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Abstract 
This study introduces a novel approach to predicting global oil demand by integrating machine learning 
(ML) techniques to forecast consumption across seven refined oil products and seven key regions. By 
aggregating these forecasts, we offer a comprehensive view of global demand trends. The paper 
examines the efficacy of ML models in providing robust and accurate demand forecasts. It also provides 
a transparent and repeatable process to forecast oil demand. A comparison between the extreme 
gradient boosting (XGBoost) model and Neural Hierarchical Interpolation for Time Series Forecasting 
(N-HiTS) model was conducted to determine which is a more accurate model to forecast demand. Our 
comparative analysis demonstrates that N-HiTS performs better. The accuracy of global oil demand 
forecasts is pivotal for economic planning and policy making.  
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1. Introduction 

Accurate forecasting of oil demand is critical for strategic planning. Traditional econometric models, 
while useful, often struggle to capture the complex dynamics influenced by numerous economic 
indicators and geopolitical factors. These models typically rely on linear assumptions and may not 
adequately address the non-linear relationships inherent in oil markets. To address these challenges, 
our paper introduces a methodology that leverages advanced machine learning (ML) techniques, 
specifically extreme gradient boosting (XGBoost) and Neural Hierarchical Interpolation for Time Series 
Forecasting (N-HiTS), to enhance the precision and reliability of oil demand forecasts. 

Machine learning models have demonstrated superior performance in various forecasting tasks due to 
their ability to handle large datasets and uncover intricate patterns. Recent studies consistently show 
that ML techniques outperform traditional econometric methods in time series forecasting by modelling 
complex, nonlinear relationships and handling large datasets. For instance, Hopp (2022)1 found that 
long short-term memory (LSTM) neural networks provided better predictive accuracy than Bayesian 
vector autoregressions (BVAR) for nowcasting US quarterly GDP growth, especially during economic 
crises. Deb (2019)2 highlighted that models exploiting heterogeneity, such as finite mixture models, 
yielded more accurate healthcare spending forecasts compared to generalized linear models and log-
linear regression. Similarly, Lukong et al. (2022)3 showed that long short-term memory recurrent neural 
networks (LSTM-RNN) models achieved significantly lower mean absolute percentage error (MAPE) in 
long-term electricity load forecasting than linear regression models. In financial time series forecasting, 
Liu et al. (2023) 4  reported that ensemble methods like Random Forest and LSTM outperformed 
traditional econometric models in both accuracy and interpretability. Additionally, Kontopoulou et al. 
(2023) 5  reviewed various applications and concluded that ML algorithms generally surpassed 
autoregressive integrated moving average (ARIMA) models, particularly in capturing intricate data 
patterns, with hybrid models proving most effective. Furthermore, comparative analyses by Oukhouya 
and El Himdi (2023)6 also illustrate the superior performance of support vector regression (SVR), 
XGBoost, LSTM, and multilayer perceptron (MLP) in stock market forecasting, with ML models 
generally outperforming their econometric counterparts. This superiority is attributed to ML models' 
ability to learn from data without relying on pre-defined assumptions, allowing them to capture more 
nuanced and complex relationships. These findings underscore the enhanced accuracy, efficiency, and 
flexibility of ML models in time series forecasting across diverse domains. 

In the context of oil demand forecasting, the integration of ML techniques has shown significant 
improvements over traditional methods. Studies by Zhu (2023)7 and Alkhammash et al. (2022)8 have 
validated the effectiveness of ML models in this domain, demonstrating their superior performance in 
capturing complex patterns in data. Zhu (2023) conducted an AI-based analysis incorporating both 
endogenous and exogenous factors, finding that machine learning models significantly improve 
forecasting accuracy compared to traditional models. Similarly, Alkhammash et al. (2022) used 
optimized multivariate adaptive regression splines (LR-MARS) to predict crude oil demand in Saudi 
Arabia, showcasing the adaptability and precision of ML models in dynamic environments. 

XGBoost9, a gradient boosting algorithm, is known for its robustness and efficiency. It has been 
successfully applied in domains such as temperature forecasting and precipitation prediction, 
highlighting its versatility and effectiveness across different predictive tasks. For instance, Singh and 
Rawat (2023)10 conducted a comparative analysis of XGBoost with other ML models like support vector 
machine (SVM) and Random Forest in temperature forecasting, emphasizing the importance of model 
selection based on specific task requirements. Similarly, Dong et al. (2023)11 utilized XGBoost for short-
term precipitation forecasting, demonstrating its capability to enhance forecast accuracy by correcting 
biases in numerical weather predictions. In the context of oil demand forecasting, XGBoost's capability 
to capture complex interactions between variables makes it a promising tool. Research by Dezhkam 
and Manzuri (2023) 12  demonstrated the efficacy of combining XGBoost with the Hilbert-Huang 
Transform for stock market forecasting, a domain with analogous complexity to oil markets. 
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Similarly, the N-HiTS model13, a neural network-based approach, has shown remarkable effectiveness 
in time series forecasting. This model leverages hierarchical interpolation and has been recognized for 
its ability to handle non-linear time series data efficiently. Studies like those by Souza et al. (2023)14 
have employed N-HiTS to predict COVID-19 cases and deaths, showcasing its potential in handling 
non-linear time series data. The N-HiTS model's architecture allows it to adapt to different scales of 
data, making it suitable for various forecasting horizons. Although relatively new, N-HiTS promises high 
accuracy, particularly for long-term forecasts, which are crucial for strategic energy planning. Its ability 
to dynamically adjust and learn from new data points ensures that the forecasts remain relevant and 
accurate over time. 

This paper employs a top-down approach, using economic and other industry-specific indicators as 
inputs to forecast global demand across different refined oil products in seven global regions. These 
regions are strategically chosen to represent the major oil-consuming and producing areas, ensuring a 
comprehensive analysis. The forecasts are then aggregated to form a comprehensive global view on 
oil demand. The performance of the ML models, specifically XGBoost and N-HiTS, is assessed using 
metrics such as Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE), targeting a 
high accuracy with a MAPE around 10% for forecasts extending one year out-of-sample. These metrics 
are critical for evaluating the models' predictive performance and ensuring that the forecasts are both 
reliable and actionable. 

Our methodology demonstrates its application in three ways: as a short-term forecasting tool (using 
monthly inputs and forecasting up to 24 months ahead), as a medium-term forecasting tool (using 
quarterly inputs and forecasting up to 5 years ahead), and as a forecast scenarios analysis tool. These 
applications highlight the versatility of our approach and its potential to inform strategic decisions across 
different planning horizons. 

By leveraging the successes of ML in various domains, this study seeks to set a new benchmark in oil 
demand forecasting. The ultimate goal is to enhance the strategic planning capabilities of the energy 
industry, offering more accurate and timely forecasts to inform strategic decisions. The research 
highlights the advantages of ML in identifying complex patterns and adapting to new data, making it 
particularly suitable for the volatile energy sector. 

