -84 0.04
220 331 13576 -100  -100  5/5 0.69 -99 -98 0.14 440 14526 88 88 5/5 071 -84 -83 0.09
2 Avg 161 6288 -100 100 2020 036 99 98 006 198 6791 87 87 2020 037 -85 -85 0.04
5 2 414 3413 -3 =73 S5 0.62 69 -69 0.02 563 3686 48 48 5/S 028 48 45 0.02
5 5 978 8679 74 74 55 225 -69 -67 008 1144 9373 50 50 5/5 0.60 49 47 0.05
510 1897 17355 17 =71 55 7.00 -76 -75 084 220 18570 52 52 55 1.06 -52 -52 043
520 3746 34224 75 75 S5 1532 -12 -12 254 4421 36620 52 52 5/5 249 -52 -52 1.38
5 Avg. 1759 15918 75 75 2020 6.29 71 71 087 2146 17191 51 =51 2020 L1 -50 49 0.47
10 2 1712 6708 -2 =52 55 2215 49 48 006 2243 7245 33 33 55 156 -33 32 0.04
105 4034 16890  -53 53 5/5 881.99 -52 -52 121 4881 18072 35 35 5/S 528 35 -35 0.64
1010 7949 33773 =53 =58 0/5 3600.00 -51 51 435 9300 36137 34 34 5/5 1655 34 34 238
1020 15891 67633 -52  -58  0/5 3600.00 -50 -50 1879 19070 72367 34 34 55 4469 -34 341138
10 Avg, 7397 31251 =52 =55 1020 2026.73 =51 =50 6.10 9024 33439 -34 34 20120 17.02 -34 -34 3.61
20 2 8012 13322 35 35 5/5  884.96 34 -33 017 9934 14255 24 24 5/5 2747 -2 -23 0.13
20 5 17658 33488 34 -39 0/5 3600.00 34 34 9.16 21190 35832 23 23 4/5 294138 -23 -3 5.84
2010 34590 67297 31 41 0/5 3600.00 34 —34 4294 40816 72008 23 25 0/5 3600.00 -23 23 2138
20 20 67836 134620 23 41 0/5 3600.00 -33 33 21549 80724 144043 23 26 0/5 3600.00 -23 -23 13420
20 Ave. 32024 62182 31 -39 520 292273 34 33 6694 38429 66535 23 25 920 254327 -23 23 41.89
40 2 34279 26766 27 =28 0/5 3600.00 -7 -27 1386 42506 28640 20 20 5/5 258.63 -20 -20 8.38
40 5 74749 67302 22 =26 0/5 3600.00 -23 23 11271 89699 72013 -17  -19  0/5 3600.00 -17 17 7337
4010 143115 134534 -10 =26 0/5 3600.00 -2 -22 55621 168875 143951 0 -I18 05 360000 -16 -16 35210
40 20 280723 269418 3 25 05 3600.00 -21 21 2998.16 331253 288277 0 100 0/5 3600.00 -15 -15 1953.74
40 Avg. 133216 124505 -16  -26 020 3600.00 -23 23 92024 159860 133220 9 39 520 276694 -17 -17  596.90

Table 3 Results on the UDD instances grouped by number of pickers IKl and number of tour subgraphs
per picker |O¥| using the S-shape and S-shape+ routing policy

S-shape routing policy S-shape+ routing policy

Gurobi ILS Gurobi ILS

K| (0% gt @ prona @

ub (%) b (%) #opt  ta(s) best (%) avg (%)  tla(s) ub (%) b (%) #opt  to(s) best(%) avg(%)  ta(s)
2 2 109 1801 -100 100 S/5 014 -100 98 0.00 94 1801 100 100 S/ 017 -100  -100 0.0
2 s 175 4476 94 94 55 024 94 91 0.01 159 4476 -100  -100  5/5 030 100  -100  0.03
210 270 8758 95 95 5/5 043 91 -89 0.02 270 8758 100 100 S/ 055 -100  -100 007
220 539 17513 96 96 5/5 083 93 91 006 552 17513 -100 -100 5/ L2 -100 99 017
2 Ave 315 8237 96 2020 041 94 92 002 294 8237 100 -100 2020 054  -100  -100 007
52 948 4505 61 5/ 033 61 60 001 750 95 95 55 112 -83 78 0.03
55 1770 1119 62 5/5 073 -62 59 003 1564 95 95 55 466 -19 -7 0.09
510 3244 22214 64 5/5 1.63 -63 -63 031 2998 95 95 5/5 2950 -85 -85 084
5 20 5919 43807 61 5/5 268 -60 60 103 5694 95 95 5/5 58385 -84 -83 321
5 Avg. 3254 20693 62 20120 134 -62 61 034 2867 95 95 2020 15478 -83 81 1.04
10 2 3528 8720 40 40 S5 1.63 -39 39003 2963 69 69 55 3102 60 58 007
105 7059 2178 40 40 S5 499 40 40 047 6535 67 <73 055 3600.00 61 61 121
1010 12957 43229 41 41 55 1231 41 40 198 12480 66 77 0/5 360000 -59 59 47l
10 20 24791 86570 41 41 45 2938 40 40 874 24473 61 79 055 3600.00 58 -58 2098
10 Avg 12944 40314 40 40 1920 12,08 40 40 280 11983 66 74 5020 2708.87 60 59 674
20 2 15542 17319 30 30 55 1135 -29 29009 12979 46 AT 45 229972 42 —41 0.18
20 5 30548 43200 28 28 5/5 28485 27 27 467 28076 41 4705 360000 40 -39 1048
20 10 56382 86813 27 28 0/5 3600.00 -26 26 2698 53614 29 4705 360000 38 38 44.63
20 20 106502 172314 26 28 0/5 3600.00 25 25 10833 104467 27 47 05 3600.00 -36 36 220.56
20 Avg. 55081 80215 27 28 1020 187541 -27 27 3502 50598 80215 -36 47 4120 327673 -39 -39 68.97
40 2 66158 34528 22 22 5/5 5606 -2 22 619 54846 34528 32 33 O/5 3600.00 31 311233
40 5 129316 86820 20 20 O/5 3600.00 -19 ~19 5525 117356 86820 -2 29  0/5 3600.00 26 26 10878
4010 233277 173549 3 19 05 3600.00 18 ~I8 28465 221828 173549 -19 28 0/5 3600.00 24 24 534.06
40 20 440734 344855 1 -100 05 360000 -16 ~16 144824 432313 344855 17 27  O/5 3600.00 2 22 2860.94
40 Avg. 227800 160611 11 —40 520 271691 -19 ~19 44858 209150 160611 -2 -29 020 3600.00 -26 26 879.03

