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Abstract

Markowitz portfolio selection is a cornerstone in finance, in academia as well as

in the industry. Most academic studies either ignore transaction costs or account for

them in a way that is both unrealistic and suboptimal by (i) assuming transaction

costs to be constant across stocks and (ii) ignoring them at the portfolio-selection

state and simply paying them after the fact. Our paper proposes a method to fix

both shortcomings. As we show, if transaction costs are accounted for (properly)

at the portfolio-selection stage, net performance in terms of the Sharpe ratio often

increases, in particular for high-turnover strategies.

KEY WORDS: Covariance matrix estimation, mean-variance efficiency, multivariate

GARCH, portfolio selection, transaction costs.
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1 Introduction

Markowitz (1952) portfolios are a cornerstone of finance, both in the academic literature

and in the asset-management world. Since the two main input parameters, the vector

of expected returns and the covariance matrix of the returns in a universe of assets, are

unknown in practice, the true (or ideal) portfolios are infeasible and have to be estimated

instead. To this end one most commonly applies the plug-in method: use the estimated

vector of expected returns and the estimated covariance matrix in place of the true

quantities.

When several methods to estimate a given portfolio under consideration are available,

it is generally of interest to determine which method is best. In particular when researchers

come up with a new method, they generally want to demonstrate that their method is

better than existing methods. One way to answer this question is via Monte Carlo studies.

Unlike in real life, in a Monte Carlo study the true portfolio is known and so one can

determine how close (on average) a given method gets to the truth. But any Monte Carlo

study is based on a data generating process (DGP) chosen by the researchers, which leaves

room to tweak this process in their favor. Therefore, the more common way to answer

the question is via backtest exercises: One applies the various methods to a set of real

data in a realistic manner (meaning that at any given point only data prior to that point

are used to estimate the portfolio) over a sufficiently long period, which results in a series

of (pseudo) out-of-sample (oos) returns for each method. Then the various oos return

series are used for performance evaluation.

Which criterion to use in the evaluation depends on the portfolio under consideration.

In the case of the Global Minimum Variance (GMV) portfolio, arguably, the most relevant

criterion is risk, measured by the sample variance (or, equivalently, the sample standard

deviation) of the oos return series. The respective sample numbers then provide a ranking

of the various methods (with smaller numbers resulting in a higher ranking). In addition,

one can use hypothesis testing to examine whether one method significantly outperforms

another one; for example, see Ledoit and Wolf (2011). On the other hand, a general

Markowitz portfolio not only seeks a small risk but also a high reward. Whereas the former

is quantified by the standard deviation of the portfolio return, the latter is quantified by

its expectation. In such cases, the preferred criterion is the reward-to-risk ratio, that is,

the expected return divided by the standard deviation. When the returns are taken in

excess of the risk-free rate, this ratio is known as the Sharpe ratio; otherwise, the ratio is

often called the information ratio. In a backtest exercise one then uses the sample average

of the oos return series divided by the sample standard deviation. Again, one can use

hypothesis tests to study whether one method significantly outperforms another one; for
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example, see Ledoit and Wolf (2008).

When the Sharpe ratio is used as the performance criterion, the question becomes

whether to account for transaction costs or not. In our view, the answer is “it depends”.

Although this distinction is rarely made in the literature, there can be two goals in

performance evaluation.

The first goal, which one could term accuracy, is to evaluate the quality of estimated

inputs in plug-in methods, namely of the estimated vector of expected returns and of the

estimated covariance matrix; the idea being that the higher the quality of the estimated

inputs, the higher will be the oos Sharpe ratio. Therefore, in this context, a backtest

serves as an indirect way of evaluating the quality of estimated inputs. (The direct way,

by comparing estimated inputs to true inputs, is not feasible, since the true inputs are

not observable.) For this goal, transaction costs should not be taken into account, since

doing so would muddy the waters. For example, consider the case where one wants to

compare two estimators of the covariance matrix (holding the estimator of the vector of

expected returns fixed). It could well be that one of the estimators, although less precise,

leads to lower turnover and thus to a higher Sharpe ratio after transaction costs.

The second goal, which one could term efficiency (shortcut for the mean-variance

efficiency of a dynamically-rebalanced portfolio), is to evaluate actual investment strategies.

Of course, for this goal, transaction costs should be taken into account. Arguably, an

asset manager does not care about the quality of estimated inputs per se as long as they

result in superior performance, which for him/her always means after transaction costs.

Many academic studies take transaction costs into account, be it as the leading objective

or as a robustness check. The problem is that the majority of such studies do so in a

non-realistic and suboptimal way: (i) they assume transaction costs to be constant across

stocks1 and (ii) they do not take transaction costs into account at the portfolio-selection

stage; for example, see DeMiguel et al. (2009b), Neely et al. (2014), Ao et al. (2019), Kan

et al. (2022), and Chen et al. (2024).

Concerning (i), assuming that stocks have the same transaction costs makes life easier

but contradicts reality. Therefore, we incorporate this feature, using a realistic off-the-shelf

transaction-cost model from the literature. Concerning (ii), few portfolio managers in the

real world ignore transaction costs at the portfolio-selection stage and and simply pay

them after the fact. Doing so can be expected to result in worse net performance (that is,

performance after transaction costs), at least for high-turnover strategies. Therefore, we

propose a way to account for transaction costs at the portfolio-selection stage.

The remainder of the paper is organized as follows. Section 2 specifies the portfolio

1To be safe, this means transaction costs are assumed to be constant across stocks at any given point

in time, but might be allowed to change, and in particular decrease, over time.
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formulations of interest and how we account for transaction costs at the portfolio-selection

stage. Section 3 details our backtesting technology. Section 4 presents the results based

on real stock-return data. Section 5 concludes. An appendix contains some additional

details and tables.

2 Portfolios

2.1 The Starting Point

Our starting point is the standard Markowitz portfolio-selection problem in its textbook

version. There are N assets in the universe with corresponding return vector r ..=

(r1, . . . , rN)
′. Denote the expected value and the covariance matrix of r by

µ ..= E(r) and Σ ..= Cov(r) .

The portfolio-selection problem in its textbook version is then formulated as

min
w

w′Σw (2.1)

subject to w′µ ≥ b , and (2.2)

w′
1 = 1 , (2.3)

where b is a selected target expected return and 1 denotes a conformable vector of ones.2

The problem has the following analytical solution:

w = c1Σ
−1
1+ c2Σ

−1µ , (2.4)

where c1 ..=
C − bB

AC −B2
and c2 ..=

bA−B

AC −B2
, (2.5)

with A ..= 1
′Σ−1

1 , B ..= 1
′Σ−1µ , and C ..= µ′Σ−1µ . (2.6)

Since µ and Σ are unknown in practice, this solution is not feasible. But a feasible solution

can be obtained by replacing µ with an estimator µ̂ and Σ with an estimator Σ̂ in the

analytical formulas: this is the plug-in method.

Although of academic interest, the plug-in version of the solution (2.4)–(2.6) is rarely

used in real life. On the one hand, portfolio managers generally are interested in further

constraints in addition to (2.2) and (2.3), such as gross-exposure, maximum(-absolute)-

weight, industry-exposure, and factor-exposure constraints; of these, as a leading case,

we will consider a gross-exposure constraint in our analysis below. On the other hand,

2One can also formulate the problem in its dual form: maximizing the expected return subject to an

upper bound on the variance of the portfolio.
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the formulation (2.1)–(2.2) completely ignores transaction costs. In real life, the portfolio

manager already holds a current portfolio and the question is how to best update (or

turn over) the portfolio. But updating (or turning over) a portfolio involves transaction

costs, which are stock-specific. Of course, one can simply ignore transaction costs at the

portfolio-selection stage, find the best portfolio given one’s list of constraints, and then

pay the resulting transaction costs after the fact. As can be expected theoretically, and as

we will confirm empirically below, doing so is often inferior to taking transaction costs

into account at the portfolio-selection stage already.