The remainder of the paper is organized as follows. In Section 2 we review the data processing stage 
providing the data description and elaborating on the methodologies employed for data cleaning, data 
transformation and data splitting. Section 3 presents the methodology and framework in terms of the 
approach used for model selection and training. Section 4 demonstrates the application of our 
methodology in constructing short-term and medium-term forecasts of global oil demand and examines 
comparatively information against actuals and consensus forecasts. In Section 5, we demonstrate how 
these forecasts can be supplemented with various scenarios. These forecast scenarios, for example, 
can illustrate the sensitivity of the baseline forecasts to changes in assumptions about the global 
macroeconomy, the adoption of new technologies, and evolving patterns of oil consumption. Section 6 
draws the conclusions and discusses areas for future research.    
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2. Data processing 

The data processing stage is instrumental in transforming raw data into a format that is amenable to 
effective modelling. This process encompasses several critical steps: data cleaning, data 
transformation, and data splitting. Each step is meticulously designed to address specific challenges 
inherent in time series forecasting, such as handling missing values, ensuring data stationarity, and 
optimizing the dataset for training and validation purposes. Moreover, the same approach is followed 
whether it is applied for short-term or mid-term forecast with some minor differences that are highlighted. 
This section elaborates on the methodologies employed in preparing the dataset, emphasizing the 
technical strategies and their theoretical underpinnings to ensure the highest data quality for 
subsequent modelling. 

Table 1. Global oil demand forecasting model data structure 

Geography 
Regions / Countries Description 
OECD  

     US United States 

     Other Americas Includes other OECD Americas, namely, Canada, Chile and Mexico. 

     Europe 

Includes OECD Europe, namely, Austria, Czech Republic, Denmark, 
Estonia, France, Germany, Greece, Hungary, Italy, the Netherlands, 
Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Turkey 
and the UK.  

     APAC Includes OECD Asia-Oceania, namely, Australia, Israel, Japan, Korea 
and New Zealand.  

Non-OECD   

     China China. 

     India India. 

     Other non-OECD Includes rest of world.  

Oil products 
Oil product Description 

LPG (d1) Includes all liquefied petroleum gases.  

Naphtha (d2) Includes naphtha as feedstock to the petrochemical industry and for 
gasoline production. Excludes naphtha type jet fuel.  

Gasoline (d3) Includes finished motor gasoline and motor gasoline blending 
components and additives.  

Jet/Kero (d4) Includes kerosene-type jet fuel and other kerosene.  

Gasoil/Diesel (d5) Includes diesel oil, light heating oil and other gas oils.  

Fuel oil (d6) Includes all residual fuel oils.  

Other products (d7) 

Includes other oil products, such as crude oil, other NGL, synthetic 
crude/fuels, orimulsion, hydrogen, refinery gas, aviation gasoline, 
naphtha-type jet fuel, white spirit, SBP, lubricants, bitumen, paraffin 
waxes, petroleum coke, tar, sulphur, aromatics and olefin.   

Source: IEA MODS, OIES 
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2.1. Data description 
Our global oil demand forecasting models disaggregate global oil demand into OECD and non-OECD 
regions, as well as seven primary oil products, namely: LPG (d1), naphtha (d2), gasoline (d3), jet/kero 
(d4), gasoil/diesel (d5), fuel oil (d6), and other products (d7). Demand for oil products in OECD is further 
disaggregated into the US, Other Americas, Europe and Asia-Oceania (APAC). Demand for oil products 
in the non-OECD is further disaggregated into China, India and other non-OECD. OECD data are based 
on the International Energy Agency’s Monthly Oil Data Service (IEA MODS) database. For non-OECD 
data we utilize various sources such as IEA, Argus, China’s National Bureau of Statistics (NBS), India’s 
Petroleum Planning and Analysis Cell (PPAC), and other industry sources. The sample period spams 
from January 1990 to June 2023 for OECD, and from January 2000 to June 2023 for non-OECD 
countries/regions. All oil data are monthly. Table 1 summarizes the data structure for the dependent 
variables. 

The forecasting models also utilize four groups of independent determinants covering global prices, 
global economics, global industry and sector-specific indicators. These are summarized in Table 2. The 
main source of data is Oxford Economics’ Global Databanks. The significance of these predictors in 
forecasting global oil demand is analyzed and evaluated in the following sections. 

Table 2. Description of selected global oil demand predictors 
Global prices 
rpo Oil price Brent price, period average. 

wci World commodity index 
(non-fuel) 

Average of world food price, world beverages price, world 
agriculture raw materials price and world metals price.  

Global economics 
pop Population Total population. 

gdp GDP GDP, in USD$ terms.  

cpi CPI Consumer Price Index: All items. 

inc Disposable income Personal disposable income. 

wtr World trade index Oxford Economics’ global trade index.  

lkq Li Keqiang index Index measuring China’s economy based only on rail freight 
volume, electricity production, and bank loans.  

Global industry 
ind Industrial production Manufacturing production index. 

ppi PPI Producer price index. 

inv Total investment Total fixed investment. 

out Gross output Total value added. 

pcars Stock personal cars Light vehicles for personal use. 

ccars Stock commercial cars Light and heavy vehicles for commercial use. 

cbui Construction of buildings Industrial production in construction of buildings. 

chem Sales gross output (chem) Output chemicals minus Pharmaceuticals. 

egen Electricity gen by oil Electricity production from oil sources (% of total). 

Air passenger forecasts  
airf Air fares index Average air fares index. Sample starts in 1Q06. 

airp Air passengers Total passengers. Sample starts in 1Q06. 

rpk Revenue passenger km Revenue passenger kilometers in millions. Sample starts in 1Q06. 
Source: Oxford Economics’ Global Databanks, OIES 
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2.2. Data cleaning 
Our short-term demand data is monthly while economic indicators are quarterly. However, for the mid-
term both the demand and economic indicator data is quarterly and do not require any frequency 
conversion. For the short-term forecast, any quarterly data must be converted to monthly data to allow 
for a monthly forecast instead of a quarterly forecast for the short-term. The following sections highlight 
the required steps prior to model training. 

Converting Quarterly to Monthly Data: Given the discrepancy in the temporal resolution of demand 
data (monthly) versus other indicators (quarterly), it was imperative to homogenize the dataset to a 
monthly scale to maximize observational data points for analysis. To achieve this, the Pandas15 library's 
linear interpolation method was employed due to its simplicity and effectiveness in estimating missing 
values. This approach, particularly suitable for time series data, linearly interpolates missing or NaN 
values based on the linearly spaced values between known data points. By utilizing the 
.interpolate(method='linear') function on our dataset, we ensure a smooth transition between quarterly 
data points, thereby maintaining the trend and variability observed in the original data. This method 
assumes that the change between two data points is linear, filling in missing values with appropriately 
spaced estimates that reflect the underlying data pattern. 

The interpolation formula used is given by: 

𝑉!"#$%&'()#$* = 𝑉+#)%# +
(𝑉$"* − 𝑉+#)%#)
(𝑇$"* − 𝑇+#)%#)

× )𝑇!"#$%&'()#$* − 𝑇+#)%#*	, 

where: 

𝑉!"#$%&'()#$* is the value to be interpolated (estimated) for the target time point. 

𝑉+#)%# and 𝑉$"* are the known values before and after the point to be interpolated, respectively. 

𝑇+#)%#	and 𝑇$"* are the times at which 𝑉+#)%# and 𝑉$"* are observed, respectively. 

𝑇!"#$%&'()#$* is the time point at which the value is to be interpolated. 

Figure 1: Example of backcasting missing values 

 
Source: Authors’ analysis 

Handling Missing Values using Prophet: To address instances of missing data in our dataset, we 
integrated the Prophet 16  package for backcasting purposes. Prophet, renowned for its efficacy in 
discerning underlying trends and seasonal fluctuations within time series data, facilitated the 
extrapolation of data points backwards. This method allowed us to leverage established patterns to 
infer and populate missing values, thereby ensuring the dataset's completeness for subsequent 
analysis. The Prophet package, an open-source tool devised by Facebook, excels in automatic 
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forecasting of univariate time series data, simplifying the process of selecting optimal hyperparameters 
to enhance forecast accuracy. The reason why we decided to not drop the rows with missing values is 
the limited dataset we had.  Furthermore, our results show a boost in accuracy when keeping the rows 
with missing values and imputing as opposed to dropping the rows with missing values. Figure 1 shows 
an example of Prophet applied to back two variables with missing values. It is important to note that 
this step applies exactly to both the short-term and mid-term where the only difference is the frequency 
of the time-series being processed. 

