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Abstract
Surrogate modeling can overcome computational and data-privacy constraints of
micro-scale economic models and support their incorporation into large-scale sim-
ulations and interactive simulation experiments. We compare four data-driven
methods to reproduce the aggregated crop area response simulated by farm-level
modeling in response to price variation. We use the isometric log-ratio transformation
to accommodate the compositional nature of the output and sequential sampling with
stability analysis for efficient model selection. Extreme gradient boosting outper-
forms multivariate adaptive regressions splines, random forest regression, and clas-
sical multinomial-logistic regression and achieves high goodness-of-fit from
moderately sized samples. Explicitly including ratio terms between price input
variables considerably improved prediction, even for highly automatic machine
learning methods that should in principle be able to detect such input variable
interaction automatically. The presented methodology provides a solid basis for the
use of surrogate modeling to support the incorporation of micro-scale models into
large-scale integrated simulations and interactive simulation experiments with
stakeholders.

Keywords Meta-modeling · Agent-based modeling · Mathematical
programming · Farm-level simulation · Fractional response

1 Introduction

Data-driven surrogate models are representations of the response surface of complex
simulation models. They are estimated from a sample of input-output mappings
simulated with the original model (van der Hoog, 2019; Kleijnen, 2017; Asher et al.,
2015).
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Data-driven surrogate modeling can considerably enhance the applicability of
micro-scale (farm-level) agricultural economic models, such as whole-farm and
agent-based models. Farm-level models (FLM) simulate the management decisions
of a collection of individual farm holdings allowing for detail and complexity, inter
alia in representing heterogeneous farming conditions, preferences, risk behavior and
technology. They are well-established tools to simulate fundamental changes in farm
production and resource use choices in response to regime-shifting drivers, such as
climate change, technological innovation or policy intervention (Kremmydas et al.,
2018; Reidsma et al., 2018; Troost & Berger, 2015; Berger & Troost, 2014; van Wijk
et al., 2014).

Recently, there has been an increased interest in linking such detailed micro-scale
behavioral models into macro-scale integrated assessment models (Brown et al.,
2021; Müller et al., 2020; Lippe et al., 2019; Müller-Hansen et al., 2017; van Wijk,
2014). This would, on the one hand, enhance global assessments with high-resolution
models of complex and heterogeneous decision-making—overcoming overly
restrictive behavioral assumptions for which current aggregate macro-models have
been criticized. On the other hand, it would address the major constraint of micro-
scale models: Even when implemented for all farm holdings in a study area, they are
usually confined to smaller spatial extents and cannot simulate larger-scale feedback
to local decisions. In economic terms, this implies a strict small-country assumption
applied not only to product and resource markets, but also to global environmental
effects. Neglecting such global feedback may result in biased simulation outcomes
and misleading conclusions (Müller et al., 2020; Müller-Hansen et al., 2017).

Data-driven surrogate models can help overcome three challenges associated with
the incorporation of micro-scale models into large-scale assessments: (i) Computa-
tional time demands of micro-scale models for a substantial number of farm agents
are often prohibitive for frequent iterative reevaluations required for equilibrium
search in a macro-scale model. (ii) Integrating micro-scale models that have been
developed by different specialized research groups for different small-scale locations
into a large-scale framework is often hampered by heterogeneous use of modeling
methods and software between research groups. (iii) Micro-scale models often
employ sensitive, privacy-constrained micro data that cannot simply be shared for
direct model reuse by other research groups (Troost & Berger, 2015).

A statistical surrogate model that has been estimated from representative output of
a farm-level model can stand in for (emulate) the original farm-level model, where
the use of the latter is not possible: A surrogate is typically computationally much
cheaper than the original model, can serve as a unified interface to the response of
heterogeneous model implementations, and isolates the response surface from
privacy-constrained microdata. In addition, surrogate models also facilitate model
optimization, uncertainty and sensitivity analysis, calibration and interactive model
exploration of micro-scale models (Mössinger et al., 2022; van der Hoog, 2019;
Lamperti et al., 2018; Kleijnen, 2017; Baustert & Benetto, 2017; Asher et al., 2015).

The usefulness of surrogate modeling of farm-level models has been exemplified
in Happe et al. (2006), Domínguez et al. (2009), Lengers et al. (2014) and Seidel &
Britz (2019). While these previous applications used classical econometric models,
van der Hoog (2019) and Storm et al. (2020) suggest the use of machine-learning
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methods for surrogate model estimation as demonstrated e.g by Lamperti et al.
(2018) for financial economic applications.

In this article, we systematically evaluate the capacity of four different surrogate
modeling approaches including machine learning methods to capture the aggregate
crop area response to price variation as simulated by a farm-level model. We address
two important methodological gaps in the nascent literature on surrogate modeling of
micro-scale agricultural economic models:

Firstly, we demonstrate a sequential sampling and evaluation design to ensure
robust and efficient estimation of surrogate models from a limited sample of
agricultural economic model outputs. We combine a quasi-random low discrepancy
sequence with convergence and stability assessments to address the inevitable trade-
off between a comprehensive coverage of the variation in original model output and
the computational cost of original model evaluations implied by larger sample sizes.

Secondly, part of the micro-scale model output is not continuous, but compo-
sitional: Land use and crop areas, which are essential indicators for many
environmental and economic assessments, must sum up to the total available land
in the area. At the same time, response to external drivers is highly complex and
characterized by variable interactions and nonlinearities. To capture this composi-
tional response, we combine the isometric log-ratio transformation (ilr) suggested by
Egozcue et al. (2003) with multivariate adaptive regression splines (MARS)
(Friedman, 1991), random forest regression (RF) (Breiman, 2001), and extreme
gradient boosting (XGB) (Chen & Guestrin, 2016). We compare these methods with
multinomial-logistic regression (MNL) as one of the classical statistical methods for
categorical and compositional data analysis.

2 Data and Methods

Figure 1 summarizes the basic concept underlying the use of surrogate models to
interpolate or predict the simulation output of micro-scale models: A farm-level
model (FLM) provides a theory-based representation of farm-economic decisions,
which allows for simulation analysis of structural changes and regime shifts in the
socioeconomic and biophysical conditions of farming. Simulating a sample of model
input-output combinations provides a data base for estimating a surrogate model
(SM). This surrogate model predicts the FLM output for input combinations that
have not been simulated yet, based on the estimated statistical relationships between
FLM model inputs and outputs in the sample. In this way, the SM allows for a quick

Fig. 1 The basic concept: Using a surrogate model to interpolate or emulate output of a farm-level model
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interpolation of FLM results for uncertainty analysis, iteration with larger-scale
models or interactive result exploration.

We first describe the FLM that we use as test case in this article and the model
input and output variables that we varied. We then explain our evaluation criteria and
the experimental design we employed for comparing different surrogate modeling
methods. In the last part of this section, we present the four different surrogate
modeling approaches we examined.

2.1 The Farm-Level Model

Our analysis used the MPMAS Central Swabian Jura (MPMAS-CSJ) model that was
developed by Troost & Berger (2015) to simulate agricultural adaptation to climate
change in the Central Swabian Jura, a low mountainous area in Southwest Germany.
MPMAS-CSJ simulates the production decisions of all full-time farmers in the study
area by solving a mixed integer programming (MIP) problem for each farm agent in
order to allocate the production factors (land, labor and capital) such that they
maximize expected farm income while respecting individual-specific resource
constraints and production options of each farm agent as well as sales and input
prices, and the technical and agronomic constraints governing agricultural produc-
tion.1 MPMAS-CSJ represents about 530 farm holdings with about 36,000 ha of
agricultural land of which about 22,000 ha are arable. It covers the full range of
activities of the mixed-crop-livestock farming systems in the area such as crop
production, dairy farming, bull fattening, pig production, and biogas production
including the necessary investments in machinery and buildings and participation in
agri-environmental measures. The spatial resolution of input data provided to the
model is 1 ha, but agents can allocate crop production in arbitrarily small units. For
an in-depth description of model equations, empirical parameterization, validation
and uncertainty testing, please refer to Troost & Berger (2015) and Troost et al.
(2015).2

In MPMAS-CSJ, the interplay of agronomic constraints, soil-specific yields, crop
utilization options (sale, forage, fermenter feedstock), agri-environmental support
schemes, flexible allocation of machinery to field work, and flexible feed
composition in animal nutrition leads to complex, heterogeneous and interdependent
profitability profiles for the different crops: On the one hand, production options may
complement each other, for example, as compatible or even mutually beneficial
members of crop rotations, by providing complementary nutrients for animal feeding,
by requiring field work at different points of time in the year, or by requiring the
same type of agricultural equipment. On the other hand, they may compete with each
other if they are incompatible in rotation, are substitutes in animal nutrition, coincide
in peak labor demand or require very different agricultural equipment. This means

1 Although the model has been implemented using the agent-based software package MPMAS
(Schreinemachers & Berger, 2011), the model application in the present article does not include any
agent-agent interactions. In keeping with MPMAS conventions, we use the term farm agent to refer to the
model representation of an individual real-world farm holding throughout this article.
2 The electronic supplement to Troost & Berger (2015) provides a full documentation of all equations in
MPMAS-CSJ.
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that changes in prices, yields, timing or cost of one crop may potentially affect the
relative profitability of other crops, and that these effects may considerably differ
between farm holdings and at different prices levels. The response surface
representing the effects of price expectations on crop area choice was hence
expected to be strongly nonlinear and characterized by structural breaks and
segmentation.

2.2 Input and Output Variables

In the present article, we focus on the simulation of regional totals of crop areas on
arable land as the output of interest, as would be relevant for integration into a large-
scale assessment model. Regional totals result from the aggregation of simulated
choices of the individual farm holdings.3 Nine crop categories were considered for
arable production: winter wheat, spring malting barley, winter barley, spring fodder
barley, winter rapeseed, silage maize, green winter wheat (for silage), clover/grass
production on arable land, and fallow. Accordingly, for each simulation run we
obtained J ¼ 9 output variables indicating the amount of area that was simulated to
fall into the respective crop category (j ¼ 1; . . .; J ) in that run.

