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Abstract

Empirical Welfare Maximization (EWM) is a framework that can be used

to select welfare program eligibility policies based on data. This paper ex-

tends EWM by allowing for uncertainty in estimating the budget needed to

implement the selected policy, in addition to its welfare. Due to the additional

estimation error, I show there exist no rules that achieve the highest welfare

possible while satisfying a budget constraint uniformly over a wide range of

DGPs. This differs from the setting without a budget constraint where uni-

formity is achievable. I propose an alternative trade-off rule and illustrate it

with Medicaid expansion, a setting with imperfect take-up and varying pro-

gram costs.
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1 Introduction

When a welfare program induces varying benefits across individuals, and when re-

sources are scarce, policymakers naturally want to prioritize eligibility to individuals

who will benefit the most. Based on experimental data, cost-benefit analysis can in-

form policymakers on which subpopulations to prioritize, but these subpopulations

might not align with any available eligibility policy such as an income threshold.

Kitagawa and Tetenov (2018) propose a statistical rule, Empirical Welfare Maxi-

mization (EWM), that can directly select an eligibility policy from a set of available

policies based on the experimental data. For example, if available policies take the

form of income thresholds, EWM considers the problem of maximizing the expected

benefits in the population

max
t≤t

E[benefit · 1{income ≤ t}]

and approximates the optimal threshold based on benefits estimated from experi-

mental data. Recent papers have argued the EWM approach is attractive under a

wide range of data distributions, including Athey and Wager (2021), among oth-

ers. Notably the average benefits under the eligibility policy selected by EWM

converges to the highest attainable level as the sample size grows. This property

can be thought of as uniform asymptotic welfare efficiency.

In practice policymakers often face budget constraints, but only have imperfect

information about whether a given eligibility policy satisfies the budget constraint.

First, there may be imperfect take-up: eligible individuals might not participate in

the welfare program, resulting in zero cost to the government, e.g. Finkelstein and

Notowidigdo (2019). Second, costs incurred by eligible individuals who participate

in the welfare program may vary considerably, largely driven by individuals’ different

needs but also many other factors, e.g. Finkelstein et al. (2017). Both considerations

are hard to predict ex ante, implying that the potential cost of providing eligibility

to any given individual is unknown at the time of designing the eligibility policy.

Unobservability of the potential cost requires estimation based on experimental data,

contributing to uncertainty in the budget estimate of a given eligibility policy.
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For this empirically relevant setting where the budget needed to implement an

eligibility policy involves an unknown cost, this paper introduces a new property

of statistical rules, namely asymptotic feasibility. Policies are feasible if they sat-

isfy the budget constraint in the target population; otherwise, they are referred to

as infeasible. A statistical rule is asymptotically feasible if given a large enough

experimental sample, the statistical rule is very likely to select feasible eligibility

policies. Since a potential cost overrun due to an underestimate of the budget can

be very costly to policymakers, asymptotic feasibility is also a desirable property in

the current setting, especially for policymakers who are extremely cautious about

cost overruns. This paper answers three questions in the current setting with un-

known cost: is there any statistical rule that achieves uniformly good performance

for a wide range of data distributions as in the original EWM literature, whether

the obvious extension of the existing EWM statistical rule remains attractive, and

what are some alternative statistical rules.

Firstly as a novel theoretical contribution, I quantify a class of reasonable data

distributions that is particularly challenging for statistical rules. Specifically, no

statistical rule can be uniformly welfare-efficient and feasible simultaneously over

this class of data distributions. A notable example within this class is the expansion

of welfare programs, such as tax credits to incentivize labor force participation,

which can “pay for themselves,” as demonstrated in Hendren and Sprung-Keyser

(2020), because they have zero net cost to the government. This impossibility result

provides theoretical characterization of constrained settings that need to be ruled

out for any statistical rule to achieve uniformity.

Second, I show the direct extension of the existing EWM statistical rule is not

appealing in the setting with unknown cost. The reason is that this sample-analog

rule ignores the estimation error in the estimated budget constraint, which has non-

negligible consequences even when the sample size is large. For data distributions

mentioned earlier where the budget constraint is exactly binding, the welfare loss

does not vanish with sample size. The probability of selecting infeasible policies

also does not vanish with sample size, but a simple modification to the sample-

analog rule can ensure that feasible policies are selected with high probability. These
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considerations are relevant in real-world settings, as demonstrated by a calibrated

simulation study.

Finally I propose the trade-off rule, which can select infeasible eligibility poli-

cies, but only if borrowing money and exceeding the budget constraint are not too

costly to justify the marginal gain in welfare from violating the budget constraint.

I show the trade-off rule is uniformly asymptotically welfare efficient, which is an

improvement over the direct extension of the EWM rule.

To illustrate the statistical rules proposed in this paper, I consider a budget-

constrained Medicaid expansion. Medicaid is a government-sponsored health insur-

ance program intended for the low-income population in the United States. Based

on the Oregon Health Insurance Experiment (OHIE) conducted in 2008, I derive

Medicaid expansion policies using statistical rules. Oregon’s current Medicaid ex-

pansion policy is based on a threshold for household income only. In my application,

I examine whether health can be improved by allowing the income threshold to vary

by the number of children in the household, setting the budget constraint to the

current level. Using the sample-analog rule, the selected policy limits eligibility to

be lower than the current level to meet the estimated budget constraint. However,

the cost estimates are highly variable, indicating considerable uncertainty about

whether the selected policy is welfare-efficient in the population. In contrast, the

trade-off rule selects an eligibility policy that expands eligibility for many house-

holds above the current level, especially those with children. The higher level occurs

because, based on the OHIE data, Medicaid improves health for these households,

and the additional health benefit from violating the budget constraint exceeds the

cost of doing so, assuming a reasonable upper bound on the monetary value on the

health benefit.

The rest of the paper proceeds as follows. Section 1.1 discusses related work

in more detail. Section 2 presents theoretical results. Sections 3 and 4 discuss

properties of two statistical rules. Section 5 conducts a simulation study and Section

6 considers an empirical example of designing a more flexible Medicaid expansion

policy for the low-income population in Oregon. Section 7 concludes. Proofs can be

found in the Appendix. Supporting lemmas, additional results and computational

4



details can be found in the Online Appendix.

1.1 Literature review

This paper is related to the traditional literature on cost-benefit analysis, e.g. Dhaili-

wal et al. (2013), and to the recent literature on EWM, e.g. Kitagawa and Tetenov

(2018), Rai (2019), Athey and Wager (2021) and Mbakop and Tabord-Meehan

(2021). More broadly, this paper contributes to a growing literature on statistical

rules in econometrics, including Manski (2004), Dehejia (2005), Hirano and Porter

(2009), Stoye (2009), Chamberlain (2011), Bhattacharya and Dupas (2012), Demirer

et al. (2019), Yata (2021) and Kitagawa et al. (2022), among others.

The traditional cost-benefit analysis compares the cost and benefit of a given

welfare program. The effect of program eligibility is first estimated based on a

randomized control trial (RCT), and then converted to a monetary benefit for cal-

culating the cost-benefit ratio. For example, Gelber et al. (2016) and Heller et al.

(2017) compare the efficiency of various crime prevention programs based on their

cost-benefit ratios. However, the cost-benefit ratio is only informative for whether

this welfare program should be implemented with the fixed eligibility policy as im-

plemented in the RCT.

The literature on statistical rules in econometrics has also developed a definition

for optimality of statistical rules. Manski (2004) considers the minimax-regret, de-

fined to be loss in expected welfare achieved by the statistical rule relative to the

welfare achieved by the theoretically optimal eligibility policy. In the absence of any

constraint, under the theoretically optimal eligibility policy, anyone with positive

benefit from the welfare program would be assigned with eligibility. The minimax

regret is the upper bound on the regret that results from not knowing the data dis-

tribution. Manski (2004) argues a statistical rule is preferred if its minimax-regret

converges to zero with the sample size, and analyzes the minimax-regret for the

class of statistical rules that only selects eligibility policy based on subsets of the

observed covariates. Stoye (2009) shows that with continuous covariates and no

functional form restrictions on the set of policies, minimax regret does not converge

to zero with the sample size because the theoretically optimal policy can be too
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difficult to approximate by statistical rule. Kitagawa and Tetenov (2018) avoid this

issue by imposing functional form restrictions. They propose the EWM rule, which

starts with functional form restrictions on the class of available policies, and then

selects the policy with the highest estimated benefit (empirical welfare) based on

an RCT sample. They prove the optimality of EWM in the sense that its regret

converges to zero at the minimax rate. Importantly, the regret is defined to be loss

in expected welfare relative to the maximum achievable welfare in the constrained

class, which avoids the negative results of Stoye (2009). Athey and Wager (2021)

propose doubly-robust estimation of the average benefit, which leads to an optimal

rule even with quasi-experimental data. Mbakop and Tabord-Meehan (2021) pro-

pose a Penalized Welfare Maximization assignment rule which relaxes restrictions

of the policy class.

The existing EWM literature has not addressed budget constraints with an un-

known cost. Kitagawa and Tetenov (2018) consider a capacity constraint, which

they enforce using random rationing. Random rationing is not ideal as it uses the

limited resource less efficiently than accounting for the cost of providing the wel-

fare program to an individual. When there is no restriction on the functional form

of the eligibility policy, Bhattacharya and Dupas (2012) demonstrate that given a

capacity constraint, the optimal eligibility policy is based on a threshold on the

benefit of the welfare program to an individual. When the cost of providing the

welfare program to an individual is heterogeneous, however, budget constraints can

be more complicated than capacity constraints, and require estimation. Carneiro et

al. (2020) considers the optimal choice of covariate collection in order to maximize

the precision of the estimation for the average treatment effect. While they also con-

sider a constrained decision problem, the budget constraint can be verified directly.

They also allow for a more complicate trade-off between additional covariates and

additional observations. Sun et al. (2021) propose a framework for estimating the

optimal rule under a budget constraint when there is no functional form restriction.

The main contribution of this paper is to characterize theoretical properties of sta-

tistical rules when allowing both functional form restrictions and budget constraints

with an unknown cost.
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As explained in a prior version of this paper (Sun, 2021), the current setting of

EWM with constraint shares the same mathematical structure as another important

setting: fairness constraints across sensitive subgroups. Viviano and Bradic (2024)

cast welfare of sensitive subgroups as multiple objective functions for policymakers,

and solve the constrained optimal policy via the Pareto frontier. Kock and Prein-

erstorfer (2024) consider a penalized objective function that penalizes violations to

the constraint. The trade-off rule proposed in this paper takes a similar form by

penalizing budget overrun, but is tailored to linear objectives and constraints.

2 Theoretical results

2.1 Motivation and setup

I begin by setting up a general constrained optimization problem, which depends on

the following random attributes of an individual:

A = (Γ, R,X) ∈ A ⊆ R2+p. (1)

Here Γ is benefit from the treatment for the individual, R is the cost to the poli-

cymaker of providing the individual with the treatment, and X ∈ X ⊂ Rp denotes

their p-dimensional characteristics. The individual belongs to a population that

can be characterized by the joint distribution P on the random attributes A. The

unknown distribution P ∈ P is from a class of distributions P .

A policy g(X) ∈ {0, 1} determines the treatment status for an individual with

observed characteristics X, where 1 is treatment and 0 is no treatment. Let G denote

the class of policies policymakers can choose from. The optimization problem is to

find a policy with maximal benefit while subject to a constraint on its cost:1

max
g∈G

EP [Γ · g(X)] s.t. EP [R · g(X)] ≤ k. (2)

If the policymaker does not have a fixed budget but still want to account for cost, the
1Following Kitagawa and Tetenov (2018), I implicitly assume the maximizer exists in G with

the notation in (2).
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scalar Γ can be the difference in benefit and cost. Since a fixed budget is common,

I impose a harsh constraint.

The benefit-cost attributes (Γ, R) of any given individual may or may not be

observed. When the benefit-cost attributes are observed, policymakers observe i.i.d.

Ai = (Γi, Ri, Xi) of individual i in a random sample of the target population. When

the benefit-cost attributes are unobserved, the focus of this paper is the setting where

policymakers can construct their estimates (Γ∗i , R
∗
i ) in a random sample of sample

size n along with the characteristics Xi from an experiment or quasi-experiment

that satisfy Assumption 3.1, as discussed later.

Applying the Law of Iterated Expectation, the constrained optimization problem

(2) can be written as

max
g∈G

EP [EP [Γ | X] · g(X)] s.t. EP [EP [R | X] · g(X)] ≤ k. (3)

When the eligibility policy can be based on any characteristics whatsoever, the

class of available policies is unrestricted i.e. G = 2X . In this unrestricted class,

when the cost is non-negative, the above expression makes clear that the optimal

eligibility policy is based on thresholding by the benefit-cost ratio EP [Γ | X]/EP [R |

X] where the numerator and the denominator are respectively the average effects

conditional on the observed characteristics (CATE) and the conditional average

resource required. Online Appendix B provides a formal statement.