2.3. Data transformation 
Achieving Stationarity: Differencing has been applied to stabilize the mean and variance of the time 
series to ensure stationarity. While differencing is a common approach to achieve stationarity, its 
minimal impact on our results suggests that the ML models selected were robust to non-stationary data, 
a characteristic advantageous for our forecasting objectives as shown in Figure 2. 

Figure 2: Effect of differencing using XGBoost 

 
Notes: US d1. Source: Authors’ analysis 

Scaling: Preliminary analysis indicated that scaling the data to standardize feature ranges did not 
significantly affect the performance of our ML models. Our tests involved using a min-max scaler in 
XGBoost on our training set and comparing the effect with and without scaling. For N-HiTS, we use a 
robust scaler17 which is a method used to standardize features by removing the median and scaling 
with the mean absolute deviation (MAD) or inter quartile range (IQR). This technique is particularly 
useful with noisy data where outliers can heavily influence the sample mean and variance in a negative 
way.  
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2.4. Data splitting 
The following methodology applies to both the input data for the short-term and medium-term models 
with any specific modification except for the frequency parameter (monthly versus quarterly) that needs 
to be specified in some of the software packages that we used. 

Training, Validation, and Test Sets: The dataset was divided into training, validation, and testing sets 
following time series forecasting best practices. This split ensures that the models are trained on 
historical data, validated to tune hyperparameters with unseen data, and finally, tested to evaluate 
performance on the most recent, unseen data. Specifically, data up until 2018 was used for training and 
validation; and 2019 data was used for out of sample testing. The rational for cutting our sample in 2019 
was to avoid the impact of the 2020 COVID shock in evaluating our models’ performance, as both its 
significant exogeneity and magnitude weighing on global oil demand driven by the governments’ 
restrictions on mobility, as well as pend-up demand in response to lifting these restrictions in 2021 and 
2022, were identified as sources of distortion both for model training and evaluation.   

In the next section, we'll delve into Model Development and Evaluation, detailing the methodologies 
behind model selection, training, evaluation metrics, and the post-processing techniques employed to 
refine the forecasts. 

2.5. Evaluation metrics 
To assess the performance of our forecasting models, we employ two primary evaluation metrics: Mean 
Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). These metrics are chosen for their 
ability to measure forecast accuracy in complementary ways, providing a holistic view of model 
performance. 

Mean Squared Error (MSE): The MSE is calculated as the average of the squared differences between 
the actual and predicted values. It is given by the formula: 

𝑀𝑆𝐸 =
1
𝑛2

(𝑦! −	𝑦4!),	,
"

!-.

 

where 𝑦! is the actual value, 𝑦4/ is the predicted value, and n is the number of observations. MSE is 
sensitive to large errors, making it useful for identifying models that might be prone to significant forecast 
deviations. 

Mean Absolute Percentage Error (MAPE): The MAPE measures the average magnitude of errors as 
a percentage of actual values, offering an intuitive understanding of model accuracy. It is defined as: 

𝑀𝐴𝑃𝐸 =
100%
𝑛 29

𝑦! −	𝑦4!
𝑦!

9		 ,
"

!-.

 

MAPE is particularly valuable in contexts where the relative size of the forecast error is more important 
than the absolute size, providing insights into the model's performance in percentage terms. This metric 
is generally easier to understand especially when we want to compare the performance across the 
different products that might have varying error margins. 

These metrics together allow for a comprehensive evaluation of forecast accuracy, with MSE 
highlighting models that may have large errors for debugging purposes; and MAPE offering a 
percentage-based measure that is easily interpretable and used for reporting and comparing models. 
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3. Model selection and training 

The following sections explain the training and model selection approach that was used. This applies 
to both the short-term and medium-term forecasting models. 

3.1. XGBoost for time series forecasting 
XGBoost (Extreme Gradient Boosting) operates on the principle of boosting, an ensemble technique 
that combines multiple weak learners (typically decision trees) into a strong learner in a sequential 
manner. Each tree attempts to correct the errors made by the previous one, with this process guided 
by the gradient of the loss function. 

Decision trees, usually create a model that predict the target by creating trees using the if/else 
statement, and by using the minimum number of such statements they try to find the probability of 
having the correct decision. Such trees are used for classification or regression (as in our problem). 

The model's capacity to handle various data irregularities, such as non-linearity and missing values, 
stems from its robust loss function optimization and regularization features. XGBoost introduces a 
regularization term in the objective function, reducing overfitting by penalizing complex models. This 
feature, combined with its ability to perform automatic handling of missing values, makes XGBoost 
particularly well-suited for time series forecasting where such irregularities are common.  

Gradient boosting decision trees (GBDT) such as XGBoost are well known for their performance against 
deep learning models in tabular problems. There are several GBDT packages, however, in our case 
we have decided to XGBoost as the most used by both, ML researchers and academia.  Figure 3 
illustrates the way XGBoost (and other GBDT models) finalize their predictions where the final 
prediction for a given sample is the sum of predictions from each tree. 

Figure 3: Schematic overview of the Gradient Boosting Machine Learning process 

 
Source: Recreated from AWS Sagemaker18 

 The figure depicts the iterative process of training a gradient boosting model. Initially, the data set 
(𝑋, 𝑌) is used to train the first tree, 𝐹.(𝑋). The residuals	𝑟.are computed to measure the discrepancy 
between the predicted and actual values. A regularization parameter 𝛼. is then determined to minimize 
the loss when 𝐹.(𝑋) and 𝑟.are combined. 
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This process is repeated for each subsequent tree. For the 𝑖#0 tree, the model 𝐹!(𝑋) is updated to  

𝐹!1.(𝑋) + 	𝛼!ℎ!(𝑋, 	𝑟!1.)	, 

where 𝛼! and 𝑟! are the regularization parameters and residuals computed with the 𝑖#0 tree respectively, 
and ℎ! is a function that is trained to predict residuals 𝑟! using 𝑋 for the 𝑖#0 tree. 

The objective is to find the optimal set of α parameters by minimizing the differentiable loss function 
𝐿(𝑌, 𝐹(𝑋)), which is computed as: 

argmin
2

=	2𝐿(𝑌!

3

!-.

, 𝐹!1.(𝑋!) + 	𝛼ℎ!(𝑋! , 𝑟!1.)) 

Through this iterative optimization, the final model 𝐹3(𝑋) is a combination of each individual tree's 
predictions adjusted by their corresponding regularization parameters, aimed at reducing the loss 
function. 

For the short-term forecast application (i.e., 2-years ahead), the model development process involved 
creating a single model for every time step in our prediction horizon for a given region (i.e., 24-steps 
ahead). This means that for the short term, we need to create 24 models for each product resulting in 
a total of 167 models to do a short-term forecast for a given region.  

To retain the temporal relationship between past demand observations, the feature engineering process 
was crucial, involving the creation of 12 new features representing lags of the target variable from t−1 
to t−12, capturing the historical demand trends and seasonality. Additionally, future lags from t+1 to 
t+24 were generated to predict demand across various future months, enhancing the model's 
forecasting capabilities. Figure 4 illustrates how the input matrix looks like. 