With respect to model inputs, we focused on variations in product and input price
expectations used by farm agents for production planning. Since we simulated farm
agent decisions for one average year for the present analysis, our MPMAS-CSJ
application does not endogenously simulate formation of expectations: price
expectations are set exogenously.4 We vary price expectations over the full range
of potential price combinations for crops, animal products and important inputs and
apply these to the baseline climate scenario of Troost & Berger (2015).5 Variation in
the price for good g was expressed as coefficients (pcg) relative to the 2000-2009

price average (�Pg). For the simulations, we extended the ranges observed between
2000-2009 by about 20-30% at both ends, to capture potentially more extreme price
relations in the future (cf. Table 1). As our simulations are intended to provide the
basis for the estimation of surrogate models, we are interested in efficiently
attributing changes in model outputs to changes in model inputs and their interaction.
To avoid confounding of input factor effects, we varied price expectations for the
individual items independently from each other, ignoring the existing correlations.
This means that the resulting distribution of model outcomes should not be
interpreted as a probability distribution for the crop choice. (A probability

3 MPMAS-CSJ simulates the individual crop choices as part of a wider, more comprehensive farm
management decision. Since the structural scenario simulated with the MPMAS-CSJ model does not allow
grassland to arable land conversion, the total arable area per farm agent is a fixed quantity and we could
focus our analysis on this part of the MPMAS-CSJ output vector.
4 In principle, expected and actual prices differ: a price observed in one year does not necessarily mean
farmers will use this price for planning for the following season. Rather price expectations used in planning
are typically understood to reflect a combination of past price observations and currently obtainable
information about future supply and demand. For the present analysis that focuses on land use decisions for
one simulated year representing average conditions (rather than, for example, actual income or
developments over a series of several years), only expected prices are relevant. Whenever we discuss
“prices” in the present article, we refer to expected prices unless explicitly mentioned.
5 The baseline climate scenario used yields and field work timings as observed in the area around 2010.
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distribution for crop areas could be generated from the output sample by weighting
each simulation run with the joint probability of input factor values employed in that
run or, alternatively, by later applying the estimated surrogate model to a sample of
correlated price factors.)

In addition to price variations, we also included variations of uncertain model
parameters into our analysis: Farm-level models, such as MPMAS-CSJ, that are
based on theoretical and empirical process knowledge are typically subject to
considerable parameter and input uncertainty (Buysse et al., 2007; Troost & Berger,
2015). Good modeling practice requires to clearly communicate the resulting
uncertainty to readers and analyze it in order to assess the robustness of results and,
in the long run, improve process understanding (Jakeman et al., 2006). As Berger &
Troost (2014) argue, one should therefore refrain from identifying a single parameter

Table 1 Price coefficients used for price variation in the experimental design and unfixed parameters
representing uncertainty in MPMAS-CSJ

Item Symbol Range

Beef and young cattle pcbeef [0.7, 1.3]

Fertilizer pcfert [0.5, 2.0]

Fuel and energy pcfuel [0.7, 1.5]

Milk pcmilk [0.7, 1.2]

Pork and pigs pcpork [0.7, 1.3]

Wheat pcwh [0.5, 2.0]

Ready-mix animal feed pcfodd [0.7, 1.5]

Grain maize pcmg [0.7, 1.6]

Malting barley pcmb [0.5, 2]

Fodder barley pcfb [0.7, 2]

Rapeseed pcwr [0.7, 1.5]

Parameter Symbol Values

Scaling parameter for the amount of labor required
for fresh grass harvest

fgl [1, 3]

Demand for excess heat of biogas electricity production chp {yes, no}

Scaling parameter for the maximum manure application man [1, 1.5]

Supply of brewery byproducts for feeding bbp {yes, no}

Births scaling factor in the past (affects current household size) bfp {1, 1.05}

KTBL climatic region for time slots of field work clr {4, 5}

Probability that a male child is interested in taking over the farm scm {0.5, 1}

Probability to be able to hire a machinery service provider
per day with suitable weather

pth [0.5, 2]

Scaling parameter for the maximum wheat yield ywh [1, 1.1]

Price for hiring machinery services (location between
min and max reported)

wfh [0, 1]

Chosen starting population pop set of 3

cf. Troost & Berger (2015) for a more in-depth explanation of uncertain parameters
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combination that best fits observation data. For MPMAS-CSJ, Troost & Berger
(2015) reduced the model parameter space only, where clearly superior settings could
be determined in specially designed calibration experiments that tested parameter
combinations against three structurally different observation years. They then used an
elementary effects screening (Campolongo et al., 2007) to determine 11 of the 19
unfixed parameters that caused the greatest variance in simulated differences between
climate and price scenarios (cf. Table 1). As a consequence, MPMAS-CSJ had to be
solved repeatedly to cover the space spanned by these 11 parameters and model
results were communicated as ranges over this parameter space.

With 11 price expectation and 11 uncertain model parameters we obtained L ¼ 22
input variables overall. Accordingly, the model input-output dataset that formed the
basis for our surrogate model estimation consisted of J þ L ¼ 31 variables (or
columns), with each row corresponding to one simulation run. The number of
simulation runs and hence rows and the choice of input factor settings for each row is
discussed in the following section.

2.3 Experimental Design and Evaluation Criteria

We assumed that the main objective of using a surrogate model is to predict
simulation model output outside of the sample of input combinations simulated with
the original FLM.

2.3.1 Sequential Experimental Design

As the form of the multivariate model output distribution is typically unknown and
not following common parametric distributions, the sample size (Nestim) necessary to
estimate robust and unbiased surrogate models cannot be calculated a priori (Lee
et al., 2015). At the same time, the number of original model evaluations needed to
generate the sample is an important determinant of the computational burden for
creating a surrogate model tgen;SM (Eq. 1), which consists of the time needed to
estimate the surrogate model from a given FLM input-output dataset testim;SM ðNestimÞ,
but also the time needed to create this sample, which is a product of Nestim and the
runtime of the original model tsim;FLM .

tgen;SM ¼ testim;SM ðNestimÞ þ tsim;FLM � Nestim ð1Þ
Hence, on the one hand, modelers will in practice try to keep Nestim as small as
possible. On the other hand, a smaller sample will inevitably lead to higher sampling
error and stronger confounding of input factor effects, and increase the danger of
overfitting and unstable surrogate model estimates. Specifying a value for Nestim that
is generally sufficient for all FLM and SM combinations is hardly imaginable, as
complexity of FLM responses will differ considerably from application to applica-
tion, and hence a suitable Nestim has to be identified for each FLM-SM application
specifically.

A pragmatic procedure is to gradually increase the number of FLM simulation
runs in batches. One can then estimate the surrogate model on the batches simulated
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so far and subsequently measure the marginal improvements of expected predictive
performance and stability of estimated models in a separate validation sample (cross-
validation). One can then stop if a sufficient predictive accuracy and model stability
has been reached, no further improvement can be seen or a computational resource
constraint on the total number of FLM evaluations has been reached.

In this article, we implemented such an incremental procedure based on a Sobol’
sequence over L ¼ 22 input factors.6 Sobol’ sequences are S-optimal experimental
designs that like Latin hypercube samples (LHS, e.g. Salle & Yıldızoğlu, 2014)
ensure representative coverage of a parameter space when computational require-
ments limit the number of simulation runs. Their advantage over LHS is that they are
more easily extended or reduced in size because the location of design points in the
multidimensional parameter space remains the same for different sequence lengths.
This means that extending a Sobol’ sample just requires simulating the additional
repetitions, whereas a larger LHS requires a complete resimulation of all repetitions
of the new sample size (Tarantola et al., 2012).

Our incremental procedure started by using the first 500 elements of the Sobol’
sequence as a training sample (TS) and the following 200 as a cross-method
validation sample (VS1). (Note: We use the term training sample here to denote the
full sample size provided to each surrogate modeling method at a certain iteration.
Nonetheless, each surrogate modeling method may treat part of this full training
sample as an intra-method training sample and part of it as an intra-method validation
sample.)

We successively increased the TS size in nine steps (over 750, 1000, 1500, 2000,
2500, 3000, resp. 4000 design points) until including the first 5000 design points of
the Sobol’ sequence. The 200 design points following each TS were used as cross-
method validation sample VS1. At each iteration, we used VS1 to assess the
convergence of the predictive performance as well as the stability in prediction and
surrogate model structure compared with previous estimations.

2.3.2 Expected Predictive Performance

As described above, the outcome for each simulation run k consisted of a vector of
J ¼ 9 crop categories, into which the total arable area was classified. The accuracy of
the surrogate model prediction for the distribution of the area over these nine
categories was measured by the share of correctly classified simulated area for this
run k:

6 The Sobol’ sequence of dimension 22 and length 10,000 was created using the runif.sobol function of the
R package fOptions (Wuertz et al., 2021). As common in the sensitivity analysis literature, e.g. Saltelli
et al., 2004, we use the term ‘input factors’ when we refer to these 22 parameters for which the Sobol’
sequence was formed.
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Scck ¼ 1�
P

j jAreaSMj;k � AreaFLMj;k j
2 �Pj AreaFLMj;k

ð2Þ

with AreaSMj;k the area in crop category j predicted by the surrogate model and
AreaFLMj;k the actual area for crop category j simulated by the original FLM.7

We then assessed the predictive performance for a full input-output sample of K
simulation runs by calculating the average and also the worst-case (minimum) Scc
over the whole sample.

avgScc ¼
PK

k Scck
K

ð3Þ

minScc ¼minfScc1; . . .; SccKg ð4Þ

2.3.3 Stability of Predictions and Feature Importance

It is important to not only assess the development of predictive accuracy of the
model, but also its stability: Does the prediction for an input combination k vary
whether the SM has been estimated from a larger or smaller sample? The same type
of model with the same functional form and hyperparameter settings, once estimated
from a small training sample and once estimated from a slightly larger training
sample, might predict very different outcomes and show different deviations from
perfect prediction, even if both versions have a similar goodness-of-fit (as long as the
fit is not perfect). And even if the predicted outcome is stable: Is the influence
attributed to a certain input factor stable? Surrogate model predictions or input factor
importance rankings that fluctuate strongly over training sample sizes indicate a
strong influence of training sample size and hence likely overfitting. They do not
project confidence in the use of the surrogate model for sensitivity analysis.

