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Abstract

We study maximum-likelihood estimation and updating, subject to

computational, cognitive, or behavioral constraints. We jointly character-

ize constrained estimates and updating within a framework reminiscent of

a machine learning algorithm. Without frictions, the framework simplifies

to standard maximum-likelihood estimation and Bayesian updating. Our

central finding is that under certain intuitive cognitive constraints, sim-

ple models yield the most effective constrained fit to data—more complex

models offer a superior fit, but the agent may lack the capability to assess

this fit accurately. With some additional structure, the agent’s problem

is isomorphic to a familiar rational inattention problem.

1 Introduction

We study an economic agent who fits a statistical model to observed data and

uses the model to guide her beliefs about unobserved variables. The agent faces

frictions in evaluating the model’s fit to the data and in her ability to update

her beliefs about unobserved counterparts of the data. What statistical model

should the agent adopt, when she recognizes her own limitations in applying

this model?

This issue is also prevalent in machine learning, where algorithms fit statisti-

cal models to data. Like humans, machines encounter limitations in evaluating

candidate probability distributions and updating beliefs about latent variables

∗We thank Sandro Ambuehl, Mira Frick, Heidi Thysen, Ryota Iijima, Rava da Silveira, Ran
Spiegler, Colin Stewart and various seminar and workshop audiences for comments. We thank
Pavel Kocourek for research assistance. Steiner has benefited from grant GAČR 24-10145S.
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from observables. The machine learning literature has made substantial concep-

tual progress on these challenges, providing insights that can be translated to

understanding the cognition of behavioral economic agents. Conversely, stan-

dard analytical techniques from economic theory are useful for the structural

exploration of leading machine learning algorithms.

For illustration, consider a human resources manager evaluating job candi-

dates. The observed variable x specifies a candidate’s educational attainment,

demographic information, references, and other information in the candidate’s

file. The unobserved variable z represents the latent characteristics of the can-

didate (such as intelligence, socioeconomic background, talent, creativity, or

reliability) that are potentially relevant to the employer. The manager observes

a sample (xi)
n
i=1 of job applications independently drawn from an unknown dis-

tribution q0(x), but does not observe the corresponding characteristics (zi)
n
i=1

of the applicants. The manager has preconceived partial knowledge of the joint

distribution of latent characteristics and observables in the general population

of the current hiring season. She seeks to form beliefs about the characteristics

of the job candidates in her sample to guide her (here unmodeled) hiring deci-

sions. Similar to the asymptotic estimation literature, we focus on large samples

by letting n→∞.

The agent’s preconceived partial knowledge is represented by a set P of

prospective statistical models. For each model—a probability distribution p(x, z) ∈
P of latent and observable variables in the general population—the agent eval-

uates the likelihood of the observed sample and then selects the model with the

best fit, as in maximum-likelihood estimation.

We depart from the standard framework by assuming that our agent, be-

sides considering the observables xi, also reasons about the corresponding latent

variables zi. Accordingly, we refer to (xi, zi)
n
i=1 as the extended sample and let

the agent form a belief q(x, z) about its empirical frequencies. To evaluate the

likelihood of a candidate model p(x, z), the agent then computes the fit of the

model p(x, z) to the hypothesized frequencies q(x, z), accounting for the number

of extended samples that are consistent with q(x, z).

The existing economic literature assumes that the agent flawlessly computes

the fit of each model in P to the data. Instead, we assume that the agent faces

computational and other frictions in calculating the fits.

We consider three combinations of frictions the agent may encounter. First,

the agent may hold a model p(x, z) that induces the correct belief p(x) about the

distribution of observables, and face no updating frictions. Her belief p(zi | xi)
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about the characteristics of the candidate i is derived from Bayes’ rule applied

to her model p(x, z). For large samples, the law of large numbers implies that

the empirical frequencies of the extended sample satisfy q(x, z) = p(x, z).

Second, the agent may not know the true model that describes the general

population. For example, our manager may believe that educational attain-

ment depends on innate intelligence and socioeconomic background, but may

be uncertain about the functional form of the relationship. Hence, the agent

selects the model p(x, z) from a set P of considered models that maximizes the

likelihood of the observed data. Suppose this agent faces no updating friction,

which makes her reasoning about the large extended sample straightforward:

The sample of observables specifies the marginal frequencies q0(x) of x, and

for each x, the agent again forms Bayesian updates about the latent counter-

part of x. Thus, for a given model p, the agent concludes that the empirical

frequencies of the extended sample are q(x, z) = q0(x)p(z | x). Using familiar

combinatorial asymptotic approximations, we find that the agent’s evaluation

of the fit of each model p(x, z) approximates the standard likelihood
∏n
i=1 p(xi).

The fit, appropriately transformed, then equals −KL
(
q0(x) ‖ p(x)

)
, and the

agent thus selects the “least wrong” model—the model p(x, z) that minimizes

the Kullback-Leibler divergence between the true process q0(x) and the model’s

margin p(x), consistent with the standard results of White (1982) and Berk

(1966).1

In this paper, we focus on the third case in which the agent may not know

the true model and also faces an updating friction that precludes Bayesian up-

dating, thereby preventing the exact evaluation of models’ likelihoods. Again,

to evaluate the fit of a candidate model p(x, z), the agent forms a belief q(x, z)

about the frequencies of the extended sample and computes the model p’s fit

as the total p-likelihood of all extended samples with frequencies q(x, z). In

this case, however, the agent must draw q(x, z) from a set Q that specifies

the joint distributions considered while analyzing data. This set may include

all distributions from a simple parametric family, or the considered distribu-

tions may need to satisfy specific causal relationships, among other criteria.