Given a random sample, to approximate the optimal eligibility policy g∗P , one

can estimate the benefit-cost ratio based on the estimated CATE and the estimated

conditional average resource required. The resulting statistical rule selects eligibility

policies that are thresholds based on the estimated benefit-cost ratio. The challenge

is that the selected eligibility policy can be hard to implement when the estimated

benefit-cost ratio is a complicated function of X. Restrictions on the policy class G

address this issue. A common restriction is to consider thresholds based directly on

X, e.g. assigning eligibility when an individual’s income is below a certain value.

Restrictions on the policy class G mean that there might not be closed-form

solutions to the population problem (2). In particular, the constrained optimal eli-
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gibility policy g∗P might not be an explicit function of the CATE and the conditional

average resource required. Therefore it might be difficult to directly approximate

g∗P based on the estimated CATE and the estimated conditional average resource

required. However, this is not an obstacle to deriving guarantees for the statistical

rules. As I demonstrate later, the derivation does not require the knowledge of the

functional form of the constrained optimal eligibility policy g∗P .

I next specialize the constrained optimization problem to selecting eligibility

policy for welfare programs with the example of Medicaid expansion. In the example

of implementing welfare programs, policies take the form of eligibility policies. I

restrict attention to non-randomized policies as in the leading example of welfare

programs, deterministic policies such as income thresholds are more relevant. While

the optimization problem policymakers face in practice can take on different forms,

constrained optimization problems of this mathematical structural are ubiquitous in

social science. Theoretically oriented readers may proceed directly to Section 2.2.

Example 2.1. Welfare program eligibility policy under budget constraint

Suppose the government wants to implement some welfare program. The treat-

ment in this example is eligibility for such welfare program. Due to a limited budget,

the government cannot make eligibility universal and can only provide eligibility to a

subpopulation. To use the budget efficiently, policymakers consider the constrained

optimization problem (2). In this example, the policy g(X) assigns an individual

to eligibility based on their observed characteristics X, and is usually referred to

as an eligibility policy. I denote Γ to be the benefit experienced by an individual

after receiving eligibility for the welfare program. Specifically, let (Y1, Y0) denote

the potential outcomes that would have been observed if an individual were as-

signed with and without eligibility, respectively. The benefit from eligibility policy

is therefore defined as Γ := Y1 − Y0. Note that maximizing benefit is equivalent

to maximizing the outcomes (welfare) under the utilitarian social welfare function:

EP [Y1 · g(X) +Y0(1− g(X))]. I denote R to be the potential cost from providing an

individual with eligibility for the welfare program. Both Γ and R are unobserved at

the time of assignment and will need to be estimated.
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Policymakers might be interested in multiple outcomes for an in-kind transfer

program. Hendren and Sprung-Keyser (2020) capture benefits by the willingness

to pay (WTP). Assuming eligible individuals make optimal choices across multiple

outcomes, the envelope theorem allows policymakers to focus on benefit in terms of

one particular outcome.

Medicaid Expansion Medicaid is a government-sponsored health insurance pro-

gram intended for the low-income population in the United States. Up till 2011,

many states provided Medicaid eligibility to able-bodied adults with income up to

100% of the federal poverty level. The 2011 Affordable Care Act (ACA) provided

resources for states to expand Medicaid eligibility for all adults with income up to

138% of the federal poverty level starting in 2014.

Suppose policymakers want to maximize the health benefit of Medicaid by adopt-

ing a more flexible expansion policy. Specifically, they relax the uniform income

threshold of 138% and allows the income thresholds to vary with the number of

children in the household. It may be infeasible to implement a new expansion policy

if it costs more than the current one. Therefore I impose the constraint that the

more flexible policy must cost no more than the current one.

Correspondingly, the constrained optimization problem (2) sets Γ to be the

health benefit from Medicaid, R to be the excess per-enrollee cost of Medicaid

relative to the current expansion policy, and the appropriate threshold to be k = 0.

The characteristics X include both income and number of children in the household.

The policy class in this example includes income thresholds that can vary with

the number of children in the household:

G =


g(x) =


1{income ≤ β0} , numchild = 0

...

1{income ≤ βj} , numchild = j


(4)

for characteristics x = (income, numchild) and βj ≥ 0.
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2.2 Desirable properties for statistical rules

To simplify the notation, I define the welfare function and the budget function:

W (g;P ) = EP [Γ · g(X)], B(g;P ) = EP [R · g(X)]. (5)

and the constrained optimal policy g∗P is therefore the solution to

max
g∈G

W (g;P ) s.t. B(g;P ) ≤ k.

As explained in Example 2.1 from Section 2, under a utilitarian social welfare func-

tion, maximizing the benefit with respect to eligibility policy is equivalent to maxi-

mizing the welfare, which is why I refer toW (g;P ) as the welfare function. The wel-

fare function and the budget function are both deterministic functions from G → R.

The index by the distribution P highlights that welfare and budget of policy g vary

with P , and in particular, whether a policy g satisfies the budget constraint depends

on which distribution P is of interest.

When the benefit-cost attributes (Γ, R) are unobserved and the distribution P

is unknown, both the welfare function and the budget function are unknown func-

tions. Denote by ĝ a statistical rule that selects an eligibility policy after observing

some experimental data of sample size n distributed according to P n. This section

provides formal definitions for two desirable properties of ĝ.

Definition 2.1. A statistical rule ĝ is pointwise asymptotically welfare-efficient un-

der the data distribution P if for any ε > 0

lim
n→∞

PrPn {W (ĝ;P )−W (g∗P ;P ) < −ε} = 0, (6)

and uniformly asymptotically welfare-efficient over the class of distributions P if for

any ε > 0

lim
n→∞

sup
P∈P

PrPn {W(ĝ;P )−W (g∗P ;P ) < −ε} = 0.

A statistical rule is pointwise asymptotically feasible under the data distribution P
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if

lim
n→∞

PrPn{B(ĝ;P ) > k} = 0,

and uniformly asymptotically feasible over the class of distributions P if

lim
n→∞

sup
P∈P

PrPn{B(ĝ;P ) > k} = 0. (7)

�

The above two properties build on the existing EWM literature. For the first

property, the current EWM literature evaluates statistical rules by whether they

attain at least W (g∗P ;P ) in expectation over repeated sample draws as n → ∞.

Instead, I focus on convergence in probability, where the probability of ĝ selecting

eligibility policies that achieve strictly lower welfare than g∗P approaches zero as n→

∞. In the setting of the existing EWM literature, the constrained optimal policy

g∗P is also the unconstrained optimal policy G. Therefore it is impossible for any

statistical rule ĝ to select a policy that achieves higher value than g∗P . In my setting,

however, the constrained optimal policy g∗P is not necessarily the unconstrained

optimal policy. Thus, I allow the statistical rule ĝ to select a policy that achieves

higher welfare than g∗P for all data distributions, albeit at the cost of violating the

budget constraint.

The second property is new to the EWM literature. It imposes that given a large

enough sample size, the statistical rule ĝ is unlikely to select infeasible eligibility

policies that violate the budget constraint, so that it is “asymptotically feasible”.

Asymptotic feasibility of statistical rules is specific to the current setting where

the budget constraint involves unknown cost. Exactly satisfying a fixed budget

constraint without the smallest violation is the most conservative way to articulate

policy makers’ preferences.

While both are desirable properties, the next section shows a negative result

that it is impossible for a statistical rule to satisfy both properties when the data

distribution is unknown and belongs to a sufficiently rich class of distributions P .
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2.3 An impossibility result

Similar to the classic “impossibility results” (Pfanzagl, 1998; Hirano and Porter,

2012), one may conjecture that there cannot exist any statistical rule that approxi-

mates the constrained optimum g∗P uniformly well in the neighbourhood of P0, where

g∗Phn can differ arbitrarily from g∗P0
even though the underlying distributions Phn are

arbitrarily close to P0. This section formalizes this impossibility result that no sta-

tistical rule can be both uniformly asymptotically welfare-efficient and uniformly

asymptotically feasible in a sufficiently rich class of distributions P . The point of

discontinuity P0 is characterized in Assumptions 2.2 and 2.3.

Assumption 2.1. Contiguity. There exists a distribution P0 ∈ P under which a

non-empty set of eligibility policies satisfying the constraint exactly G0 = {g : B(g;P0) = k}.

Furthermore, the class of distributions P includes a sequence of data distributions

{Phn} contiguous to P0, under which for all g ∈ G0, there exists some C > 0 such

that
√
n · (B(g;Phn)− k) > C.

Assumption 2.1 assumes there exists a sequence of data distributions {Phn} that

differ only marginally relative to P0. Moreover, the budget function B(g;Phn),

evaluated at polices that meet the budget constraint exactly under P0, approaches

B(g;P0) from above. In Online Appendix B.2, I give more primitive assumptions

under which Assumption 2.1 is guaranteed to hold, requiring the sequence to be

differentiable in quadratic mean at P0, and along the sequence, the budget function

B(g;Phn) is twice continuously differentiable at P0 with positive derivatives. These

primitive assumptions are relatively weak, and have also been considered in the

literature to construct the local parametrization around P0, e.g. Hirano and Porter

(2009) .

Assumption 2.2. Binding constraint. Under the data distribution P0, the con-

straint is satisfied exactly at the constrained optimum i.e. B(g∗P0
;P0) = k.

Assumption 2.3. Separation. Under the data distribution P0, ∃ε > 0 such that for
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any feasible policy g, whenever

∣∣B(g;P0)−B(g∗P0
;P0)

∣∣ > 0,

we have

W (g∗P0
;P0)−W (g;P0) > ε.

Equivalently, W (g∗P0
;P0) is separated from that of other feasible policies with differ-

ent B(g;P0).

Consider a one-dimensional policy class G, e.g. income thresholds. Figure 2.1

illustrates a distribution P0 that satisfies both Assumptions 2.2 and 2.3, while both

the welfare function W(g;P0) and the budget function B(g;P0) are still continuous

in g, satisfying Assumption 2.1. Importantly, the constrained optimal policy g∗P0

satisfies the budget constraint exactly, i.e. B(g∗P0
;P0) = k, but is separated from the

rest of feasible eligibility policies such that there exists a neighborhood around g∗P0

where feasible policies can achieve welfare gain without any effect on the budget.

Theorem 2.1. Suppose Assumption 2.1 holds for the class of data distributions

P. For P0 ∈ P considered in Assumption 2.1, suppose it also satisfies Assumptions

2.2 and 2.3. Then no statistical rule can be both uniformly asymptotically welfare-

efficient and uniformly asymptotically feasible. In particular, if a statistical rule

ĝ is pointwise asymptotically welfare-efficient and pointwise asymptotically feasible

under P0, then it is not uniformly asymptotically feasible.

Figure 2.1 provides some intuition for Theorem 2.1. Note that if a statistical rule

ĝ is pointwise asymptotically welfare-efficient and pointwise asymptotically feasible

under P0, then it has to select eligibility policies close to g∗P0
with high probability

over repeated sample draws distributed according to P n
0 as n→∞.

Under Assumption 2.1, the class of distributions P is sufficiently rich so that

along a sequence of data distributions {Phn} that is contiguous to P0 as n → ∞,

the budget functions B(g;Phn) converge to B(g;P0) while B(g∗P0
;Phn) > k, i.e. g∗P0

is not feasible under Phn . Figure 2.1 showcases P1 as one distribution from this

sequence. The contiguity between {Phn} and P0 implies that the statistical rule ĝ
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must select policies close to g∗P0
with high probability under P n

hn
as well. However,

the policy g∗P0
is infeasible under Phn , and therefore the statistical rule ĝ cannot be

asymptotically feasible under Phn .

Figure 2.1: Illustration for Assumptions 2.1-2.3 underlying Theorem 2.1

Notes : This figure plots welfare functions W(g;P ) and budget functions B(g;P )
for populations distributed according to P0 (blue solid lines) or P1 (red dashed
lines), where P1 is a distribution from the sequence of distributions {Phn} that is
contiguous to P0 under Assumption 2.1. The distribution P0 satisfies Assumptions
2.2 and 2.3. The x-axis indexes a one-dimensional policy class G = {g : g(x) =
1{x ≤ t}} for a one-dimensional continuous characteristic Xi with support on [0, 1],
e.g. eligibility policies based on income thresholds. The black dotted line marks
the budget threshold k. The bold blue dot marks g∗P0

, the constrained optimal
eligibility policy under P0. The bold red dot marks g∗P1

, the constrained optimal
eligibility policy under P1.