To assess stability of predictions, we did a pairwise comparison of the predictions
for each k in VS1 between the model estimated from a certain TS and the same model
estimated from the previous TS. As our dependent variable is a composition, we used
Aitchison’s total variance (Pawlowsky-Glahn & Egozcue, 2001) to measure the
variation in prediction between models estimated from the adjacent TS at each k. We
then plotted the distribution of total variances over the K sample points in VS1. (A
more detailed explanation including formula is provided in the Appendix Sect. B.)
We expect the differences in prediction caused by the information added through
increasing a sample size (and hence also the variance between adjacent sample sizes)
to decline with increasing sample size as confounding between input factor effects
reduces with increasing length of the Sobol’ sequence.

7 Note: The measure corresponds to the traditional classification accuracy (proportion of correctly
classified observations), e.g. used in logistic regression, here calculated from category totals rather than
individual classification results. The division by two is necessary to avoid double-counting of misclassified
areas, since given the fixed total arable area any overestimation of area in one crop category will
necessarily also appear as an underestimation in other categories.
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To assess stability of input factor influence in a comparable way across methods,
we followed the permutation feature importance approach of Breiman (2001): to
calculate the importance of input factor l in estimated model m, we randomly
permuted the values of this input factor across simulation runs to break the
relationship of this factor with the outputs, and re-estimated m on this permutation.
The difference between the resulting model accuracy and the original model accuracy
is regarded as a measure of input factor importance. Input factors were then ranked
by importance and the ranking subjected to factorwise comparison with the ranking
obtained at the previous, smaller TS.

2.3.4 Meta-Evaluation of Sequential Approach

While the previous steps would be performed in any practical application of the
approach, for this article we did an additional step to evaluate the performance of the
whole workflow: We evaluated performance of the surrogate models that were
selected based on TS and VS1 in an additional 5000-element validation sample
(VS2) corresponding to design points 5001-10000 of the Sobol’ sequence. In
practice, we do not expect modelers to generate a second VS with the original FLM.
Rather, it here represents input factor combinations for which modelers expect to
receive a good prediction by the surrogate model without having simulated them with
the FLM.8 With this meta-validation on VS2, we evaluated in how far our iterative
estimation and validation strategy (employing TS and VS1) has generated a
generalizable surrogate model that provides robust interpolation for a wider sample.

2.4 Surrogate Modeling Methods

We explored the capacity of four different modeling methods to capture the
compositional output of the farm-level model.

2.4.1 Multinomial-Logistic Regression

As a classical regression method, we employed multinomial-logistic regression
(MNL), more specifically a baseline-category logistic model with observation-
specific regressors and grouped data (Agresti, 2013)—making use of the fact that
under certain simplifying assumptions, compositional output data such as simulated
crop areas can be understood as multinomial data.

Estimation of a classical MNL model on our dataset was complicated by strong
interaction and segmentation effects in the input-output mapping between prices and
crop areas simulated by the FLM. Mutual price relations, e.g. the price ratio between
product sales prices and production input prices and the sales price ratios between
different products have a strong influence on crop choice. Effects of prices are often
nonlinear and can be subject to breaks or shifts, i.e. show a segmented response: For

8 The typical purpose of a surrogate model is to predict outcomes not yet simulated with the original
model. Subsequent extensions of the Sobol’ sequence add a sample of the points between and around the
space-filling sample of points already simulated, hence a sample of the points one might possibly like the
surrogate model to predict.
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example, there may be a specific ratio of their respective price expectations where
one crop becomes more profitable than the other for a significant group of farm
agents. Crop areas respond very differently to price variation above or below such a
threshold ratio. The location of such segmentation points is not known a priori but
must be determined during the analysis. Automatic backward and forward selection
of regressors and interaction terms can hardly remedy these challenges as the
possible locations of segmentation points would still have to be manually pre-
specified.

In our MNL application, we dealt with these challenges by manually and
iteratively examining residuals and expanding functional forms. To avoid overfitting,
we used Akaike’s Information Criterion (AIC) to decide between different proposed
model structures. (See Sect. A.1 of the Appendix for the details on MNL model
selection and estimation in this study.)

2.4.2 Non-parametric, Machine Learning Methods

As an alternative, we tested three non-parametric, machine-learning methods, which
are designed to largely avoid the pre-specification of functional forms and detect
input factor interactions and segmentations automatically: Multivariate Adaptive
Regression Splines (MARS)(Friedman, 1991), Random forest regression (RF)
(Breiman, 2001; Hastie et al., 2009 and Extreme gradient boosting (XGB) (Chen
& Guestrin, 2016).

Fitting non-parametric methods always has to strike a balance between a better fit
and the danger of overfitting to the sample, which in all three methods is controlled
through internal cross-validation and hyperparameters that define limits on model
complexity, learning rates, or minimum improvement thresholds. These hyperpa-
rameters can be tuned for a specific application. Details on the methods and
associated hyperparameter search and cross-validation procedures can be found in
the Appendix (A.3, A.4, A.5).

While we expected the non-parametric methods to detect the effects of input factor
interactions such as price ratios automatically, we tested this capacity by estimating
them with two different input factor sets, from which the algorithms could freely
form predictor terms: In the first set, without ratios, we only included the 22 price
coefficients and uncertain input factors. In the second set, with ratios, we explicitly
also included the ratios of all other price factors to the wheat price and to the fodder
barley price leading to a set of 22 ? 19 = 41 input variables. It is important to note
that the second set did in principle not provide more information to the algorithm
than is implicitly contained in the price coefficients of the first set already.

All three methods were originally designed for continuous, unconstrained data and
are not per se suitable for use with compositional data. We therefore applied the
isometric-log-ratio transformation (ilr) (Egozcue et al., 2003) to transform our J-
dimensional compositional simulation output into an unconstrained, continuous J �
1 Euclidean vector space, on which statistical approaches designed for continuous
data can be used. (Outcomes predicted by the surrogate models were then
backtransformed into the compositional simplex space by inverse ilr).
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Compared with other transformation methods such as the softmax function, the
additive log-ratio transformation, or the centered log ratio transformation, the ilr
transformation is, at the same time, symmetric, isometric (preserves distances) and
subcompositionally consistent (although not unique), which makes it the theoreti-
cally best choice for input data estimation (Egozcue et al., 2003). (For more details
see the Sect. A.2 in the Appendix).

As all logarithmic transformations, the ilr only works with strictly positive data,
whereas our dataset contained a non-negligible amount of zeros. We worked around
this problem by adding a small quantity (= one hectare) to all categories in all runs.
With area totals around 25,000 hectares, the associated distortion was expected to be
minimal.

3 Results

3.1 Predictive Performance and Model Selection

Figure 2 provides an overview of the predictive performance of the best-performing
surrogate model candidate generated by each surrogate modeling method for each
training sample size. As a benchmark, we indicate the predictive accuracy of using
the mean crop area shares of the respective training sample as a predictor (null
model), which achieved a share of correctly classified plots of 0.69 (without any
major changes over the training sample sizes). All surrogate modeling methods
achieved considerably higher predictive accuracy surpassing 0.9 for a sufficiently
large TS size. There is a clear ranking of methods with XGB achieving up to 0.96,
followed by RF and MNL with 0.94 and 0.93, respectively. The best MARS model
reached a somewhat lower Scc of 0.91.

Even at the lowest TS size of 500 the predictive accuracy was above 0.9, except
for MARS which started with 0.875. Performance response to training sample size
increases was strongest below 1000 sample points and then flattened out, though
smaller improvements are still visible up to 5000 (except for MNL). The ranking of
methods remained stable over all TS sizes. The average predictive performance on
VS2 (the meta-validation sample) hardly differed from performance in VS1. Worst-
case performance was expectedly worse in VS2 compared with VS1. This is not
surprising as VS2 was much larger and hence more likely to contain an extreme
combination of input values. Notably, however, the degradation of worst-case
performance from VS1 to VS2 was smaller for XGB and RF than for MARS, which
shows the most inferior worst-case performance, even worse than the benchmark of
using the sample average crop areas for prediction.

3.2 Functional Forms and Hyperparameter Choices

Detailed outcomes of the model (respectively hyperparameter) selection process for
each modeling method can be found in the appendix. Three observations common to
all methods are worth highlighting:
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(i) Complexity: Matching the FLM input-output mapping required complex
surrogate models. The optimal number of trees converged around 512 trees for RF
and between 256 and 512 trees for XGB. The chosen MNL model comprises 720
coefficients. For MARS allowing interactions of degree 2 increased predictive

Fig. 2 Predictive accuracy of the best performing hyperparameter setting, resp. functional form, by
surrogate modeling method and training sample size in validation samples VS1 and VS2. (All explicitly
including price ratios in the set of independent variables)
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accuracy by 0.05 compared with no interactions. (Allowing higher degrees of
interaction did not noticeably improve performance in the case of MARS.)

(ii) Explicit inclusion of price ratios: The explicit inclusion of price ratios as input
factors for estimation considerably improved predictive performance. The left pane
in Fig.3 shows the lower predictive accuracy of the best models without explicitly
included price ratios. Predictive accuracy decreased by more than 0.05 in the case of
MARS and MNL. For RF and XGB the effect decreased with TS size, but is still
noticeable at TS=5000.

(iii) Robustness of selection: The ranking of best-performing choices for the key
hyperparameters was mostly stable over increasing TS sizes. The best-performing
degree of interaction (MARS), number of trees (RF) and functional form (MNL)
performed best already at TS size 500 and ranking between choices hardly fluctuated
further on. For XGB, at lower TS sizes a more restricted number of trees performed
somewhat better, but the difference to the performance of the number of trees found
optimal for larger TS sizes was rather small.

In all cases, predictive performance on VS2 was similar to VS1.