2.2 Accounting for Transaction Costs

There is no unique way to take transaction costs into account. One way would be to

include an upper bound on such costs as an additional constraint; the question then

becomes what that amount should be. Instead, we opt for adding a penalty term, defined

as a multiple of the transaction cost, to the objective function (2.1). The question then

becomes what the multiplier should be. We feel that it is more natural to address the

latter question than the former.

To start out, the more general problem formulation needed now must address the

fact that one is moving form a holding portfolio to a new portfolio, so the concept of

time needs to be introduced. In our empirical analysis below, we will use daily stock

data, which is the norm in literature; but, as also is the norm, we do not update the

portfolio on a daily basis but only every 21 trading days, which corresponds to our notion

of a “month”.3 As a result, the notation must distinguish between (a) return time and

(b) portfolio-selection (or rebalancing) time. Return days are indexed by t ∈ {1, . . . , T},
where T denotes the sample size; portfolio-selection dates are indexed by h ∈ {1, . . . , H},
where H denotes the number of months. The connection is that th denotes the (return)

day corresponding to portfolio-selection date h; in particular, th+1 = th + 21.

Consider a portfolio-selection date h > 1. The current vector of holding-portfolio

weights is given by

w∗
h−1

..= (w∗
h−1,1, . . . , w

∗
h−1,Nh

)′.

This vector specifies the portfolio at the end of the holding period h − 1 and differs

from wh−1, which specifies the portfolio at the beginning of the holding period. The two

vectors differ because of the different price evolutions of the various stocks during the

holding period; see (3.4) for a description how to obtain w∗
h for a general holding period

h. Finally, Nh denotes the size of the combined investment universe at portfolio-selection

date h. This universe is given as the union of all stocks in the current holding portfolio

3So a ‘month’ generally does not correspond to a calendar month.
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and all stocks to be included in the new (or upcoming) portfolio: At any given date h > 1,

one has to allow for some stocks leaving the portfolio and others entering the portfolio.

So even if the number of stocks in the holding portfolio remains constant (denoted by N),

as will be the case for us, Nh ≥ N generally varies over time. Of course, in case Nh > N ,

there will be (at least) Nh −N positions in wh−1, w
∗
h−1, and wh that are equal to zero.

The next ingredient is a vector of stock-specific transaction costs4 at portfolio-selection

date h:

ch ..= (ch,1, . . . , ch,Nh
)′ .

The unit of the transaction costs must match the unit of the stock returns. Say a given

transaction cost is 10 basis points (bps). If stock returns are raw returns, then this number

should be expressed as 0.001; on the other hand, if the stock returns are in percent, then

this number should be expressed as 0.1 instead.5 When updating (or turning over) the

portfolio from w∗
h−1 to wh the total transaction cost “per dollar” is then given by

τh ..= c′h|wh − w∗
h−1| ..=

Nh∑
i=1

ch,i|wh,i − w∗
h−1,i| . (2.7)

Therefore, τh is a relative rather than an absolute cost. The absolute cost is obtained by

multiplying the relative cost with the current net-asset value (NAV) of the portfolio. As

an example, take the case where τh equals 5 bps. If the NAV equals one hundred million

dollars, then the cost of turning over the portfolio is fifty thousand dollars; if the NAV

equals one billion dollars, the cost is half a million dollars.

The advantage of expressing the transaction cost per dollar instead of in absolute terms

is that the penalty parameter on the transaction cost, which is about to be introduced,

can also be chosen per dollar and thus does not have to be adapted to the current value

of the portfolio, which changes over time.

To facilitate the upcoming methodology it will be convenient to partition the combined

investment universe at portfolio-selection date h into two sets: the one containing the

stocks in the new portfolio (of size N) and the one containing the stocks leaving the

holding portfolio (of size Mh) with Mh ≥ 0 and Nh = N +Mh. For further convenience,

the stocks will be (re-)ordered such that the first N will effectively constitute the new

portfolio and the last Mh will leave the holding portfolio. In this way, the total transaction

cost (per dollar) can be decomposed in the sum of a variable cost (corresponding to the

4Our methodology is agnostic about how stock-specific transaction costs are obtained (or modeled);

we discuss a specific proposal to this end in Section 3.2.
5Note that 100 bps correspond to one percent.
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first N stocks) and a fixed cost (corresponding to the last Mh stocks):

τh = τvarh + τfixh
..=

N∑
i=1

ch,i|wh,i − w∗
h−1,i|+

Nh∑
i=N+1

ch,i|w∗
h−1,i| . (2.8)

The latter cost (which is zero in case Nh = N and positive otherwise) is obviously fixed,

since it does not depend on how the weights for the stocks in the new portfolio are selected.

On the other hand, this selection affects the former cost, which is therefore variable.

The two final ingredients are µ̂h and Σ̂h, the estimators of µh and Σh which, in slight

abuse of notation, are defined as

µh
..= E(rnewth

) and Σh
..= Cov(rnewth

) with rnewth
..= (rnewth,1

, . . . , rnewth,N
)′ .

Clearly only the returns rnewth
of the stocks in the new investment universe are relevant, in

the sense that we need estimators of the expectation and the covariance matrix of the

vector of returns; the stocks leaving the holding portfolio are irrelevant. At this point, we

assume nothing about the nature of µ̂h and Σ̂h; specific choices will be discussed in the

empirical analysis below.

With the definition of τfixh as in (2.8), our formulation of the portfolio-selection problem,

both accounting for transaction costs and incorporating a gross-exposure constraint κ,

is then given by:

min
w∈RN

w′Σ̂hw + λ ·
N∑
i=1

ch,i|wi − w∗
h−1,i| (2.9)

subject to w′µ̂h ≥ bh , (2.10)

w′
1 = 1 , and (2.11)

||w||1 ≤ κ . (2.12)

The constant λ in (2.9) is the penalty parameter on the transaction cost per dollar.

Alternatively, and equivalently, one could formulate the objective function (2.9) as

min
w∈RN

w′Σ̂hw + λ ·
( N∑

i=1

ch,i|wi − w∗
h−1,i|+ τfixh

)
,

noting that τfixh does not depend on w. Furthermore, our formulation allows for the

bound bh on the expected return in (2.10) to vary with time.6 Finally, || · ||1 in (2.12)

denotes the L1 norm of a vector, that is,

||w||1 ..=
N∑
i=1

|wi| .

6This is to allow for some variation in expected market conditions.
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Therefore, (2.12) represents a gross-exposure constraint where κ ≥ 1 expresses the upper

bound.7 In the extreme case κ = 1, the portfolio is long only, meaning that wi ≥ 0 for all i.

The choice κ = 1.6 corresponds to a 130-30 portfolio whereas the choice κ = 2 corresponds

to a 150-50 portfolios; such portfolios are becoming ever more popular in the financial

industry. The choice κ = ∞ effectively removes the constraint (2.12) from the portfolio

formulation.

Denote the solution of (2.9)–(2.12) by ŵ. Then wh
..= (ŵ1, . . . , ŵN , 0, . . . , 0)

′, where the

last Mh ≥ 0 positions equal zero. To be careful, when portfolio-selection date h+1 comes,

w∗
h shall be re-ordered relative to wh such that the last Mh+1 ≥ 0 positions correspond to

the stocks that will leave the holding portfolio at date h+ 1.

It should be pointed out that the problem (2.9)–(2.12) cannot be solved analytically,

that is, there is no formula for ŵ (unless λ = 0 and κ = ∞). However, the problem is

of convex nature and can be solved with off-the-shelf numerical-optimization software

coming under the header “convex solver”. Even for N = 1, 000, solving the problem only

takes a matter of seconds (in the single digits) with modern computers.