divided into two blocks, where each block reports the results for one of the under-
lying routing policies.

In column 7", we give the average temporal overlap of 1000 randomly generated
solutions, i.e., we randomly construct directed picking tours from the respective tour
subgraphs. In addition, we report the average of the total travel distance of pickers
(column #d). All other values that are reported are provided as percentage deviation
from the objective function value reported in column £, Column ub (%) (Ib (%))
denotes the percentage deviation of the best objective function (lower bound) values
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Table 4 Results on the CBD instances grouped by number of pickers IKl and number of tour subgraphs
per picker |O¥| using the optimal and largest gap routing policy

Optimal routing policy Largest gap routing policy
Gurobi ILS Gurobi ILS
K] |0% g i pront i

ub (%) 1b(%) #opt ta (s) best (%) avg (%) ta (s) ub (%) b (%) #opt ta (s) best (%) avg (%) ta (s)

2 2 431000 92 92 5/5 0.08 -92 -90 001 431050 97 97 55 0.08 -95 -92 001
2 5 8 2632 96 96  5/5 0.15 -96 -93 0.01 100 2764 96 96 5/ 0.16 -96 -95 0.01
210 178 5282 97 97 5/5 026 -96 -94 0.03 199 5546 95 95 5/5 028 -91 -91 003
220 348 10650 97 97 55 052 -96 -95 0.08 383 11183 90 90 55 054 -84 -83 0.07
2 Avg 164 4891 -95 =95 20120 0.25 95 -93 0.03 179 5136 -94 94 20120 0.27 -92 -90 0.03
5 2 47 2562 -56 56 SIS 0.18 -54 -53 001 474 2690  -50 =50 5/5 0.19 49 47 001
5 5 950 6580 61 61  5/5 052 -58 -56 004 1074 6843 54 54 55 044 -53 -52 0.04
510 1869 13312 64 64 55 1.08 64 -63 036 2131 13978 53 53 55 1.04 -53 -53 030
520 3657 26767 63 63 5/5 247 61 61 126 3950 28105 54 54 55 1.98 -53 -53 101
5 Avg 1726 12305 61 61 20120 1.06 -59 58 0.42 1916 12920 53 -53 20120 0.91 =52 =51 0.34
10 2 207 5145 41 4155 1.08 40 -39 003 2270 5402 37 37 55 0.87 -36 -36 0.03
105 4264 13091 41 415 539 40 40 055 4691 13746 35 35 5/5 391 35 -35 045
1010 8394 26445 41 41 55 4724 41 41 212 8982 27767 35 35 5/5 1126 -35 -35 177
1020 16329 53164 40 40 55 19334 40 -39 871 17472 55822 35 35 4/5 4527 -34 34 7.64
10 Avg. 7754 24461 41 41 2020 6176 40 40 8451 25684 36 36 1920 1533 -35 -35 247
20 2 8392 10403 32 32 55 1536 -31 -31 9231 10923 29 29 55 8.03 -29 -29 0.10
20 5 17904 26131 29 29 45 154849 -29 -29 19516 27438 26 26 5/5 13313 -26 -26 4.10
20 10 34662 52963 27 =29 0/5 3600.00 -7 -27 37435 55611 24 24 05 3600.00 -2 24 17.03
20 20 67718 105943 26 28 0/5 3600.00 -25 -25 73135 111240 22 24 0/5  3600.00 -22 -2 86.60
20 Ave. 32169 48860 28 29 920 2191.92 28 28 34743 51303 25 26 1020 183629 -25 25 2695
40 2 34431 20092 27 =27 55 9835 -7 -27 37874 22042 24 24 55 5301 -2 -2 558
40 5 771 52414 21 =22 0/5 3600.00 -21 -21 80083 55035  -19  -19  0/5 3600.00 -19 -19 4649
4010 141015 105497 -17  -19  0/5 3600.00 -18 -18 153707 110772 -16  —17  0/5 3600.00 -16 -16  223.08
40 20 276106 211074 0 -18  0/5 3600.00 -16 -16 300955 221628 0 -16  0/5 3600.00 -15 -15 1172.02
40 Ave. 131256 97494 16 22 520 2729.82 21 21 143069 102369 -15  -19 520 271622 -19 -19  361.79