Figure 4: Input matrix setup for XGBoost 

 
Source: Authors’ analysis 

As seen in Figure 4, for every product 𝑑(𝑖)	𝑓𝑜𝑟	𝑖 ∈ {1,2,3,4,5,6,7} an input matrix is created. Then, it is 
mapped to a target column 𝑑(𝑖)#45 where j is the index of the forecasted month. This means that in the 
short-term j ranges from 1 to 24 since we have 24 months in our forecasting horizon.  

The hyperparameter tuning strategy employed grid search and cross-validation techniques to optimize 
parameters such as the learning rate and the number of trees. The learning rate controls the step size 
at each iteration of the model's optimization, while the number of trees determines the complexity of the 
model. The objective was to find a balance that minimized forecast error without overfitting to the 
training data. The mathematical representation of the gradient boosting process can be summarized as 
follows: 

𝑦4!(𝑡) = 𝑦4!(𝑡 − 1) + 𝜂 ⋅ 𝑓𝑡(𝑥!)	, 

where 𝑦4!(𝑡) is the prediction at iteration t, ft is the decision tree added at iteration t, 𝑥! is the feature 
vector for instance i, and η is the learning rate. 
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To establish a baseline for XGBoost we used the US and China as the main regions to calculate the 
model performance on our 2019 out of sample data. MAPE is used to measure the performance by 
calculating the weighted average of MAPE across products by weighing them with the average demand 
in 2019. This weighted average is calculated according to the following formula: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 	
𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝐷𝑒𝑚𝑎𝑛𝑑! ∙ 𝑀𝐴𝑃𝐸!
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝐷𝑒𝑚𝑎𝑛𝑑!6
!-.

 

Where 𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝐷𝑒𝑚𝑎𝑛𝑑! is the demand for product (i) and 𝑀𝐴𝑃𝐸! is for the same product. 

Table 3. XGBoost performance and out-of-sample data (2019) 

 US China 
Product XGBoost Total oil demand  XGBoost Total oil demand 
 % kb/d % kb/d 

LPG 10.48  2,638  11.99 2,248 

Naphtha  8.08  207  10.22 1,298 

Gasoline 1.53  9,296  9.01 3,662 

Jet/Kero 3.78  1,760  17.35 975 

Gasoil/Diesel 2.63  4,112  5.13 3,949 

Fuel oil  19.58  306  14.07 604 

Other products 15.43  2,260  24.33 1,406 

Weighted 
Average 4.95  10.83  

Source: Authors’ analysis 

Table 3 shows that the performance of XGBoost is quite promising for two of the largest demand 
centers. The variance between the US and China’s performance might be attributed to weaker 
correlations between the economic indicators and product demand in the case of China. 

3.2. N-HiTS architecture and training 
N-HiTS (Neural Hierarchical Interpolation for Time Series Forecasting) introduces a novel approach by 
employing hierarchical interpolation and multi-rate data sampling. This architecture decomposes the 
time series into components of varying frequencies, allowing the model to capture complex temporal 
patterns effectively. In principle, N-HiTS perfectly reconstructs harmonic signals from the original 
combined data (Figure 5). 

Figure 5: Illustration of N-HiTS architecture and signals harmonization 

 
 

Source: N-HiTS paper13 
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The hierarchical interpolation technique enables the model to integrate information across different time 
scales, from high-frequency details to low-frequency trends. Multi-rate data sampling further enhances 
this capability by allowing the model to learn from data points sampled at different intervals, adapting 
to the inherent temporal dynamics of the dataset. 

The advantages of N-HiTS over traditional and other ML-based forecasting methods include its superior 
ability to capture long-term dependencies and its flexibility in handling time series with complex 
seasonal patterns. These features make N-HiTS particularly effective for long-horizon forecasting tasks. 
Unlike previous efforts, N-HiTS uses neural network models specifically designed for time series 
forecasting. N-HiTS, allows an interpretable non-linear decomposition which is quite important in high-
stake applications as in our problem. 

Using Nixtla's19 implementation of AutoNHITS, we initialized the model with various types of exogenous 
variables to enrich the forecasting model with additional context. The inclusion of future exogenous 
variables was facilitated by specifying these under the futr_exog_list parameter during model 
initialization. 

The training process involved scaling both the target and exogenous variables using a robust scaler to 
ensure consistency in the data range, crucial for the model's performance. The model was then fitted 
to the dataset, with the training duration and computational resources carefully managed to optimize 
performance without compromising efficiency. 

Challenges encountered during the training process, such as model convergence and overfitting, were 
addressed through careful tuning of the model's architecture and parameters. Early stopping and 
regularization were employed as key strategies to ensure that the model generalizes well to unseen 
data. 

By leveraging the hierarchical and multi-rate capabilities of N-HiTS, combined with a thoughtful 
approach to model training and exogenous variable inclusion, we were able to develop a forecasting 
model that offers both high accuracy and efficiency. 

Table 4 shows that N-HiTS outperforms XGBoost in most of the highest demand regions including the 
US, Europe, APAC and China. The main advantage of N-HiTS over XGBoost is model maintenance as 
N-HiTS builds a single model per region while XGBoost builds 167 models per region without an 
advantage in performance. Furthermore, N-HiTS can be easily adapted to run longer term forecasts. 
Based on this, our methodology utilizes N-HiTS as the main algorithm to forecast demand. Moreover, 
N-HiTS can also be expanded to medium-term forecasting1 using the same features and architecture. 
Additionally, the same methodology can be employed for scenario analysis as discussed in the following 
sections. 

Table 4. N-HiTS vs XGBoost average MAPE by region 
 N-HiTS XGBoost 
Region Weighted average MAPE Weighted average MAPE 
 % % 
US 3.51 4.95 

Other OECD Americas 10.13 6.30 
OECD Europe 3.22 4.33 

OECD APAC 4.20 5.57 

China 10.35 10.82 

India 9.8 8.37 
Other non-OECD 5.85 3.25 
Source: Authors’ analysis 

 
1 Next 8-10 years on a quarterly basis 
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3.3. Post-processing predictions 
In both our XGBoost and N-HiTS predictions, it is crucial to address potential extreme values that 
diverge significantly from historical patterns. This refinement process involves two main steps: 
establishing bounds based on historical percent changes and applying these bounds to the forecasts. 
This refinement process is applied to both the short-term and long-term forecasts. 

Establishing Bounds 

1. Calculating Historical Percent Changes: For each time series, corresponding to a product in a 
specific region, we calculate the month-to-month percent changes historically observed. The percent 
change between two consecutive months, 𝑃70)"8$, is calculated as: 

𝑃70)"8$ = b
𝑉79%%$"# − 𝑉&%$:!'9+

𝑉&%$:!'9+
c × 100%		, 

where 𝑉79%%$"# is the value of the current month, and 𝑉&%$:!'9+ is the value of the preceding month. 

2. Creating a Distribution: We construct a distribution of historical percent changes for each month. 
This involves aggregating all percent changes observed in the same month across different years to 
form a comprehensive view of historical variability. 

3. Determining Bounds: Based on the distribution of percent changes, we establish upper and lower 
bounds for acceptable changes. These bounds are determined by selecting a confidence interval, say 
the 90th percentile, which represents a statistically significant threshold. For example, if the chance of 
observing more than a 29% change in January is less than 5%, we set our bounds at the 5th and 95th 
percentiles of the January percent change distribution. 

Applying Bounds to Forecasts 

1. Calculating Forecast Percent Changes: Similar to historical calculations, we determine the percent 
change between forecasted values for consecutive months. 