2.3 Variations on the Theme

Many other portfolio formulations based on the plug-in method can be considered, where

the formulations can be either “smaller” or “larger”.

To go smaller, one can drop the expected-return constraint (2.10). Doing so has

the advantage that one does not require an estimator of the expected return vector µh,

which is not trivial to come by with. Note that by now, an entire academic industry,

if the pun may be forgiven, is dedicated to finding such estimators, which sometimes

are called “factors” or “(return-predictive) signals”; for example, see Green et al. (2013)

and Harvey et al. (2016). If in addition the gross-exposure constraint (2.12) is dropped,

one arrives at the global minimum variance (GMV) portfolio accounting for transaction

costs; setting λ = 0 in (2.9) gives the standard ‘textbook’ GMV portfolio (in its feasible

version based on the plug-in method). But, again, the standard version is not of much

interest in real life. On the one hand, the gross exposure can be anything and vary quite

a bit from one portfolio-selection date to another, which for many portfolio managers

would be problematic or not even be permitted. On the other hand, transaction costs

are not accounted for. As for the general Markowitz portfolio, our empirical study will

compare the performance of the textbook formulation with formulations accounting for

transactions costs and/or incorporating a gross-exposure constraint.

To go ‘larger’, as would be typical in real life, one can add further constraints after (2.12),

7One could, in principle, also allow κ to vary with time but doing so is uncommon.
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such as a maximum(-absolute)-weight constraint (putting a common upper bound on

|wi| to avoid overexposure to any given stock), industry-exposure constraints, and factor-

exposure constraints. Importantly, adding any such constraints (in their common forms)

preserves the convexity of the optimization problem, so that ŵ can still be easily found

with off-the-shelf numerical optimization software.

2.4 Estimation of Input Parameters

The feasible portfolio formulation (2.9)–(2.12) requires estimates of two input parameters,

µh and Σh. The formulation is high-level in the sense that nothing is said about the

nature of the estimators µ̂h and Σ̂h, which must be based on a (finite) history of past

observations.

It is common knowledge which estimators not to use (without further modifications

to the resulting solution ŵ): namely, the sample analogs, meaning the vector of sample

means (for µ̂h) and the sample covariance matrix (for Σ̂h). Although unbiased, and

maximum likelihood under a normality assumption, in settings where the number of

stocks and the number of past observations are of similar magnitude (which is the setting

most portfolio managers face) the sample analogs contain too much estimation error.

Consequently, portfolios ŵ based on them perform poorly out of sample and are sometimes

called “estimation error maximizers”, a term coined by Michaud (1989).

Therefore, it is of interested, to find improved estimators of the two input parameters

in practice. Thankfully, this task can be considered as a division of labor. Some people

aim to find improved estimators of the vector of expected returns; for example, see again

Green et al. (2013) and Harvey et al. (2016). Other people aim to find improved estimators

of the covariance matrix; for example, see Ledoit and Wolf (2022a) and the references

therein.8

Finally, we have a methodology in place that can be safely used also when the number

of assets is large; by which we mean up to a couple thousand of assets.9 On the one hand,

the methodology proposed in Sections 2.2–2.3 allows for the selection of portfolios within

a second or less once input parameters have been estimated; on the other hand, improved

estimators of µ and Σ result in favorable oos performance, as will be seen in our empirical

study of Section 4.

8Improved estimation of the covariance matrix is huge field in the academic literature and this not the

place to give a comprehensive overview. Our point is that improved estimators (relative to the sample

analog) exist and we take the liberty of highlighting our own ones in this regard without necessarily

claiming that they are necessarily better than any other such estimators.
9Obviously, the term “large” is up to a certain amount of interpretation and even in this decade some

people in the literature seem to interpret it as “more than two”.
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2.5 Non-Markowitz Paradigms

Our proposal is firmly placed within the paradigm of Markowitz portfolio selection.

Arguably, this is still the most popular such paradigm in both academia and the industry.

Needless to say, many alternative paradigms exist as well. They can differ from the

Markowitz paradigm in any possible direction and dimension. We are not privy to what is

used in the industry but even the paradigms proposed in the literature are too numerous

to list them all. To list just a few examples, see Kan and Zhou (2007), Brandt et al.

(2009), Frahm and Memmel (2010), Tu and Zhou (2011), Kolm et al. (2014), López de

Prado (2016, 2020), Ao et al. (2019), Dixon et al. (2020), Kan et al. (2022), and Kelly

and Xiu (2023).

There are three potential problems regarding methods that belong to alternative

portfolio-selection paradigms, which are routinely swept under the academic carpet but

greatly matter to portfolio managers in the industry: First, can the method handle

large investment universes and the case N > T? Second, can the method account for

transaction costs at the portfolio-selection stage? Third, can the method incorporate

additional constraints, such as a gross-exposure constraint, factor-exposure constraints,

or maximum-position constraints? Appendix A discusses two exemplary non-Markowitz

paradigms in some detail.

2.6 Related Literature

The literature on accounting for transaction costs at the portfolio-selection stage is

surprisingly sparse. Nevertheless, there are some previous proposals which we can put in

perspective.

Liu (2004) extends the concept of a “no-trade zone”, which had been long established

in the literature for a single risky asset, to multiple risky assets. For tractability reasons, he

specifies a model where the decision whether or not to trade a given stock is independent

across stocks. We are likewise sympathetic to the concept of a no-trade zone: On any

given selection date, our method may refuse to trade a substantial fraction of the universe,

especially for large values of the penalty parameter λ. However, the method does so

in such a way that all trade/no-trade decisions are taken jointly, and every stock can

influence the others, which is more realistic and expected to yield better results.

Apart from transaction costs, three things matter: (return-predictive) signals, risk,

and optimization. There is a division of labor between Gârleanu and Pedersen (2013)

and our own paper. Whereas these authors analyze the impact of transaction costs on

the signal mix while taking the risk model and optimizer for granted, we take the signals

for granted while analyzing the impact of transaction costs on the optimization process

10



within the context of an accurate and up-to-date high-dimensional risk model. Their main

insight, that short-lived signals must be downweighted relative to long-lived signals due

to round-trip transaction-cost drag, is completely sound, but it has little bearing on our

approach.

Brandt et al. (2009) also employ the concept of a no-trade zone, which they choose as

a hyper-sphere of radius k around the current vector of holding-portfolio weights w∗
h−1.

If the vector of the target-portfolio weights, which is obtained by selecting an “optimal”

portfolio ignoring transaction costs, lies outside the no-trade zone, one trades right onto

the boundary of the zone in direction of the target portfolio; this corresponds to a convex

combination of the holding portfolio and the target portfolio. There are three concerns

regarding this proposal: (i) it does not reflect non-constant transaction costs across stocks,

that is, it might be more appropriate to use a hyper-ellipse instead of a hyper-sphere as the

shape of the no-trade zone; (ii) it is not clear how to pick the size of the no-trade zone, that

is, the radius k in case of a hyper-sphere; and (iii) it is not clear how to handle changing

portfolio universes, since some trading needs to take place if the universe changes.

DeMiguel et al. (2020) investigate how transaction costs change the number of

characteristics that are jointly significant for an investor’s optimal portfolio and, hence,

how they change the dimension of the cross-section of stock returns. Specifically, they show

that transaction costs noticeably increase the number of significant characteristics and

that using a larger number of characteristics in parametric portfolios reduces turnover and

transaction costs, leading to superior out-of-sample performance net of transaction costs.

This approach is fundamentally different from ours in that it accounts for transaction

costs implicitly rather than explicitly and does not allow portfolio managers to dial up

(or down) turnover to their liking.