=

Table 5 Results on the CBD instances grouped by number of pickers IKlI and number of tour subgraphs

per picker |O¥| using the S-shape and S-shape+ routing policy

S-shape routing policy S-shape+ routing policy

. ] Gurobi ILS ot Gurobi ILS

K| [0F  frm P frond ,d

ub(%) 1b(%) Hopt Ly (s) best(%) avg(%) ta(s) ub (%) b (%) Hopt  fu(s) best(%) avg(%)  ta(s)
2 2 56 1270 90 90 55 010 90 88 0.00 55 1270 -100 100 §/5 000  -100 100 001
2 s 135 3290 82 82 55 020 81 -78 001 125 3200 -100 -100 55 020 -99 98 0.02
210 238 6603 88 88 55 034 83 80 002 236 6603 100 -100 55 036  -100 99 004
220 446 13313 92 92 55 064 86 -85 005 463 13313 -100 -100 55 070  -100 99 011
2 Avg 25 6114 88 88 2020 032 83 002 220 6114 100 -100 2020 034  -100 99 0.04
52 666 3177 57 5T 55 021 53 001 572 3177 81 81 55 045 74 -2 002
5 5 1330 825 56 56 55 049 -5 002 1254 8225 -84 -84 55 161 -7 -0 0.06
510 2542 16640 57 57 55 1.03 56 024 2467 16640 83 83  5/5 529 -7 76 055
520 4901 33459 -5 57 55 231 -56 084 4901 33459 -84 -84 55 2990 -76 -76 178
5 Avg. 2451 15381 57 57 20120 1.01 54 028 2295 15381 83 83 2020 931 75 0.60
10 2 3041 6483 37 37 55 095 34002 2696 6483 56 56 5/5 493 -50 0.04
105 6013 16364 37 37 5/5 3.70 37 037 5714 16364 56 -57 45 979.18 54 072
1010 11332 33056 38 38 55 994 37 134 11164 33056 55 S8 05 3600.00 -52 2,60
10 20 21880 66455 38 38 5/5  3LI12 37 653 21880 66455 55 61  0/5 3600.00 -50 11.72
10 Avg. 10855 30576  -37 37 2020 1143 36 207 10390 30576 56  -58  9/20 204673 -52 51 377
20 2 12504 13004 29 29 45 787 28 28 008 11245 13004 41 41 5/5 5566 -39 38 013
20 5 25424 32664 26 26 45 12805 -26 26 351 24171 32664 37 -39 0/5 360000 -36 35 538
20 10 47487 66204  -25 25 0/5 3600.00 25 25 1494 46794 66204 34 -39 05 3600.00 -33 33 24386
20 20 92774 132429 24 25 0/5 3600.00 24 24 7376 92097 132429 20 38 0/5 3600.00 -32 32 12467
20 Avg. 45359 61075 26 27 820 1835.17 26 26 2307 43428 61075 33 -39 5020 271527 35 35 3876
40 2 51991 26240 22 22 35 3137 22 22 465 46827 26240 31 31 3/5  960.09 -30 30 735
40 5 105063 65518 -18  —19  1/5 3249.68 -18 ~18 3939 99920 65518 24 26 O/5 3600.00 24 24 614
4010 196011 131871  -16 17 0/5 3600.00 -16 ~16 18846 191781 131871  -18 23 0/5 3600.00 -21 21 300.67
40 20 378265 263843 —1 100 0/5 360000 -5 ~I5 98920 372743 263843  -13 22 0/5 360000 -19 ~19 1568.09
40 Avg. 186383 121868  -14 40 4/20 2621.95 18 ~18 30543 178508 121868 21  -25 3/20 294255 23 23 485.06

given by Gurobi. Column #opt indicates the number of instances solved to proven
optimality. For ILS, the reported results are based on five runs on each instance. In
column best (%) (avg (%)), we show the percentage deviation of the best (average)
solution value over the five runs. Column ¢, (s) gives the average runtimes in seconds.