The impossibility result is relevant in real-world settings. It is possible to en-

counter situations where an expansion of a welfare program has no impact on the

budget but leads to a strictly positive increase in welfare, as described in Assump-

tions 2.2 and 2.3. While the nominal cost of welfare program eligibility may be

positive, the Marginal Value of Public Funds (MVPF) framework emphasizes that

the relevant cost is the net cost, which incorporates fiscal externalities, such as

increased tax revenue if the program increases individuals’ incomes. Specifically,
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Hendren and Sprung-Keyser (2020) estimate fourteen welfare programs (out of 133)

to have negative or zero net cost to the government, which implies these programs

“pay for themselves”, aligning with Assumptions 2.2 and 2.3. As a result, the impos-

sibility result suggests that statistical rules designed for such cases may be highly

sensitive to small changes in the underlying distributions even in large samples.

3 Sample-analog rule

The previous negative result implies that no statistical rule can be both uniformly

asymptotically welfare-efficient and uniformly asymptotically feasible. Thus, pol-

icymakers might want to consider statistical rules that satisfy one of these two

properties. A direct extension to the existing approach in the EWM literature,

the sample-analog rule, might be a natural candidate. In this section, I show the

direct extension is neither uniformly asymptotically welfare-efficient nor uniformly

asymptotically feasible.

I first describe the EWM approach (Kitagawa and Tetenov, 2018) and its direct

extension. Since (Γ, R) involves potential outcomes, they are often unobserved and

require estimation based on RCT that introduces estimation errors in addition to

sampling errors. Section 3.2 describes how to construct individuals’ benefit and cost

estimates (Γ∗i , R
∗
i ). To highlight the drawback of the direct extension to EWM, I

first consider settings where we observe an experimental data of sample size n where

(Γ, R) is directly observable, i.e. (Γ∗i , R
∗
i ) = (Γi, Ri). The goal of the simplification

is to highlight that the non-uniformity I show below can arise from sampling errors

alone.

One can estimate the welfare function and the budget function using their

sample-analog versions:

Ŵn(g) :=
1

n

∑
i

Γ∗i · g(Xi), B̂n(g) :=
1

n

∑
i

R∗i · g(Xi). (8)

A direct extension to the existing approach in the EWM literature is a statisti-

cal rule that solves the sample version of the population constrained optimization
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problem (2):

ĝsample ∈ arg max
B̂n(g)≤k

Ŵn(g). (9)

The subscript “sample” emphasizes how this approach verifies whether a policy sat-

isfies the constraint by comparing the sample analog B̂n(g) with k directly, i.e.

imposes a sample-analog constraint. If no policy satisfies the constraint, then I set

ĝsample to not assign any eligibility, i.e. ĝsample(x) = 0 for all x ∈ X .

3.1 Welfare inefficiency of the sample-analog rule

A key insight from Kitagawa and Tetenov (2018) is that without a constraint, the

sample-analog rule is uniformly asymptotically welfare-efficient. Unfortunately this

intuition does not extend to the current setting where the constraint involves an

unknown cost. There are common data distributions under which the amount of

welfare loss does not vanish even as the sample size gets larger. Consider a one-

dimensional policy class G = {g : g(x) = 1{x ≤ t}}, which is based on thresholds

of a one-dimensional continuous characteristic X. Suppose the policymakers know

benefit is positive for everyone so that welfare function is strictly increasing, and

only need to estimate whether a given threshold satisfies a capacity constraint due

to imperfect take-up. Furthermore, suppose the experiment sample observes take-

up Ri so that the only uncertainty arises from sampling errors. Proposition 3.1

shows settings with some zero take-ups satisfy Assumptions 2.2 and 2.3, and the

sample-analog rule is neither pointwise asymptotically welfare efficient nor pointwise

asymptotically feasible.

Proposition 3.1. One-dimensional threshold and imperfect take-up. Consider the

special case where under distribution P , the benefit Γ > 0 almost surely and the cost

R ∈ {0, 1} is binary. Suppose R = 0 for X ∈ [t, t], but PrP{R = 1 | X} ∈ (0, 1)

otherwise. Then P also satisfies Assumptions 2.2 and 2.3. As n→∞, the sample-

analog rule ĝsample would violate the budget constraint half the time, and incur at

least ε > 0 loss in welfare the other half the time:

PrPn {W (g∗P ;P )−W (ĝsample;P ) ≥ ε} → 50%.

17



Figure 3.1: Illustration for Proposition 3.1

(a) infeasible (b) suboptimal

Notes : This figure plots the budget function B(g;P ) (blue dotted line) and its
sample-analogs B̂n(g) (black wriggly line) based on two different observed samples
in panel (a) and (b) respectively. The x-axis indexes a one-dimensional policy class
G = {g : g(x) = 1{x ≤ t}} for a one-dimensional continuous characteristic Xi

with support on [0, 1]. The black dotted line marks the budget threshold k. The
constrained optimal threshold g∗P is t = 0.5. The sample-analog rule ĝsample selects
an infeasible threshold in panel (a) and selects a suboptimal threshold in panel (b).

Figure 3.1 illustrates the setup of Proposition 3.1, where the sampling uncertainty

can be particularly problematic for the sample-analog rule. Since policymakers

know the benefit is positive for everyone, ĝsample takes a simple form of the highest

threshold where the sample-analog constraint is satisfied exactly. The driving force

behind the failure of ĝsample as described in Proposition 3.1 is that due to sampling

uncertainty, whether a policy satisfies the sample-analog constraint is an imperfect

measure of whether it satisfies the constraint in the population.

Since the sample-analog rule ĝsample restricts attention to policies that satisfy

the sample-analog constraint, there is no guarantee the selected policy is actually

feasible. This is very likely to happen when there is welfare gain in exceeding

the budget constraint as in the setup of Proposition 3.1 where W (g;P ) is strictly

increasing in g. Therefore, the sample-analog rule ĝsample is not asymptotically

feasible under P . As illustrated in Figure 3.1, after observing a sample depicted in
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panel (a), the sample-analog rule picks an infeasible threshold because the sample-

analog constraint is still satisfied there. However, as argued later in Corollary 3.1,

the probability of large budget violations vanishes as the sample size increases.

The more problematic case is illustrated in Figure 3.1 panel (b), where the

sample-analog rule picks a suboptimal threshold because the sample-analog con-

straint is violated at the constrained optimum g∗P . In the setup of Proposition 3.1,

when the sample-analog rule ĝsample misses g∗P , it is guaranteed to select a subopti-

mal policy and therefore it is welfare-inefficient under P even asymptotically. This

is because the welfare function strictly increases when the budget function remains

constant in the neighborhood of the budget constraint. I demonstrate that the

same issue extends to broader contexts by employing a simulation calibrated to a

real-world DGP from the OHIE in Section 5.

3.2 Estimates for benefit and cost

In the remainder of the paper, I present constructive results that modify the sample-

analog rule and propose a new rule. To lay the groundwork, this section outlines

the benefit and cost estimates. The appropriate expressions for these estimates

depend on the type of observed data. Below I state the estimates formed based

an RCT that randomly assigns the eligibility, which is the leading case of Kita-

gawa and Tetenov (2018). The observed data {A∗i }ni=1 consists of i.i.d. observations

A∗i = (Yi, Zi, Di, Xi) ∈ A∗. The distribution of A∗i is induced by the distribution of

(Y1, Y0, R,X) as in the population, as well as the sampling design of the RCT. Here

Di is an indicator for being in the eligibility arm of the RCT, Yi is the observed

outcome and Zi is the observed cost of providing eligibility to an individual partic-

ipating in the RCT. The observed cost is mechanically zero if an individual is not

randomized into the eligibility arm. The estimates for (Γ, R) are

Γ∗i = α(Xi, Di) · Yi, R∗i =
Di

p(Xi)
· Zi, (10)

where α(Xi, Di) = Di
p(Xi)
− 1−Di

1−p(Xi) and p(Xi) is the propensity score, the probability of

receiving eligibility conditional on the observed characteristics. Since the sampling
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design of an RCT is known, the propensity score is a known function of the observed

characteristics.

Assumption 3.1. Estimation quality. The recentered empirical processes Ŵn(·)

and B̂n(·) defined in (8) converge to mean-zero Gaussian processes GW
P and GB

P

uniformly over g ∈ G, with covariance functions ΣW
P (·, ·) and ΣB

P (·, ·) respectively:

{
√
n ·

(
1

n

∑
i

Γ∗i · g(Xi)−W (g;P )

)}
g∈G

→d G
W
P{

√
n ·

(
1

n

∑
i

R∗i · g(Xi)−B(g;P )

)}
g∈G

→d G
B
P

Moreover, the convergence holds uniformly over P ∈ P. The covariance functions

are uniformly bounded, with diagonal entries bounded away from zero uniformly over

g ∈ G. There is a uniformly consistent estimator Σ̂B(·, ·) of the covariance function

ΣB
P (·, ·).

Online Appendix B.3 gives primitive assumptions under which Assumption 3.1

is guaranteed to hold for Ŵn(·) and B̂n(·) constructed using an RCT such as in

(10) or an observational study, assuming unconfoundedness and strong overlap. As

standard in the literature, I need to restrict the complexity of the policy class G.

The policy class of income thresholds considered in this paper is in fact a rather

simple class with VC-dimension d+ 1 where d is the number of different thresholds

as in (4).

3.3 Modification that ensures feasibility

Let Ĝ = {g ∈ G : B̂n(g) ≤ k} denote the set of policies that ĝsample can choose

from, which contains policies that do not violate the sample-analog of the budget

constraint. Unsurprisingly, for any finite sample, Ĝ can always contain infeasible

policies, sometimes of sizable budget violations. The probability that Ĝ contains

a policy that violates the population budget constraint by a fixed amount c is the

follows:

PrPn
{
∃g : g ∈ Ĝ and B(g;P ) > k + c

}
(11)
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The corollary stated below shows the chance that a large amount of budget

violation of c > 0 occurs is smaller when there is less variability in B̂n(g). The

chance also vanishes to zero as the sample size gets larger.

Corollary 3.1. Under Assumption 3.1, an upper bound of the probability (11)can

be approximated by the CDF of inf
g∈G

GBP (g)

ΣBP (g,g)1/2
evaluated at −

√
n·c

maxg∈G ΣB(g,g)1/2
.

A simple modification to the sample-analog rule can reduce the probability of

selecting infeasible policies. Instead of Ĝ, let ĝα choose policies from a subset Ĝα
defined in Theorem 3.1 and maximize Ŵn(g) as before. Then as a direct consequence

of Theorem 3.1, with probability at least 1 − α this modified rule is guaranteed to

not mistakenly choose infeasible eligibility policies.

Theorem 3.1. Suppose Assumption 3.1 holds for the class of data distributions P.

Collect eligibility policies in

Ĝα =

g : g ∈ G and

√
n
(
B̂n(g)− k

)
Σ̂B(g, g)1/2

≤ cα

 , (12)

where cα is the α-quantile from inf
g∈G

GBP (g)

ΣBP (g,g)1/2
for GB

P the Gaussian process defined in

Assumption 3.1, and Σ̂B(·, ·) the consistent estimator for its covariance function.

Then

lim sup
n→∞

sup
P∈P

PrPn{Ĝα ∩ G+ 6= ∅} < α, (13)

where G+ = {g : B(g;P ) > k} is the set of infeasible eligibility policies.

Note that in (12) the sample-analog constraint is tightened by cα · Σ̂
B(g,g)1/2√

n
where

cα is negative, which means the class Ĝα only includes eligibility policies where

the constraint is slack in the sample. The sample-analog constraint is tightened

proportionally to the standard error to reflect that B̂n(g) might be particularly noisy

for some g. The tightening therefore shrinks inversely proportional to the (square

root of) sample size because intuitively larger sample size reduces the sampling

uncertainty.

In practice, α may be set at the conventional level, e.g. 5% for an explicit

coverage guarantee. The drawback is that ĝα can be welfare inefficient. One may
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therefore let αn → 0 as sample size increases to achieve both pointwise asymptoti-

cally welfare-efficient and pointwise asymptotically feasible for distributions where

the constraint is slack at the constrained optimal eligibility policy. Corollary 3.2

formalizes the rate requirement below.

Corollary 3.2. If the data distribution P satisfies Assumption 3.1 and induces a

constrained optimal policy at which the constraint is slack, then the modified sample-

analog rule

ĝαn ∈ arg max
g∈Ĝαn

Ŵn(g) (14)

is asymptotically welfare-efficient and asymptotically feasible under P for αn → 0

at a rate such that cαn = o(n1/2).