3 Backtesting Methodology

3.1 Data and Universe Rules

We download daily stock return data from the Center for Research in Security Prices

(CRSP) starting on 01-Jan-1995 and ending on 31-Dec-2022. We restrict attention to

stocks from the NYSE, AMEX, and NASDAQ exchanges. Daily risk-free rates come from

the supplemental series of the CRSP US Treasury Database via the Wharton Research

Data Services portal.10

For simplicity, we adopt the common convention that 21 consecutive trading days

10The unique series identifier is 2000061, corresponding to “RISKFREE2 (MTH/DLY)”. The maturity/

rebalancing label is “CRSP Risk Free – 4 week (Nominal)”.
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constitute one ‘month’. The (pseudo) out-of-sample period ranges from 19-Jan-2000

through 30-Dec-2022, resulting in a total of H = 275 months (or T = 5, 775 days). All

portfolios are updated monthly.11 We index the portfolio-selection dates by h = 1, . . . , 275.

We now detail our rules for determining the investment universe at any given portfolio-

selection date h. For a stock to be eligible, it must satisfy five criteria. The first criterion

is not feasible in practice but common in academic analyses (and, basically, never kicks in

anyhow for large stocks): The stock must have a complete return future over the next

21 days. Second, the day when the stock started, that is, the day where we see for the

first time a non-missing value for the return of the stock must be at least 1,260 days in the

past. Third, over the history of the past 1,260 days, there must be a most 2.5% missing

values; any such missing value is then replaced with the return of the S&P 500 index on

that day. Fourth, there must be no pairs of stock with respective return series over the

past 1,260 days that have a sample correlation exceeding 0.95. To ensure this criterion, we

compute the sample correlation matrix of all the stock satisfying the first three criteria. If

the largest correlation does not exceed 0.95, we keep all stocks. Otherwise, we identify the

pair with the largest correlation and remove the stock with the smaller market value of the

two at date h; then we repeat the exercise until there are no more correlations exceeding

0.95. There is a final, fifth, criterion, which is not based on daily returns. For reasons that

will become obvious below we also need price data in open, high, low, and close (OHLC)

form. For a stock to be eligible, it needs to have all four pieces of information available for

at least 240 out of the past 252 days. Then, at any date h = 1, the universe is comprised

of the N = 1, 000 largest eligible stocks in terms of their average market value over the

past month (that is, over the 21 days most recent days in the past).

3.2 Modeling Transaction Costs

The goal of our paper is to develop a strategy that delivers desirable portfolio returns net

of transaction costs. Importantly, we are interested in a strategy that will work well now,

that is, from here on going forward. We are not interested in a strategy that would have

worked well in the past, that is, over the last previous thirty years, say.

Consequently, we will use ‘historical’ stock returns in combination with ‘current’

transaction costs, the idea being that historical stock returns are (hopefully) representative

of future ones and that current transactions are also representative of future ones, at least

in the short- and medium-term future.

11Monthly updating is common practice to avoid an unreasonable amount of turnover and thus

transaction costs. During a month, from one day to the next, we hold number of shares fixed rather than

portfolio weights; in this way, there are no transactions during a month.
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Apart from wanting to use current transaction costs, we also want to be realistic and

use stock-specific transactions costs. To this end, we use the model of Briere et al. (2020),

which works by modeling stock-specific bid-ask spreads and then taking transaction costs

to be a constant fraction (across stocks) of these spreads. In particular, they propose to

model the log bid-ask spread of stock i at day t as a linear function of past log volatility.

The problem is that volatility is unobserved even in hindsight, so in an initial step a

feasible “version” of volatility is taken to be the Garman and Klass (1980) intraday

estimate using past OHLC price data; see Equation [11.15] of Briere et al. (2020):

σGK
t,i

..=

√√√√ 1

252

252∑
s=1

1

2
log

(
Ht−s,i

Lt−s, i

)2

− (2 log 2− 1) log

(
Ct−s,i

Ot−s,i

)2

. (3.1)

If the complete OHLC information is not available for all past 252 days, we base the

estimate on the corresponding formula applied only to the days when the complete

information is available, of which there must be at least 240 days by our rules above.

Based on a regression analysis the authors then propose the following linear

approximation for the log bid-ask spread of stock i on day t (see their Table 11.3):

log bast,i ≈ −4.137 + 0.777 log σGK
t,i ,

which results in the approximated transaction cost of stock i on day t as follows:

ct,i ..=
1

2
exp

(
−4.137 + 0.777 log σGK

t,i

)
. (3.2)

Here, using a constant multiplier across stocks, we equate transaction cost to one half of

the bid-ask spread, which is a common convention. Briere et al. (2020) actually propose 0.4

instead of 0.5 as the multiplier (see their Table 11.1) but we prefer to stick to the commonly

used and somewhat more conservative value of 0.5.

Finally, with some abuse of notation, the approximation we use in the problem

formulation (2.9)–(2.12) is given by ch,i ..= cth,i, where it should be recalled that th denotes

the day t that corresponds to portfolio-selection date h. Although an approximation

only itself, it is certainly more realistic than assuming a constant trading cost across

stocks, which is still the norm in the related academic literature. In our experience, the

transaction-cost model of Briere et al. (2020) is a realistic place-holder by default, but

any applied researcher who already holds a strong preference for some alternative model

is welcome to use it instead, as our methodology is not tied to a specific transaction-cost

model. For some alternative models, see Hasbrouck (2009), Novy-Marx and Velikov (2016),

Abdi and Ranaldo (2017), Ardia et al. (2024), and the references therein.

To get an idea what typical trading costs look like using approximation (3.2), we carry

out the following exercise: For every portfolio-selection date h = 1, . . . , 275, take the
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vector of the N = 1, 000 approximate trading costs corresponding to the stocks in the

new portfolio. Based on this vector, compute the minimum, the first decile, the first

quartile, the median, the third quartile, the ninth decile, and the maximum. Then, for

each of these seven quantiles q ∈ {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}, compute the average over

the 275 portfolio-selection dates h; note that, with some abuse of terminology, we call the

minimum the 0 quantile and the maximum the 1 quantile. The results are reported in

Table 3.1. As can be seen, for example, the median transaction cost is 3.6 bps on average.

It can also be seen that there is considerable variation across transaction cost, as the 0.9

quantile is, in terms of the average, almost twice as large as the 0.1 quantile; therefore,

assuming a constant transaction cost across stocks is unrealistic.

Quantile 0.0 0.1 0.25 0.5 0.75 0.9 1.0

Average 1.7 2.7 3.1 3.6 4.3 5.2 10.0

Table 3.1: Average quantiles of approximate trading costs; the unit is 1 basis point. At each

portfolio-selection date h = 1, . . . , 275, the seven listed quantiles are computed from the

vector of N = 1, 000 approximate trading costs (of the stocks in the new investment

universe) according to formula (3.2). Then, for each quantile, the average over the 275

portfolio-selection dates is reported.

3.3 Computing Returns Net of Transaction Costs

We need to be careful about how we compute oos-ntc returns, (where the acronym oos-ntc

stands for “out-of-sample and net(-of)-transaction-costs”), and we need to state our

method clearly. The problem is that we have daily portfolio returns but update the

portfolio only every month, that is, every 21 days. In terms of the average oos-ntc return

it would not matter if we paid the transaction costs in full at once. But doing so would

unduly affect the standard deviation of the returns (which also enters our performance

criteria below), since only one out of twenty-one returns would take the full hit; so instead

we should spread out evenly the incurred transaction cost over all 21 days in the upcoming

holding period, that is, over the stretch {th, . . . , th + 20}. The cleanest way to do this is

in terms of the net-asset value (NAV) series of the portfolio.

At the first portfolio-selection date h = 1, we (somewhat cavalierly) ignore transaction

costs, since at this date the portfolio is not updated but formed for the first time.12 Based

12We are not investigating how to build a portfolio once from scratch but how to update a portfolio

repeatedly through time.
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on an (arbitrary) starting value X0, one invests amount X0 according to weight vector w1

at the beginning of day 1.