3.3 Stability of Predictions

Figure 4 illustrates the stability of predictions over increasing training sample sizes.
Each violin graph shows how the total variance in prediction between surrogate
models estimated from two adjacent TS sizes (indicated above the distribution) was
distributed over the sample points in the VS1 associated with the larger of the two

Fig. 3 Comparison of predictive accuracy of the best performing hyperparameter setting, resp. functional
form, WITHOUT and WITH explicit inclusion of price ratios as input factors by surrogate modeling
method and training sample size
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TS. The sequence of violin graphs over increasing TS sizes depicts how the variance
in prediction developed with increasing TS size. We can observe that the predictions
of the best-fitting MNL model were extremely varying between training sample
sizes, while the models found by the other methods showed much lower variance in
prediction between estimation from different sample sizes. (Variation was slightly
lower if using a simpler functional form for MNL, but still considerably higher than
for the other methods.) Total variance decreased with increasing size of the training
sample. This decrease is much stronger in MNL than in the other methods.

3.4 Stability of Input Factor Importance

Figure 5 shows differences in feature importance ranking between models estimated
from adjacent TS sizes. Each violin graph shows the distribution of rank difference
over the 41 input factors (22 original factors and explicit price ratios). A positive
frequency at 10 means that at least one input factor moved in importance by ten ranks
between the two TS sizes.

Similar to the variance in prediction also the variance in input factor importance
was high for the estimated MNL functional form. In this case, however, also the
MARS model showed considerable variation in ranking. XGB showed some
variation in the lower TS sizes, where also the optimal number of trees varied. RF
showed no variation at all.

4 Discussion

Our experiment was motivated by the question: “Can we estimate an accurate
surrogate model to predict compositional simulation outcomes of a farm-level model
from a moderately sized sample?” Overall, the results look very encouraging. All
tested methods achieved a share of correctly classified area beyond 0.9, considerably
better than the null benchmark of using the respective training sample average (0.69).
There is a clear ranking of methods, with XGB performing best, followed by RF.
XGB is able to achieve a very high fit of 0.96 at larger sample sizes and 0.93 already
at lower sample sizes. Certainly, whether this level of expected predictive accuracy is
sufficient and the differences between methods are practically relevant cannot be
answered in general. It very much depends on the purpose for which the surrogate
model is intended to be used in practice. It will also have to be seen in context with
the uncertainty and inaccuracy of the original FLM itself.

4.1 Robustness

The reported performance of MNL has to be interpreted with care as it showed
considerable instability in prediction and input factor effect estimation across
samples. This underlines the importance of cross-validation and robustness
diagnostics during training. While the other methods employed some form of
cross-validation already in the training and selection process (GCV in MARS, inbuilt
ensemble methods and explicit 3-fold cross-validation in RF and XGB), control of
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overfitting relied only on comparing AICs for functional form selection in MNL.
Importantly, this type of instability did not become apparent through a decay of
performance from training to validation sample - an alternative check typically used
to detect potential overfitting. (The difference between training sample and validation
sample performance is stronger in RF than MNL, for example.)

Our experiment also highlights that already a small additional validation sample
(here VS1) can provide a good estimate of performance further out-of-sample (here
represented by VS2). We mainly attribute this to the representative sample structure
ensured through the space-filling, increasingly dense representation of the input
space achieved through the Sobol’ sequence. (We emphasize that this validation
sample does not make proper cross-validation during training obsolete, but serves as
an additional control.)

4.2 The Importance of Domain Knowledge

The considerable performance gain achieved by explicitly including price ratios as
predictors alongside the individual price coefficients was somewhat surprising for the
automatic, non-parametric methods MARS, XGB and RF from which we would
have expected automatic discovery of these interactions (unlike for manually-
specified MNL). Although the effect may reduce for larger TS sample sizes, this
strongly hints at the usefulness and importance of including domain knowledge, i.e.
knowledge about the underlying processes, also in sample interpolation tasks, at least
for restricted sample sizes.

4.3 Computational Demand and Minimal Sample Size

Runtime for a single prediction (tpred ) was about 0.1 s with RF and 0.003-0.005 s
with the other methods, and in all cases much lower than the time for an original
simulation run (tsimrun ¼ 3 min).

Time required to estimate a surrogate model for each TS (testim;SM Nestimð Þ)
generally depends on the size of the hyperparameter search space considered (which
was likely more extensive than necessary for RF and XGB in our case), (ii) the
number of processors that can be used in parallel, which not only depends on the
method but also on the available resources, and (iii) the specific software
implementation of the algorithm.

Pure total computation time for training and validation over all candidate
functional forms/hyperparameter settings was fastest for MNL (less than 1 h) and
MARS (about 3 h) employing a single processor. (Model selection in MNL
regression, however, was not automatized and involved a considerable, unmeasured
amount of human work time and brain power that is difficult to quantify and
stretched over weeks.) The RF tuning process required about 14 h employing 16
processors of a High-Performance Compute (HPC) node. Our very comprehensive

b Fig. 4 Total variance of prediction of the best selected model per method between adjacent training sample

sizes. Each violin graph shows the distribution of Aitchison’s total variance between models estimated
from TSs and TSs�1 over the runs of VS1s. (Note: The vertical axis has a logarithmic scale)
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search process for XGB required about 94 h using a HPC node with 40 cores.9 More
information on time demands can be found in the respective appendices.

However, we did not systematically benchmark timings under comparable and
reproducible conditions and did not optimize code structure, parallelization and size
of hyperparameter search space towards time efficiency in training. (Moreover, in
this particular study, MARS and MNL were run in R, while XGB and RF were run in
Python.) All timing information should therefore be understood as first rough
indications. Especially, the results of our comprehensive random searches for RF and
XGB showed large shares of hyperparameter combinations that hardly differed in
performance, so that in practice search spaces and hence computation times can most
likely be reduced by a factor of five without relevant loss of fit, especially if
systematic searches instead of random searches are used.

We tested a sequential approach to determine a sufficient number of evaluations
with the original model. While here we directly simulated an extended range of
sample sizes, in practice, a modeler will first simulate only the smallest TS size,
estimate a surrogate model, test its performance with a small validation sample, then
simulate the additional runs for the second TS size, estimate and test, simulate the
additional runs for the third TS size, and so on. The modeler will stop increasing TS
size when computational resources are exhausted or when the fit in the validation
sample remains stable and without fluctuations. What constitutes a negligible
increase will, again, be subject to the intended purpose of the surrogate model and
trade-off considerations between additional effort and fit. In our example, conver-
gence could arguably be attested at a TS size of 3000 based on graphical inspection
for all approaches, but even at 1500 runs this could be defensible in practice.
Nevertheless, even if a modeler had been able to simulate only 500 runs, RF and
XGB would already have given decent approximations in our case.

One can argue that the use of a surrogate model becomes efficient only when the
number of predictions for which it is eventually used surpasses the number of
original model runs necessary to train it (plus the number of runs possible during the
time needed for the training). Nevertheless, in applications such as integration into
large-scale models and interactive result exploration with stakeholders the model
response is time-critical and the input factor combination to be evaluated cannot be
anticipated and simulated in advance. Moreover, if the surrogate model is used to
address data-privacy constraints or harmonize heterogeneous model

b Fig. 5 Stability of feature importance of independent variables. Each violin graph shows the difference

between the feature importance rank of independent variables estimated from TSs vs. TSs�1, as distributed
over the 41 independent variables

9 For XGB, separate training processes over all TS and samples of 300 hyperparameter settings with 3-
fold cross-validation were run for each candidate level for the hyperparameter ntree (“number of trees”),
each on a separate node with 40 processors. Smaller ntree required much shorter training times than longer
ones, as a doubling of ntree roughly corresponded to a doubling of computation time. The 94 h result from
adding up the time over nodes. As nodes were run in parallel, too, total waiting time was actually shorter
and determined by the highest ntree ¼ 1024 for the model with price ratios, which required about 46 h for
training. Further parallelization over TS and hyperparameter samples is possible and can decrease real
waiting times using more processors more efficiently.
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implementations, time spent on surrogate model estimation is usually well-invested
and not prohibitive.

4.4 Scope for Performance Improvement

Since the MPMAS-CSJ model is nominally deterministic,10 we can expect a fully
adaptable surrogate modeling method such as XGB to eventually achieve near-
perfect fit if the training sample size is sufficiently increased.

For the given sample sizes, the performance and efficiency might potentially be
improved by an adaptive sampling scheme that starts with a small initial space-filling
design and subsequently prioritizes regions of high variance in prediction for
additional farm-level model runs instead of using the Sobol’ sequence throughout
(Gramacy and Lee, 2009). Regions of poor fit would receive higher weight similar to
the resampling logic used in Gradient boosting. However, while within Gradient
boosting existing information would receive adapted resampling weights, adaptive
sampling would generate new, additional information for these regions using the
simulation model.

4.5 Generalizability

The sequential sampling approach to provide training data combined with
performance and stability assessments in validation samples is generally applicable
to support adequate surrogate model development for agroeconomic models. It builds
on the theoretical properties of representative sampling by low discrepancy
sequences and control of sampling error through cross-validation and is model-free
(nonparametric).

The exact relationship between achievable goodness-of-fit and necessary original
model evaluations observed in our experiment is most likely not generalizable. From
a theoretical point of view, this relationship depends very much on the complexity of
the simulated input-output relationships. The greater the complexity the more
repetitions will be needed. Complexity may differ considerably between farm-level
model applications. Nevertheless, we believe that our test case provides a sufficiently
complex benchmark that represents well the typical input-output relationships in
simulation data generated by farm-level models. We observed a high level of input
factor interactions and segmented response functions (illustrated in the description of
the manual MNL estimation in the appendix) that required complex surrogate
models. Ratios between price expectations for different items are important to
understand area response. Response to input factors and input factor ratios is not
constant, but differs between segments along the input ranges and as a function of
other input factors. Transition between segments is not always smooth, but
sometimes abrupt at breakpoints.

10 Unsystematic, random effects in the simulation data cannot fully be ruled out: Indifferences with respect
to optimality in combination with numerical complexities and tolerances in the mathematical optimization
process may sometimes lead to different, unpredictable outcomes for similar inputs that may go unnoticed
and are difficult to detect.
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The good performance of XGB is in line with findings in machine learning
contests for a large variety of complex prediction tasks (Bentéjac et al., 2021). There
is hence reason to expect this to hold also for many agricultural economic
applications. Apart from the baseline scenario (B), we also tested the procedure with
climate scenario C2 of Troost & Berger (2015). As Troost and Berger discussed, this
scenario represents a major structural break compared with the baseline as it i.a.
removes an important crop rotation constraint reducing complementarity between
crops. For the somewhat less complex price-crop area interrelationships in C2, the
results we obtained were comparable except that RF performed very similar to XGB
—even slightly better at lowest sample sizes (see Appendix C).