For example, when assessing CVs, the human resources manager may overlook

the confounding effect of socioeconomic background on the relationship between

1In particular, when the agent is well specified, meaning that the correct model p is included
in P (in our example, if socioeconomic background and innate intelligence are the only factors
affecting educational attainment, and do so in a functional form considered by the manager),
then we replicate Wald (1949): the agent learns the true model.
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educational attainment and innate intelligence, or may apply some other simpli-

fying causal model. We assume that for a given model p(x, z), the agent selects

the frequencies q(x, z) ∈ Q of the extended sample that best fit the model p,

and refer to this fit as the constrained likelihood of the model p. Finally, the

agent selects the model p(x, z) with the highest constrained likelihood. We show

that this procedure results in the adoption of the model p(x, z) and the belief

q(x, z) about the frequencies of the extended sample, which jointly minimize

KL
(
q(x, z) ‖ p(x, z)

)
, subject to the two models being from the considered sets

of distributions.

Thus, in our framework, an agent selects a pair of models, p(x, z) ∈ P
and q(x, z) ∈ Q. The set P specifies the models that the agent considers as

potential data-generating processes. By appropriately specifying the set Q,

which captures the updating frictions, we develop a framework that relaxes

Bayes’ rationality, incorporates numerous concepts from behavioral economics,

and is amenable to the analytical methods of information design.

Importantly, the sets P and Q may differ. When thinking about the pool

of potential candidates, our human resources manager may perceive the latent

variables as causes of the observable variables. It is then natural for her to

organize her model in terms of a marginal distribution p(z) of the latent variables

and conditional distributions p(x | z), which describe how the latent variables

determine the observables. When assessing candidates, the manager observes

the empirical distribution q(x) of the job applications and must form updates

q(z | x) about candidates’ latent characteristics. An ideal reasoner recognizes

these two processes as different views of a single underlying relationship, but an

ordinary reasoner, constrained in her choice of p(z), p(x | z) and q(z | x), may

approach this relationship differently on the two occasions.

Section 2 presents the framework. Working backwards, we begin with the

updating process. We let the agent hold a candidate model p(x, z), and form a

belief q(x, z) about the extended sample. Initially, we examine a reduced-form

formulation that generalizes Bayes’ rule and is familiar from the variational

inference literature. We interpret the feasible set Q as capturing a variety of

cognitive constraints from behavioral economics. The analogy-based reasoning

of Jehiel (2005, 2022), the correlation neglect of Eyster and Rabin (2005), and

the causality modeled by directed acyclic graphs as in Spiegler (2016) all appear

as versions of the feasible set Q.

The constrained likelihood maximization that guides the agent’s belief q(x, z)

about the extended sample, for a given model p(x, z), is motivated in the vari-
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ational inference literature as a computationally tractable approximation to

Bayesian updating. We provide a precise foundation for this objective, demon-

strating that it emerges naturally from our maximum-likelihood estimation out-

lined above.

We then let the agent jointly select a generative model p(x, z) of the pro-

cess generating the data and a recognition model q(x, z) specifying the agent’s

updating. This leads us to an optimization problem known as a variational au-

toencoder, introduced by Kingma and Welling (2013) in the machine learning

literature as a feasible approximation to computationally intractable maximum-

likelihood estimation. Our interpretation of the problem is in the spirit of Luce

and Raiffa (1957), who conceptualize prior and updated beliefs as being jointly

determined to ensure their consistency.

Section 3 presents our first set of applications. We assume that the set P of

data-generating models considered by the agent has a permissive structure—the

choice of the marginal distribution of latent variables p(z) is unconstrained for

each choice of conditional distributions p(x | z). We develop two results. First,

the agent selects models that posit simple deterministic relationships between

some of the latent variables, thereby avoiding the complexity of stochastic rela-

tionships. Second, the agent exhibits rational expectations in the sense that her

prior belief p(z) equals the expected value of the updated belief q(z | x). For a

Bayesian agent, this relationship is an identity implied by Bayes’ rule. In our

case, the relationship can fail but holds for an optimally selected model, even

when the agent is misspecified and constraints prevent Bayesian updating.

Section 4 clarifies the relationship between our framework and the estab-

lished asymptotic results on misspecified estimation. When the updating con-

straint is relaxed, the agent accurately evaluates the fit of models, thereby re-

ducing our problem to the canonical results of Berk (1966) and White (1982).

Conversely, if the agent’s ability to update is restricted, she may favor a simpler

model whose fit she can efficiently evaluate over a correct but more complex

model. We illustrate this preference for simplicity with an example where the

agent exhibits correlation neglect, opting for a simpler model that overlooks

correlation but provides a higher fit under constraints than the accurate model.