2. Applying Bounds: If a forecasted percent change exceeds the established bounds, it is adjusted to 
the nearest bound. This ensures that our forecasts remain within a historically plausible range, 
enhancing their reliability and accuracy 

d
𝑃(';$%

𝑃<'%$7)+#			
𝑃9&&$%	

𝑖𝑓																	𝑃<'%$7)+# < 𝑃(';$%	
𝑖𝑓	𝑃(';$% ≤ 𝑃<'%$7)+# ≤ 𝑃9&&$%
	𝑖𝑓																		𝑃<'%$7)+# > 𝑃9&&$%

		, 

Where 𝑃<'%$7)+# is the percent change of the forecast, and 𝑃(';$% , 𝑃9&&$% are the determined lower and 
upper bounds, respectively. 

This post-processing step ensures that extreme forecasts are refined to align with historical trends, 
maintaining the integrity of our predictions and bolstering confidence in their applicability for strategic 
decision-making. It also preservers the structure of the data and inter-month changes unlike a simple 
moving average which might over-smooth such changes. Figure 6 shows the difference between the 
proposed methodology and a simple moving average. 
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Figure 6: Proposed bounding function vs moving average 

 

 

 

 

 

 

 

 

 

 

 

  

Source: Authors’ analysis 

4. Estimation results 

Our objective throughout this section and the next is twofold. First, to present the application of our ML 
model in forecasting global oil demand by region and by product in both the short-term using monthly 
inputs and the medium-term using quarterly inputs, highlighting the versatility of our approach and its 
potential as an informative forecasting tool across different horizons, as well as for forecasting scenario 
analysis. Second, to contrast our medium-term forecasting results with the consensus oil demand 
forecasts available by the International Energy Agency (IEA), the U.S. Energy Information 
Administration (US EIA) and the Organisation of the Petroleum Exporting Countries (OPEC) at the time 
of our analysis, as well as to compare the forecasting performance of the ML model against 
conventional econometric forecasting models. For expository purposes, in the analysis below we focus 
on the N-HiTS algorithm to derive our forecasts that has been shown to perform better than the XGBoost 
and provides a flexible methodological framework in terms of complexity, training time and scalability. 

4.1. Short-term oil demand forecasts 
For our short-term forecasting analysis, we compare the model predictions for global oil demand with 
the actual estimates of global oil demand in 2019 and 2022 and investigate the forecasting performance 
of the model against the real outcomes. The forecast horizon is 12 months, and the model is trained 
based on monthly data up to December of the previous year. We purposely refrain from including in the 
out-of-sample analysis the period 2020-2021 as this was the period most severely impacted by the 
COVID shock and by the pandemic impact on mobility and economic activity, albeit related exogenous 
elements affecting the model’s forecasting performance persist well into 2022 as the global pandemic 
was officially declared over by the World Health Organization only on 5 May 2023.  

Figure 7 shows the model predictions against the actual outcome of global oil demand in 2019. The 
model forecasts annual global oil demand in 2019 averaging 100.77 mb/d from 100.1 mb/d in 2018 and 
versus the actual 100.86 mb/d, growing y/y by 670 kb/d versus the actual growth of 760 kb/d. That is a 
difference between actual and predicted growth for global oil demand of less than 100 kb/d or 0.1% of 
annualized global oil demand. 
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Figure 7: Actual vs predicted global oil demand in 2019 

 
Source: OIES 

Figure 8 breaks down the comparison by region and by product. In terms of regions, the forecasting 
model appears to underestimate OECD demand growth in 2019 by 410 kb/d to -370 kb/d compared to 
the actual 40 kb/d, underperforming mainly in other Americas and Europe. On the other hand, it 
overestimates the growth projections for non-OECD oil demand by 320 kb/d to 1 mb/d versus the actual 
720 kb/d overstating demand growth mainly in other non-OECD. In terms of products, the forecast 
performs relatively better particularly across the main transportation fuels overstating growth in naphtha 
demand and fuel oil at the expense of predicted demand growth for the group category of other 
petroleum products. The main disagreement in the OECD forecasts versus the actuals can be observed 
on LPG and diesel/gasoil predicted demand growth, both of which are underestimated by 200 kb/d y/y, 
but the difference was mainly offset by overstating the predicted diesel/gasoil demand growth in non-
OECD by 340 kb/d. By comparison, IEA’s Oil Market Report in January 2019 was predicting global oil 
demand growth of 1.4 mb/d for the year, while OPEC’s Monthly Oil Market Report had its oil demand 
growth forecast for 2019 at 1.3 mb/d versus our predicted growth of 670 kb/d and the actual 760 kb/d.   

Figure 8: Actual vs predicted global oil demand growth in 2019 
By region 
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Figure 8 (cont.): Actual vs predicted global oil demand growth in 2019 
By product 

 
Source: OIES 

Moving to our out-of-sample forecast predictions for 2022, this year was very challenging with the oil 
market being subject to a series of large shocks such as the Russian invasion of Ukraine and the 
ensuing sanctions, embargoes and price caps on Russian oil imports that followed as a response, the 
coordinated response by oil-consuming nations led by the US to control prices by a massive release of 
strategic stocks, the recessionary and inflationary pressures weighing on the global economy and 
China’s demand shocks from its strict zero-COVID policy as the rest of the world was still recovering 
from the COVID shock. Figure 9 plots the predicted global oil demand versus the actual demand data 
in 2022. The forecasting model predicts annual global oil demand growth of 2.6 mb/d with global oil 
demand averaging 100.06 mb/d for the year, from 97.44 mb/d in 2021, 290 kb/d above actual global oil 
demand growth of 2.3 mb/d that averaged 99.77 mb/d. 

Figure 9: Actual vs predicted global oil demand in 2022 

 
Source: OIES 
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As Figure 10 shows, again the forecasting model appears to understate the predicted OECD demand 
growth in 2022 by 1.2 mb/d with the Americas accounting for 90% of the forecast error, while it 
overpredicts oil demand growth in the non-OECD by 1.5 mb/d with China alone accounting for 88% of 
the error. In terms of products, the weakest forecast can be seen in jet/kero demand with growth for the 
year underestimated by 610 kb/d followed by LPG demand growth that is seen 355 kb/d below the 
actuals. These were offset by the forecast overpredicting demand for naphtha, gasoline and 
diesel/gasoil by a combined 1.2 mb/d. By comparison, IEA’s Oil Market Report in January 2022 was 
predicting global oil demand growth of 3.3 mb/d for the year and OPEC’s Monthly Oil Market Report 
4.15 mb/d versus our predicted growth of 2.6 mb/d and the actual 2.3 mb/d. In both the 2019 and 2022 
out-of-sample forecast horizons and despite some limitations, our forecasting models outperform the 
consensus at the time suggestive of satisfactory predictive performance. 

Figure 10: Actual vs predicted global oil demand growth in 2022 
By region 

 
By product 

 
Source: OIES 
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Another important aspect to examine is the predictive performance of the ML model against 
conventional econometric forecasting models. For this exercise we utilize a 12-step ahead vector 
autoregressive with exogenous variables (VAR-X) forecasting model of global oil demand by region 
and oil product. This purpose-built forecasting model first developed in 2021 under our OIES Oil Monthly 
series to forecast the two-year ahead impact of the COVID pandemic on global oil demand, employs 
global prices, macroeconomic and other industry variables along with exogenous COVID-specific and 
other indices (e.g., mobility indices, flight schedules, etc.) to predict out-of-sample global oil demand for 
2022 and compare the results with the ML forecast. Figure 11 shows the performance analysis. The 
VAR-X model predicts global oil demand growth of 3.23 mb/d for 2022, versus the predicted growth of 
2.62 mb/d by the ML model and the actual 2.33 mb/d. However, considering the limitations of the ML 
predictions stated above and the fact that the VAR-X forecasting model was specifically designed to 
capture the dynamic behaviour of the relationship between endogenous and exogenous variables 
related to COVID that dictated performance at the time, the forecast accuracy of the VAR-X model 
outperforms that of the ML model under all forecast accuracy metrics used for the performance analysis. 
The VAR-X achieved a lower Mean Absolute Percentage Error (MAPE) of 1.2% versus 1.6% of the ML 
forecast, as well as Root Mean Square Error (RMSE) of 1.5 mb/d versus 1.8 mb/d, respectively, in 
absolute levels. That said, differences between the two forecasts remain comparatively small and the 
ML forecasting framework remains superior due to its flexibility, modularity and adaptability, and overall 
model management compared to conventional econometric forecasting models such as the VAR-X. 