While we focused on aggregated land use shares as potential link to large-scale
integrated assessment models, the principles are applicable to continuous output
(omitting the ilr transformation) and should also be transferable for surrogate
modeling of disaggregate farm-level land use shares. Two additional challenges will
have to be addressed for the latter case: (i) Compared with regional aggregates, the
share of crop area categories with zero area is typically considerably higher for
individual farm agents, so the replacement of zeroes by small positive amounts will
require additional scrutiny. (ii) Structured sampling should be extended to the farm
agent population to select samples of farm agents for training, respectively
validation, whereas in our aggregate version the full farm agent population was
used always.

The estimated surrogate models themselves are not generalizable. They represent
price-land use relationships only for the structural scenario, time frame, and study
area simulated with the FLM. Relying on fundamental economic principles and a
generic disaggregated formulation, the FLM itself can simulate farmer reactions
under structurally very different conditions, such as climate change scenarios (Antle,
2019; Troost & Berger, 2015). Surrogate models estimated from one structural
scenario can, however, not simply be used to extrapolate to other structural scenarios.
After simulation of several structural scenarios with the FLM, either a separate
surrogate model would have to be estimated for each structural scenario or an
encompassing surrogate model would have to be estimated over a sufficiently large
number of structural variations.

5 Conclusions

We conducted a systematic experiment to analyze in how far regional crop area share
responses to price changes simulated by a detailed farm-level model can be
efficiently and comprehensively summarized in the form of surrogate models using
econometric and machine-learning methods.

We found that combining extreme gradient boosting with the isometric log-ratio
transformation (XGB ? ilr) provided a straightforward surrogate modeling approach
that is able to achieve a high and robust fit of the complex compositional response
surface, albeit connected with higher computational cost. Random forest regression
(RF ? ilr) appeared as a viable compromise between computational cost and
predictive performance, especially for less complex input-output relationships. In our
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experiments, both outperformed multivariate adaptive regression splines (MARS ?

ilr) as well as a manually-specified multinomial logistic regression model.
In addition, our experiments highlighted important lessons for the practical use of

surrogate modeling with micro-scale agricultural economic models: (i) Even when
using a highly representative experimental design, explicit cross-validation and
diagnostics for robustness must be an essential component in surrogate modeling in
order to prevent overfitting in model selection and avoid unstable and biased
predictions. (ii) Explicitly including ratio terms between input variables based on
economic domain knowledge can strongly improve efficiency of surrogate model
estimation even for highly automatic non-parametric methods and increase
performance especially at lower sample sizes, when combined with proper cross-
validation. (iii) Using an adequate sampling design in combination with appropriate
cross-validation can help to keep the necessary number of original model runs low.
The Sobol’ sequence provides a straightforward space-filling sequential design which
avoids unnecessary re-evaluations of the original model when increasing the sample
size. In our case, it allowed robust estimation from a moderately sized sample and we
recommend it as a default choice. Adaptive sequential designs could potentially
further improve efficiency.

Our results show that, if these lessons are heeded, reliable surrogate models for
aggregate compositional outcomes of micro-scale agricultural economic models can
be estimated. This greatly facilitates the integration of micro-scale models into large-
scale integrated assessment models - not only by potential gains in computational
efficiency but also by providing an option to harmonize integration of models of
heterogeneous provenance and allowing for model sharing despite privacy-restricted
simulation model input data. In this way, they can make a significant contribution in
collaboration towards the structure-rich computational agricultural economics as
envisaged by Antle (2019). While our experiments focused on aggregate regional
outcomes, the methods presented here could also substantially support calibration,
sensitivity analysis, and interactive result exploration with stakeholders (Mössinger
et al., 2022) if future research can confirm their successful applicability at a more
disaggregate level.

Appendix A: Detailed Methodology and Results for Each Surrogate
Modeling Method

A.1 Multinomial Logistic Regression (MNL)

As a classical regression method, we tested multinomial-logistic regression (MNL),
more specifically a baseline-category logit model with observation-specific regres-
sors11 and grouped12 data (Agresti, 2013). The categories correspond to the crops

11 This is different from MNL models commonly used in discrete choice analysis which typically contain
category-specific regressors or mix category- and observation-specific regressors.
12 Ungrouped data has one row per observation with one multinomial dependent variable indicating the
category assigned to the observation. Grouped data aggregates observations with the same values for
regressors and uses a vector of category counts as a dependent variable. Statistical properties differ. The

123

742 C. Troost et al.



chosen and the basic observational units categorized are the plots of the farm agents.
While real-world plot sizes vary between and within farm holdings and also the
MPMAS-CSJ model allows arbitrary small plot sizes, we used an assumed plot size
of one hectare for estimating the multinomial-logistic model, rounding all land use
category areas to full hectares. (Many spatially explicit farm-level or agent-based
models, including other MPMAS applications, work with fixed-size raster cells
making this a common simplification.)

In the present analysis, we did not distinguish plots by individual plot
characteristics such as soil types or size of the farm they belong to. We only used
’plot’ as an auxiliary observational unit that allowed us to treat the areas as count data
and apply multinomial logistic regression. The observation-specific regressors in the
MNL regression were the input factor values used in the simulation run. All plots
within one simulation run shared the same values for the regressors and observations
were grouped by simulation run.

The baseline-category logit model consisted of J � 1 ¼ 8 equations, each
modeling the log odds of a plot being categorized into category j instead of the
baseline category J as a function of the input factors.

ln
pjðxÞ
pJ ðxÞ ¼ aj þ bjx; j ¼ 1; . . .; J � 1 ð5Þ

The probability for each category then results as

pjðxÞ ¼
exp aj þ bjx

� �
1þPJ�1

h¼1 exp ah þ bhxð Þ ; j ¼ 1; . . .; J � 1 ð6Þ

For our purposes, we treated the estimated probability of an individual plot to fall
into a specific category as equivalent to the maximum likelihood estimate for the
share of the category in the total simulated area.

For estimation, we used the function multinom from the R package nnet (Ripley
and Venables, 2021), one of the few that allowed entering the data in grouped format.
Grouping is essential for our application as transforming the data into rows for
thousands of individual plot observations would lead to prohibitive memory
requirements.

To cope with interactions, segmentation and nonlinearities in the land use
response to prices, we iteratively analyzed different functional forms for the
regressors. In each iteration, additional interaction and segmentation terms where
manually selected based on an in-depth analysis of model residuals. Akaike’s
Information Criterion (AIC) was used to compare extended functional forms.
Overall, in this iterative model selection process, we tested 30 different functional
forms for multinomial-logistic regression (mlr1-mlr30).

We started with a purely additive model of the price factors (mlr1) and then added
the model uncertainty factors in a second model (mlr2). Given the theoretical

Footnote 12 continued
deviance of MNL models for grouped data is approximately chi-square distributed, which is not the case
for ungrouped data (Agresti, 2013).
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importance of price relationships for crop profitability, we added first order price
interactions (mlr3), respectively in an alternative version the ratios of all other price
factors to the wheat price as predictors (mlr4). Noticing more pronounced predictive
errors at high wheat price levels, we added a square term for the wheat price factor
(mlr5) and additionally interaction terms of the wheat price factor with selected
model uncertainty parameters (mlr6). Observing that the residuals showed a strong
pattern with respect to the malting-barley-to-fodder-barley-price ratio pcmb

pcfb
and that

this response seemed to be segmented (see left panel in Fig. 7), we added pcmb
pcfb

(as well

as the ratios of fertilizer, rapeseed and ready-mix fooder prices to fodder barley) to
the model as well as segmentation dummies interacting with pcmb

pcfb
. We varied the

number and locations of the segmentation (mlr9-mlr13, mlr15) and let the
segmentation dummies also interact with the malting barley, fodder barley and
wheat price coefficients (mlr14, mlr16-mlr20) and finally segmented also the malting
barley price to allow different coefficients for its interactions, testing different
segmentation points (mlr20-mlr30). The R script with all 30 functional forms took
about one hour to run on a normal desktop computer (no explicit parallelization).
However, the analysis and design of functional forms was done iteratively and
manually and required considerable working time.

Finally, we selected the model with the highest AIC as the best model obtained. In
addition, we applied a forward selection and backward elimination procedure over
the full set of terms included in our analysis using the R package stepAIC (which
internally uses AIC for model selection), but could not achieve improvements in AIC
over the manually selected model.

Figure 6 gives an overview over the development of AICs over the step-wise
increases of the training sample size for a selection of functional forms. As the AIC
depends on the sample and provides only relative information, the graph depicts the
relative difference to the best performing model, i.e. the one with the lowest AIC, for
each sample size. As can be observed, the best performing functional form mlr29

Fig. 6 Relative AIC of selected MNL models
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showed the lowest AIC at all sample sizes. Although it is a manually specified model,
this best estimated model is highly complex comprising 720 coefficients.

The ranking of the major groups of functional forms remained mostly stable (left
pane), while ranking within the last group of functional forms that mainly differ in
the location of segmentation points is only slightly more variable (right pane). The
simpler functional forms achieved average shares of correctly classified plots of 0.85,
while the better models achieve slightly over 0.92, with very minor differences.
These values were virtually stable over all training sample sizes and, more
importantly, a ranking between different functional forms also remained stable.

A.2 Isometric Log-Ratio Transformation (ilr)

A number of approaches are available which transform compositional data into an
unconstrained continuous Euclidean vector space and enable the use of statistical
approaches designed for continuous data with the transformed data.

On the one hand, the softmax function, the multivariate generalization of the
logistic function, is typically being used in machine learning and is equivalent to a
multinomial logistic formulation of the model.

On the other hand, Aitchison (1986) identified the simplex as the natural sampling
space of compositional data and suggested two transformations: the additive log-ratio
transformation (alr) and the centered log ratio transformation (clr). The alr projects a
K-dimensional compositional vector on a K � 1-dimensional unconstrained vector
and has been widely used in statistical analysis. It is, however, not symmetrical in
components and not isometric (preserving distances). For contrast, the clr, which
applies the logarithm of the share of a component normalized by the geometric mean
of all components, is symmetric and easy to interpret, but it maintains a K-
dimensional vector whose sum is constrained to zero (Egozcue et al., 2003).