Section 5 shows that when the constraints on our agent are sufficiently re-

laxed, her model-fitting problem becomes isomorphic to the rational inatten-

tion problem with entropic information costs. Consequently, insights from this

literature translate to our setting. By exploiting the local invariance of the ra-

tional inattention solution to changes in the prior distribution, we demonstrate
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that certain aspects of the agent’s constrained optimal models remain locally

invariant to alterations in the underlying true data-generating process. This

phenomenon leads to an effect reminiscent of base rate neglect. We derive an-

other simplicity result, showing that if the set of feasible posteriors is convex,

then the agent considers only a limited number of values of the latent variable.

Finally, Section 6 places our work within the literature.

2 The Model-Fitting Problem

Section 2.1 introduces the agent. Working backward, Section 2.2 assigns the

agent a fixed model p of the data-generating process and examines the agent’s

updating. The framework is generally motivated in the Bayesian statistics lit-

erature as a tractable approximation of Bayesian updating and includes Bayes’

rule as a special case. As explained in Section 2.3, this approach can be rational-

ized as a description of the agent’s deductive process when handling extensive

samples and their unobserved counterparts. Section 2.4 then addresses the com-

plete model-fitting problem, examining an agent who simultaneously selects a

model p and the attendant updates q.

2.1 Generative and Recognition Models

An agent considers a model p(x, z) ∈ ∆(X×Z) about a pair of random variables

x and z that attain values in finite sets X and Z. She observes the realization

x but not the realization z, and reasons about the likely value of z. We refer to

x as the observable variable, z as the latent variable, and the joint distribution

p as the generative model. We dub the marginal distribution p(x) as the belief

process, indicating that the agent believes this process generates the observable

variable.2

The observable variable x is drawn from an objective distribution q0(x),

which we refer to as the true process, and which, in keeping with the misspecifi-

cation literature, is allowed to differ from the belief process p(x). Upon observing

a realization of x, the agent updates her belief about the latent variable z to a

distribution q(z | x) ∈ ∆(Z), referred to as her update. The recognition model

2We use the same symbol to denote a joint distribution, such as p(x, z) ∈ ∆(X × Z), and
the associated marginal distribution, such as p(x) ∈ ∆(X), or the conditional distribution,
such as p(z | x), relying on the arguments for the distinction.
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x observable variable
z latent variable
p(x, z) generative model
p(x) belief process
q(x, z) recognition model
q0(x) true process
q(z | x) update

Table 1: Notation and terminology.

is the joint distribution

q(x, z) = q0(x)q(z | x) ∈ ∆(X × Z) (1)

which specifies both the true process and (possibly non-Bayesian) updates; this

bundling of the true process and the updates into the same object facilitates

the formulation of the results below.

The generative and recognition models p(x, z) and q(x, z) may differ, reflect-

ing distinct reasoning processes applied to the data-generating process and to

the sample. Returning to the human resources manager from the introduction,

the model p(x, z) captures her view of the population from which the candidates

are drawn. Here, the agent may view the latent variable z (innate intelligence

and so on) as causing the observable variable x (e.g., educational attainments).

The agent may first reason about the distribution of z in the population and

then about the causal relationship between z and x, restricting her causal rea-

soning to parametric models and to subsets of variables, or imposing other

simplifications.

In contrast, the model q(x, z) describes how the human resources manager

reasons about her sample of job candidates. Here, the distribution of x is

given by the sample, and the manager’s task is to update her beliefs about

the latent variables. She may simplify the updating task by assuming causal

relationships, originating with some of the observed variables x and explaining

the latent variables z via a network of causal links that may not be compatible

with her reasoning about the data-generating process captured by her model p.
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2.2 Constrained Updating and Likelihood Evaluation

Following the literature on variational Bayesian methods, we first fix the gen-

erative model p(x, z) and focus on the agent’s updating and evaluation of the

model’s fit to the true process. This can be viewed as capturing an agent who

is confident in her generative model or as the first step of estimation.

2.2.1 The Constrained-Updating Problem

Following Jordan et al. (1999), the agent considers recognition models q̃(x, z)

from a compact set Q ⊆ ∆(X × Z) and adopts the recognition model q(x, z)

that solves the constrained-updating problem3

max
q̃(x,z)

Eq̃(x,z) ln p(x̂, ẑ) + H
(
q̃(x, z)

)
(2)

s.t. q̃(x, z) ∈ Q

q̃(x) = q0(x),

where H stands for Shannon entropy.4 Since the marginal distribution q̃(x) =

q0(x) is fixed, the agent controls only the updates q̃(z | x). We call the value of

the constrained-updating problem, Eq(x,z) ln p(x̂, ẑ)+H
(
q(x, z)

)
, the constrained

likelihood.5

Before we provide our own microfoundation in Section 2.3, we review the

standard motivation for this problem. The first term of the objective, the “re-

construction term” ln p(x̂, ẑ), is the expected p-log-likelihood induced by the

chosen recognition model q̃, and it specifies how well pairs (x, z) drawn from

the recognition model q̃ fit the generative model p. The second, “regulariza-

tion” term H
(
q̃(x, z)

)
, equal to the entropy of the generative model, is justified

in the literature as preventing over-fitting, since it favors generative models that

3To keep the notation simple, we do not distinguish between a random variable and its
realization, except in the case of expectation, where we indicate the random variable over
which the expectation is taken with a hat. For example, Ep(x) f(x̂, z) is an expectation with
respect to the random variable x̂ drawn from the distribution p(x) with the realized value z
treated as a parameter.