In the following, we discuss the results of our experiments:

Comparison of ILS to Gurobi The results show that the number of pickers, the
number of tour subgraphs per picker, and the routing policy significantly influence
the performance of Gurobi. The main findings are as follows:
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e Optimal: Using the optimal routing policy, Gurobi is able to solve 55 UDD
instances and 74 CBD instances to optimality (UDD instances with IKl ={2,5}
and those with IKl = {10} assuming |O%| = {2, 5} as well as all CBD instances
with IKI={2, 5, 10}). On the UDD and CBD instances with |IKl =20, all instances
with |O¥| = 2 are solved, and on the CBD instances with |0%| = 5, four out of five
instances are solved. On the instances with |Kl = 40, Gurobi is not able to solve
any of the UDD and CBD instances within the given runtime limit.

e Largest gap and S-shape: Most of the instances can be solved to optimality
using the largest gap policy (148 out of 200 instances), i.e., all UDD and CBD
instances with IKl = {2,5, 10}, except a single CBD instance with IKl = 10 and
|OF| = 20. On the CBD instances with IKl = 20 and |O¥| = {2, 5}, Gurobi pro-
vides optimal solutions for all tested instances and on the UDD instances, for all
except for a single instance. Even on the larger UDD and CBD instances with
IKl = 40 and |O¥| = 2, Gurobi finds optimal solutions for all tested instances.
Similar results can be observed for the case of the S-shape routing policy (146
out of 200 instances are solved to optimality).

e S-shape+: The fewest of the instances can be solved using the S-shape+ rout-
ing policy (106 out of 200 instances), i.e., all UDD and CBD instances with
IKl ={2,5} and |O%| = {2, 5, 10,20}. On the larger UDD instances, Gurobi finds
optimal solutions for all instances with IKl = 10 and |O¥| = 2, and for 4 out of 5
instances with IKl = 20 and |O¥| = 2. In the case of larger CBD instances, Gurobi
provides optimal solutions for all instances with Kl = {10,20} and |O*| = 2, and
for 4 out of 5 instances with IKl = 10 and |O¥| =5, and 3 out of 5 instances with
IKI =40 and |O¥| = 2.

The results show that Gurobi succeeds in solving small and medium instances
within reasonable runtimes but is not able to consistently solve larger instances to
optimality within the given time limit. The tables show that ILS finds the same or
slightly worse solutions as Gurobi on the smaller and medium instances but clearly
outperforms Gurobi on the larger instances: It is worth noting that the solution qual-
ity of ILS on the largest instances is close to the lower bound of Gurobi (in the cases
in which the lower bound is not equal to zero). In addition, the results indicate a
very good robustness of our ILS, i.e., the best solutions found by ILS deviate from
the average solutions by only 0.5% for the UDD case and 0.6% for the CBD case.
The runtimes of ILS are reasonable and stay below 10 minutes for all but the larg-
est instances with |K1 =40 and |O¥|= 20. The results of ILS clearly demonstrate that
ILS is able to solve the largest instances within reasonable runtimes.

Performance of ILS for different routing policies In the following, we investi-
gate the performance of ILS for different routing policies. To this end, we compare
the results of the arbitrary solution (see column  f"#"¢”’) with those obtained by our
ILS (see column “best”) for the same picker routing policy. We use the reduction
in temporal overlap between pickers to compare the results of an arbitrary solution
to the PTEP with that obtained by our ILS for the same picker routing policy. This
can be an insightful measure for managers if a fixed routing policy is used in their
warehouse.
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The results show that ILS is able to significantly reduce the temporal overlap
between pickers independent of the picker routing policy at hand. For example, on
the smallest UDD and CBD instances with |Kl = 2 and S-shape+ routing policy, ILS
generates solutions that are completely free of temporal overlaps. Even on the larg-
est UDD (CBD) instances with IKl = {20, 40}, a reduction of 39% (35%) and 26%
(23%) is achieved although the instances assume a warehouse with only 10 picking
aisles. ILS achieves the smallest reduction in the temporal overlap between pickers
in the case of S-shape and largest gap routing policies. For instance, even on the
smallest UDD instances with IKl = 2, temporal overlaps between pickers cannot be
completely avoided. This is because both routing policies provide only one degree
of freedom in the routing: the picker performs the S-shape routing either via the
leftmost or via the rightmost picking aisle to be visited, and the largest gap routing
starts either along the front or the rear cross aisle.

In the following, we investigate the effect of (i) the number of pickers, (ii) the
number of tour subgraphs per picker, and (iii) the demand scenario on the total tem-
poral overlap between pickers. Moreover, we briefly discuss the results with respect
to the total travel distance of the pickers.

e For all routing policies, we observe that the larger the number of pickers IKI,
the smaller the average reduction in the total temporal overlap between pickers.
Obviously, in the case of a large number of pickers, there is less potential for
reduction in comparison with a small number of pickers because the probability
of temporal overlaps increases with the number of pickers. For instance, on the
UDD instances using the S-shape+ routing policy, the average reduction ranges
between 26% in the case of IKI =40 and 100% for IKl = 2.

e The influence of the number of tour subgraphs per picker is hardly visible. For
example, on the UDD instances with |Kl = 20 using largest gap routing policy,
the reductions achieved for |O%| = {2, 5, 10, 20} are 24%, 23%, 23%, and 23%,
respectively.

e For CBD, ILS generates solutions that are slightly worse compared to those
for UDD. For example, for CBD, IKl = 40, and the S-shape+ routing policy,
ILS yields a reduction of 23% on average compared to 26% for UDD.

e As expected, the optimal routing leads to the shortest picking tours, and the
S-shape and S-shape+ routing policies result in the longest routes. This is
because all picking aisles containing even a single item to be picked must be
completely traversed.