Figure 11: Actual vs predicted global oil demand in 2022 using ML and VAR-X models 

 
Source: OIES 

To further examine the role of externalities particularly in 2022 in the ML forecasting framework we 
conduct a sensitivity analysis investigating whether taking into account some of these externalities can 
improve our forecast’s accuracy. We incorporate in the US model two additional variables and run the 
forecast results for 2022 against our baseline and the actuals. The first variable is a composite measure 
of nine policy response metrics to the COVID pandemic namely stringency index available by the 
Blatvantik School of Government of the University of Oxford (Figure 12). The second is the stock of 
excess savings in the US available by the U.S. Federal Reserve in order to capture the sensitivity of 
the US oil demand forecast to consumers’ savings during the pandemic, defined as savings 
accumulated above the trend of household savings rate (Figure 13). 
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Figure 12: US stringency index Figure 13: Stock of excess savings in the US 

  
Source: Blavatnik School of Government, Uni. of Oxford Source: US Federal Reserve 

Figure 14 shows the forecast scenario for US oil demand in 2022 against our baseline forecast and the 
actuals. Clearly, the inclusion of the two variables aiming to capture the externalities in the year 
associated with COVID and consumer behaviour greatly improve the US forecast with growth under 
the forecast scenario corrected to 290 kb/d compared to the actual 410 kb/d and the growth prediction 
under the baseline of -120 kb/d. This goes to show that oil demand forecasts are inherently susceptible, 
not least, to external economic and policy factors, shifts in consumer behaviour and disruptive events, 
but also on a more technical level to data complexity and availability. In this case, including only these 
two exogenous variables more than halved the Mean Absolute Percentage Error (MAPE) of our US oil 
demand forecast in 2022, down from 3.9% to 1.9%. 

Figure 14: Forecast scenario analysis of US oil demand in 2022 

 
Source: OIES 
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4.2. Medium-term oil demand forecasts 
The forecast horizon for our medium-term forecasting analysis is 30 quarters, spanning from 3Q 2023 
to 4Q 2028. The model is trained based on quarterly data between 1Q 2000 and 2Q 2023 as described 
in Section 2. We forecast global oil demand by product (namely LPG, naphtha, gasoline, jet/kero, 
diesel/gasoil, fuel oil and other products) across US, other OECD Americas, OECD Europe and OECD 
Asia-Pacific (APAC) to derive total OECD oil demand, as well as China, India and other non-OECD for 
total non-OECD oil demand. The forecasts are then aggregated to represent our baseline global oil 
demand outlook. The forecasting models also utilize four groups of independent determinants covering 
global prices, global economics, global industry and sector-specific indicators (see Table 2, p. 5), and 
they are driven by modelled projections of these predictors to 4Q 2028 obtained by Oxford Economics’ 
Global Databanks serving as our baseline assumptions. 

Figure 15: Medium-term global oil demand outlook 
Global oil demand growth 

 
Global cumulative oil demand growth, 2022-2028 

 
Notes: Consensus averages IEA Oil 2024, OPEC World Oil Outlook 2024 forecasts. Source: OIES 

Figure 15 shows our baseline global oil demand forecast to 2028 on annual terms. Global oil demand 
growth is forecast to progressively slow over the 2024-2028 forecast period, but to remain within the 1-
1.5 mb/d range. Growth decelerates from 2.3 mb/d in 2023 to 1.7 mb/d in 2024 and 1.3 mb/d in 2025, 
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before settling to 1.1 mb/d in 2026/27 and fall to 900 kb/d in 2028. This results in a net increase of 8.5 
mb/d during the 2022-2028 period, compared to 8.4 mb/d based on consensus forecasts. According to 
our baseline forecast, global demand growth is dominated by the non-OECD, especially China and 
India, with OECD demand growth shifting to small contractions from 2025-onwards. In absolute terms, 
after surpassing its 2019 pre-COVID level of 100.7 mb/d in 2023 by 960 kb/d averaging 101.6 mb/d, 
global oil demand is set to grow to 107.8 mb/d by 2028. 

Figure 16: Medium-term global oil demand outlook by region 
Global oil demand growth by region 

 
Global cumulative oil demand growth by region, 2022-2028 

 
Notes: Consensus averages IEA Oil 2024, OPEC World Oil Outlook 2024 forecasts. Source: OIES 

As Figure 16 shows, non-OECD dominate the global oil demand growth outlook to 2028, with China 
leading gains but annual growth settling around 300 kb/d after 2024, a notable slowdown from 1.7 mb/d 
in 2023. This sees India that maintains a steady pace of growth around 220 kb/d closing the gap with 
China by 2027 and becoming the main source of global demand growth in 2028 rising y/y by 300 kb/d. 
Most of incremental oil demand however is projected to originate from other non-OECD accounting for 
2.6 mb/d between 2024 and 2028, more than half of total non-OECD demand increment of 4.9 mb/d in 
the same period. By contrast, OECD oil demand is forecast to post a 400 kb/d net decline during the 
2024-2028 period, led by Europe and APAC, with growth in OECD Americas narrowly avoiding a 
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contraction up until 2027 and US demand failing to grow in 2027 before reversing to a 70 kb/d y/y 
contraction in 2028. 

In terms of products, Figure 17 shows that petrochemicals demand (LPG/ethane and naphtha) is 
projected to drive global growth accounting for 3.3 mb/d of incremental demand between 2022 and 
2028, largely in line with the consensus, followed by jet/kero fuel demand at 2.6 mb/d but growth pace 
is expected to progressively slowdown. This is also the case with our global gasoline outlook with 
demand growth expected to slow progressively and remain only marginally positive by 2028, but we fail 
to see global gasoline demand growth contracting or even plateauing before 2029. Diesel/gasoil 
demand growth is expected to gain pace from its 2023/2024 lows in 2025 and 2026 as the global 
economy picks-up before settling around 200 kb/d y/y in the remainder of the forecast horizon. Lastly, 
fuel oil demand remains supported to 2026, largely due to marine demand growth, before shifting to 
marginal y/y contractions in 2027/2028. 