4 Trade-off rule

Exceeding the budget constraint in the population might be desirable if it achieves

higher welfare and does not cost too much. How to model such trade-off depends

on the specific welfare program. Section 4.1 first explores possible forms of the

trade-off that are of practical relevance, and then focuses on the trade-off where the

marginal cost per unit of violating the constraint has a known upper bound. The

upper bound is context specific and as an example, Section 6 discusses how to set

it for Medicaid expansion. Relaxing the constraint results in weakly higher welfare

than that of the constrained optimal policy g∗P . Section 4.2 derives a statistical

rule that implements such trade-off in the sample, and is shown to be uniformly

asymptotically welfare-efficient.

4.1 Form of the trade-off

Note that the original constrained optimization problem (2) may be reformulated

as

max
g∈G

inf
λ≥0

W (g;P )− λ · (B(g;P )− k). (15)

where λ measures the marginal gain of relaxing the constraint. In many settings

where the benefit is monetary, it may be natural to think for every dollar spent right
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above the budget constraint, there is a welfare gain of λ dollars.

This formulation implies that policymakers are willing to enforce the constraint

at all costs since λ is unbounded. This formulation may not reflect the real objective,

however, as policymakers might be willing to trade off violations of the constraint

against gains in welfare only to a certain extent, bounding λ ∈ [0, λ] and resulting

in a new objective function

max
g∈G

min
λ∈[0,λ]

W(g;P )− λ · (B(g;P )− k). (16)

Using the notation (x)+ to denote the positive part of x ∈ R, the inner opti-

mization problem of (16) can be written as

min
λ∈[0,λ]

W(g;P )− λ · (B(g;P )− k) = W(g;P )− λ · (B(g;P )− k)+.

Note, however, this reformulated objective does not involve optimization over λ: the

solution to (16) is equivalent to the solution to a non-smooth but piecewise linear

optimization problem:

g̃P ∈ arg max
g∈G

W (g;P )− λ · (B(g;P )− k)+. (17)

Note that this trade-off problem (17) is equivalent to an objective function faced by

policymakers when they can finance the deficit (B(g;P )−k)+ through borrowing at

a fixed interest rate λ, after converting welfare into monetary terms. Therefore, the

solution g̃P can relax the budget constraint and achieves weakly higher welfare than

the constrained optimal policy g∗P for any data distribution P . The next lemma

formalizes this observation.

Lemma 4.1. For any λ ∈ [0,∞), the solution to the trade-off problem (17) achieves

weakly higher welfare than the constrained optimum: W (g̃P ;P ) ≥ W (g̃P ;P ) − λ ·

(B(g̃P ;P )− k)+ ≥ W (g∗P ;P ) for any distribution P . Moreover, the violation to the

budget constraint is upper bounded by W (g̃P ;P )−W (g∗P ;P )

λ
.
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4.2 Welfare efficiency of the trade-off rule

Given a new objective function (17) that trades off the gain and the cost from

violating the constraint, the goal is to derive a statistical rule that is likely to select

eligibility policies that maximize the new objective function. Consider the trade-off

statistical rule defined as

ĝtradeoff ∈ arg max
g∈G

Ŵn(g)− λ · (B̂n(g)− k)+, (18)

where the subscript “tradeoff” highlights that this statistical rule is able to relax

the constraint by trading off the gain and the cost from violating the constraint.

Since ĝtradeoff solves a sample-analog version of (17), I show it consistently achieves

the same value of (17) under weak conditions. Theorem 4.1 further verifies that it

consistently achieves welfare that is weakly higher than W (g∗P ;P ). I leave to future

research to verify whether the trade-off rule is minimax rate optimal.

Theorem 4.1. Suppose Assumption 3.1 holds for the class of data distributions P.

Then the trade-off rule ĝtradeoff defined in (18) consistently achieves welfare that is

weakly higher than W (g∗P ;P ) for all P ∈ P and is uniformly asymptotically welfare-

efficient under P. Moreover, with probability approaching one, the violation to the

budget constraint is upper bounded by W (ĝtradeoff;P )−W (g∗P ;P )

λ
uniformly over P.

To gain intuition for the above results, I note that under Assumption 3.1, the

trade-off rule ĝtradeoff consistently achieves the same value of (17) as g̃P over re-

peated sample draws as n→∞ uniformly over P . Furthermore, Lemma 4.1 shows

the trade-off solution g̃P achieves weakly higher welfare than the constrained opti-

mal policy g∗P for any data distribution P . Therefore, the trade-off rule ĝtradeoff is

asymptotically welfare-efficient uniformly over P . At the same time, larger trade-

off coefficient λ̄ implies smaller violation to the budget constraint, relative to the

welfare gain W (ĝtradeoff;P )−W (g∗P ;P ).
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5 Monte Carlo Simulations

To ensure the practical relevance of the simulation, I calibrate to the distribution of

the data from the OHIE, which is also used for empirical illustration in Section 6,

based on Example 2.1 of Section 2. The benefit is defined to be the increase in the

probability of reporting good subjective health after receiving Medicaid eligibility,

and the cost is defined to be health care expenditure that needs to be reimbursed

by Medicaid, in excess of the current policy. I defer the details on the construction

of the estimates (Γ∗i , R
∗
i ) to Section 6.1. Table 6.1 presents the basic summary

statistics for the estimates (Γ∗i , R
∗
i ). For the purpose of this simulation study, the

OHIE represents the population P , and I take these estimates as the true benefit and

cost (Γ, R). Under this simulation design, I can solve for the constrained optimal

policy as

g∗P ∈ arg max
g∈G, B(g;P )≤0

W(g;P )

where (W(g;P ), B(g;P )) are the sample analogs in the OHIE sample. The policy

class G includes income thresholds that can vary with the number of children. Under

the current definition of the cost, a policy is feasible if it incurs a negative cost.

Table 6.1 shows the policy of expanding eligibility to the full population, while

increasing health by 4%, violates the budget constraint by $358 per enrollee. The

constrained optimal policy therefore only makes a share of the population eligible.

The maximum feasible welfare is given by W(g∗P ;P ) = 3.8%, an increase of 3.8% in

reporting good subjective health. The cost associated with the constrained optimal

policy is B(g∗P ;P ) = −$0.6, meaning per enrollee g∗P costs $0.6 less than the current

policy.

5.1 Simulation results

Table 5.1 compares the performance of various statistical rules ĝ through 500 Monte

Carlo iterations. At each iteration, I randomly draw observations from the OHIE

sample to form a random sample. I simulate with the same sample size as the

original sample to hold the amount of sampling uncertainty constant. Given the

random sample, I collect eligibility policies chosen by each of the following statistical
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rules:

• sample-analog rule ĝsample,

• modified sample-analog rule ĝα described in Theorem 3.1 with α set to 5%,

• trade-off rule ĝtradeoff with trade-off coefficient λ̄ described in Section 6.2.

I evaluate the welfare function and the budget function (W(g;P ), B(g;P )) for a given

policy in the original OHIE sample. Averages over 500 iterations provide simulation

evidence on the properties of the above statistical rules, as shown in Table 5.1.

Table 5.1: Simulation results

Statistical rule sample-analog modified trade-off
ĝsample ĝα ĝtradeoff

Prob. of selecting infeasible policies 35.4% 8% 79.6%

Prob. of selecting suboptimal policies 87.0% 98.6% 37.6%

Average welfare loss 0.06 0.60 -0.02

Average cost -$3 -$57 $105
Notes: This table reports properties of statistical rules ĝ, as averaged over 500
simulations. Row 1 reports the probability that the rule selects an eligibility policy
that violates the budget constraint, i.e. PrPn{B(ĝ;P ) > 0}. Row 2 reports the
probability that the rule achieves strictly less welfare than the constrained optimal
policy g∗P , i.e. PrPn{W(ĝ;P ) < W(g∗P ;P )}. Row 3 reports the average welfare loss

of the rule relative to the maximum feasible welfare, i.e.
EPn [W (g∗P ;P )−W (ĝ;P )]

W (g∗P ;P )
. Row

4 reports the average cost of the policies selected by the rule, i.e. EPn [B(ĝ;P )].

Row 1 of Table 5.1 illustrates that it is possible for all three statistical rule ĝ to

select infeasible policies. A lower probability of selecting infeasible policies suggests

the rule is closer to achieving asymptotic feasibility. In the distribution calibrated

to the OHIE sample, the original sample-analog rule ĝsample might not be asymp-

totically feasible as it can select infeasible eligibility policies in 35.4% of the draws.

In contrast, Theorem 3.1 guarantees that a simple modification ĝα selects infeasi-

ble eligibility policies in less than 5% of the draws, regardless of the distribution.

Simulation confirms such guarantee as the mistakes only happen 8% of the time.

Row 2 of Table 5.1 illustrates that it is possible for all three statistical rule ĝ to

achieve weakly higher welfare than the constrained optimal policy g∗P . This can hap-
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pen when ĝ selects an infeasible policy. A lower probability of selecting suboptimal

policies suggests the rule is closer to achieving asymptotic welfare-efficiency. The-

orem 4.1 implies that the trade-off rule ĝtradeoff is uniformly asymptotically welfare

efficient while there is no such guarantee for the sample-analog rule ĝsample.

In the distribution calibrated to the OHIE, the trade-off rule ĝtradeoff on average

achieves higher welfare than the sample-analog rule ĝsample. As shown in row 3

of Table 5.1, the welfare loss of ĝtradeoff is -2% of the maximum feasible welfare

W(g∗P ;P ), compared to 6% for ĝsample. However, its improvement can be at the

cost of violating the budget constraint more often than ĝsample, at a rate of 79.6%.

Though as shown in row 4 of Table 5.1, on average the violation is limited, which

confirms Theorem 4.1.

6 Medicaid expansion: empirical illustration

Example 2.1 of Section 2 explains a more flexible Medicaid expansion policy that

would allow the income thresholds to vary with the number of children. This section

illustrates this example using data from the the Oregon Medicaid Health Insurance

Experiment (OHIE).

6.1 Data

I use the experimental data from the OHIE, where Medicaid eligibility (Di) was

randomized in 2007 among Oregon residents who were low-income adults, but pre-

viously ineligible for Medicaid, and who expressed interest in participating in the

experiment. Finkelstein et al. (2012) include a detailed description of the experi-

ment and an assessment of the average effects of Medicaid on health and health care

utilization. I include a cursory explanation here for completeness.

The original OHIE sample consists of 74,922 individuals (representing 66,385

households). Of these, 26,423 individuals responded to the initial mail survey, which

collects information on income as percentage of the federal poverty level and number
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of children, which are the characteristics Xi of interest for targeting.2 After one year,

the main survey collects data related to health (Yi), health care utilization (Ci) and

actual enrollment in Medicaid (Mi), which allows me to construct estimates for the

benefit and cost of Medicaid eligibility (Γ, R). Therefore I further exclude individuals

who did not respond to the main survey from my sample.

For health (Yi), I follow the binary measurement in Finkelstein et al. (2012)

based on self-reported health, where an answer of “poor/fair” is coded as Yi = 0

and “excellent/very good/good” is coded as Yi = 1. For health care utilization

(Ci), the study collected measures of utilization of prescription drugs, outpatient

visits, ER visits, and inpatient hospital visits. Finkelstein et al. (2012) annualize

these utilization measures to turn these into spending estimates, weighting each type

by its average cost (expenditures) among low-income publicly insured non-elderly

adults in the Medical Expenditure Survey (MEPS). Note that health and health

care utilization are not measured at the same scale, which requires rescaling when

I consider the trade-off between the two. I address this issue in Section 6.2. Lastly,

since the enrollment in Medicaid still requires an application, not everyone eligible

in the OHIE eventually enrolled in Medicaid, which implies Mi ≤ Di.

Given the setup of the OHIE, Medicaid eligibility (Di) is random conditional

on household size (number of adults in the household) entered on the lottery sign-

up form and survey wave. While the original experimental setup would ensure

randomization given household size, the OHIE had to adjust randomization for

later waves of survey respondents (see the Appendix of Finkelstein et al. (2012) for

more details). Denote the confounders (household size and survey wave) with Vi,

and define the propensity score as p(Vi) = Pr{Di = 1 | Vi}. If the propensity score

is known, then the construction of the estimates follows directly from the formula

(10). However, the adjustment for later survey waves means I need to estimate the

propensity score, and I adapt the formula (10) following Athey and Wager (2021)
2More accurately, I follow Sacarny et al. (2020) to approximate number of children by the

number of family members under age 19 living in house as reported on the initial mail survey. I
exclude individuals who did not respond to the initial survey from my sample, which differs from
the sample analyzed in Finkelstein et al. (2012) as I focus on individuals who responded both to
the initial and the main surveys from the OHIE. Due to this difference, the expansion policies
selected using my sample do not directly carry their properties to the population underlying the
original OHIE sample, as the distributions of X differ.
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to account for the estimated propensity score.