4The entropy of a distribution q(y) is −
∑

y q(y) ln q(y). We apply the standard convention
0 ln 0 = 0 throughout the paper.

5We assume that Q contains at least one distribution q(x, z) such that q(x) = q0(x) and
whose support is a subset of the support of p(x, z). The existence of an optimizer is then
ensured. This distribution achieves a finite value and the set of feasible distributions that
achieve at least this value is compact. Since the objective is continuous on this set, the
solution exists. Note that supp(q0(x)) ⊆ supp(p(x)) implies that the agent cannot refute the
model p with data drawn from q0.
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exhibit uncertainty. The objective is commonly motivated as a lower bound on

the likelihood, or the “evidence,” which can be obtained by selecting a feasible

recognition model.6

We refer to the first and second constraints as the updating constraint and

empirical constraint, respectively. For the latter, as discussed in Section 2.3, we

interpret the marginal recognition model q̃(x) as the empirical distribution of the

observed data. For a diverging sample size, this distribution matches the true

process q0(x), thus providing the empirical constraint. Therefore, this constraint

prevents the agent from fabricating data (while allowing for a discrepancy with

the agent’s generative model p). We illustrate the updating constraint and the

resulting frictions in Section 2.2.2.

The constrained-updating problem (2) can be rewritten as

min
q̃(x,z)

KL
(
q̃(x, z) ‖ p(x, z)

)
, (3)

subject to the same constraints as in (2). Here, KL, representing the Kullback-

Leibler divergence, is often interpreted as a pseudo-distance between two dis-

tributions.7 This reformulation emphasizes that the agent attempts to form

a recognition model that is consistent with her generative model. Although

Problem (3) superficially resembles the standard asymptotic characterization of

misspecified learning, in this context, the updating agent controls the left ar-

gument of the divergence, whereas in the standard misspecification result, the

right argument is controlled.

We interpret the updating problem (2) as a reduced-form representation of

the reasoning process of an agent who encounters a rich sample of observations

(xi)
n
i=1. In Section 2.3, we provide a detailed treatment of the agent’s reasoning

and derive Problem (2) in the limit of an arbitrarily large sample size.

2.2.2 The Updating Constraint

The updating constraint represents frictions in the agent’s reasoning regarding

the relationships between the observed data x and their latent counterparts z.

6When the updating constraint is separable across x, then Problem (2) can be separated
across values x as a maximization of Eq̃(z|x) ln p(x, z) + H

(
q̃(z | x)

)
over q̃(z | x) from a set

Q′. The objective of this problem is then called the evidence lower bound (ELBO). The term
is justified by rewriting the objective as ln p(x) − KL

(
q̃(z | x) ‖ p(z | x)

)
, where KL is the

Kullback-Leibler divergence. Since ln p(x) is called evidence in Bayesian statistics and the
KL-divergence is non-negative, the ELBO is indeed a lower bound on the evidence.

7The KL-divergence, also referred to as relative entropy, between distributions q(y) and

p(y) is
∑

y q(y) ln
q(y)
p(y)

.
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We review some illustrative examples here.

Unconstrained Updating. Reassuringly, Bayesian updating and unconstrained

likelihood evaluation arise when the updating constraint is lifted.

Proposition 1. If updating is unconstrained, Q = ∆(X × Z), then the agent

forms Bayesian updates, q(z | x) = p(z | x) for all x in the support of q0(x), and

achieves a value of the constrained-updating problem equal to Eq0(x) ln p(x̂) +C,

where C is a constant.

Proof. Using the chain rule for KL-divergence and the empirical constraint,

rewrite the objective in (3) as

KL
(
q̃(x, z) ‖ p(x, z)

)
= KL

(
q0(x) ‖ p(x)

)
+ Eq0(x) KL

(
q̃(z | x̂) ‖ p(z | x̂)

)
,

and observe that the agent does not control the first term. When
(
q̃(z | x)

)
x

is

unconstrained, the minimizer satisfies q(z | x) = p(z | x) because KL-divergence

is minimized with value 0 when its two arguments coincide. The optimal recog-

nition model for Problem (2) thus achieves a value of −KL
(
q0(x) ‖ p(x)

)
=

Eq0(x) ln p(x̂) + C, where C = H
(
q0(x)

)
is a constant.

Analogy-Based Constraint. Following Jehiel (2005, 2022), the agent’s up-

dates
(
q(z | x)

)
x

may be constrained to be measurable with respect to a partition

of X, where each element of the partition represents a set of observable values

that the agent considers analogous at the updating stage.

Causality. An agent’s (mis)perception about the correlation structure among

the various variables can be represented by a directed acyclic graph (DAG), as

in Spiegler (2016). Let the latent and observable variables be multidimensional,

z = (z1, . . . , zk) and x = (x1, . . . , xl), and let y = (x, z) be the tuple of all

variables, with the nodes in the graph given by (yi)
l+k
i=1. As the name suggests,

the graph has directed edges that do not induce cycles. The interpretation is

that a variable yi in the graph is determined solely by the variables at the origins

of the edges ending at yi. The DAG is said to capture the causal structure of

the variables (Pearl, 2009). Sloman (2005) explains how DAGs are used in the

psychology literature to model boundedly rational reasoning (see also Sloman

and Lagnado (2015)).