Egozcue et al. (2003) complemented Aitchisons concept with the isometric log-
ratio transformation (ilr) which starts from the clr and projects it into an orthonormal
space of K � 1 components. An ilr is unconstrained, isometric and subcomposi-
tionally consistent, but not unique: Many orthonormal bases are possible based on
different sequential binary partitions of the categories. These binary partitions may be
chosen such as to ease interpretation. In the resulting Euclidean K � 1 Euclidean
vector space, standard statistical regression techniques can be applied. For the
isometric log ratio transformation, we use the corresponding function from the R
package compositions (van den Boogaart et al., 2021).

All logarithmic transformations only work with strictly positive data, whereas our
dataset contains a non-negligible amount of zeros. We worked around this problem
by adding a small quantity (= one hectare) to all categories in all instances. With area
totals around 25,000 hectares the distortion was expected to be minimal.

A.3 Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) is a nonpara-
metric method that we chose for being particularly suited to tasks involving
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segmented regression, nonlinearity and strong interactions. It estimates regression
functions of the form

f ðxÞ ¼ c1 þ
Xk
i¼2

ciBi ð7Þ

where Bi stands for a hinge function of the form maxð0; x� dÞ or maxð0; d � xÞ, or a
product of several such hinge functions (interactions between variables). The hinge
functions allow for a continuous recursive partitioning of the input factor space that
gives the technique its flexibility. That means it can automatically include segments
and estimate their boundaries. A MARS model is estimated in two passes: In a
forward pass, the algorithm subsequently adds pairs of complementary hinge func-
tions for one factor or factor interaction. It always chooses a partitioning for the
factor or factor interaction that generates the strongest reduction in prediction error.
This continues until an overall limit of terms is reached or a threshold of minimum
improvement is not surpassed anymore. In the following backward pass, the algo-
rithm prunes terms from the equation in order to improve generalizability and reduce
over-fitting. It prunes always the term that shows the least effectiveness with respect
to a Generalized Cross Validation criterion.

Apart from the limit on the number of terms, the minimum improvement threshold
and the penalty used in the calculation of the GCV, the most important
hyperparameter is the degree of interactions between factors that is allowed. We
used the R package “mda” (Leisch et al., 2020) to apply MARS to the ilr-transformed
simulation results. The R script with 25 combinations of hyperparameter settings
took about 3.3 hours to run on a normal desktop computer (no explicit
parallelization).

Hyperparameter and feature set variation in the MARS approach showed that the
strongest effect on performance were caused by changing the allowed degree of

Fig. 7 Residuals of selected MNL models estimated from training sample of size 1500: Residuals plotted
in relation to the malting barley-to-fodder barley price ratio
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interactions and by the explicit inclusion of price coefficient ratios into the feature set
(ratios of other prices to wheat, resp. fodder barley prices). The two hyperparameters
‘thresholds for minimum improvement’ and ‘GCV penalty’ did not have a noticeable
effect on goodness-of-fit.

As Fig. 8 shows, including price coefficient ratios increased the share of correctly
classified plots by about 0.05 and allowing interactions increased it by another 0.05.
Allowing degrees of interaction higher than two did not noticeably affect goodness-
of-fit and limiting to two-way-interactions shows the best worst-case performance
among comparable models. The selected two degree model with ratios included
contains between 40 (at sample size 500) and 60-65 terms (at sample sizes beyond
2000) and reaches an average share of correctly classified plots of about 0.91. As
with MNL, the ranking of different MARS models was stable over increasing sizes of
the training sample, performance did only marginally improve beyond 2,000 runs in
the training sample and the small validation sample VS1 was a good predictor of
average performance in the larger validation sample VS2, while worst-case
performance was better predicted by a larger training sample than by VS1.

A.4 Random Forest Regression (RF)

Non-parametric ensemble-based methods achieve flexibility of fitting and control
against overfitting by aggregating over ensembles of simple, smaller regression
models estimated on subsets of the data. Random forest regression (Breiman, 2001)
estimates an ensemble (a ‘forest’) of regression trees, each trained on a bootstrapped
subset B consisting of both randomly drawn samples and features (independent
variables) of the data set (Breiman, 2001; Hastie et al., 2009). This concept of
training a model on B random bootstrap samples is also referred to as bagging (short
for bootstrap aggregation). Each regression tree within the random forest is grown by
step-wise partitioning the data. For this purpose, on each node those variables and
thresholds with the strongest effect on a pre-defined loss function are identified and
used to split the data into new leaves, or daughter nodes. This process of data
partitioning is repeated until either the loss function equals zero or a pre-defined
stopping criterion, such as a minimum sample size inside each leaf or the maximum
number of partitions (maximum depth of tree), is reached. The eventual predictions
of random forest regressions correspond to the average (or ‘bagged’) results of the
individual regression trees, making them rather resistant against overfitting (Breiman,
2001; Hastie et al., 2009).

We used the RandomForestRegressor methods of the scikit-learn Python package
(Pedregosa et al., 2011) to perform the estimations on the ilr-transformed MPMAS-
CSJ simulation results varying the following hyperparameters: The number of trees
nTrees; the maximum number of the independent variables included in an individual
tree (‘max. feature’: 2 fn; ffiffiffi

n
p

; 0:3ng, with n being the number of eligible
independent features); the maximum depth of an individual tree (‘max. depth‘
2 ½5; 500�). As a loss functions we used the mean squared error (MSE) as well as the
mean absolute error. In addition, we used two different sets of eligible features: One
(WithoutRatios) comprising all L=22 input factors as they are, and one (WithRatios)
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Fig. 8 Average and minimum of Share of correctly classified plots of MARS models in the validation and
training samples
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in which we additionally included price ratios (i.e. ratios between some of the 22
input factors) as independent variables for RF.

Bergstra and Bengio (2012) argue that in most models very few hyperparameters
are actually affecting the performance and randomized grid search leads to the same
or even better results compared to a full grid search, while requiring significantly less
computational power. Following the approach of Probst et al. (2019) and Oshiro et al.
(2012), we combined grid and random search. In a first step, we identified the amount
of trees at which the out-of-bag score converged, using default hyperparameter
values. For this purpose and for each training sample size, we trained and predicted a
RF model on 12 levels for nTrees, ranging between 1 and 2048 trees, duplicating the
value at each step, which required about 9 minutes employing 16 processors in
parallel. This resulted in an optimal nTrees of 512 for all training sample sizes as well
as models both with and without ratios (Fig. 9).

In the neighborhood of this optimal nTrees at default values (number of trees 256,
512, 1024) we then conducted a random grid search (with 60 random draws) to test
different combinations of ‘max. feature’, ‘max.depth’ and loss function. We used the
RandomizedGridCrossValidation package from Scikit-learn in Python over 60
random draws13 out of a pre-defined hyperparameter grid, evaluating each draw with
3-fold cross-validation (Pedregosa et al., 2011). This required about 13 hours on 16
processors for all three nTrees levels. Individual TS tuning required between 2 min at
TS ¼ 500 and 84 min at TS ¼ 5000 for nTrees ¼ 512.

Fig. 9 Out-of-bag error by RF number of trees at each TS size. Rows distinguish models explicitly
including price ratios from models not including them

13 Reproducibility was ensured by setting a global seed at the beginning of each script.
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Finally, we used the best set of hyperparameters at each level of training size and
number of trees to predict VS1 and VS2. (Predictions on the second to fifth best sets
were tested as well.)

Figure 10 shows the average and minimum share of correctly classified plots in
VS1 for the four best-ranked hyperparameter sets identified in the random search at
each tree size, training sample size and with and without explicit inclusion of price
ratios. Explicitly including price ratios in the feature set has the strongest effect on
goodness-of-fit, although the effect is lower than for the other methods, with an
increase in Scc about 0.04 at TS = 500 and reducing to 0.015 at TS = 5000. Varying
tree size around the optimum identified around convergence or varying within the
best ranking hyperparameter set does not noticeably change fit.

Similar to the other methods, the predictive performance did not differ between
VS1 and VS2. A larger discrepancy is observable between training and validation
samples. Predictive performance in the training sample is about 0.025 higher,
pointing to some degree of overfitting (Fig. 11).

A.5 Extreme Gradient Boosting (XGB)

Similar to random forest regression, gradient boosting regression also generates an
ensemble of simple regression trees (‘weak learners’) that minimizes an arbitrary
differentiable loss function (Friedman, 2002). Contrary to random forest regression,
however, the bootstrapped samples to estimate an individual tree are not all created at
the start, but trees are estimated sequentially. At each iteration, the predictive
performance of the whole ensemble generated so far is assessed and the next
bootstrapped sample is created assigning a higher weight to observations not yet well
matched by the ensemble (Hastie et al., 2009). Compared with RF, a more accurate
prediction is typically possible, but at the same time the risk for overfitting is higher
and hyperparameters have to be chosen carefully to avoid this (Storm et al., 2020).

For our ilr-transformed MPMAS-CSJ simulation data, we used Extreme gradient
boosting (XGB, Chen and Guestrin, 2016) as implemented in the XGBoost Python
package (xgboost developers, 2021), a specific GB implementation using a more
regularized model formulation to control over-fitting and efficient computation
including partial parallelization. Contrary to RF, where each tree is independent from
the others, it is not possible to parallelize the ensemble itself in GB, because each tree
is dependent on the previous ones. XGB parallelizes the construction of nodes within
each tree.

For tuning XGB hyperparameters, at each training sample size we exponentially
increased the allowed number of trees nTrees starting with eight and doubling until
no further improvement was visible. For each nTrees tested, we conducted a random
search (300 iterations) with 3-fold cross-validation for five critical XGB hyperpa-
rameters suggested by Bentéjac et al. (2021): learning rate, minimum loss reduction
(gamma), the maximum depth of the tree, the fraction of features to be evaluated at
each split, and the subsampling rate. The best hyperparameter combination for each
TS size and number of trees was recorded. The random search tuning process over all
TS sizes was conducted using 40 processors in parallel and required between 8 min at
nTrees ¼ 8 and without price ratios and 14 h at nTrees ¼ 1024 without price ratios.
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With price ratios explicitly included, times tripled to 25 min at nTrees ¼ 8 and 46
hours for nTrees ¼ 1024.