Specifically, define the conditional expectation function (CEF) of a random vari-

able Ui as γU = E[Ui | Vi, Di]. Since Vi in my case is discrete, I use a fully sat-

urated model to estimate the propensity score p̂(Vi) and the CEF γ̂U(Vi, Di). I

then form the estimated Horvitz-Thompson weight with the estimated propensity

score as α̂(Vi, Di) = Di
p̂(Vi)
− 1−Di

1−p̂(Vi) . For health benefit due to Medicaid eligibility,

define the estimate Γ∗i = γ̂Y (Vi, 1) − γ̂Y (Vi, 0) + α̂(Vi, Di) ·
(
Yi − γ̂Y (Vi, Di)

)
. The

2014 Medicaid spending was roughly $6,000 per adult enrollee in Oregon, according

to the expenditure information obtained from MACPAC (2019). To formalize the

budget constraint that the per enrollee cost of the proposed policy cannot exceed

the 2014 policy, I need to account for imperfect take-up because not everyone el-

igible for Medicaid would enroll. For the per enrollee excess cost relative to the

current level, define the estimate R∗i = γ̂Z(Vi, 1) + Di
p̂(Wi)

·
(
Zi − γ̂Z(Vi, Di)

)
where

Zi = Ci − $6, 000 ·Mi.

Table 6.1: Summary statistics of the OHIE sample by number of children

Number of children Sample size Sample mean of Γ∗i Sample mean of R∗i

0 5,758 3.1% $651
(0.01) (138)

1 1,736 10.3% $348
(0.02) (247)

≥ 2 2,641 1.5% -$275
(0.02) (150)

Full sample 10,135 4.0% $358
(0.01) (97)

Notes: This table presents summary statistics on the sample of individuals who
responded to both the initial and the main surveys from the Oregon Health Insurance
Experiment (the OHIE sample). The first three rows represent individuals living
with different number of children (family members under age 19), and the last row
is the aggregate. The estimate for benefit Γ∗i is an estimate for the increase in the
probability of an individual reporting “excellent/very good/good” on self-reported
health (as opposed to “poor/fair”) after receiving Medicaid eligibility. The estimate
for cost R∗i is an estimate for individual’s health care expenditure that needs to be
reimbursed by Medicaid, in excess of the current policy. Standard errors are shown
in parentheses below.

Table 6.1 presents the summary statistics. While Online Appendix B.3 argues
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the estimation errors in Γ∗i and R∗i are asymptotically negligible, in finite samples,

the cost estimates are highly variable, resulting in noisy estimate B̂n(g).

6.2 Budget-constrained Medicaid expansion

Figure 6.1 summarizes the selected expansion policies, which are income thresholds

specific to the number of children. The sample-analog rule ĝsample chooses to restrict

Medicaid eligibility, especially lowering the income threshold for childless individuals

far below the current level. As a result, the budget estimate for the selected policy

is -$0.6, just below the threshold of zero. However, due to the large variation in

the cost estimates as illustrated in Table 6.1 , meeting the sample budget constraint

still involves uncertainty about whether the selected policy is welfare-efficient in the

population as argued in Proposition 3.1.

To construct the trade-off rule ĝtradeoff as proposed in Section 4, I need to choose

λ, the upper bound on the marginal gain from violating the constraint. In my

empirical illustration, the budget constraint is in terms of monetary value. The

objective function, however, is measured based on self-reported health, which does

not directly translate to a monetary value. Following Finkelstein et al. (2019), I

convert self-reported health into value of a statistical life year (VSLY) based on

existing estimates. Specifically, a conservative measure for the increase in quality-

adjusted life year (QALY) when self-reported health increases from “poor/fair” to

“excellent/very good/good” is roughly 0.6. The “consensus” estimate for the VSLY

for one unit of QALY from Cutler (2004) is $100,000 for the general US population.

Taken these estimates together, I set λ = 1/(0.6 · 105). Given this upper bound,

the trade-off rule ĝtradeoff chooses to assign Medicaid eligibility to more individuals,

and to raise the income thresholds above the current level for those with children.

Therefore the budget estimate for the selected policy is $110, slightly above the

budget constraint. The higher level occurs because on average the benefit estimates

are positive, and the trade-off rule finds that the additional health benefit from

violating the budget constraint exceeds the cost of doing so, especially those with

children. While a traditional cost-benefit analysis would also recommend prioritizing

those with children based on Table 6.1, the trade-off rule offers a more interpretable
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recommendation by directly selecting income thresholds.

Figure 6.1: More flexible Medicaid expansion policies

(a) policy selected by the sample-analog rule
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(b) policy selected by the trade-off rule

0

100

200

300

400

0 1 2+
Number of Children

H
ou

se
ho

ld
 In

co
m

e 
as

 P
er

ce
nt

 o
f F

P
L

Notes: This figure plots the more flexible Medicaid expansion policies selected by
statistical rules based on results from the OHIE. The horizontal dashed line marks
the income thresholds under the current expansion policy, which is 138% regardless
of the number of children in a household. The horizontal solid lines mark the more
flexible policy selected by various statistical rules, i.e. income thresholds that can
vary with number of children. For each number of children, I also plot the
underlying income distribution to visualize individuals below the thresholds. Panel
(a) plots the policy selected by the sample-analog rule ĝsample. Panel (b) plots the
policy selected by the trade-off rule ĝtradeoff.

7 Conclusion

In this paper, I focus on properties of statistical rules when the cost of implementing

any given policy needs to be estimated. The existing EWM rule selects an eligibil-

ity policy that maximizes a sample analog of the social welfare function, and only

accounts for constraints that can be verified with certainty in the population. How-

ever, in some cases, the cost of providing eligibility to any given individual might be

unknown ex-ante due to imperfect take-up and heterogeneity. Therefore, in addition

to asymptotic welfare-efficiency that has been studied by the EWM literature, I in-

troduce a new desirable property of statistical rules in the setting of unknown cost,

namely asymptotic feasibility, which requires the selected policy to satisfy a budget
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constraint when the sample size is large enough. Unlike the setting of known cost, I

prove an impossibility result that no statistical rule can be uniformly asymptotically

welfare-efficient and feasible. The direct extension to the existing EWM approach

is no longer asymptotically welfare efficient nor asymptotically feasible for certain

real-world relevant data distributions. As an alternative, I propose the trade-off rule

that guarantees asymptotic welfare efficiency while ensuring any budget violations

are bounded above by welfare gains. I illustrate the theoretical results using exper-

imental data from the OHIE. A promising avenue for future research is to verify

whether the trade-off rule maintains minimax rate optimality in the constrained

setting, just as how the EWM rule is in the unconstrained setting.
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A Proofs of theorems

Proof. Proof of Theorem 2.1. The population is a probability space (Ω,A, P ),

which induces the sampling distribution P n that governs the observed sample. A

statistical rule ĝ is a mapping ĝ(·) : Ω → G that selects a policy from the policy

class G based on the observed sample. Note that the selected policy ĝ(ω) is still

deterministic because the policy class G is restricted to be deterministic policies.

When no confusion arises, I drop the reference to event ω for notational simplicity.

Suppose ĝ is asymptotically welfare-efficient and asymptotically feasible under

P0. We want to prove there is non-vanishing chance that ĝ selects policies that are

infeasible some other distributions:

lim sup
n→∞

sup
P∈P

PrPn {ω : B(ĝ(ω);P ) > k} > 0. (19)

Firstly, asymptotical welfare-efficiency of ĝ under P0 implies for any ε > 0 we

have

lim sup
n→∞

PrPn0
{
ω : W (g∗p0P0)−W (ĝ(ω);P0) > ε

}
= 0. (20)

Asymptotical feasibility under P0 implies PrPn0 {ω : B(ĝ(ω);P0) ≤ k} → 1.

Consider the event ω′ where |W (ĝ(ω′);P )−W (g∗P ;P )| < ε and ĝ(ω′) is feasible.

Asymptotic welfare-efficiency and asymptotic feasibility imply PrPn0 {ω
′} → 1. To

see this, note the probability of such event has an asymptotic lower bound of one

PrPn0
{
ω′ : W (g∗p0P0)−W (ĝ(ω′);P0) ≤ ε and B(ĝ(ω′);P0) ≤ k

}
≥PrPn0

{
ω : W (g∗p0P0)−W (ĝ(ω);P0) ≤ ε

}
+ PrPn0 {ω : B(ĝ(ω);P0) ≤ k} − 1

where the first two terms converge to one as n→∞ respectively under asymptotic

welfare-efficiency and asymptotic feasibility.

Now consider P0 that satisfies Assumptions 2.2 and 2.3. For ε in Assumption

2.3, we have B(ĝ;P0) = B(g∗P0
;P0) = k under the event ω′, since the constraint is

exactly satisfied at g∗P0
under Assumption 2.2. By Law of Total Probability, we have

PrPn0 {ω : B(ĝ(ω);P0) = k} ≥ PrPn0 {ω
′} · PrPn0 {B(ĝ;P0) = k | ω′}
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Then the above argument shows PrPn0 {ω : B(ĝ(ω);P0) = k} → 1 as n→∞.

Following the notation in Assumption 2.1, denote the set of policies where the

constraints bind exactly under the limit distribution P0 by

G0 = {g ∈ G : B(g;P0) = k}. (21)

Under Assumption 2.1, the sequence P n
hn

is contiguous with respect to the se-

quence P n
0 , which means P n

0 (An) → 0 implies P n
hn

(An) → 0 for every sequence of

measurable sets An on An. Then PrPn0 {An : B(ĝ(An);P0) = k} → 1 implies there

exists an N(u) such that for all n ≥ N(u), we have PrPnhn {An : B(ĝ(An);P0) = k} ≥

1 − u. That is, with high probability, the statistical rule ĝ selects policies from G0

based on the observed sample distributed according to P n
hn
. Recall Assumption 2.1

implies for all g ∈ G0, for any sample size n, we have B(g;Phn)− k > C/
√
n. Thus

this statistical rule cannot uniformly satisfy the constraint since with sample size

n ≥ N(u), we have

sup
P∈P

PrPn {B(ĝ;P ) > k} ≥ PrPnhn {B(ĝ;Phn) > k} ≥ 1− u (22)

Proof. Proof of Proposition 3.1. Consider a one-dimensional policy class G =

{g : g(x) = 1{x ≤ t}}, which includes thresholds for a one-dimensional continuous

characteristic X.

Suppose the budget constraint takes the form of a capacity constraint, involving

a binary take-up decision R (that may or may not be independent of X). By

assumption, the probability an individual takes up the treatment for X ∈ [t, t] is

zero but between zero and one otherwise. Then the budget function B(t;P ) :=

EP [R · 1{X ≤ t}] is flat in the interval [t, t] but also strictly increasing otherwise.

Since Γ > 0 almost surely, the welfare function W (t;P ) := EP [Γ · 1{X ≤ t}] is

strictly increasing in t and the constrained optimal policy satisfies Assumption 2.2

and is binding. Let infB(g;P )<kW (g∗P ;P ) −W (g;P ) = EP [Γ · 1{t ≤ X ≤ t}] = ε

be the smallest amount of welfare loss from missing the binding solution g∗P . Then

ε > 0 and satisfies Assumption 2.3.
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The population problem is

max
t

W (t;P ) s.t. B(t;P ) ≤ k,

where B(t;P ) = k for t ∈ [t, t] by assumption. The constrained optimal threshold is

therefore the highest threshold where the constraint is satisfied exactly i.e. t∗ = t.

This also implies R · 1{X ≤ t} ∼ Bernoulli(k) for t ∈ [t, t].

The sample-analog rule solves the following sample problem

max
t

1

n

∑
i

Γi · 1{Xi ≤ t} s.t. B̂n(t) ≤ k

for B̂n(t) := 1
n

∑
iRi ·1{Xi ≤ t}. Given that Γ > 0 almost surely, the sample-analog

rule equivalently solves maxt B̂n(t) s.t. B̂n(t) ≤ k. However, the solution is not

unique because B̂n(t) is a step function. To be conservative, let the sample-analog

rule be the smallest possible threshold to maximize B̂n(t):

t̂ = min
{

arg max
t
{B̂n(t) s.t. B̂n(t) ≤ k}

}
.

Note that we can also write B̂n(t) = 1
n

∑
Ri=1 1{Xi ≤ t}, which makes it clear that t̂

corresponds to ranking Xi among individuals with Ri = 1, and then picking the low-

est threshold such that we assign treatment to the first bk · nc individuals. This also

means if in the sample few individuals take up the treatment such that 1
n

∑
iRi ≤ k,

we can have a sample-analog rule that treats everyone up to maxRi=1Xi. Taken to-

gether both scenarios, we note the sample-analog rule implies the treated share in

the sample is equal to

B̂n(t̂) :=
1

n

∑
i

Ri · 1{Xi ≤ t̂} = min

{
1

n

∑
i

Ri,
bk · nc
n

}
.