More precisely, the DAG restricts the correlations between the variables y.

Given a node i, let R(i) denote the set of its immediate predecessors (which
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may be empty), and let yR(i) denote the set of corresponding variables. Then,

the recognition model consistent with the DAG must factorize as

q(y) =

l+k∏
i=1

q(yi | yR(i)), (4)

thereby implying the updating constraint. For illustration, the DAG z1 ← x→
z2 factorizes as q(x, z) = q(x)q(z1 | x)q(z2 | x) and represents an agent who

restricts her recognition model to exhibit conditional independence between the

two latent variables.

2.3 Microfoundations

The Bayesian statistics literature motivates the constrained-updating problem

(2) as a numerically tractable approximation to Bayes’ rule. We provide a

microfoundation based on the agent’s analysis of data. Readers interested in

applications rather than foundations can skip this subsection.

We provide the agent with a sample of draws of the observable variable,

each draw accompanied by an unobserved draw of the latent variable. The

agent estimates the joint frequencies q(x, z) of the observable-latent variable

pairs, subject to q(x, z) being drawn from the set of considered distributions Q
and being consistent with the observed sample, q(x) = q0(x).

Asymptotically, for large samples, the agent’s estimate is characterized by

Sanov’s theorem. This theorem implies that the agent’s belief over the extended

samples generated by drawing from p(x, z) concentrates on those extended sam-

ples whose joint frequencies q(x, z) minimize KL
(
q̃(x, z) ‖ p(x, z)

)
, subject to

the two constraints from (2).

Instead of applying Sanov’s theorem directly, we find it instructive to derive

the constrained-updating problem from first principles. To understand how the

estimation procedure leads to the objective from (2), we note that two factors

contribute to the likelihood that an extended sample with frequencies q(x, z)

was produced by drawing from p(x, z). For any given extended sample with

frequencies q(x, z), the log-likelihood of drawing that sample from p corresponds

to the first term in (2). Furthermore, the greater the entropy of q(x, z), the larger

the number of distinct samples with frequencies q(x, z), and hence the higher

the likelihood that draws from p(x, z) yield such frequencies. The number of

distinct permutations of a sample increases exponentially with its length, at a

rate equal to the entropy of the sample’s frequencies, thus leading to the entropy
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term in (2).

More precisely, we consider a series of settings indexed by n ∈ N. In each

setting n, the agent observes a sample xn = (x1, . . . , xn) with empirical dis-

tribution qn0 (x). For each setting n ∈ N, the agent is endowed with a set

Qn ⊆ ∆(X × Z) of the joint distributions she considers, with each distribution

q̃(x, z) from this set satisfying the integer constraint q̃(x, z)n ∈ N, the empir-

ical constraint q̃(x) = qn0 (x), and cognitive constraints corresponding to the

constraints embodied in Q.

For each n, the agent forms an estimate qn(x, z) of the joint empirical distri-

bution
∑n
i=1 1(xi,zi)=(x,z)/n of the extended sample (xi, zi)

n
i=1 as follows. The

p-likelihood of any single extended sample with empirical distribution q̃(x, z) is

n∏
i=1

p(xi, zi) =
∏
x,z

p(x, z)q̃(x,z)n.

Accounting for the number of such samples, the p-likelihood of the distribution

q̃(x, z) is

`n(q̃) := Nn(q̃)
∏
x,z

p(x, z)q̃(x,z)n, (5)

where Nn(q̃) denotes the number of the distinct extended samples (xi, zi)
n
i=1

that have the empirical distribution q̃(x, z) and match the observed sample xn

on the margin. The agent’s estimate in setting n,

qn(x, z) ∈ arg max
q̃∈Qn

`n(q̃), (6)

maximizes this p-likelihood.

We consider the limit of a large sample, n→∞, and let the set Qn approx-

imate the constraint from the constrained-updating problem (2). For this, we

introduce a parameter θ ∈ [0, 1], let Q(0) = Q ∩
{
q̃(x, z) : q̃(x) = q0(x)

}
be the

feasible set from Problem (2), and Q(θ) = Qb 1θ c be the feasible set from the

setting with n = b 1
θ c. We assume that the correspondence Q(θ) is continuous

(i.e., both upper and lower hemicontinuous) at θ = 0.

To simplify the statement of the result, we assume that the constrained-

updating problem (2) has a unique solution q(x, z) and let ` = Eq(x,z) ln p(x̂, ẑ)+

H
(
q(x, z)

)
be the value this solution achieves.

Proposition 2. As n → ∞, the estimate converges to the solution of the

constrained-updating problem and the rescaled log-likelihood converges to the
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value of this problem:

qn(x, z) → q(x, z), and

1

n
ln `n(qn) + H

(
q0(x)

)
→ `.