For each TS, Fig. 12 shows the development of average Scc over an increase in
the number of trees (in each case showing the best ranked combination of the other

Fig. 10 Average and minimum share of correctly classified plots of the best random forest models in VS1
and VS2. Grayscale distinguishes with vs. without explicitly included price ratios. Linestyle distinguishes
maximum number of trees. Facets distinguish the four best-ranked hyperparameter combinations in the
random search
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five hyperparameters). While the optimal number of trees varied among the lower TS
sizes, it converged to 512 for the larger TS sizes. While 512 was not necessarily the
best choice at lower TS sizes, it still provided very good results.

Figure 13 shows the average and minimum share of correctly classified plots in
VS1. Similar to the other methods, explicitly including price ratios in the feature set
had the strongest effect on goodness-of-fit: it increased the average Scc by 0.04-0.05
at lower and about 0.02 at higher TS sizes. Note: Without explicit price ratios and at
lower training sample sizes, a large number of trees was detrimental as it lead to clear
overfitting (better performance in the training sample, but worse performance in the
validation samples; not shown in graphs here).

Appendix B: Using Aitchison’s Total Variance to Measure Stability Of
Predictions

Aitchison’s total variance is a measure of dispersion for compositional data (simplex
space). Its properties correspond to the properties of the variance in real vector space
(Pawlowsky-Glahn and Egozcue, 2001; Pawlowsky-Glahn and Buccianti, 2011).

The first step in the calculation of the total variance is the construction of the
variation matrix M.

The J � J elements of the variation matrix each represent the variance in the log-
ratio between the area in one of the J crop categories and the area in one other

Fig. 11 Average and minimum share of correctly classified plots of the best random forest models in
training sample. Grayscale distinguishes with vs. without explicitly included price ratios. Linestyle
distinguishes maximum tree size. Facets distinguish the four best-ranked hyperparameter combinations in
the random search
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Fig. 12 Average share of correctly predicted plots in VS1 depending on max. number of trees in XGBoost
for each TS size

Fig. 13 Average and minimum share of correctly classified plots in VS1 of the best XGB models, with and
without explicit inclusion of price ratios
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Fig. 14 Results for climate scenario C2: Predictive accuracy of the best performing hyperparameter
setting, resp. functional form by surrogate modeling method and training sample size in validation samples
VS1 and VS2. (All explicitly including price ratios in the set of independent variables)
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category at row k. In our case, a separate total variance and hence a separate variation
matrix is calculated for each row k in VS1.

Mk ¼
mk;1;1 mk;1;2 . . . mk;1;J

..

. ..
. . .

. ..
.

mk;J ;1 mk;J ;2 . . . mk;J ;J

2
664

3
775 ð8Þ

with mk;j1;j2 ¼ var ln AreaSMk;j1

AreaSMk;j2

� �
and j1; j2 ¼ 1; . . .; J .

The variance in each cell (indicated by var in the formula) is here the traditional
variance of the log ratio between the two categories over the predictions for row k by
the different surrogates included in the comparison. In Fig. 4, we presented the
variance calculated over predictions from two adjacent TS, but this can be extended
to three or more adjacent sample sizes to include more than only the last TS increase
in the assessment of convergence. (We calculated also for three adjacent variables,
but did not see a relevant difference and decided to include the simpler version with
two.) We used the R package ‘compositions’ (van den Boogaart et al. (2021) to
calculate the variation matrix.

The total variance for row k is then calculated by summing over all elements of the
variation matrix for k and dividing by J (Pawlowsky-Glahn and Egozcue, 2001).

Fig. 15 Results for climate scenario C2: Comparison of predictive accuracy of the best performing
hyperparameter setting, resp. functional form WITHOUT and WITH explicit inclusion of price ratios as
input factors by surrogate modeling method and training sample size
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totvark ¼ 1

J

XJ
j1¼1

XJ
j2[ j1

mk;j1;j2 ¼ 1

2J

XJ
j1¼1

XJ
j2[ j1

var ln
AreaSMk;j1

AreaSMk;j2

� �
: ð9Þ

For the graph in Fig. 4, we then plotted the distribution of totvark over all k as a
violin graph.

Appendix C: Results for Scenario C2

While the main part of the article used the the baseline scenario (B) of Troost and
Berger (2015) as a test case for surrogate modeling, we also tested the procedure with
their climate scenario C2, which represents a major structural break compared with
the baseline. As Troost and Berger discussed, this scenario i.a. removes an important
crop rotation constraint that leads to somewhat less complex price-crop area
interrelationships. The results obtained were similar, except that XGB and RF show
very similar performances in this case and at lowest sample sizes RF performed
slightly better (Figs. 14, 15).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10614-022-10276-0.

Acknowledgements We acknowledge funding by the Federal Ministry of Education and Research of
Germany (BMBF) for the project SimLearn (01IS19073C) and by Deutsche Forschungsgemeinschaft
(DFG) for the project FOR-1695. The authors acknowledge support by the state of Baden-Württemberg
through bwHPC and by DFG through grant INST 35/1134-1 FUGG. Adam Törös developed initial
multinomial-logistic regression models in his M.Sc. thesis.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declaration
Conflicts of interest The authors declare that there is no conflict of interest due to material or financial
interests in the subject of the research.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agresti, A. (2013). Categorical data analysis (3rd ed.). Hoboken, New Jersey: John Wiley & Sons.
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Monographs on Statistics and

Applied Probability. London [u.a.]: Chapman and Hall, 1st ed.
Antle, J. M. (2019). Data, economics and computational agricultural science. American Journal of

Agricultural Economics, 101, 365–382. https://doi.org/10.1093/ajae/aay103.

123

756 C. Troost et al.

https://doi.org/10.1007/s10614-022-10276-0
https://doi.org/10.1007/s10614-022-10276-0
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/ajae/aay103


Asher, M. J., Croke, B. F. W., Jakeman, A. J., & Peeters, L. J. M. (2015). A review of surrogate models and
their application to groundwater modeling. Water Resources Research, 51, 5957–5973. https://doi.
org/10.1002/2015WR016967

Baustert, P., & Benetto, E. (2017). Uncertainty analysis in agent-based modelling and consequential life
cycle assessment coupled models: A critical review. Journal of Cleaner Production, 156, 378–394.
https://doi.org/10.1016/j.jclepro.2017.03.193

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting
algorithms. Artificial Intelligence Review, 54, 1937–1967. https://doi.org/10.1007/s10462-020-09896-
5

Berger, T., & Troost, C. (2014). Agent-based modelling of climate adaptation and mitigation options in
agriculture. Journal of Agricultural Economics, 65, 323–348. https://doi.org/10.1111/1477-9552.
12045

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13, 281–305.

Boogaart, K. G. van den, Tolosana-Delgado, R., & Bren, M. (2021). R package compositions:
Compositional data analysis. https://CRAN.R-project.org/package=compositions.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:
1010933404324.

Brown, C., Holman, I., & Rounsevell, M. (2021). How modelling paradigms affect simulated future land
use change. Earth System Dynamics, 12, 211–231. https://doi.org/10.5194/esd-12-211-2021

Buysse, J., Huylenbroeck, G. V., & Lauwers, L. (2007). Normative, positive and econometric mathematical
programming as tools for incorporation of multifunctionality in agricultural policy modelling.
Agriculture, Ecosystems and Environment, 120, 70–81. https://doi.org/10.1016/j.agee.2006.03.035.

Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity analysis of
large models. Environmental Modelling and Software, 22, 1509–1518. https://doi.org/10.1016/j.
envsoft.2006.10.004.

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’16. New
York, NY, USA: Association for Computing Machinery, 785–794, https://doi.org/10.1145/2939672.
2939785.

Domínguez, I. P., Bezlepkina, I., Heckelei, T., Romstad, E., Lansink, A. O., & Kanellopoulos, A. (2009).
Capturing market impacts of farm level policies: a statistical extrapolation approach using biophysical
characteristics and farm resources. Environmental Science and Policy, 12, 588–600. https://doi.org/
10.1016/j.envsci.2009.02.006.

Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric Logratio
Transformations for compositional data analysis. Mathematical Geology, 35, 279–300. https://doi.
org/10.1023/A:1023818214614.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1–67.
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38, 367–

378. https://doi.org/10.1016/S0167-9473(01)00065-2.
Gramacy, R. B., & Lee, H. K. H. (2009). Adaptive design and analysis of supercomputer experiments.

Technometrics, 51, 130–145. https://doi.org/10.1198/TECH.2009.0015
Happe, K., Kellermann, K., & Balmann, A. (2006). Agent-based analysis of agricultural policies: An

illustration of the agricultural policy simulator AgriPoliS, its adaptation, and behavior. Ecology and
Society, 11, 49.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining,
inference, and prediction (2nd ed.). Springer.

Jakeman, A., Letcher, R., & Norton, J. (2006). Ten iterative steps in development and evaluation of
environmental models. Environmental Modelling and Software, 21, 602–614.

Kleijnen, J. P. C. (2017). Regression and Kriging metamodels with their experimental designs in
simulation: A review. European Journal of Operational Research, 256, 1–16. https://doi.org/10.1016/
j.ejor.2016.06.041

Kremmydas, D., Athanasiadis, I., & Rozakis, S. (2018). A review of agent based modeling for agricultural
policy evaluation. Agricultural Systems, 164, 95–106.