Note that t̂ > t⇔ B(t̂;P ) > B(t;P )

t̂ < t⇔ B(t̂;P ) < B(t;P )⇔ W (t̂;P ) < W (t;P )
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which means whenever t̂ > t, the sample-analog rule violates the constraint in the

population as B(t;P ) = k; whenever t̂ < t, the sample-analog rule achieves strictly

less welfare than t∗ in the population because W (t;P ) is strictly less than W (t∗;P ).

We next derive the limit probability for these two events. Applying Law of Total

Probability, we have

PrPn
{
B̂n(t) < B̂n(t̂)

}
=PrPn

{
B̂n(t) <

bk · nc
n

and
bk · nc
n

<
1

n

∑
i

Ri

}

+ PrPn

{
B̂n(t) <

1

n

∑
i

Ri and
bk · nc
n

≥ 1

n

∑
i

Ri

}
(23)

≥PrPn
{
B̂n(t) <

bk · nc
n

and
bk · nc
n

<
1

n

∑
i

Ri

}

≥PrPn
{
B̂n(t) <

bk · nc
n

}
+ PrPn

{
bk · nc
n

<
1

n

∑
i

Ri

}
− 1 (24)

For the first term in (24), we have the following lower bound

PrPn

{
1

n

∑
i

Ri · 1{Xi ≤ t} ≤ k · n− 1

n

}

=PrPn

{
√
n

(
1

n

∑
i

Ri · 1{Xi ≤ t} − k

)
≤ − 1√

n

}
→ 0.5

To see the convergence, we apply the Central Limit Theorem to the LHS, and note

that − 1√
n
converges to zero. Denote pR = Pr{R = 1}. For the second term in (24),

we have the following lower bound

PrPn

{
1

n

∑
i

Ri ≥
k · n
n

}

=PrPn

{
√
n

(
1

n

∑
i

Ri − pR

)
≥
√
n · (k − pR)

}
→ 1

To see the convergence, we apply the Central Limit Theorem to the LHS, and note
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that
√
n · (k − pR) diverges to −∞ for pR > k. We thus conclude

lim
n→∞

PrPn
{
B(t̂;P ) > B(t;P )

}
≥ 0.5

which proves t̂ is not pointwise asymptotically feasible under the distribution P .

Similar argument shows PrPn
{
B̂n(t) > B̂n(t̂)

}
has a limit of at least one half.

We thus conclude

lim
n→∞

PrPn
{
B(t̂;P ) < B(t;P )

}
≥ 0.5⇔ lim

n→∞
PrPn

{
W (t̂;P ) < W (t;P )

}
≥ 0.5

which proves that t̂ is not pointwise asymptotically welfare-efficient under the dis-

tribution P . Since B(t;P ) = B(t;P ), we actually have

lim
n→∞

PrPn
{
B(t̂;P ) > B(t;P )

}
= lim

n→∞
PrPn

{
W (t̂;P ) < W (t;P )

}
= 0.5

Proof. Proof of Corollary 3.1. The event in (11) is equivalent to the event that Ĝ

includes at least one criteria that violates the budget constraint by c. The derivation
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for the bound therefore is based on such an event:

PrPn

 min
B(g;P )>k+c

√
n
(
B̂n(g)− k

)
ΣB(g, g)1/2

≤ 0


=PrPn

 min
B(g;P )>k+c


√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

+

√
n (B(g;P )− k)

ΣB(g, g)1/2

 ≤ 0


≤PrPn

 min
B(g;P )>k+c

√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

≤ − min
B(g;P )>k+c

√
n (B(g;P )− k)

ΣB(g, g)1/2


≤PrPn

 min
B(g;P )>k+c

√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

≤ −
minB(g;P )>k+c

√
n (B(g;P )− k)

maxB(g;P )>k+c ΣB(g, g)1/2


<PrPn

 min
B(g;P )>k+c

√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

≤ −
√
n · c

maxB(g;P )>k+c ΣB(g, g)1/2


<PrPn

min
g∈G

√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

≤ −
√
n · c

maxg∈G ΣB(g, g)1/2


Under Assumption 3.1, the empirical process

{√
n
(
B̂n(g)−B(g;P )

)}
converges

to a Gaussian process GB
P for GB

P (·) ∼ GP(0,ΣB
P (·, ·)) and we have a consistent

covariance estimate Σ̂B(·, ·), which proves the corollary.

Proof. Proof of Theorem 3.1. By construction, the limit probability for any

policy in Ĝα to violate the budget constraint is

PrPn{∃g : g ∈ Ĝα and B(g;P ) > k} = PrPn{ min
B(g;P )>k

√
n
(
B̂n(g)− k

)
Σ̂B(g, g)1/2

≤ cα}

≤PrPn{ min
B(g;P )>k

√
n
(
B̂n(g)−B(g;P )

)
Σ̂B(g, g)1/2

≤ cα}

≤PrPn{min
g∈G

√
n
(
B̂n(g)−B(g;P )

)
Σ̂B(g, g)1/2

≤ cα}

Under Assumption 3.1, uniformly over P ∈ P , the empirical process
{√

n
(
B̂n(g)−B(g;P )

)}
converges to a Gaussian process GB

P for GB
P (·) ∼ GP(0,ΣB

P (·, ·)) and we have a con-

40



sistent covariance estimate Σ̂B(·, ·). Then by the definition of cα, we have

lim sup
n→∞

sup
P∈P

PrPn{min
g∈G

√
n
(
B̂n(g)−B(g;P )

)
Σ̂B(g, g)1/2

≤ cα}

= sup
P∈P

PrPn{ inf
g∈G

GB
P (g)

ΣB
P (g, g)1/2

≤ cα} = α.

Proof. Proof of Corollary 3.2. The first part follows from Theorem 3.1, replacing

α with αn in its proof. Specifically, by construction we have

lim sup
n→∞

sup
P∈P

PrPn{B(ĝαn ;P ) > k} ≤ lim sup
n→∞

sup
P∈P

PrPn{∃g : g ∈ Ĝαn and B(g;P ) > k} ≤ αn.

For the second part, we decompose the welfare loss into

W (g∗P ;P )−W (ĝαn ;P )

=W (g∗P ;P )− Ŵn(ĝαn) + Ŵn(ĝαn)−W (ĝαn ;P )

≤ sup
g∈G
|W (g;P )− Ŵn(g)|+ Ŵn(g∗P )− Ŵn(ĝαn)

Under the event that g∗P ∈ Ĝαn , we are guaranteed that the last term is non-positive.

This happens with probability

PrPn{

√
n
(
B̂n(g∗P )− k

)
Σ̂B(g∗P , g

∗
P )1/2

≤ cαn}
a∼ Φ

(
cαn +

√
n (k −B(g∗P ;P ))

ΣB
P (g∗P , g

∗
P )1/2

)
→ 1

for B(g∗P ;P ) strictly below the threshold. Since cαn diverges to −∞ at a rate slower
√
n, the term in the parenthesis diverges to∞ as n→∞. We then apply Lemma B.4

and B.6 in the Online Appendix (proved in Section B.3 under primitive conditions

that lead to Assumption 3.1), which shows supg∈G |W (g;P ) − Ŵn(g)| converges to

zero in probability. We then conclude ĝαn is asymptotically welfare-efficient under

distribution P .
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Proof. Proof of Lemma 4.1. By definition

W (g∗P ;P ) = max
B(g;P )≤k

W (g;P ) = max
B(g;P )≤k

W (g;P )− λ · (B(g;P )− k)+

≤ max
g∈G

W (g;P )− λ · (B(g;P )− k)+

= W (g̃P ;P )− λ · (B(g̃P ;P )− k)+ ≤ W (g̃P ;P )

and suppose B(g̃P ;P ) > k, we have the following upper bound for violations to the

budget constraint

B(g̃P ;P )− k ≤ W (g̃P ;P )−W (g∗P ;P )

λ
.

Proof. Proof of Theorem 4.1. We first prove ĝtradeoff is asymptotically welfare-

efficient. Denote the new objective function with V (g;P ) = W (g;P )−λ ·(B(g;P )−

k)+, whose maximizer is g̃P . Denote V̂n(g) = Ŵn(g) − λ · (B̂n(g) − k)+ to be the

sample-analog, whose maximizer is ĝtradeoff. Apply uniform deviation bound to the

difference between the value under ĝtradeoff and g̃P , we have

V (g̃P ;P )− V (ĝtradeoff;P )

=V (g̃P ;P )− V̂n(ĝtradeoff) + V̂n(ĝtradeoff)− V (ĝtradeoff;P )

≤V (g̃P ;P )− V̂n(g̃P ) + V̂n(ĝtradeoff)− V (ĝtradeoff;P )

≤2 sup
g

∣∣∣V (g;P )− V̂n(g)
∣∣∣

=2 sup
g

∣∣∣W (g;P )− Ŵn(g)− λ · (max{B(g;P )− k, 0} −max{B̂n(g)− k, 0})
∣∣∣

≤2 sup
g

∣∣∣Ŵn(g)−W (g;P )
∣∣∣+ 2λ · sup

g

∣∣∣max{B̂n(g)− k, 0} −max{B(g;P )− k, 0}
∣∣∣

≤2 sup
g

∣∣∣Ŵn(g)−W (g;P )
∣∣∣+ 2λ · sup

g

∣∣∣B̂n(g)−B(g;P )
∣∣∣

The last line uses the fact that |max{a, 0} −max{b, 0}| ≤ |a− b|. Both terms,

supg

∣∣∣Ŵn(g)−W (g;P )
∣∣∣ and supg

∣∣∣B̂n(g)−B(g;P )
∣∣∣ converge to zero in probability

under Assumption 3.1. Specifically, Lemma B.4 and B.6 in the Online Appendix
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(proved in Section B.3 under primitive conditions that lead to Assumption 3.1)

imply the uniform convergence in probability

sup
P∈P

sup
g∈G

∣∣∣Ŵn(g)−W (g;P )
∣∣∣→p 0, sup

P∈P
sup
g∈G

∣∣∣B̂n(g)−B(g;P )
∣∣∣
p
→ 0.

At the same time, by definition we have V (g̃P ;P ) − V (ĝtradeoff;P ) ≥ 0. We thus

conclude

sup
P∈P
|V (ĝtradeoff;P )− V (g̃P ;P )| →p 0.

Furthermore, we have W (g∗P ;P ) ≤ V (g̃P ;P ) ≤ W (g̃P ;P ) as a by-product of Lemma

4.1 for any P ∈ P . Putting these together, we have

inf
P∈P
{W (ĝtradeoff;P )−W (g∗P ;P )}

≥ inf
P∈P
{V (ĝtradeoff;P )−W (g∗P ;P )}

≥ inf
P∈P
{V (ĝtradeoff;P )− V (g̃P ;P )}+ inf

P∈P
{V (g̃P ;P )−W (g∗P ;P )}

≥ inf
P∈P
{V (ĝtradeoff;P )− V (g̃P ;P )} →p 0.

which proves uniform asymptotic welfare-efficiency.

By the uniform deviation bound shown above,applied to the difference between

the value under ĝtradeoff and g∗P , we have that uniformly with probability approaching

one

V (g∗P ;P )− V (ĝtradeoff;P ) ≤ 0

which is equivalent to (B(ĝtradeoff;P )− k)+ ≤
W (ĝtradeoff;P )−W (g∗P ;P )

λ
.
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Online Appendix to Empirical Welfare Maximization

with Constraints

This Online Appendix contains proofs of supporting lemmas and additional results

stated in the paper.

B Primitive assumptions and auxiliary lemmas

I first prove the optimal rule that solves the population constrained optimization

problem takes the form of threshold. In Section B.2, I first provide primitive as-

sumptions on the class of DGPs. I then prove in Lemma B.1, which establishes that

these primitive assumptions imply Assumption 2.1.

In Section B.3, I verify Assumption 3.1 for settings where the observed sample

comes from an RCT or an observational study, and the propensity score can be

estimated efficiently based on parametric regressions.

B.1 Constrained optimal rule without functional form re-

striction

The population problem is to find rules based on Xi that solves

max
g:X→{0,1}

E[Γig(Xi)] s.t. E[Rig(Xi)] < k

By Law of Iterated Expectation, we can write the constrained optimization prob-

lem as

max
g:X→{0,1}

E[γ(Xi)g(Xi)] s.t. E[r(Xi)g(Xi)] < k

where γ(Xi) = E[Γi | Xi] and r(Xi) = E[Ri | Xi].