Our numerical results show that large reductions in the total temporal overlap
between pickers are achieved independent of the underlying routing policy. The
smallest temporal overlap is observed for the optimal routing policy (see Tables 7,
8, 9, and 10). With respect to picking performance, the optimal routing policy is
obviously superior to the other routing policies because it leads to shorter picking
tours. However, a shortcoming of using the optimal routing policy is that pickers
may get confused by the complex routes, and therefore, tend to deviate from opti-
mal routing patterns (see, e.g., Elbert et al. 2017). Deviating from given routes
can have a negative impact on picking efficiency and also increase the risk of
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infection spread. This effect is particularly strong if no modern technologies such
as tablets, pick-by-light, or pick-by-voice are used to assist pickers.

To reduce infection risk in picker-to-parts warehousing systems through our
PTEP, it is paramount that pickers follow prescribed routes. While pickers will
not always follow prescribed routes in practice in non-pandemic periods for sev-
eral reasons (e.g., social interactions), in pandemic periods, pickers are more
likely to do so to avoid infection. Moreover, although our PTEP is not able to
completely prevent possibilities for social interaction, it significantly reduces
them through exploiting the degrees of freedom that the routing policies offer.

6 Zone picking

In this section, we compare our approach to a zone picking approach, which is
another possible way to reduce infection risk in picker-to-parts warehouses. To
make a fair comparison possible, we choose the following setup for the zone pick-
ing approach:

e  Warehouse layout: The picking area follows the single-block parallel-aisle ware-
house layout described in Sect. 5.1, but is divided into smaller zones, each with
a single picker assigned to it. A zone comprises a fixed number of picking aisles,
and each zone is associated with a handover location located in the front cross
aisle. Figure 8 illustrates the zone picking system with different numbers of
zones. Obviously, physical distancing practices are easy to implement, and infec-
tion risk between pickers can be almost eliminated in such systems.

e Parallel zone picking: We assume parallel zoning, i.e., the items of a picking
order are simultaneously retrieved by multiple zone pickers in multiple zones as
described in the following: Each zone picker is initially positioned at her hando-
ver location. Starting from the handover location, the zone pickers collect the
picking order items from their zone according to an optimal routing pattern (see
Ratliff and Rosenthal 1983). Once a zone picker has collected all picking order
items from her zone, she returns to her handover location to deposit the items.
Subsequently, she executes the next picking order from her picking list, starting
from her handover location. We assume that each zone picker uses a bin with
sufficient capacity for temporarily storing the picking order items and that each
handover location has infinite storage capacity (buffer) for depositing items.

e Sequence for picking orders: The sequence according to which the picking
orders have to be collected by the zone pickers is given.

e Consolidator: A consolidator collects the items of a single picking order from
the relevant handover locations (i.e., those from which the picking order items
are to be collected) on a single tour as follows: The consolidator starts at the
depot, where she is equipped with a trolley with sufficient capacity for the items
of a single picking order, proceeds along the front cross aisle to the relevant
handover locations, and from the last visited handover location to the depot. The
sequence according to which a consolidator visits the relevant handover loca-
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zone 1

front cross aisle

(a) Picking area divided into 2 zones each with 5 picking aisles.

N

front cross aisle

(b) Picking area divided into 5 zones each with 2 picking aisles.

zone 1 zone 2 zone 3 zone 4

— AN N

front cross aisle

(c) Picking area divided into 10 zones each with a single picking aisle.

Legend:

[ item storage location

handover location
central depot

Fig. 8 Warehouse layout assumed in the zone picking system
tions is determined in optimal fashion (concerning the objective of minimizing
the completion time of a picking order). We assume that no effort for consolidat-

ing the items occurs at the depot. The consolidator collects the picking orders in
the given picking sequence.
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e Test instances: Our experiment is based on the instances described in Sect. 5.1.
For both approaches, we use the exact algorithm of Ratliff and Rosenthal (1983)
to determine a picking tour. For our PTEP, we consider IKl = {3, 6, 11} pickers
and |0%|={2, 5, 10,20} tour subgraphs per picker k € K. For the zoning approach,
the picking area is divided into 2, 5, and 10 zones comprising 5, 2, and 1 picking
aisles, respectively. We assume |Kl = {3, 6, 11} pickers, where the 3rd, 6th, and
11th picker represents the consolidator. The number of picking orders in the zone
picking system is defined as 101 =|O*| - IKl. Combing the above described param-
eter values leads to 12 instance groups, which are identified by the number of
pickers IKl and the number of picking orders in the system |Ol. For each instance
group, we generate 5 instances, i.e., 12 - 5 = 60 instances in total.