The first result indicates that the solution of the constrained-updating prob-

lem approximates the estimate from the discrete setting with the approxima-

tion becoming arbitrarily precise as n becomes large. We prove this result in

the Appendix by showing that the objective from Problem (2) approximates

the rescaled log-likelihood from the discrete setting, and then appealing to the

Maximum Theorem. The intuition can be gleaned from the expression for the

likelihood in Equation (5). The number Nn(q̃) of the extended samples with

the empirical distribution q̃(x, z) grows exponentially at a rate of H(q̃) (modulo

constant), giving rise to the second term in (2), while the likelihood of each such

sample corresponds to the first term in (2).

The second result indicates that not only is the solution of Problem (2)

informative about the updates of the constrained agent, but the achieved value

of Problem (2) also approximates her constrained evaluation of the likelihood.

We build on this approximation in the next section, allowing the agent to jointly

optimize over both her models to maximize this subjective fit.

2.4 Model Fitting

We now let the agent select her generative model with the aim of fitting the

observed data. The novelty of the proposed approach lies in the agent’s con-

sideration of her limitations in evaluating the fit. Her subjectively evaluated fit

is not determined solely by the generative model but is assessed in conjunction

with the recognition model, which specifies how the generative model’s fit is

evaluated.

Accordingly, the agent selects a pair of models that jointly solve the following

13



problem:8

min
p̃(x,z),q̃(x,z)

KL
(
q̃(x, z) ‖ p̃(x, z)

)
(7)

s.t. p̃(x, z) ∈ P

q̃(x, z) ∈ Q

q̃(x) = q0(x).

We refer to (7) as the model-fitting problem. Relative to the standard misspec-

ification framework from Berk (1966), the problem at hand involves reasoning

not only about the generating process (captured by the control of p) but also

about the latent components of the data (captured by the control of q).

The joint determination of the generative and recognition models is well-

established in the machine learning literature on variational autoencoders (e.g.,

Kingma and Welling (2013)), capturing the idea that limitations in evaluating

model fit play a role in model selection. We explain in Section 6 that this

perspective also has familiar antecedents in economics.

When the feasible sets for the two models overlap, any pair p = q from their

intersection constitutes a solution, corresponding to a perfect fit p(x) = q0(x)

accompanied by Bayesian updates q(z | x) = p(z | x). We focus on the scenario

of non-overlapping feasible sets, where the agent suffers from at least one of two

frictions. The misspecification friction is familiar. Generally, the set P excludes

the true data-generating process. The best the agent can hope to do, therefore,

is to select the “least wrong” model.

The updating friction, captured by Q 6= P, involves difficulties in evaluating

the model’s fit, stemming from the inconsistency between the agent’s reasoning

about the data and her generative modeling. Our agent does not simply cal-

culate the precise p-likelihood of the observed sample. In the machine learning

and variational inference literature, this calculation is well acknowledged to be

computationally infeasible when the latent space is too large to allow for nu-

merically practical marginalization
∑
z p(x, z). Alternatively, as discussed, the

updating friction may reflect a variety of preconceived notions that restrict the

agent’s reasoning about the data.

8For existence, we again assume that P and Q contain at least one pair of p and q such
that q(x) = q0(x) and the support of q(x, z) is a subset of the support of p(x, z). This pair
achieves a finite value, and the set of model pairs that achieve at most this value is compact.
Continuity of the objective then assures that a solution exists.
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We envision the agent employing one or both of her statistical models in a

downstream decision problem, although we do not explicitly model the decision

stage. The human resource manager may use the recognition model to update

her belief about the latent type z of each job applicant based on the appli-

cant’s CV x, to inform her hiring decisions. Another natural use of the recog-

nition model arises in the machine learning context, where the latent variable

z is typically a low-dimensional stochastic compression of the high-dimensional

observable input x, and the algorithm’s choice rule must be a function of z.

To illustrate this in the context of the human resource example, imagine the

manager forming a stochastic impression z of a candidate with CV x, with a

conditional probability q(z | x) given by the manager’s recognition model, and

then making the hiring decision based on the impression z. Before coming to

this stage, the human resource manager may use her generative model, trained

in the previous season, to guide the decision on whether to enter the current

job market.

3 Optimal Simplicity

Statistical models that best fit generic data-generating processes tend to be

complex. However, as we now show, once plausible constraints in the likeli-

hood evaluation are considered, the optimal models solving the model-fitting

problem tend to be simple. This finding provides a new perspective on the pref-

erence for simple models, commonly attributed to William of Ockham but with

antecedents, that pervades scientific reasoning. The simplicity notion, made

precise in Definition 2, captures the assumption that deterministic relationships

are deemed simpler than stochastic ones.

To establish the optimal simplicity result, we impose assumptions on both

feasible sets P and Q. For P, we assume that the agent is fully flexible when

reasoning about the latent variables at the generative stage, as captured by

Definition 1. For Q, we constrain the agent’s reasoning about data using a

causal network represented by a DAG.

Definition 1. The set P has unconstrained margin if

P =
{
p(x, z) :

(
p(x | z)

)
z
∈ P̃

}
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for some set P̃ ⊆ ∆(X)Z .9

A set P with unconstrained margin represents an agent who has some precon-

ceived knowledge about the statistical implications of each latent value z for the

observable variable x but no knowledge of the distribution of the latent vari-

able. That is, the agent considers a set P̃ of likelihood functions
(
p(x | z)

)
z

and

deems any specification of p(z) feasible for any choice of the likelihood function.

We impose this assumption on P throughout the remainder of the paper.