Lamperti, F., Roventini, A., & Sani, A. (2018). Agent-based model calibration using machine learning
surrogates. Journal of Economic Dynamics and Control, 90, 366–389. https://doi.org/10.1016/j.jedc.
2018.03.011

123

Boosting the Scalability of Farm-Level Models: Efficient... 757

https://doi.org/10.1002/2015WR016967
https://doi.org/10.1002/2015WR016967
https://doi.org/10.1016/j.jclepro.2017.03.193
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1111/1477-9552.12045
https://doi.org/10.1111/1477-9552.12045
https://CRAN.R-project.org/package=compositions
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.5194/esd-12-211-2021
https://doi.org/10.1016/j.agee.2006.03.035
https://doi.org/10.1016/j.envsoft.2006.10.004
https://doi.org/10.1016/j.envsoft.2006.10.004
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.envsci.2009.02.006
https://doi.org/10.1016/j.envsci.2009.02.006
https://doi.org/10.1023/A:1023818214614
https://doi.org/10.1023/A:1023818214614
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1198/TECH.2009.0015
https://doi.org/10.1016/j.ejor.2016.06.041
https://doi.org/10.1016/j.ejor.2016.06.041
https://doi.org/10.1016/j.jedc.2018.03.011
https://doi.org/10.1016/j.jedc.2018.03.011


Lee, J. S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl, F., Lorscheid, I.,
Voinov, A., Polhill, G., Sun, Z., & Parker, D. C. (2015). The complexities of agent-based modeling
output analysis. The Journal of Artificial Societies and Social Simulation, 18,. https://doi.org/10.
18564/jasss.2897

Leisch, F., Hornik, K., Ripley, B. D., Narasimhan, B., Hastie, T., & Tibshirani, R. (2020). R package Mda:
Mixture and Flexible Discriminant Analysis. https://CRAN.R-project.org/package=mda.

Lengers, B., Britz, W., & Holm-Müller, K. (2014). What drives marginal abatement costs of greenhouse
gases on dairy farms? A meta-modelling approach. Journal of Agricultural Economics, 65, 579–599.
https://doi.org/10.1111/1477-9552.12057.

Lippe, M., Bithell, M., Gotts, N., Natalini, D., Barbrook-Johnson, P., Giupponi, C., Hallier, M., Hofstede,
G. J., Le Page, C., Matthews, R. B., Schlüter, M., Smith, P., Teglio, A., & Thellmann, K. (2019).
Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica,
23, 269–298. https://doi.org/10.1007/s10707-018-00337-8

Mössinger, J., Troost, C., & Berger, T. (2022). Bridging the gap between models and users: A lightweight
mobile interface for optimized farming decisions in interactive modeling sessions. Agricultural
Systems, 195, 103315. https://doi.org/10.1016/j.agsy.2021.103315

Müller, B., Hoffmann, F., Heckelei, T., Müller, C., Hertel, T. W., Polhill, J. G., van Wijk, M., Achterbosch,
T., Alexander, P., Brown, C., Kreuer, D., Ewert, F., Ge, J., Millington, J. D. A., Seppelt, R., Verburg,
P. H., & Webber, H. (2020). Modelling food security: Bridging the gap between the micro and the
macro scale. Global Environmental Change, 63, 102085. https://doi.org/10.1016/j.gloenvcha.2020.
102085

Müller-Hansen, F., Schlüter, M., Mäs, M., Donges, J. F., Kolb, J. J., Thonicke, K., & Heitzig, J. (2017).
Towards representing human behavior and decision making in Earth system models—An overview of
techniques and approaches. Earth System Dynamics, 8, 977–1007. https://doi.org/10.5194/esd-8-977-
2017.

Oshiro, T. M., Perez, P. S. and Baranauskas, J. A. (2012). How Many Trees in a Random Forest? In Perner,
P. (ed.), Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 154–168, doi:10.1007/978-3-642-31537-4_13.

Pawlowsky-Glahn, V., & Buccianti, A. (2011). Compositional data analysis: theory and applications.
London: John Wiley & Sons.

Pawlowsky-Glahn, V., & Egozcue, J. J. (2001). Geometric approach to statistical analysis on the simplex.
Stochastic Environmental Research and Risk Assessment, 15, 384–398. https://doi.org/10.1007/
s004770100077

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. Journal of machine
learning research, 12, 2825–2830.

Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyperparameters and tuning strategies for random
forest. WIREs Data Mining and Knowledge Discovery, 9, e1301. https://doi.org/10.1002/widm.1301

Reidsma, P., Janssen, S., Jansen, J., & van Ittersum, M. K. (2018). On the development and use of farm
models for policy impact assessment in the European Union—A review. Agricultural Systems, 159,
111–125.

Ripley, B., & Venables, W. (2021). R package nnet: Feed-Forward Neural Networks and Multinomial Log-
Linear Models. https://CRAN.R-project.org/package=nnet.

Salle, I., & Yıldızoğlu, M. (2014). Efficient sampling and meta-modeling for computational economic
models. Computational Economics, 44, 507–536. https://doi.org/10.1007/s10614-013-9406-7.

Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice—A guide to
assessing scientific models. Chichester: Wiley.

Schreinemachers, P., & Berger, T. (2011). MP-MAS: An agent-based simulation model of human-
environment interaction in agricultural systems. Environmental Modelling and Software, 26, 845–
859.

Seidel, C., & Britz, W. (2019). Estimating a dual value function as a meta-model of a detailed dynamic
mathematical programming model. Bio-Based and Applied Economics Journal, 8, 75–99. https://doi.
org/10.13128/bae-8147.

Storm, H., Baylis, K., & Heckelei, T. (2020). Machine learning in agricultural and applied economics.
European Review of Agricultural Economics, 47, 849–892. https://doi.org/10.1093/erae/jbz033

Tarantola, S., Becker, W., & Zeitz, D. (2012). A comparison of two sampling methods for global sensitivity
analysis. Computer Physics Communications, 183, 1061–1072. https://doi.org/10.1016/j.cpc.2011.
12.015

123

758 C. Troost et al.

https://doi.org/10.18564/jasss.2897
https://doi.org/10.18564/jasss.2897
https://CRAN.R-project.org/package=mda
https://doi.org/10.1111/1477-9552.12057
https://doi.org/10.1007/s10707-018-00337-8
https://doi.org/10.1016/j.agsy.2021.103315
https://doi.org/10.1016/j.gloenvcha.2020.102085
https://doi.org/10.1016/j.gloenvcha.2020.102085
https://doi.org/10.5194/esd-8-977-2017
https://doi.org/10.5194/esd-8-977-2017
https://doi.org/10.1007/s004770100077
https://doi.org/10.1007/s004770100077
https://doi.org/10.1002/widm.1301
https://CRAN.R-project.org/package=nnet
https://doi.org/10.1007/s10614-013-9406-7
https://doi.org/10.13128/bae-8147
https://doi.org/10.13128/bae-8147
https://doi.org/10.1093/erae/jbz033
https://doi.org/10.1016/j.cpc.2011.12.015
https://doi.org/10.1016/j.cpc.2011.12.015


Troost, C., & Berger, T. (2015). Dealing with uncertainty in agent-based simulation: Farm-level modeling
of adaptation to climate change in Southwest Germany. American Journal of Agricultural Economics,
97, 833–854. https://doi.org/10.1093/ajae/aau076

Troost, C., Walter, T., & Berger, T. (2015). Climate, energy and environmental policies in agriculture:
Simulating likely farmer responses in Southwest Germany. Land Use Policy, 46, 50–64. https://doi.
org/10.1016/j.landusepol.2015.01.028

van der Hoog, S. (2019). Surrogate modelling in (and of) agent-based models: A prospectus.
Computational Economics, 53, 1245–1263. https://doi.org/10.1007/s10614-018-9802-0.

van Wijk, M., Rufino, M., Enahoro, D., Parsons, D., Silvestri, S., Valdivia, R., & Herrero, M. (2014). Farm
household models to analyse food security in a changing climate: A review. Global Food Security, 3,
77–84. https://doi.org/10.1016/j.gfs.2014.05.001

van Wijk, M. T. (2014). From global economic modelling to household level analyses of food security and
sustainability: How big is the gap and can we bridge it? Food Policy 49. Part, 2, 378–388. https://doi.
org/10.1016/j.foodpol.2014.10.003

Wuertz, D., Setz, T., & Chalabi, Y. (2021). R Package fOptions: Rmetrics—Pricing and Evaluating Basic
Options. https://CRAN.R-project.org/package=fOptions.

xgboost developers (2021). XGBoost documentation - Python Package Introduction (1.4.0). https://
xgboost.readthedocs.io/en/latest/python/python_intro.html.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Boosting the Scalability of Farm-Level Models: Efficient... 759

https://doi.org/10.1093/ajae/aau076
https://doi.org/10.1016/j.landusepol.2015.01.028
https://doi.org/10.1016/j.landusepol.2015.01.028
https://doi.org/10.1007/s10614-018-9802-0
https://doi.org/10.1016/j.gfs.2014.05.001
https://doi.org/10.1016/j.foodpol.2014.10.003
https://doi.org/10.1016/j.foodpol.2014.10.003
https://CRAN.R-project.org/package=fOptions
https://xgboost.readthedocs.io/en/latest/python/python_intro.html
https://xgboost.readthedocs.io/en/latest/python/python_intro.html

	Boosting the Scalability of Farm-Level Models: Efficient Surrogate Modeling of Compositional Simulation Output
	Abstract
	Introduction
	Data and Methods
	The Farm-Level Model
	Input and Output Variables
	Experimental Design and Evaluation Criteria
	Sequential Experimental Design
	Expected Predictive Performance
	Stability of Predictions and Feature Importance
	Meta-Evaluation of Sequential Approach

	Surrogate Modeling Methods
	Multinomial-Logistic Regression
	Non-parametric, Machine Learning Methods


	Results
	Predictive Performance and Model Selection
	Functional Forms and Hyperparameter Choices
	Stability of Predictions
	Stability of Input Factor Importance

	Discussion
	Robustness
	The Importance of Domain Knowledge
	Computational Demand and Minimal Sample Size
	Scope for Performance Improvement
	Generalizability

	Conclusions
	Appendix A: Detailed Methodology and Results for Each Surrogate Modeling Method
	A.1 Multinomial Logistic Regression (MNL)
	A.2 Isometric Log-Ratio Transformation (ilr)
	A.3 Multivariate Adaptive Regression Splines (MARS)
	A.4 Random Forest Regression (RF)
	A.5 Extreme Gradient Boosting (XGB)

	Appendix B: Using Aitchison&#x2019;s Total Variance to Measure Stability Of Predictions
	Appendix C: Results for Scenario C2
	Funding
	References