Since the value of X0 is irrelevant for our purposes, we set it to X0
..= 1 for convenience.

The initial stretch of the NAV series, namely {Xt}21t=1, is determined by letting the portfolio

run for 21 days, keeping the number of shares (rather than the portfolio weights) fixed

over time:

∀t = 1, . . . , 21 Xt = w′
1Π

t
s=1(1 + rs) ,

where multiplication of two vectors is understood to be element-wise, that is,

(a1, . . . , aN)
′ · (b1, . . . , bN)′ ..= (a1b1, . . . , aNbN)

′ .

By the principle of recursion, to define the NAV series over the entire oos period, it now

is sufficient to specify our “recipe” for a generic date h > 1. Denote by Xt the NAV of

the portfolio at the end of day t where, of course, “net” also means “net of transaction

costs”. The transaction cost incurred at portfolio-selection date h is given by τh ·Xth−1

with τh given by (2.7). In an initial step, we derive a no-transaction-cost asset-value series

{X̃th , . . . , X̃th+20} as follows: Invest amount Xth according to weight vector wh at the

beginning of day th and let the portfolio run for 21 days, holding the number of shares

(rather then the portfolio weights) fixed:

∀j = 0, . . . , 20 X̃th+j = Xth−1 · w′
hΠ

j
s=0(1 + rth+s) .

The NAV series is then defined as

∀j = 0, . . . , 20 Xth+j
..= X̃th+j − (τh ·Xth−1)

j + 1

21
.

This convention corresponds to paying off the transaction cost incurred evenly over the 21

days in the upcoming holding period.13

In this way, a NAV series {Xt}Tt=0 is obtained, with X0 = 1 by our above convention.

From the NAV series one then backs out the oos-ntc returns as follows:

∀t = 1, . . . T xt
..=

Xt

Xt−1

− 1 . (3.3)

The series {xt}Tt=1 then forms the basis for performance evaluation.

Last but not least, in this context we can also detail how w∗
h is obtained, the vector of

portfolio weights at the end of holding period h:

w∗
h ∝ wh · Π20

s=0(1 + rth+s) , (3.4)

where the symbol ∝ stands for “proportional to”; since the weights need to some up

to one, specifying the proportional weights is obviously sufficient.

13It is tacitly assumed here that no interest will be charged by paying off the cost over the 21 upcoming

days instead of paying it off in full at once on date h.

15



4 Empirical Study

4.1 Investment Strategies

We consider four portfolio formulations:

• GMV: (2.9) and (2.11).

• GMV-130-30: in addition (2.12) with κ = 1.6.

• Marko: (2.9)–(2.11).

• Marko-130-30: in addition (2.12) with κ = 1.6.

To judge the benefit of accounting for transaction costs at the portfolio-selection stage,

the portfolios GMV and Marko are of leading interest us. Since portfolio managers in the

industry often face additional constraints, we also include the portfolios GMV-130-30 and

Marko-130-30 as a real-life robustness check.

4.2 Estimators in the Horse Race

We consider two estimators Σ̂h of the covariance matrix Σh:

• NL: the static nonlinear shrinkage estimator of Ledoit and Wolf (2022b, Section 4.5),

termed QIS (Quadratic-Inverse Shrinkage) estimator.

• DCC-NL: the dynamic multivariate GARCH estimator of Engle et al. (2019). Note

that we use the QIS estimator to estimate the correlation targeting matrix C instead

of the QuEST function; see their Section 3.3.

As per the suggestion of Engle et al. (2019), we use the previous 1,260 days as input to

the dynamic DCC-NL estimator, which roughly corresponds to using 5 years of past data.

On the other, we only use 630 days as input to the static NL estimator, which roughly

corresponds to using 2.5 years of past data. The reason is that that a static estimator

changes (much) more slowly compared to a dynamic estimator if the same number of

days is used as input. Another way to look at this issue is that a dynamic estimator

down-weights the distant past relative to the recent past via its model structure; on the

other hand, a static estimator gives the same weight to all days in the estimation window.

Therefore, using a shorter estimation window can be seen as a crude weighting scheme

pertaining to the longer window comprising 1,260 days: give equal weight to all 360 days

in the short window of “recent past” and zero to all 360 days in the remaining window of

“distant past”.
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As a simple-minded benchmark for the GMV portfolios, we include the equally-weighted

portfolio, called EW which de facto assumes that the covariance matrix is proportional to

the identity matrix.

The portfolios Marko and Marko-130-30 need an estimator µ̂h in addition. For simplicity

and reproducibility, we use the well-known momentum factor (or simply momentum for

short) of Jegadeesh and Titman (1993). For a given portfolio-selection date h and a given

stock, the momentum is the geometric average of the previous 252 returns on the stock but

excluding the most recent 21 returns; in other words, one uses the geometric average over

the previous year but excluding the previous month. Collecting the individual momentums

of all the N stocks contained in the new universe then yields µ̂h.

As a simple-minded benchmark for the Marko portfolios we include the equally-

weighted portfolio of the top-quintile stocks (according to momentum). This portfolio is

obtained by sorting the stocks, from lowest to highest, according to their momentum and

then putting equal weight on all the stocks in the top 20%, that is, in the top quintile. We

call this portfolio EW-TQ. We then use the value of bh implied for the EW-TQ portfolio

as input in the constraint (2.11), that is, bh is the average momentum of the stocks in the

EW-TQ portfolio.14

4.3 Performance Measurement

We report the following three out-of-sample performance measures for each scenario,

where the acronym oos-ntc stands for “out-of-sample and net-of-transaction-costs” and

the corresponding returns are defined in (3.3):

• AV: We compute the average of the 8,568 oos-ntc returns in excess of the risk-free

rate and then multiply by 252 to annualize.

• SD: We compute the standard deviation of the 8,568 oos-ntc returns in excess of

the risk-free rate and then multiply by
√
252 to annualize.

• SR: We compute the (annualized) Sharpe ratio as the ratio AV/SD.

As stated in the introduction, there are two possible goals for a backtest exercise:

(i) the evaluation of the quality of estimated input parameters (like Σ̂h) and (ii) the

evaluation of actual investment strategies. The goal in this paper is the second one and,

therefore, for all four portfolio formulations considered, the leading performance criterion

of interest is SR.15

14In this way, bh varies over time, as it makes sense to use a lower value for bh after a bear market

than after a bull market.
15As an example for the first goal, if one wants to evaluate the quality of a covariance matrix estimator Σ̂h,

the canonical method is as follows: Focus on the GMV portfolio without transaction costs, that is, portfolio
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In addition, we report the following two summary statistics pertaining to the weight

vectors:

• TO: Average monthly turnover defined as 1
274

∑275
h=2 ||w∗

h−1 − wh||1.

• GE: Average gross exposure defined as 1
275

∑275
h=1 ||wh||1.

4.4 Transaction-Cost Penalty

Our problem formulations account for transaction costs via the penalty parameter λ

in (2.9). Unfortunately, there is no theory dictating an optimal choice of λ. Instead we

try out different values in a certain grid and report the various measures for each choice.

The grid considered is

λ ∈ {0, 2.5, 5, 7.5, 10, 15, 20, 50} ,

where the choice λ = 0 corresponds to the status quo in the academic literature: ignore

transaction costs at the portfolio-selection stage and simply pay them after the fact; as

we aim to show, doing so is typically sub-optimal with respect to SR.

Detailed results can be found in Tables B.1–B.4 in the appendix. In order to mitigate

the effects of “cherry picking” and “Monday-morning quarterbacking”, we limit ourselves

to picking a common “good” value of λ across the four different portfolios considered and

also the two covariance matrix estimators considered. The following general findings can

be observed.

• Increasing the penalty parameter λ reduces TO. This is a strict monotonic relation

which holds in every scenario, as can be anticipated from theory.