Claim B.1. Let dµ = r(x)f(x)dx denote the positive measure. The constrained

1



optimization problem is equivalent to

max
g:X→{0,1}

∫
γ(x)

r(x)
g(x)dµ s.t.

∫
g(x)dµ = k

Let X∗ be the support of the solution g∗. It will take the form of X∗ = {x : γ(x)
r(x)

> c}

where c is chosen so that µ(X∗) = k.

Proof. Let X be the support of any g 6= g∗ with µ(X) = k. Then the objective

function associated g is

∫
X∗

γ

r
dµ−

∫
X

γ

r
dµ =

∫
γ(x)

r(x)
1{x ∈ X∗}dµ−

∫
γ(x)

r(x)
1{x ∈ X}dµ

=

∫
γ(x)

r(x)
(1{x ∈ X∗\X} − 1{x ∈ X\X∗}) dµ

By definition of X∗, we have γ(x)
r(x)

> c for x ∈ X∗\X and γ(x)
r(x)

< c for x ∈ X\X∗.

Also note that µ is a positive measure. Then the above difference is lower bounded

by

∫
γ(x)

r(x)
(1{x ∈ X∗\X} − 1{x ∈ X\X∗}) dµ ≥ c

∫
(1{x ∈ X∗\X} − 1{x ∈ X\X∗}) dµ ≥ 0

as by construction, we have
∫
1{x ∈ X∗\X}dµ = 1 since µ(X∗) = µ(X) = k.

B.2 Primitive assumptions for contiguity

Assumption B.1. Assume the class of DGPs {Pθ : θ ∈ Θ} has densities pθ with

respect to some measure µ. Assume Pθ is DQM at P0 i.e. ∃ ˙̀
0 s.t.

∫
[
√
ph −

√
p0 −

1
2
h′ ˙̀0
√
p0]2dµ = o(‖h2‖) for h→ 0.

Assumption B.2. For all policies g, B(g;Pθ) is twice continuously differentiable

in θ at 0, and the derivatives are bounded from above and away from zero within an

open neighborhood Nθ of zero uniformly over g ∈ G.

Lemma B.1. Under Assumption B.1, the class P includes a sequence of data dis-

tribution {Phn} that is contiguous to P0 for every hn satisfying
√
nhn → h e.g. take

2



hn = h/
√
n. This proves the first part of Assumption 2.1. Suppose further Assump-

tion B.2 holds, then there exists some h for the second part of Assumption 2.1 to

hold,.

Proof. Proof of Lemma B.1. By Theorem 7.2 of Vaart (1998), the log likelihood

ratio process converges under P0 (denoted with p0 ) to a normal experiment

log
n∏
i=1

phn
p0

(Ai) =
1√
n

n∑
i=1

h′ ˙̀0(Ai)−
1

2
h′I0h+ oP0(1) (25)

p0 N
(
−1

2
h′I0h, h

′I0h

)
(26)

where ˙̀
0 is the score and IP0 = EP0 [

˙̀
0(Ai) ˙̀

0(Ai)
′] exists. The convergence in distri-

bution of the log likelihood ratio to a normal with mean equal to −1
2
of its variance

in (26) implies mutual contiguity P n
0 CB P n

hn
by Le Cam’s first lemma (see Example

6.5 of Vaart (1998)). This proves the first part of the lemma.

By Taylor’s theorem with remainder we have for each policy g

B(g;Ph/√n)−B(g;P0) =
h′√
n

∂B(g;P0)

∂θ
+

1

2

1

n
h′
∂2B(g;Pθ̃n)

∂θ∂θ′
h

where θ̃n is a sequence of values with θ̃n ∈ [0, h/
√
n] that can depend on g. Take

h so that the first term is positive for policies with B(g;P0) = k. Such h ex-

ists because we assume ∂B(g;P0)
∂θ

is bounded away from zero. For g ∈ G0 where

G0 = {g : B(g;P0) = k}, the constraints are violated under Phn and furthermore

(multiplying by
√
n)

√
n · (B(g;Phn)− k) > h′

∂B(g;P0)

∂θ
> 0

for every n. This proves the second part of the lemma for C = infg∈G0

∣∣∣h′ ∂B(g;P0)
∂θ

∣∣∣
.
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B.3 Primitive assumptions and proofs for estimation quality

In this section, I verify that Ŵn(g) and B̂n(g) satisfy Assumption 3.1 under primitive

assumptions on the policy class and the OHIE.

Assumption B.3. VC-class: The policy class G has a finite VC-dimension v <∞.

To introduce the assumptions on the OHIE, I first recall the definitions of com-

ponents in Ŵn(g) and B̂n(g):

Ŵn(g) :=
1

n

∑
i

Γ∗i · g(Xi), B̂n(g) :=
1

n

∑
i

R∗i · g(Xi)

for the doubly-robust scores

Γ∗i = γ̂Y (Vi, 1)− γ̂Y (Vi, 0) + α̂(Vi, Di) ·
(
Yi − γ̂Y (Vi, Di)

)
R∗i = γ̂Z(Vi, 1) +

Di

p̂(Vi)
·
(
Zi − γ̂Z(Vi, Di)

)
and observed characteristics Xi. Here Vi collects the confounders in OHIE, namely

household size (number of adults entered on the lottery sign-up form) and survey

wave. Note that while Xi can overlap with Vi, the policy g(Xi) needs not vary by

Vi. In the OHIE example, the policy is based on number of children and income.

However, conditional on household size and survey wave, income and number of

children is independent of the lottery outcome in OHIE.

Recall that Ŵn(g) and B̂n(g) are supposed to approximate net benefit Γ and net

excess cost R of Medicaid eligibility. I provide more precise definitions for Γ and R

as the primitive assumptions are stated in terms of their components.

Let Y (1) be the (potential) subjective health when one is given Medicaid eligi-

bility, and Y (0) be the (potential) subjective health when one is not given Medicaid

eligibility. Recall the definition for

Γ = Y (1)− Y (0)

We only observe the actual subjective health Yi.
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Let M(1) be the (potential) enrollment in Medicaid when one is given Medicaid

eligibility, andM(0) be the (potential) enrollment in Medicaid when one is not given

Medicaid eligibility.

Let C(1) be the (potential) cost to the government when one is given Medicaid

eligibility, and C(0) be the (potential) cost to the government when one is not

given Medicaid eligibility. Note that C(0) = 0 by construction. Even when given

eligibility, one might not enroll and thus incur zero cost to the government. So given

the current expenditure is $6,000 per enrollee, the implied expenditure per capita

under eligibility policy g(X) is actually $6, 000 · E [M(1)g(X)]. The reason is that

the expected enrollment rate is only Pr{M(1) = 1 | X ∈ g}. So the per capita

excess cost of Medicaid eligibility policy g(X) relative to the current level is

R = C(1)− $6, 000 ·M(1).

We only observe the actual cost (Ci = DiCi(1) + (1−Di)Ci(0)) and the actual

Medicaid enrollment (Mi) in OHIE. We calculate Zi = Ci − $6, 000 ·Mi.

Assumption B.4. Suppose for all P ∈ P, the following statements hold for the

OHIE:

Independent characteristics: Pr{Di = 1 | Vi, Xi} = Pr{Di = 1 | Vi}

Unconfoundedness: (Y (1), Y (0), C(1),M(1)) ⊥ Di|Vi.

Bounded attributes: the support of variables Xi, Yi and Zi are bounded.

Strict overlap: There exist κ ∈ (0, 1/2) such that the propensity score satisfies

p(v) ∈ [κ, 1− κ] for all v ∈ V.

B.3.1 Uniform convergence of Ŵn(·) and B̂n(·)

We want to show the recentered empirical processes Ŵn(·) and B̂n(·) converge to

mean-zero Gaussian processes GW
P and GB

P with covariance functions ΣW
P (·, ·) and

ΣB
P (·, ·) respectively uniformly over P ∈ P . The covariance functions are uniformly

bounded, with diagonal entries bounded away from zero uniformly over g ∈ G. Take

Ŵn(·) for example, the recentered empirical processes is
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√
n

(
1

n

∑
i

Γ∗i · g(Xi)− EP [Γ · g(Xi)]

)
and can be expressed as the sum of two terms

1√
n

∑
i

(Γ∗i − Γ̃i) · g(Xi) +
√
n

(
1

n

∑
i

Γ̃i · g(Xi)− EP [Γ · g(Xi)]

)
. (27)

Here Γ̃i are the theoretical analogs

Γ̃i = γY (Vi, 1)− γY (Vi, 0) + α(Vi, Di) ·
(
Yi − γY (Vi, Di)

)
which is doubly-robust score with the theoretical propensity score and the CEF. A

similar expansion holds for B̂n(·) involving the theoretical analog

R̃i = γZ(Vi, 1) +
Di

p(Vi)
·
(
Zi − γZ(Vi, Di)

)
.

The following lemmas prove the uniform convergence of Ŵn(·) and B̂n(·).

The last part of the assumption is that we have a uniformly consistent estimate

for the covariance function. I argue the sample analog

Σ̂B(g, g′) =
1

n

∑
i

(R̃i)
2 · g(Xi) · g′(Xi)−

(
1

n

∑
i

R̃i · g(Xi)

)
·

(
1

n

∑
i

R̃i · g′(Xi)

)

is a pointwise consistent estimate for Σ̂B(g, g′). To see this, note that the covariance

function ΣB
P (·, ·) maps G ×G to R. Under Assumption B.4 that G is a VC-class, the

product G×G is also a VC-class (see e.g. Lemma 2.6.17 of van der Vaart and Wellner

(1996)). By a similar argument leading to Lemma B.4 and B.6 , we conclude the

uniform consistency of Σ̂B(·, ·).

Lemma B.2. Let G be a VC-class of subsets of X with VC-dimension v <∞. The

following sets of functions from A to R

FW = {Γ̃i · g(Xi) : g ∈ G}

FB = {R̃i · g(Xi) : g ∈ G}
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are VC-subgraph class of functions with VC-dimension less than or equal to v for

all P ∈ P. For notational simplicity, we suppress the dependence of F on P .

Lemma B.3. For all P in the family P of distributions satisfying Assumption B.4,

for all g ∈ G we have

EP [Γ̃i · g(Xi)] = W (g;P )

EP [R̃i · g(Xi)] = B(g;P )

Lemma B.4. Let G satisfy Assumption B.4 (VC). Let Ui be a mean-zero bounded

random vector of fixed dimension i.e. there exists M < ∞ such that i.e. Ui ∈

[−M/2,M/2] almost surely under all P ∈ P. Then the uniform deviation of the

sample average of vanishes

sup
P∈P

sup
g∈G

∣∣∣∣∣ 1n∑
i

Ui · g(Xi)

∣∣∣∣∣→a.s. 0.

Lemma B.5. Let P be a family of distributions satisfying Assumption B.4. Let

G satisfy Assumption B.4 (VC). Then FW and FB are P -Donsker for all P ∈ P.

That is, the empirical process indexed by g ∈ G

√
n · ( 1

n

∑
i

Γ̃i · g(Xi)−W (g;P ))

converge to a Gaussian process GP(0,ΣW
P (·, ·)) uniformly in P ∈ P, and the empir-

ical process indexed by g ∈ G

√
n · ( 1

n

∑
i

R̃i · g(Xi)−B(g;P ))

converge to a Gaussian process GP(0,ΣB
P (·, ·)) uniformly in P ∈ P.

Lemma B.6. Let P be a family of distributions satisfying Assumption B.4. Let G
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satisfy Assumption B.4 (VC). Then the estimation errors vanishes

sup
P∈P

sup
g∈G

∣∣∣∣∣ 1√
n

∑
i

(Γ∗i − Γ̃i) · g(Xi)

∣∣∣∣∣→p 0

sup
P∈P

sup
g∈G

∣∣∣∣∣ 1√
n

∑
i

(R∗i − R̃i) · g(Xi)

∣∣∣∣∣→p 0

B.3.2 Proofs of auxiliary lemmas

Proof. Proof of Lemma B.2. This lemma follows directly from Lemma A.1 of

Kitagawa and Tetenov (2018).

Proof. Proof of Lemma B.3. Under Assumption B.4, we prove each Γ̃i is an

conditionally unbiased estimate for Γ:

EP [Γ̃ig(Xi)] = EP [EP [Γ̃i | Xi]g(Xi)] = EP [EP [Γ | Xi]g(Xi)] = W (g;P ).