First, we illustrate the agent’s preference for simple deterministic models

with an example, and then present a general result.

Example 1 (Causal Chain). Suppose the set P has unconstrained margin,

the latent variable z = (z1, z2) is two-dimensional, and the agent restricts her

recognition model to comply with the DAG x→ z1 → z2, referred to as a chain.

For example, the variable x may be a CV examined by our human resource

manager, while z1 and z2 may measure the aptitude and grit of the applicant.

When thinking about the population of potential job candidates in her genera-

tive stage of reasoning, the manager may recognize that a CV is the stochastic

product of both aptitude and grit, and that these may be imperfectly correlated.

However, when reviewing a CV and drawing inferences about a particular can-

didate at the recognition stage, the manager may simplify her reasoning by first

forming an assessment of the candidate’s aptitude and then turning to grit,

using only information gleaned while assessing aptitude without checking the

CV again. Such a succession of one-variable updates may be more tractable

than jointly considering aptitude and grit, and the manager may opt for such a

simplification either by mistake or to conserve reasoning effort.

The following proposition is a special case of Proposition 4 below.

Proposition 3 (Deterministic Collapse for Chain). The agent of this example

believes that z1 deterministically causes z2. Specifically, exists a deterministic

function d(z1) and a solution to the model-fitting problem such that z2 = d(z1)

almost surely under both models p and q.

An agent who frictionlessly maximizes the likelihood of the observed data

generically selects a generative model p that exhibits non-degenerate conditional

distributions p(z2 | z1). In contrast, the stochasticity of z2 | z1 is of no help in

improving the constrained fit evaluated by our agent, whose evaluation of likeli-

hood is restricted by her DAG. Even though the agent is able to comprehend a

9When p(z) = 0, p(x | z) can be chosen arbitrarily.
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stochastic relation between z1 and z2, both when forming her generative model

and in the updating stage, the agent chooses to model this relationship in a

simple deterministic manner. The proof in Section 3.3 establishes this by first

showing that our human resources manager, constrained to the two-step con-

sideration of aptitude and grit, maximizes the fit by assuming a deterministic

relationship between aptitude and grit when evaluating the data at the recog-

nition stage. Going backwards, realizing that her reasoning at the recognition

stage will take this form, it is then optimal to restrict attention to such models

at the generative stage. N

To extend the chain example, we use the concept of Markov Boundary in-

troduced by Pearl (1988). For a DAG over random variables (x, z1, . . . , zK),

the Markov boundary zB of a variable x is the smallest subset of the variables

z1, . . . , zK that contain all the information about x. Hence, once conditioned on

values of the variables from this subset, x is independent of all the other vari-

ables. For illustration, in the chain x → z1 → z2 from Example 1, the Markov

boundary of x includes z1 but not z2.10

Let z−B be the complementary tuple of the latent variables that are not in

zB . Our simplicity notion is then:

Definition 2. The generative model q′(x, z) is simpler than q(x, z) if q′
(
x, zB

)
=

q
(
x, zB

)
and there exists a deterministic function d

(
zB
)

such that z−B = d
(
zB
)

almost surely under q′.

That is, q′ is simpler than q if the two distributions coincide when restricted

to x and its Markov boundary, and the latent variables z−B | zB outside the

Markov boundary are deterministic under the simpler distribution.

Suppose P has unconstrained margin. Consider a DAG over (x, z1, . . . , zK)

and let the feasible set Q consist of all the joint distributions q(x, z1, . . . , zK)

consistent with this DAG. Additionally, for each q consistent with the DAG, Q
contains all q′ that are simpler than q. Then, the generalization of Example 1 is

that variables outside the Markov boundary of x are considered deterministic:

Proposition 4 (Deterministic Collapse for General DAGs). A solution to the

model-fitting problem exists under which the agent believes that the latent vari-

ables z−B outside the Markov boundary of x are a deterministic function d
(
zB
)

10Pearl shows that, in general, the Markov boundary of x consists of x’s immediate prede-
cessors (parents), the immediate successors (children), and any immediate predecessor of an
immediate successor of x (partners).
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of the latent variables zB from the Markov boundary of x. That is, z−B = d
(
zB
)

almost surely under both models p and q.

Since the Markov boundary of a node in a DAG is typically a small subset of all

its nodes, the proposition implies that optimized models treat latent variables

as largely deterministic. Remark 1 below explains that we can generally expect

solutions in which z−B = d
(
zB
)

(almost surely) under both models p and q to be

uniquely optimal, rather than only weakly optimal as established in Proposition

4.

In the next two sections, we develop two intermediate implications of the as-

sumption that P has unconstrained margin. Section 3.3 uses these implications

to provide intuition for Example 1 and then proves Proposition 4.

3.1 Rational Expectations

When the set P has unconstrained margin, the agent who solves the model-

fitting problem forms rational expectations. This implication is both of inde-

pendent interest and useful for proving Proposition 4.

We say that the agent has rational expectations if

p(z) = Eq0(x) q(z | x̂) ≡ q(z). (8)

The latter identity in (8) is the familiar Bayes’ plausibility condition applied

to q(x, z). The substantial condition is the first equality. It states that for an

agent with rational expectations, there is no inconsistency between the agent’s

prior p(z) and the updates q(z | x) averaged across many draws from the true

process q0(x).