• Although the relation is not strictly monotonic, increasing λ tends to increase AV.

This makes sense, since penalizing transaction costs more reduces them, which

benefits the average return net of transaction costs.

• Although the relationship is not strictly monotonic, increasing λ tends to increase

SD. This makes sense, since the objective is to minimize the variance of the portfolio

return subject to a penalty on transaction costs; and the higher the penalty, the

less leeway one has in achieving the objective of minimizing the variance.

• The previous two relations imply, on balance, an inverse-U-shaped (and thus concave)

relation between λ and SR: As λ increases, typically SR first rises and then it falls

again.

Based on these findings, we select λ = 7.5 as a common ’good’ value.

formulation (2.9) with λ = 0 and (2.11); use oos instead of oos-ntc returns, that is, ignore transaction

costs; then use SD as the leading performance criterion of interest.
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4.5 Results

4.5.1 Portfolios on Their Own

Armed with these choices, for any portfolio formulation we now present the results for five

strategies: the simple-minded benchmark (EW respectively EW-TQ), NL with penalty

parameters λ ∈ {0, 7.5}, and DCC-NL with penalty parameters λ ∈ {0, 7.5}. Further,

to keep the column labeling in the tables compact, we use the following conventions:

NLλ stands for using NL with penalty parameter λ, whereas DCC-NLλ stands for using

DCC-NL with penalty parameter λ. The results are presented in Tables 4.1 and 4.2.

EW NL0 NL7.5 DCC-NL0 DCC-NL7.5

GMV Portfolio

AV 10.41 6.75 7.71 7.63 7.69

SD 21.64 9.89 9.86 8.14 7.20

SR 0.48 0.68 0.78 0.94 1.07

TO 0.10 1.30 0.38 2.84 1.08

GE 1.00 4.41 4.24 3.14 3.51

GMV-130-30 Portfolio

AV 10.41 8.84 8.61 6.82 7.06

SD 21.64 10.51 10.59 7.80 7.46

SR 0.48 0.84 0.81 0.87 0.95

TO 0.10 0.45 0.24 1.76 1.11

GE 1.00 1.60 1.60 1.60 1.60

Table 4.1: Annualized performance measures (in percent) for various estimators of the

GMV and GMV-130-30 portfolios. AV stands for average; SD stands for standard deviation;

and SR stands for Sharpe ratio. All measures are based on 5,775 daily out-of-sample

returns net of transaction costs and are in excess of the risk-free rate. Furthermore,

TO stands for average monthly turnover and GE stands for average gross exposure.

Based on these tables, the following conclusions can be drawn:

• Six of the eight scenarios considered benefit from penalizing transaction costs, that is,

from using λ = 7.5 as opposed to λ = 0. The two exceptions are the GMV-130-30

and Marko-130-30 portfolios in conjunction with NL. The intuitive reason is that

these two scenarios enjoy relatively low turnover already for λ = 0 so that penalizing

the transactions cost does not help but instead hurts (though not by much).

• As expected, the improvements from using λ = 7.5 are consistent and larger for DCC-

NL, since this dynamic estimator of the covariance matrix incurs higher turnover
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EW-TQ NL0 NL7.5 DCC-NL0 DCC-NL7.5

Marko Portfolio

AV 9.51 6.88 7.82 6.75 7.16

SD 24.40 11.23 11.32 9.00 8.53

SR 0.39 0.61 0.69 0.75 0.84

TO 0.56 1.72 0.68 3.18 1.39

GE 1.00 4.85 4.79 3.66 4.00

Marko-130-30 Portfolio

AV 9.51 8.01 7.94 6.24 6.43

SD 24.40 13.10 13.14 9.36 9.31

SR 0.39 0.61 0.60 0.67 0.69

TO 0.56 0.88 0.66 1.77 1.34

GE 1.00 1.60 1.60 1.60 1.60

Table 4.2: Analogous to Table 4.1 but now for the Marko and Marko-130-30 portfolios.

compared to the static estimator NL.

• DeMiguel et al. (2009a) show that constraining portfolio norms (such as imposing

a gross-exposure constraint) improves performance when one uses the sample

covariance matrix as the estimator of Σh. But if one uses a sophisticated estimator

instead, such as NL or DCC-NL, this is no longer necessarily the case. In particular,

for DCC-NL the performance of the raw portfolio is superior to the performance of

its 130-30 counterpart in both the GMV and the Marko case. On the other hand,

for NL the story is mixed: the raw portfolio performs worse in the GMV case but

better in the Marko case.

Arguably, the raw portfolios are not suitable for mainstream players in the industry,

such as mutual fund managers, because of their high (average) gross exposure, but

they might still be suitable for specialized players who run big leverage ratios, such

as hedge-fund managers.

• For all four portfolio formulations, the winner is always the DCC-NL method with

λ = 7.5. In particular, for the raw GMV and Marko portfolios, this method more

than doubles the SR of the corresponding simple-minded benchmarks EW and

EW-TQ. But even for the constrained GMV-130-30 and Marko-130-30 portfolios,

the SR improves by at least 75% relative to the corresponding simple benchmarks.

DeMiguel et al. (2009b) study various portfolio strategies based on estimated input

parameters and claim that “none is consistently better than the EW rule [net of
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transaction costs]”. Our results are in clear disagreement with this claim.16

• For any given portfolio formulation, starting from the “simplest” portfolio — using

the static NL estimator of the covariance matrix and do not account for transaction

costs at the portfolio-selection stage (λ = 0), that is, the NL0 portfolio — one can

think of two separate ways to improve oos portfolio performance: (i) use a dynamic

estimator of the covariance matrix (DCC-NL) and (ii) account for transaction costs

at the portfolio-selection stage (λ > 0). In terms of marginal effects, employing (i)

alone (DCC-NL0) is more beneficial than employing (ii) alone (NL7.5). Therefore,

even though problem (2.9)–(2.12) is of static nature, which we then solve repeatedly

across the H = 275 portfolio selection dates, it clearly pays off to use a more accurate

estimator of the (conditional) covariance matrix, which is the dynamic DCC-NL

estimator. In terms of overall effect, employing both (i) and (ii) together is the most

beneficial approach in the end (DCC-NL7.5).

Remark 4.1 (Statistical significance). It might be of interest to study whether the

DCC-NL method with λ = 7.5 delivers a Sharpe ratio that is significantly higher than

the DCC-NL method with λ = 0. To this end, for each of the four portfolio formulations

considered, we compute a two-sided p-value for the equality of Sharpe ratios using the

prewhitened HAC method of Ledoit and Wolf (2008, Section 3.1). The resulting p-values

— in the order of the formulations GMV, GMV-130-30, Marko, and Marko-130-30 — are

0.003, 0.001, 0.054, and 0.596, respectively. Hence, for two of the four formulations we

find outperformance at the 5% significance level whereas for three of the four formulations

we find outperformance at the 10% significance level.

Remark 4.2 (Choosing λ for other strategies). Intuitively, there are many variables that

may influence a good choice of the transaction-cost penalty parameter λ in practice, such as

the size of the investment universe, the magnitude of (typical) transaction costs, the

number and nature of constraints in place (such as gross-exposure constraints, maximum(-

position constraints, industry constraints, factor-exposure constraints, etc.) and, critically,

the portfolio-updating frequency. Ceteris paribus, the more frequently a portfolio is

updated (such as daily vs. monthly updating), the larger a good value of λ needs to be. If,

for a given scenario, one considers the Sharpe ratio as a function of λ, then the good news

based on our (necessarily) limited results is that the function is rather flat near its ‘peak’

so that the exact choice of λ is not overly critical, as long as one gets the “neighborhood”

16Part of the reason is that they consider an unduly large transaction cost of 50 bps (constant across

stocks); such a cost may have been realistic decades ago but it is no longer anywhere near the costs

investors face today. Another part of the reason is the particular list of strategies the authors consider,

for reasons not clear, leaves out some promising contenders.
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right. Therefore, for a given scenario, a backtest over a reasonably long window of past

data (say ten to fifteen years of data) should provide enough guidance to choose a good

value of λ in practice. As an alternative to the Sharpe ratio criterion, a portfolio manager

can also work backwards from an average turnover rate that he/she is comfortable with,

and then reverse-engineer through a backtest the value of λ that delivers it.