In the following, we use the makespan, i.e., the time when all picking orders are
completed, as performance measure for comparing the PTEP and the zone picking
approach. In Table 6, we present aggregate results obtained by our ILS for the PTEP
and by the zone picking approach on the UDD instances and the CBD instances.
The table reports averages for groups of instances defined by the number of pick-
ers (column IKl) and the number of picking orders in the system (column |Ol). The
remaining columns are divided into two blocks, where the first block represents the
results on the UDD instances and the second block those on the CBD instances. In
column ATO, we give the average temporal overlap. Column M prpp (M4yE) TEpOrts
the average makespan required for the PTEP (zone picking approach). Column A (%)
denotes the average percentage deviation between My, and Mppp.

The results show that our PTEP approach strongly outperforms the zone pick-
ing approach with respect to makespan. For example, on the smallest instances with
IKl = 3 pickers and |0l = 6 picking orders in the system, the average percentage
deviation between the PTEP and the zone picking approach is approximately 40% in
the UDD case (49% in the CBD case). Moreover, on these instances, our ILS finds
solutions that are almost free of temporal overlaps between pickers. The larger the
number of pickers IK], the greater the deviation in makespan between the PTEP and
the zone picking approach. For example, on the largest CBD instances with IKI = 11
pickers and |0l = 220 picking orders in the system, the makespan obtained by the
zone picking approach is on average 1066% higher than that obtained by our ILS for
the PTEP.

To sum up, the zone picking approach presented above significantly increases the
makespan although many favorable assumptions are made (e.g., no effort for consol-
idating the collected items at the depot, infinite storage capacity for depositing items
at the handover locations). Clearly, the zone picking approach is able to prevent
pickers from operating in close proximity to each other, and thus, to almost elimi-
nate the infection risk between pickers. Consequently, the tradeoff between basically
no temporal overlap but excessive makespan (zone picking approach) and some tem-
poral overlap without raising costs (PTEP) must be evaluated by warehouse manag-
ers. Given medical tests and personal protective measures (e.g., vaccinations and/or
mouth-nose protection masks), we believe that our PTEP is an interesting approach
for warehouse managers to reduce infection risk between pickers without compro-
mising order picking performance.
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Table 6 Results on the UDD and CBD instances

UDD CBD
K| |0 ATO Mprgp Mzone A (%) ATO Mprep Mzone A (%)
6 16 770 1081 40.22 43 579 856 48.49
15 54 1873 2723  45.28 80 1416 2115 49.19

30 103 3647 5247 4391 134 2821 4206 49.11
60 108 7109 10146  42.84 200 5533 8315 50.34

12 213 800 2265 184.45 284 591 2235  282.08
30 516 1942 5561 186.75 654 1462 5515 278.80
60 878 3670 11089 202.33 1182 2837 10951 286.41
6 120 1833 7302 22141 203.23 2502 5698 21871 283.94

11 22 1105 857 6910 706.72 1483 639 6768  966.51
11 55 2439 1988 17208 767.53 3158 1549 16974 998.10
11 110 5000 3708 34366 827.12 6247 2946 33946 1054.39
11 220 10231 7331 68708 837.22 12470 5836 67994 1066.03

AN W W W W

7 Conclusion

This paper aims to reduce the risk of infection in a picker-to-parts warehousing sys-
tem in which multiple pickers operate in the same picking area. To this end, we
introduce the PTEP that generates directed picking tours from given tour subgraphs
such that the time period in which pickers simultaneously occupy the same picking
aisles is minimized. We formally describe the PTEP as a mixed integer program and
provide an efficient ILS.

Our main finding is that significant reductions in the total temporal overlap
between pickers can be achieved by exploiting the degrees of freedom that routing
policies offer. On average, a reduction in approximately 52% is achieved in the UDD
scenario, while the reduction in the CBD scenario is slightly lower with 49%. The
smallest temporal overlap between pickers is achieved in the case of the optimal
routing policy. The S-shape routing policy tends to perform worst.

We believe that our results are quite interesting for warehouse managers in times
of pandemics: Avoiding temporal overlaps between pickers does not only reduce
the infection risk, but also increases the order picking efficiency (e.g., by reducing
in-aisle congestion). Moreover, the reductions are achieved without compromis-
ing order picking performance, i.e., without changing the distance traveled (or time
required) by the pickers. The comparison of our approach to a zone picking approach
reveals that the zone picking approach results in excessive makespan: the deviation
between the PTEP and the zone picking approach amounts to 396% on average.

To further reduce temporal overlaps between pickers, our problem could be
extended to incorporate modern warehousing concepts, such as scattered storage or
multiple end depots. For example, with scattered storage, an item type can be avail-
able from several storage locations (see Goeke and Schneider 2018). Assigning the
stock keeping units of a frequently requested item type to multiple storage locations
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could reduce the probability of pickers working close to each other. The PTEP could
be extended to incorporate congestion in picking aisles and picker blocking, which
is particularly relevant for warehouses with narrow picking aisles. Moreover, future
research could investigate alternative objective functions for reducing the infec-
tion risk, e.g., one could minimize infection risk that results from pickers operating
within a given physical distance for more than a critical period of time.