Figure 17: Medium-term global oil demand outlook by product 
Global oil demand growth by product 

 
Global cumulative oil demand growth by product, 2022-2028 

 
Notes: Consensus averages IEA Oil 2024, OPEC World Oil Outlook 2024 forecasts. Source: OIES 
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The most important difference between the consensus oil demand forecasts, not least, for the medium-
term is associated with the gasoline demand outlook. Between 2022 and 2030, IEA expects gasoline 
demand to contract by 900 kb/d with global gasoline demand essentially plateauing in 2024/2025 at 
27.2 mb/d before gradually declining to 25.4 mb/d in 2030. Conversely, OPEC forecasts gasoline 
demand growing by 2.9 mb/d by 2030 reaching 29.2 mb/d. Our baseline projections for gasoline 
demand fall on the upper side of the consensus range, with global gasoline demand expected to grow 
by 1.7 mb/d between 2022-2028 to 27.9 mb/d (Figure 18). The main disagreement between IEA and 
OPEC on gasoline demand is associated with their assumptions about the pace of EV penetration to 
global fleet with IEA assuming a higher pace of penetration reaching 16% by 2030, while OPEC 
estimates the share of EVs to global fleet not to exceed 10% by the end of the decade, from close to 
2% in 2022 in both cases. Efficiency improvements and mobility transformations (e.g., teleworking) are 
also factored in their respective forecasts. For our baseline outlook, we do not make any explicit 
assumptions about the composition of global fleet, efficiency gains or mobility transformations but rather 
we allow the algorithm to capture the evolution of the relationship between global fleet and motor fuels 
demand based on its ability to handle non-linear relations across different time scales as these emerge 
in the training sample. 

Figure 18: Gasoline demand forecasts  Figure 19: Jet/Kero demand forecast 

  
Notes: Consensus averages IEA Oil 2024, OPEC World Oil Outlook 2024 forecasts. Source: OIES 

Another important debate following the COVID pandemic is the pace of the recovery of jet fuel demand 
as it remains the only major fuel that as of 2023 failed to recover to its 2019 pre-pandemic levels. As 
Figure 19 shows, our baseline forecast expects global jet/kero fuel demand on annual terms to exceed 
its 2019 level of 7.9 mb/d by 2025 in line with the OPEC forecast, while IEA projects a return to pre-
pandemic levels no sooner than 2027. As before, IEA attributes this slow recovery on aircraft fuel 
efficiencies, operational improvements and optimisation in flight planning, while noting the decoupling 
between jet fuel demand and air travel (measured in revenue-passenger kilometers) that is expected 
to make a full recovery this year. 

Summing up, our medium-term oil demand outlook to 2028 is slightly above the consensus, with oil 
demand growing by 8.5 mb/d between 2022 and 2028, versus the consensus estimate of 7.5 mb/d in 
the same period and reaching 107.8 mb/d in 2028, 640 kb/d above the consensus (see Figure 20). 
This difference can be attributed to the relaxed assumptions about new technologies and efficiency 
gains that can greatly impact our modelled projections as, for example, in the case of IEA. The low/high 
range based on all global oil demand forecasts ranges between 104.9 mb/d and 111 mb/d in 2028, with 
the divergence reaching 6.1 mb/d. In terms of global oil demand growth, the baseline forecast remains 
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close to or slightly above the consensus between 2024 and 2026 but begins to diverge higher from 
2027-onwards for the same reasons. This is suggestive that the large divergence between consensus 
oil demand forecasts in recent years not least for the medium-term, can be attributed to divergent views 
about the speed of the energy transition and governments’ decarbonization policies adding an important 
layer of uncertainty with important implications on oil investment decisions for the years to come. 

Figure 20: Medium-term global oil demand forecasts comparison 

Global oil demand 

 

Global oil demand growth 

 
Notes: Consensus averages IEA Oil 2024, US EIA International Energy Outlook 2023, OPEC World Oil Outlook 2024 
forecasts. Source: OIES 
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5. Forecast scenarios 

In this section, we leverage additional exogenous variables to explore the feasibility of expanding our 
forecasting methodology for comprehensive forecasting scenarios analysis. These variables are 
specifically curated to assess the impact of various economic, technological and sector-specific 
changes on global oil demand by creating a purpose-built dataset for each scenario. Each dataset, 
representing a unique scenario, introduces new variables to examine different potential futures against 
our baseline. This nuanced approach enables us to test the adaptability and effectiveness of our 
methodology in implementing risk analysis using forecast scenarios and capturing the variances across 
diverse scenarios, reflecting the uncertainties inherent to our baseline outlook. For expository purposes, 
the scenario analysis presented in this section is maintained at a global level for the period 1Q 2024 to 
4Q 2028, but our methodology is easily transferable at a regional and country-specific level, while it can 
utilize an inexhaustive list of scenarios conditional to data availability. 

5.1. Implementation 

Our forecasting scenarios analysis spans across two exemplary categories, namely: Macro scenarios 
and Sector-specific scenarios: Aviation. However, the initial pass through these scenarios revealed an 
unexpected challenge: the lack of significant differences in outcomes across scenarios. This uniformity 
was traced back to high correlations among several variables, which essentially echoed the baseline 
scenario information, masking the unique impacts of the scenarios. 

For instance, consider analyzing two scenarios regarding a variable of interest—demand (D). The input 
variables under consideration include three input factors: X1, X2, and X3. The challenge arises when 
X1 and X2 vary across scenarios, but X3 remains constant, and X3 has a strong correlation with 
demand (D). As a result, even though X1 and X2 change, the constant nature of X3—combined with its 
high correlation with demand—dampens the observable variation in D across different scenarios during 
inference. 

By applying a feature selection process, we decide to focus solely on X1 and X2, excluding X3 from the 
model due to its constant value across scenarios and its high correlation with demand. This adjustment 
allows the model to more clearly distinguish between the scenarios, directly attributing differences in 
predicted demand (D) to the variation in X1 and X2, without the confounding influence of X3. This 
simplified approach highlights the importance of feature selection in enhancing model clarity and 
effectiveness in scenario analysis. 

To ensure the model focuses on the most impactful variables, we turned to a feature selection strategy 
that uses correlation analysis. By calculating Pearson correlation coefficients (r), as shown in the 
formula below, we pinpointed variables that moved in tandem above a certain threshold (0.9), indicating 
a strong linear relationship.  

𝑟 =
∑ )𝑋! − 𝑋*)𝑌! − 𝑌*"
!-.

h∑ )𝑋! − 𝑋*
,"

!-. i∑ )𝑌! − 𝑌*
,"

!-.

					, 

where: 

𝑛 is the number of samples, 

𝑋! 	and 𝑌! 	are the individual sample points, 

𝑋 and 𝑌	are the means of the 𝑋 and 𝑌 samples respectively. 

The correlation coefficient ranges from -1 to +1, with +1 meaning a perfect positive linear correlation,   
-1 meaning a perfect negative linear correlation, and 0 indicating no linear correlation. 
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While this allowed us to identify variables for potential omission, we ensured the retention of certain key 
variables critical to each scenario’s narrative: 

Macro scenarios: In scenarios assessing the macroeconomic landscape ("baseline", "macro_high", 
"macro_low"), core variables including 'wci' (world commodity index), 'ind' (industrial output), and 'gdp' 
were preserved to anchor the forecasts in solid economic foundations. 

Aviation scenarios: For scenarios like "air_high" and "air_low," variables such as "airp" and "rpk" were 
deemed essential for their direct relevance to air travel demand, an area expected to fluctuate 
significantly between high and low air travel scenarios. 

Figure 21 below shows an example of how many of the non-scenario variables in the air scenario are 
positively correlated with the air scenario variables of interest such as wtr, gdp and ind. Meaning that 
changing the air scenario variables without changing these variables might not show any differences in 
demand or it may affect unrelated products. 

This methodology, designed to reduce multicollinearity, not only enhanced model interpretability but 
also its responsiveness to the unique contours of each scenario. Particularly in comparing "air_high" to 
"air_low", we noticed a discernible divergence in jet fuel demand forecasts, indicating the model's 
heightened sensitivity to changes in scenario-specific variables. 