If one is concerned that the “optimal’ value of λ might change over time, a rolling-

window approach based on a relatively short evaluation window, of say y years, can be

taken. In this case one needs a (total) window going back 5 + y years; this is because at

the beginning of the evaluation period one needs five years of past data to estimate the

covariance matrix (ideally using DCC-NL). Next one runs a backtest as above over the

evaluation period of of y years to determine the “optimal” λ. This value of λ is then used

for a period of m months. Then one rolls forward m months and repeats the procedure.

In machine learning lingo, the period of five years (to estimate the covariance matrix and

perhaps also the vector of expected returns) corresponds to the training set, the evaluation

period of y years to determine the “optimal” λ corresponds to the validation set, and the

period of m months to compute (pseudo) oos returns corresponds to the test set. One can

even run a “hyper backtest” to determine “optinmal” values of y and m. In doing such

an exercise one clearly moves from the academic realm to the practitioner realm; hence,

we shall abstain from such a “hyper backtest” in this paper.

4.5.2 Distance Between Portfolios

In this section, we study the average distance of a portfolio for a given formulation (GMV,

GMV-130-30, Marko, Marko-130-30) from two reference portfolios as a function of the

penalty parameter λ. The two reference portfolios are (i) the corresponding portfolio with

λ = 0 and (ii) the equally-weighted (EW) portfolio. We now describe how to compute the

average distance for a given combination of portfolio formulation can covariance-matrix

estimator. For a portfolio-selection date h and a value of the penalty parameter λ, denote

the portfolio weights by wλ,h,i and the reference-portfolio weights by wref,h,i, for i = 1, . . . N .

We then compute the distance17 between the two portfolios, defined as the sum of the

absolute differences of the respective portfolio weights, by

|dλ,h| ..= ||wλ,h − wref,h||1 =
N∑
i=1

|wλ,h,i, − wref,h,i| (4.1)

17One could also interpret this distance as a turnover, if one were to turn over the portfolio defined by

the weigh vector wλ,h to the reference portfolio defined by the weight vector wref,h, or vice versa
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and average these distances over the 274 portfolio-selection dates h = 2, . . . , 275 to obtain

the average-distance measure

|dλ| ..=
1

274

275∑
h=2

|dλ,h| . (4.2)

(We exclude h = 1 in this average because, by definition, the portfolio weights w1,λ are

equal across λ.) Finally, we plot the measures |dλ| against λ ∈ {0, 2.5, . . . , 20, 50}. There
are a total of 16 such plots:

• four portfolio formulations: GMV, GMV-130-30, Marko, and Marko-130-30; and

• two covariance-matrix estimators: NL and DCC-NL; and

• two reference portfolios: λ = 0 and EW.

Figure 4.1 displays the eight plots pertaining to GMV-type formulations whereas Figure 4.2

displays the eight plots pertaining to Marko-type formulations. The results can be

summarized as follows:

• In any scenario, meaning for any combination of portfolio formulation and covariance-

matrix estimator, the average-distance measure |dλ| relative to the reference portfolio

λ = 0 increases in λ. This makes sense that, since the larger the value of λ is, the

more is the portfolio forced to stay close to the holding portfolio, as opposed to

getting close to the reference portfolio λ = 0.

• On the other hand, increasing the value of λ does not mean that the portfolio

gets closer to the reference portfolio EW. In many scenarios, in particular all those

with a 130-30 constraint, the average-distance measure |dλ| relative to the EW

portfolio is almost constant across λ. In the scenarios without 130-30 constraint,

the average-distance measure |dλ| relative to the EW portfolio decreases in λ in one

scenario, is nearly constant across λ in one scenario, and actually increases in λ in

two scenarios. Hence, on balance, increasing λ does not mean getting closer to EW;

instead, it means staying closer to the holding portfolio.

• As can be clearly seen, average distances relative to the reference portfolio λ = 0 are

generally much lower for scenarios with a 130-30 constraint. This makes sense, since

by the triangle inequality the distance (4.1), and therefore also the average-distance

measure (4.2), is bounded above by 3.2 in such a case. On the other hand, without

a 130-30 constraint, there is no (guaranteed) upper bound. To look at it from a

slightly different angle, portfolio formulations with larger typical gross exposures

also leas to larger typical average distances between a portfolio for a given λ and

the reference portfolio λ = 0.
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Figure 4.1: Average-distance measure (4.2) as a function of the penalty parameter λ

relative to two reference portfolios. These graphs are for the four GMV-type portfolio

formulations.
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Figure 4.2: Average-distance measure (4.2) as a function of the penalty parameter λ

relative to two reference portfolios. These graphs are for the four Marko-type portfolio

formulations.

5 Conclusion

In this paper, we have proposed a method to account for transaction costs at the portfolio-

selection stage in the context of Markowitz portfolio selection. Doing so often increases

the Sharpe ratio net of transaction costs compared to the status quo in the literature

which amounts to ignoring the transaction costs at the portfolio-selection stage and simply

paying them after the fact. Importantly, and also deviating from the status quo in the
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literature, we incorporate the fact that transaction costs are stock-specific instead of taking

the easy route of assuming them to be equal. The benefit of our proposal is especially

pronounced when dynamic estimators of the covariance matrix are used as inputs in

the Markowitz formulations. The reason is that dynamic estimators, although being

more accurate, typically generate higher turnover compared to static estimators and,

therefore, investment strategies based upon them suffer more from transaction costs. We

hope that our proposal will be of future use to anyone interested in devising Markowitz

portfolio-selection strategies that have desirable performance net of transaction costs.

Although the focus of this paper has been on the covariance matrix, an obvious avenue

for future research is to use the technology introduced here to further tame the factor

zoo (Feng et al., 2020) by weeding out those alphas that are over-dependent on high-

transaction-cost stocks and turn over too much to pay for themselves — but only those.

In this context, ignoring transaction costs is too lenient, whereas charging a constant

transaction cost to every stock is unrealistic, so our method might prove to be just the

right “scalpel”.
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López de Prado, M. M. (2020). Machine Learning for Asset Aanagers. Cambridge

University Press, Cambridge.

Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7:77–91.

Michaud, R. (1989). The Markowitz optimization enigma: Is optimized optimal? Financial

Analysts Journal, 45:31–42.

Neely, C. J., Rapach, D. E., Tu, J., and Zhou, G. (2014). Forecasting the equity risk

premium: the role of technical indicators. Management science, 60(7):1772–1791.

Novy-Marx, R. and Velikov, M. (2016). A taxonomy of anomalies and their trading costs.

The Review of Financial Studies, 29(1):104–147.

Tu, J. and Zhou, G. (2011). Markowitz meets Talmud: A combination of sophisticated

and naive diversification strategies. Journal of Financial Economics, 99(1):204–215.

28



A Non-Markowitz Paradigms: Two Examples

A.1 Post-Processing the Standard Markowitz Solution

As a representative example of this paradigm, Frahm and Memmel (2010) estimate the

unconstrained GMV portfolio, which is the portfolio given by (2.1) and (2.3), dropping

the constraint (2.2). This problem has the following analytical solution:

wGMV =
1
′Σ−1

1′Σ−11
.

Denote the sample covariance matrix by S. Then the corresponding plug-in solution is

given by

ŵ =
1
′S−1

1′S−11
.