Pandemics or epidemics will certainly be given more focus in future research.
Incorporating infection risks into well-known order picking problems will pose new
challenges in the research on warehousing to ensure a safe order picking environ-
ment during pandemics.

Appendix: Additional results

Tables 7 and 8 present aggregate results for different routing policies on the UDD
instances and Tables 9 and 10 on the CBD instances. Each table reports averages for

Table 7 Results on the UDD instances grouped by number of pickers IK| and number of tour subgraphs
per picker |OF| using the optimal and largest gap routing policy

Optimal routing policy Largest gap routing policy
. - Gurobi LS ramd Gurobi ILS
K| ot f !

ub b best avg ub b best avg
2 2 39 0 0 0 0 55 6 6 6 6
2 5 94 1 1 1 3 104 17 17 17 18
2 10 179 2 2 2 4 192 27 27 29 31
2 20 331 0 0 3 7 440 53 53 70 75
2 Avg 161 0 0 2 3 198 26 26 30 30
5 2 414 112 112 128 128 563 293 293 293 310
5 5 978 254 254 303 323 1144 572 572 583 606
5 10 1897 436 436 455 474 2220 1066 1066 1066 1066
5 20 3746 937 937 1049 1049 4421 2122 2122 2122 2122

5 Avg. 1759 440 440 510 510 2146 1052 1052 1073 1094

10 2 1712 822 822 873 890 2243 1503 1503 1503 1525
10 5 4034 1896 1896 1936 1936 4881 3173 3173 3173 3173
10 10 7949 3736 3339 3895 3895 9300 6138 6138 6138 6138
10 20 15891 7628 6674 7946 7946 19070 12586 12586 12586 12586

10 Avg. 7397 3551 3329 3625 3699 9024 5956 5956 5956 5956

20 2 8012 5208 5208 5288 5368 9934 7550 7550 7550 7649
20 5 17658 11654 10771 11654 11654 21190 16316 16316 16316 16316
20 10 34590 23867 20408 22829 22829 40816 31428 30612 31428 31428
20 20 67836 52234 40023 45450 45450 80724 62157 59736 62157 62157

20 Avg. 32024 22097 19535 21136 21456 38429 29590 28822 29590 29590

40 2 34279 25024 24681 25024 25024 42506 34005 34005 34005 34005
40 5 74749 58304 55314 57557 57557 89699 74450 72656 74450 74450
40 10 143115 128804 105905 111630 111630 168875 168875 138478 141855 141855
40 20 280723 272301 210542 221771 221771 331253 331253 0 281565 281565

40 Avg. 133216 111901 98580 102576 102576 159860 145473 97515 132684 132684
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Table 8 Results on the UDD instances grouped by number of pickers IK| and number of tour subgraphs
per picker |O¥| using the S-shape and S-shape+ routing policy

S-shape routing policy S-shape+ routing policy
. rand Gurobi ILS rand Gurobi ILS
K] 0% f f

ub b best avg ub b best avg
2 2 109 0 0 0 2 94 0 0 0 0
2 5 175 11 11 11 16 159 0 0 0 0
2 10 270 14 14 24 30 270 0 0 0 0
2 20 539 22 22 38 49 552 0 0 0 6
2 Avg. 315 13 13 19 25 294 0 0 0 0
5 2 948 370 370 370 379 750 38 38 128 165
5 5 1770 673 673 673 726 1564 78 78 328 360
5 10 3244 1168 1168 1200 1200 2998 150 150 450 450
5 20 5919 2308 2308 2368 2368 5694 285 285 911 968

5 Avg. 3254 1237 1237 1237 1269 2867 143 143 487 545

10 2 3528 2117 2117 2152 2152 2963 919 919 1185 1244
10 5 7059 4235 4235 4235 4235 6535 2157 1764 2549 2549
10 10 12957 7645 7645 7645 7774 12480 4243 2870 5117 5117
10 20 24791 14627 14627 14875 14875 24473 9544 5139 10279 10279

10 Avg. 12944 7766 7766 7766 7766 11983 4074 3116 4793 4913

20 2 15542 10879 10879 11035 11035 12979 7009 6879 7528 7658
20 5 30548 21995 21995 22300 22300 28076 16565 14880 16846 17126
20 10 56382 41159 40595 41723 41723 53614 38066 28415 33241 33241
20 20 106502 78811 76681 79877 79877 104467 76261 55368 66859 66859

20 Avg. 55081 40209 39658 40209 40209 50598 32383 26817 30865 30865

40 2 66158 51603 51603 51603 51603 54846 37295 36747 37844 37844
40 5 129316 103453 103453 104746 104746 117356 91538 83323 86843 86843
40 10 233277 226279 188954 191287 191287 221828 179681 159716 168589 168589
40 20 440734 436327 0 370217 370217 432313 358820 315588 337204 337204

40 Avg. 227800 202742 136680 184518 184518 209150 163137 148497 154771 154771

groups of instances defined by the number of pickers (column K) and the number of
tour subgraphs per picker (column |OX|). The remaining columns are divided into
two blocks, where each block reports the results for one of the underlying routing
policies.