Figure 21: Correlation matrix heatmap for the Aviation scenario variables  

 
Source: Authors’ analysis, OIES 

5.2. Macro scenarios 
The macroeconomic scenarios reflect low/high risks to the medium-term global economic growth 
prospects as of 4Q 2023. The downside scenario considers a case of higher for longer interest rates 
weighing on financial and housing markets, resulting in tighter credit conditions and several years of 
sub-par growth (low case). The upside scenario considers a case of global economic resilience driven 
by a near-term improvement in the inflation outlook and a consumer-led recovery strengthening the 
global economy (high case). Figure 22 illustrates the underlying GDP growth assumptions of these two 
scenarios, along with our baseline global growth assumptions. Clearly, medium-term risks to global 
growth prospects are tilted to the downside with world GDP well below the baseline in the near-term on 
increased inflation uncertainty before gradually recovering from 2026-onwards. 
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Figure 22: Global growth scenarios 
Global GDP Global GDP growth 

  
Notes: Global GDP in US$ weighted terms. Source: Oxford Economics Global Scenarios Service 

Figure 23 shows the macro scenarios results. Downside risks to global growth are projected to trim 
nearly 1 mb/d of the cumulative global oil demand growth between 2024-2028 under our baseline case, 
with the oil demand outlook hit harder in the near-term (i.e., 2024-2025). Global oil demand is projected 
to grow at 106.7 mb/d by 2028 compared to our baseline 107.8 mb/d, from 101.6 mb/d in 2023. That 
said, global oil demand growth between 2024-2028 remains 160 kb/d higher than the consensus. 
Upside risks to the global economy provide further support to the baseline outlook, lifting the cumulative 
global oil demand growth between 2024-2028 by 320 kb/d with global oil demand reaching 108.1 mb/d 
by 2028 versus the base 107.8 mb/d.  

Figure 23: Macro scenarios 
Global oil demand Global oil demand growth 

  
Notes: Consensus averages IEA Oil 2024, OPEC World Oil Outlook 2024 forecasts. Source: OIES 

 



 

 
 

29 
The contents of this paper are the authors’ sole responsibility. They do not necessarily represent the views  

of the Oxford Institute for Energy Studies or any of its Members. 
 

5.3. Aviation sector scenarios 
For our second set of exemplary scenarios, we illustrate a sector-specific scenario pertaining to aviation 
and jet fuel demand. The COVID pandemic exerted its heaviest toll on jet fuel demand than any other 
product, declining y/y by 40% in 2020 to 4.8 mb/d from 7.9 mb/d in 2019. On average, 2023 jet fuel 
demand was 91% of 2019 levels at 7.2 mb/d, remaining the only major oil product that did not recover 
to its pre-pandemic levels. At the same time, measures of global air travel activity such as the number 
of air passengers recovered to their 2019 levels in 2023, while others such as the revenue-passenger 
kilometers (RPK) have fully recovered by H1 2024 (Figure 24). Our scenarios assess whether jet fuel 
demand will maintain its post-COVID momentum to recover and exceed its 2019 levels aligning with 
the rebound in air travel activity or if fuel and operational efficiencies mean that the global jet fuel 
rebound has run its course settling to a slower growth pace in the remainder of the forecast horizon. 

Figure 24: Air travel assumptions 
Air passengers Revenue passenger kilometers 

  
Source: Oxford Economics Air Passenger Forecasts 

Figure 25 shows the scenario results suggesting that risks to the medium-term jet fuel demand outlook 
are skewed to the downside, while our base case that projects global jet fuel demand rebounding and 
exceeding 2019 levels by 2025 is close to the upper range of the balance. Following a remarkable 
growth of 1 mb/d in 2023, jet fuel demand under our high case is expected to average 330 kb/d between 
2024-2028 versus the baseline 300 kb/d. The low case however sees jet fuel demand growth slowing 
to 200 kb/d on average at the same period, with global jet fuel demand rebounding above its 2019 level 
only in 2027. In terms of total demand, the low jet fuel demand case drags lower global demand growth 
between 2024 and 2028 by 400 kb/d to 107.4 mb/d versus our base 107.8 mb/d. Under the high case 
global demand gains another 100 kb/d reaching 107.9 mb/d in 2028. 
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Figure 25: Aviation scenarios 
Jet/kero demand by scenario vs 2019 Global oil demand by scenario 

  
Notes: Consensus averages IEA Oil 2024, OPEC World Oil Outlook 2024 forecasts. Source: OIES 

6. Conclusion 

This paper illustrated the application of machine learning (ML) techniques, specifically Extreme 
Gradient Boosting (XGBoost) and Neural Hierarchical Interpolation for Time Series Forecasting (N-
HiTS), to enhance the precision and reliability of global oil demand forecasts. Our analysis included 
seven refined oil products and seven major regions, providing a comprehensive perspective on global 
demand trends. The comparative evaluation demonstrated that the N-HiTS model surpasses XGBoost. 

Several key factors influenced our preference for N-HiTS over XGBoost. Firstly, N-HiTS required 
significantly fewer models to make a prediction, with a single model per region compared to XGBoost's 
167 models per region for short-term forecasts. This reduction in model complexity simplifies 
maintenance and updates. Secondly, N-HiTS consistently achieved lower Mean Squared Error (MSE) 
on average across regions, highlighting its superior performance in capturing and predicting the intricate 
patterns of oil demand. 

Our findings highlight the considerable potential of ML models in the energy sector, particularly in 
enhancing strategic planning and decision-making processes. The integration of advanced ML 
techniques enables the capture of complex, non-linear relationships and provides a transparent, 
repeatable forecasting process. By achieving a Mean Absolute Percentage Error (MAPE) of less than 
10% on average for monthly short-term forecasts extending one year out-of-sample, our methodology 
balances complexity (top down vs. bottom up) and accuracy in oil demand forecasting. 

Furthermore, techniques such as linear interpolation for converting quarterly to monthly data and the 
use of Prophet for handling missing values ensured the completeness and robustness of our datasets. 
By backcasting and utilizing Prophet, we maximized the number of observations in our training set, 
eliminating the need to drop any rows.  

Post-processing techniques, including the establishment and application of bounds based on historical 
percent changes, ensured that our forecasts remained within a historically plausible range, enhancing 
their reliability. Furthermore, our feature selection strategy, grounded in correlation analysis, effectively 
reduced multicollinearity, improving model interpretability and responsiveness to scenario-specific 
variables. 
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Moreover, our exploration of medium-term forecast scenarios underscored the versatility of our 
approach in capturing variances across diverse scenarios, enriching our understanding of global oil 
demand dynamics. The feature selection process enabled us to focus on the most impactful variables, 
providing a clearer insight into how specific economic and industry-specific factors might shape 
immediate and future demand trajectories. 

Looking forward, several areas for further enhancement and exploration are clear. Enhanced feature 
engineering could provide additional relevant predictors and improve model accuracy. Dimensionality 
reduction techniques, such as Principal Component Analysis (PCA), could further mitigate 
multicollinearity and enhance model efficiency. Additionally, exploring additional advanced ML models 
and hybrid approaches could yield incremental gains in forecasting performance. 

In conclusion, integrating ML techniques into global oil demand forecasting represents a significant 
advancement, offering enhanced accuracy, efficiency, and flexibility. Our methodology not only 
addresses the limitations of traditional econometric models but also provides a simple top-down 
approach instead of a complex bottom-up approach that looks at each demand center by product by 
region. By leveraging the strengths of ML models, we aim to contribute to economic stability and energy 
security, paving the way for more informed and effective decision-making in the face of an ever-evolving 
energy landscape. 
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