(Here we tacitly assume that the number of observations exceeds the number of stocks,

since otherwise S is not invertible.) Unless the number of stocks is very small relative to

the number of observations, this solution is know to have poor oos performance. Frahm

and Memmel (2010) propose to modify it as follows:

ŵmod ..= αwEW + (1− α)ŵ where wEW ..= (1/N, . . . , 1/N)′ .

Therefore, the proposed modification is a convex combination of the equally-weighted

(EW) portfolio and the sample-based solution ŵ; another way to look at it is that the

sample-based solution ŵ is linearly shrunk towards the EW portfolio. In practice, one

has to work out an optimal choice of the shrinkage intensity α ∈ [0, 1] and Frahm and

Memmel (2010) offer a corresponding solution.

We point that (i) this method cannot handle the case N > T because it requires

the sample covariance matrix to be of full rank; (ii) it is not clear how to account for

transaction costs at the portfolio-selection stage and (iii) it is not clear how to incorporate

additional constraints such as (as the leading case) a gross-exposure constraint.

A.2 Specifying a Different Optimization Program

As a representative example of this paradigm, consider the following problem formulation:

max
w∈RN

w′µ (A.1)

subject to w′Σw ≤ σ2 , (A.2)

where σ2 is an upper bound on the portfolio variance. This problem has the following

analytical solution:

wSR ..=
σ√
θ
Σ−1µ where θ ..= µ′Σ−1µ . (A.3)

1



(When the returns are expressed in excess of the risk-free rate, (A.3) is also known as

the maximum Sharpe ratio (MSR) portfolio.) The standard feasible solution would be to

plug in the sample mean vector for µ and the sample covariance matrix for Σ in (A.3);

but, as discussed before, the resulting portfolio performs poorly out of sample. Instead

the proposal of Ao et al. (2019) works as follows. First, the problem (A.1)–(A.2) can be

re-expressed as an unconstrained population regression problem. Second, the population

regression problem can be approximated by a sample analog (based on past observations).

Third, the regression problem involves the unknown parameter θ which (under normality)

can be estimated in an unbiased fashion as

θ̂ ..=
(T −N − 2)θ̂s −N

T
, (A.4)

where T denotes the number of observations, N denotes the number of stocks, and θ̂s

denotes the sample analog of θ. Fourth, the sample analog of the regression problem

is estimated via the LASSO instead of OLS. A crucial feature is that no sophisticated

estimators of µ and Σ are needed.

We point that (i) this method cannot handle the caseN > T because then formula (A.4)

results in a negative estimator θ̂; (ii) it is not clear how to account for transaction costs

at the portfolio-selection stage and (iii) it is not clear how to incorporate additional

constraints such as (as the leading case) a gross-exposure constraint.
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B Additional Tables

λ 0 2.5 5.0 7.5 10 15 20 50

GMV Portfolio: NL

AV 6.75 7.33 7.60 7.71 7.77 7.70 7.93 8.38

SD 9.89 9.87 9.86 9.86 9.88 9.94 10.01 10.46

SR 0.68 0.74 0.77 0.78 0.79 0.77 0.79 0.80

TO 1.30 0.66 0.47 0.38 0.32 0.25 0.21 0.12

GE 4.41 4.34 4.29 4.24 4.19 4.11 4.04 3.73

GMV Portfolio: DCC-NL

AV 7.63 7.74 7.70 7.69 7.59 7.69 7.84 7.73

SD 8.14 7.52 7.27 7.20 7.19 7.24 7.32 7.92

SR 0.94 1.03 1.06 1.07 1.06 1.06 1.07 0.98

TO 2.84 1.69 1.29 1.08 0.95 0.79 0.69 0.47

GE 3.14 3.20 3.36 3.51 3.62 3.81 3.95 4.39

Table B.1: Annualized performance measures (in percent) for various estimators of the

GMV portfolio. AV stands for average; SD stands for standard deviation; and SR stands

for Sharpe ratio. All measures are based on 5,775 daily out-of-sample returns net of

transaction costs and in excess of the risk-free rate. Furthermore, TO stands for average

monthly turnover and GE stands for average gross exposure.
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λ 0 2.5 5.0 7.5 10 15 20 50

GMV-130-30 Portfolio: NL

AV 8.84 8.77 8.70 8.61 8.47 8.25 8.11 8.21

SD 10.51 10.54 10.57 10.59 10.63 10.70 10.76 11.01

SR 0.84 0.83 0.82 0.81 0.80 0.77 0.75 0.75

TO 0.45 0.33 0.27 0.24 0.21 0.18 0.16 0.10

GE 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

GMV-130-30 Portfolio: DCC-NL

AV 6.82 7.06 7.14 7.06 7.07 7.12 7.07 7.36

SD 7.80 7.64 7.55 7.46 7.40 7.35 7.38 7.73

SR 0.87 0.92 0.95 0.95 0.96 0.97 0.96 0.95

TO 1.76 1.43 1.24 1.11 1.02 0.89 0.80 0.54

GE 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

Table B.2: Annualized performance measures (in percent) for various estimators of the

GMV-130-30 portfolio. AV stands for average; SD stands for standard deviation; and

SR stands for Sharpe ratio. All measures are based on 5,775 daily out-of-sample returns

net of transaction costs and in excess of the risk-free rate. Furthermore, TO stands for

average monthly turnover and GE stands for average gross exposure.
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λ 0 2.5 5.0 7.5 10 15 20 50

Marko Portfolio: NL

AV 6.88 7.66 7.91 7.82 7.72 7.41 7.24 6.91

SD 11.23 11.23 11.26 11.32 11.39 11.56 11.71 12.68

SR 0.61 0.68 0.70 0.69 0.68 0.64 0.62 0.54

TO 1.72 1.05 0.81 0.68 0.60 0.50 0.44 0.31

GE 4.85 4.81 4.79 4.79 4.79 4.81 4.83 5.06

Marko Portfolio: DCC-NL

AV 6.75 7.27 7.21 7.16 6.97 6.97 7.07 6.87

SD 9.00 8.60 8.50 8.53 8.58 8.78 8.99 9.90

SR 0.75 0.84 0.85 0.84 0.81 0.79 0.79 0.69

TO 3.18 2.05 1.62 1.39 1.24 1.06 0.95 0.69

GE 3.66 3.70 3.85 4.00 4.14 4.37 4.57 5.36

Table B.3: Annualized performance measures (in percent) for various estimators of the

Marko portfolio. AV stands for average; SD stands for standard deviation; and SR stands

for Sharpe ratio. All measures are based on 5,775 daily out-of-sample returns net of

transaction costs and in excess of the risk-free rate. Furthermore, TO stands for average

monthly turnover and GE stands for average gross exposure.
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λ 0 2.5 5.0 7.5 10 15 20 50

Marko-130-30 Portfolio: NL

AV 8.01 8.03 7.99 7.94 7.86 7.77 7.64 7.32

SD 13.10 13.10 13.12 13.14 13.17 13.24 13.31 13.80

SR 0.61 0.61 0.61 0.60 0.60 0.59 0.57 0.53

TO 0.88 0.78 0.71 0.66 0.61 0.55 0.50 0.36

GE 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

Marko-130-30 Portfolio: DCC-NL

AV 6.24 6.46 6.52 6.43 6.46 6.44 6.41 6.49

SD 9.36 9.30 9.28 9.31 9.38 9.46 9.62 10.79

SR 0.67 0.69 0.70 0.69 0.69 0.68 0.67 0.60

TO 1.77 1.57 1.44 1.34 1.26 1.15 1.06 0.80

GE 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

Table B.4: Annualized performance measures (in percent) for various estimators of the

Marko-130-30 portfolio. AV stands for average; SD stands for standard deviation; and SR

stands for Sharpe ratio. All measures are based on 5,775 daily out-of-sample returns net

of transaction costs and in excess of the risk-free rate. TO stands for average turnover

and GE stands for average gross exposure.
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