In column 7 we give the average temporal overlap of 1000 randomly gen-
erated solutions, i.e., we randomly construct directed picking tours from the
respective tour subgraphs. Column ub (/b) indicates the average temporal overlap
of the best objective function (lower bound) values given by Gurobi. For ILS, the
reported results are based on five runs on each instance. In column best (avg), we
show the average temporal overlap of the best (average) solution value over the
five runs.
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Table9 Results on the CBD instances grouped by number of pickers IKl and number of tour subgraphs
per picker |O¥| using the optimal and largest gap routing policy

Optimal routing policy Largest gap routing policy
. rand Gurobi ILS rand Gurobi ILS
K] 0% f f

ub b best avg ub b best avg
2 2 43 3 3 3 4 43 1 1 2 3
2 5 86 3 3 3 6 100 4 4 4 5
2 10 178 5 5 7 11 199 10 10 18 18
2 20 348 10 10 14 17 383 38 38 61 65
2 Avg 164 8 8 8 11 179 11 11 14 18
5 2 427 188 188 196 201 474 237 237 242 251
5 5 950 371 371 399 418 1074 494 494 505 516
5 10 1869 673 673 673 692 2131 1002 1002 1002 1002
5 20 3657 1353 1353 1426 1426 3950 1817 1817 1857 1857

5 Avg. 1726 673 673 708 725 1916 901 901 920 939

10 2 2027 1196 1196 1216 1236 2270 1430 1430 1453 1453
10 5 4264 2516 2516 2558 2558 4691 3049 3049 3049 3049
10 10 8394 4952 4952 4952 4952 8982 5838 5838 5838 5838
10 20 16329 9797 9797 9797 9961 17472 11357 11357 11532 11532

10 Avg. 7754 4575 4575 4652 4652 8451 5409 5409 5493 5493

20 2 8392 5707 5707 5790 5790 9231 6554 6554 6554 6554
20 5 17904 12712 12712 12712 12712 19516 14442 14442 14442 14442
20 10 34662 25303 24610 25303 25303 37435 28451 28451 28451 28451
20 20 67718 50111 48757 50789 50789 73135 57045 55583 57045 57045

20 Avg. 32169 23162 22840 23162 23162 34743 26057 25710 26057 26057

40 2 34431 25135 25135 25135 25135 37874 28784 28784 28784 28784
40 5 73471 58042 57307 58042 58042 80083 64867 64867 64867 64867
40 10 141015 117042 114222 115632 115632 153707 129114 127577 129114 129114
40 20 276106 276106 226407 231929 231929 300955 300955 252802 255812 255812

40 Avg. 131256 110255 102380 103692 103692 143069 121609 115886 115886 115886
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Table 10 Results on the CBD instances grouped by number of pickers |K| and number of tour subgraphs
per picker |O¥| using the S-shape and S-shape+ routing policy

S-shape routing policy S-shape+ routing policy
. rand Gurobi ILS rand Gurobi ILS
K| 0% f !

ub b best avg ub b best avg
2 56 6 6 6 7 55 0 0 0 0
5 135 24 24 26 30 125 0 0 1 3
10 238 29 29 40 48 236 0 0 0 2
20 446 36 36 62 67 463 0 0 0 5
225 27 27 34 38 220 0 0 0 2

2 666 286 286 313 313 572 109 109 149 160
5 1330 585 585 625 652 1254 201 201 351 376
10 2542 1093 1093 1118 1118 2467 419 419 567 592
20 4901 2107 2107 2107 2156 4901 784 784 1176 1176

5 Avg. 2451 1054 1054 1103 1127 2295 390 390 574 597

10 2 3041 1916 1916 1977 2007 2696 1186 1186 1348 1348
10 5 6013 3788 3788 3788 3788 5714 2514 2457 2628 2686
10 10 11332 7026 7026 7139 7139 11164 5024 4689 5359 5359
10 20 21880 13566 13566 13784 13784 21880 9846 8533 10940 10940

10 Avg. 10855 6839 6839 6947 6947 10390 4572 4364 4987 5091

20 2 12504 8878 8878 9003 9003 11245 6635 6635 6859 6972
20 5 25424 18814 18814 18814 18814 24171 15228 14744 15469 15711
20 10 47487 35615 35615 35615 35615 46794 30884 28544 31352 31352
20 20 92774 70508 69581 70508 70508 92097 73678 57100 62626 62626

20 Avg. 45359 33566 33112 33566 33566 43428 29097 26491 28228 28228

40 2 51991 40553 40553 40553 40553 46827 32311 32311 32779 32779
40 5 105063 86152 85101 86152 86152 99920 75939 73941 75939 75939
40 10 196011 164649 162689 164649 164649 191781 157260 147671 151507 151507
40 20 378265 374482 0 321525 321525 372743 324286 290740 301922 301922

40 Avg. 186383 160289 111830 152834 152834 178508 141021 133881 137451 137451
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