We focus on EP [Γ̃i | Xi] = EP [EP [Γ̃i | Vi, Xi] | Xi]. However, conditional on Vi, by

unconfoundedness and strict overlap we have

EP [Γ̃i | Vi, Xi] = E[Yi | Vi, Xi, Di = 1]− E[Yi | Vi, Xi, Di = 0]

= E[Yi(1)− Yi(0) | Vi, Xi] = E[Γi | Vi, Xi]

Specifically

E[Γ̃i | Vi, Xi] = E
[
γY (Vi, 1)− γY (Vi, 0) | Vi, Xi

]
+ E

[
α(Vi, Di) ·

(
Yi − γY (Vi, Di)

)
| Vi, Xi

]
= E [Yi | Vi, Di = 1]− E [Yi | Vi, Di = 0] +

E [Yi(1)− Yi(0) | Vi, Xi]− (E [Yi | Vi, Di = 1]− E [Yi | Vi, Di = 0])

= E[Γ | Vi, Xi]
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Specifically, we expand E[α(Vi, Di)Yi | Vi, Xi]

= E

[
Yi
p(Vi)

| Di = 1, Vi, Xi

]
· Pr{Di = 1 | Vi, Xi} − E

[
Yi

1− p(Vi)
| Di = 0, Xi

]
· Pr{Di = 0 | Vi, Xi}

= E [DiYi(1) + (1−Di)Yi(0) | Di = 1, Vi, Xi]− E [DiYi(1) + (1−Di)Yi(0) | Di = 0, Vi, Xi]

= E [Yi(1) | Vi, Xi]− E [Yi(0) | Vi, Xi]

where the second line holds by independent characteristic such that

Pr{Di = 1 | Vi, Xi} = Pr{Di = 1 | Vi} =: p(Vi)

and the last line follows from unconfoundedness. Similarly, we show

E
[
α(Vi, Di) · γY (Vi, Di) | Vi, Xi

]
= E [Yi | Vi, Di = 1]− E [Yi | Vi, Di = 0]

Similar argument holds for EP [R̃i · g(Xi)], with the only modification:

E[
Di

p(Vi)
Ci | Vi, Xi] = E

[
Ci
p(Vi)

| Di = 1, Vi, Xi

]
· Pr{Di = 1 | Vi, Xi}

= E[Ci(1) | Vi, Xi]

Proof. Proof of Lemma B.4. Denote the following set of functions from U to R

FU = {Ui · g(Xi) : g ∈ G}

and it has uniform envelope F̄ = M/2 since Ui is bounded. This envelop function is

bounded uniformly over P . Also, by Assumption B.4 (VC) and Lemma B.2, FU is

VC-subgraph class of functions with VC-dimension at most v. By Lemma 4.14 and

Proposition 4.18 of Wainwright (2019), we conclude that FU has Rademacher com-

plexity 2
√
M2 v

n
. Then by Proposition 4.12 of Wainwright (2019) we conclude that

FU are P -Glivenko–Cantelli for each P ∈ P , with an O(
√

v
n
) rate of convergence.

Note that this argument does not use any constants that depend on P but only M
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and v, so we can actually get uniform convergence over P .

Proof. Proof of Lemma B.5. Note that Assumption B.4 imply that FW and

FB have uniform envelope F̄ = M/(2κ). FW and FB thus have square integrable

envelop functions uniformly over P . Also, by Assumption B.4 (VC) and Lemma

B.2, FW and FB are VC-subgraph class of functions with VC-dimension at most v.

Even though both FW and FB depend on P , a similar argument for Theorem 1 in

Rai (2019) show that FW and FB are P -Donsker uniformly in P ∈ P .

Proof. Proof of Lemma B.6. We focus on the deviation in Γ∗i − Γ̃i. The devi-

ation in R∗i − R̃i can be proven to vanish in a similar manner. Denote ∆γY (Vi) =

γY (Vi, 1) − γY (Vi, 0). For any fixed policy g, we expand the deviation 1√
n

∑
i(Γ
∗
i −

Γ̃i)g(Xi) into three terms

1√
n

∑
i

g(Xi) (α̂(Vi, Di)− α(Vi, Di)) ·
(
Yi − γY (Vi, Di)

)
(28)

+
1√
n

∑
i

g(Xi)
(
∆γ̂Y (Vi)−∆γY (Vi)− α(Vi, Di) ·

(
γ̂Y (Vi, Di)− γY (Vi, Di)

))
− 1√

n

∑
i

g(Xi)
(
γ̂Y (Vi, Di)− γY (Vi, Di)

)
· (α̂(Vi, Di)− α(Vi, Di)) ·

Denote these three summands by D1(g), D2(g) and D3(g). We will bound all three

summands separately. Recall we use the full sample to estimate the propensity score

and the CEF with a saturated model. The purpose of the above expansion is to

separately bound the estimation error from the estimated CEF and propensity score,

and the deviation from taking sample averages. For cross-fitted estimators for the

propensity score and the CEF, a similar bound can be found in Athey and Wager

(2021).

Uniform consistency of the estimated CEF and propensity score Denote

with b(Vi, Di) the dictionary that spans (Vi, Di), and b(Vi, ) the dictionary that spans

Vi. The saturated models are therefore parameterized as γZ(Vi, Di) = γ′b(Vi, Di)

and p(Vi) = β′b(Vi). Under standard argument, the OLS estimators γ̂ and β̂ are
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asymptotically normal uniformly over P ∈ P :

√
n · (γ̂ − γ) = OP (1),

√
n ·
(
β̂ − β

)
= OP (1).

Furthermore, the in-sample L2 errors from the estimated CEF and propensity score

vanish. Consider

1

n

∑
i

(
γ̂Z(Vi, Di)− γZ(Vi, Di)

)2
=

1

n

∑
i

(
(γ̂ − γ)′ b(Vi, Di)

)2
= (γ̂ − γ)′ M̂ (γ̂ − γ)

where M̂ = 1
n

∑
i b(Vi, Di)b(Vi, Di)

′. It converges in probability to a fixed matrix

M = E[b(Vi, Di)b(Vi, Di)
′]. So the in-sample L2 error from the estimated CEF

vanishes at the rate of n−1/2.

Similarly, consider expanding 1
n

∑
i (α̂(Vi, Di)− α(Vi, Di))

2 as

1

n

∑
i

(
1

β̂′b(Vi)
− 1

β′b(Vi)

)2

D2
i +

(
1

1− β̂′b(Vi)
− 1

1− β′b(Vi)

)2

(1−Di)
2

With a first-order Taylor approximation, for each term in the summand, the domi-

nating term would be

1

n

∑
i

((
β̂ − β

)′ −b(Vi)
(β′b(Vi))2

)2

D2
i =

(
β̂ − β

)′( 1

n

∑
i

b(Vi)b(Vi)
′

(β′b(Vi))2
D2
i

)(
β̂ − β

)

where the middle term converges to a fixed matrix as implied by β′b(Vi) being

bounded away from zero and one. So the in-sample L2 error from the estimated

propensity score also vanishes at the rate of n−1/2.

Bounding the deviation We now bound each term in (28). Plugging in the

first-order Taylor approximation with a remainder term to the estimated propensity
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score, we have

D1(g) =
1√
n

∑
i

g(Xi)
(
Yi − γY (Vi, Di)

)
·((

1

β̂′b(Vi)
− 1

β′b(Vi)

)
Di +

(
1

1− β̂′b(Vi)
− 1

1− β′b(Vi)

)
(1−Di)

)

=
1√
n

∑
i

g(Xi)
(
β̂ − β

)′ −b(Vi)
(β′b(Vi))2

·Di ·
(
Yi − γY (Vi, Di)

)
+

1√
n

∑
i

g(Xi)
(
β̂ − β

)′ b(Vi)b(Vi)′
(β̃′Vi)3

(
β̂ − β

)
·Di ·

(
Yi − γY (Vi, Di)

)
=

′√
n
(
β̂ − β

)
︸ ︷︷ ︸

OP (1)

1

n

∑
i

g(Xi)
−b(Vi)

(β′b(Vi))2
·Di ·

(
Yi − γY (Vi, Di)

)
︸ ︷︷ ︸

oP (1)

+oP (1)

where β̃ is a sequence between β̂ and β. This remainder term therefore converges

to zero. Uniform convergence of the sample average follows from Lemma B.4: the

random vector −b(Vi)
(β′b(Vi))2

·Di ·
(
Yi − γY (Vi, Di)

)
is mean-zero, has fixed dimension, and

bounded.

We can decompose D2(g) into the product of two terms

D2(g) =
′√

n (γ̂ − γ)︸ ︷︷ ︸
Op(1)

1

n

∑
i

g(Xi) (∆b(Vi, Di)− α(Vi, Di) · b(Vi, Di))

Uniform convergence of the sample average again follows from Lemma B.4. We thus

conclude D1(g) and D2(g) vanish uniformly over g ∈ G and over P ∈ P .

For D3(g), we apply the Cauchy-Schwarz inequality to note that

D3(g) ≤
√
n ·
√

1

n

∑
i

(γ̂Y (Vi, Di)− γY (Vi, Di))
2 ·
√

1

n

∑
i

(α̂(Vi, Di)− α(Vi, Di))
2

The terms in the square root are the in-sample L2 errors from the estimated CEF

and propensity score, which vanish at the rate of n−1/2 uniformly over P ∈ P as

shown in the paragraph above. We thus conclude D3(g) vanishes uniformly over

g ∈ G and over P ∈ P .
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C Computation

The policy class considered in this paper g(x) = 1{β′x ≥ 0} consists of linear

eligibility score. Therefore I follow (Kitagawa and Tetenov, 2018, Online Appendix

C) to set up the problems of sample-analog rule (9) and trade-off rule (18) as a Mixed

Integer Linear Programming (MILP), which is more efficient than solving them

through a search over x. Due to the estimated constraint, I add linear constraints

to the version of Kitagawa and Tetenov (2018) and instead solve for the trade-off

rule in two parts:

constrained unconstrained (29)

min
β∈B,z∈Rn

−
n∑
i=1

Γ∗i zi min
β∈B,z∈Rn

−
n∑
i=1

Γ∗i zi + λ(
n∑
i=1

R∗i zi − n · k)

s.t.
X ′iβ

Ci
≤ zi ≤ 1 +

X ′iβ

Ci
, s.t.

X ′iβ

Ci
≤ zi ≤ 1 +

X ′iβ

Ci
,

zi ∈ {0, 1}, zi ∈ {0, 1},
n∑
i=1

R∗i zi < n · k.
n∑
i=1

R∗i zi ≥ n · k.

where constants Ci = supβ∈B |X ′iβ|. The additional binary parameters (z1, . . . , zn)

replace the policy functions g(Xi) = 1{β′Xi ≥ 0}. The sample-analog rule ĝsample

is the constrained solution on the left hand side. The trade-off rule ĝtradeoff is the

better solution across constrained and unconstrained policies in (29).

To modify the sample-analog rule to control the probability of selecting infeasible

policies by ĝα as proposed in Section 3.3, I introduce quadratic constraints to (29).

First, for a conventional level of α, constructing the tightened constraint Ĝα requires

an estimate for the critical value cα, the α%-quantile from inf
g∈G

GBP (g)

ΣBP (g,g)1/2
, the infimum

of the Gaussian process GB
P (·) ∼ GP(0,ΣB

P (·, ·)). In practice, I construct a grid on

G as

G̃ = {g(x) = 1{income · 1{numchild = j} ≤ yj} : j ∈ {0, 1,≥ 2}, yj ∈ {0, 50, 100, . . . , 500}}

(30)

for characteristics x = (income, numchild). This grid thus consists of income

13



thresholds every 50% of the federal poverty level, and the thresholds can vary with

number of children. I then approximate the infimum over infinite-dimensional G

by the minimum over G̃ with estimated covariance i.e. min
g∈G̃

h̃(g)

Σ̂B(g,g)1/2
. Here h̃(·) ∼

N (0, Σ̂B) is a Gaussian vector indexed by g ∈ G̃, with Σ̂B is sub-matrix of the

covariance estimate Σ̂B(·, ·) for g ∈ G̃. Based on 10,000 simulation draws I estimate

cα to be -2.56 for α = 5%. The validity of this approximation is given by the uniform

consistency of the covariance estimator under Assumption 3.1.

Second, to select policies in Ĝα is equivalent to invert a test:
√
n(B̂n(g)−k)
Σ̂B(g,g)1/2

≤ cα.

This test inversion can be written as two constraint (note that cα < 0). The first

constraint is linear:
∑n

i=1R
∗
i zi ≤ n · k and the second is n ·

(
B̂n(g)− k

)2

> c2
α ·

Σ̂B(g, g) which translates to a quadratic constraint

n

(∑n
i=1R

∗
i zi

n
− k
)2

> c2
α

((
1

n

n∑
i=1

(R∗i )
2zi

)
−
(∑n

i=1 R
∗
i zi

n

)2
)

⇒c2
α

n

n∑
i=1

(R∗i )
2zi + 2k

n∑
i=1

R∗i zi −
(

1

n
+
c2
α

n2

)
(
n∑
i=1

R∗i zi)
2 < nk2
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