Since our agent is neither Bayes-rational nor has access to the correct model

of the true process, she generally fails to form rational expectations. Unlike

in the extensive rational-expectations literature inspired by Muth (1961) and

Lucas (1972), our agent may be systematically fooled. Yet, under the relatively

permissive assumption that P has unconstrained margin, she forms rational

expectations.

Proposition 5 (Rational Expectations). If the set P of the feasible generative

models has unconstrained margin, then the agent has rational expectations.

Proof. Fix the recognition model q̃(x, z) and select the generative model p(x, z)

that minimizes their KL-divergence. Using the chain rule, rewrite this objective
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as

KL
(
q̃(x, z) ‖ p̃(x, z)

)
= KL

(
q̃(z) ‖ p̃(z)

)
+
∑
z

q̃(z) KL
(
q̃(x | z) ‖ p̃(x | z)

)
.

The unconstrained minimization of KL
(
q̃(z) ‖ p̃(z)

)
with respect to p̃(z) implies

that p(z) = q̃(z) for the best response p to the fixed q̃. Since this holds for

any recognition model q̃, it follows that p(z) = q(z) for the optimal pair of

models.

The standard notion of Bayesian plausibility similarly requires that the av-

erage updated belief equals the prior belief. Bayesian plausibility is an identity

applied to any single joint distribution, forced by the mechanics of Bayesian

updating, apart from any optimality considerations. The rational-expectation

condition from the proposition relates two distributions, is not an identity, and

indeed can fail, but it holds at the optimum of the model-fitting problem.

A popular intuition supporting rational expectations states that an agent

who is systematically surprised should eliminate the surprise by adjusting her

prior. While this intuition does not fit within the standard Bayesian framework

with fixed prior, where rational expectations is automatic, it aligns well with our

framework. When the agent is fully flexible in her choice of p(z), she maximizes

the constrained likelihood by matching p(z) to the empirical average of the

updates.

Spiegler (2020b) provides sufficient conditions for rational expectations in

a related but non-nested bounded-rationality setting. His agent reasons about

x = (x0, . . . , xn) drawn from p(x). She sets her belief equal to the moment

projection pR(x) =
∏n
i=0 p

(
xi | xR(i)

)
of the true process on the DAG. The

agent observes a realization of x0 and forms a posterior belief about the variable

xi. As in our definition, the agent is said to have rational expectations if the true

average of the agent’s subjective posterior beliefs matches her subjective prior.

In Spiegler, rational expectations arise when the agent’s subjective marginal

beliefs match the true marginal distributions. In our case, rational expectations

arise even when p(x) 6= q0(x) and the result does not require the DAG structure.

3.2 Posterior Approach

Beyond its economic significance, the rational-expectation result from the pre-

vious section aligns the model-fitting problem with the posterior approach used
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in information design.

To state the analogy to the posterior approach, assume that P has uncon-

strained margin and, hence, the agent has rational expectations. Then, a triple

of q(z),
(
q(x | z)

)
z
, and

(
p(x | z)

)
z

specifies the pair p(x, z) and q(x, z) of the

generative and recognition models, because p(z) = q(z) by rational expecta-

tions. We refer to the triple as the posterior representation, to the conditional

distributions q(x | z) ∈ ∆(X) as the recognition posteriors and analogously

p(x | z) are the generative posteriors.11

An advantage of the posterior representation is that the objective of the

model-fitting problem becomes separable across latent values.

Lemma 1 (Posterior-Separable Objective). Suppose P has unconstrained mar-

gin. Then, p(x, z) and q(x, z) solve the model-fitting problem if and only if the

posterior representation q(z),
(
q(x | z)

)
z
, and

(
p(x | z)

)
z

solves the equivalent

problem:

max
q̃(z),(q̃(x|z))z,(p̃(x|z))z

Eq̃(z)
[
Eq̃(x|ẑ) ln p̃(x̂ | ẑ) + H

(
q̃(x | ẑ)

)]
(9)

s.t.
(
p̃(x | z)

)
z
∈ P̃

q̃(z)q̃(x | z) ≡ q̃(x, z) ∈ Q

Eq̃(z) q̃(x | ẑ) = q0(x).

It is the rational expectations that do the work in the proof; the uncon-

strained margin property is needed only to ensure rational expectations. The

proof proceeds by showing that the objectives in (7) and (9) differ only by the

divergence between the marginal distributions q(z) and p(z), which rational

expectations ensure equals zero.

3.3 Proof of Proposition 4

To gain some intuition for Proposition 4, we return to Example 1, where the

generative model is restricted to comply with the chain x → z1 → z2. This

restriction is equivalent to the requirement q(x | z1, z2) = q(x | z1); that is,

11We face a terminological tension here. A natural choice would be to refer to the conditional
distributions q(z | x) and p(z | x) as ’posteriors’. Instead, we attribute this term to q(x | z) and
p(x | z) because this terminological choice facilitates connection to the ’posterior approach’
from information design. The chosen terminology is natural, though, when z is a stochastic
latent representation of a stimulus x. In that case, posterior refers to the distribution of the
stimulus conditional on its representation being z.
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z2 must be uninformative about x under the recognition model once the agent

controls for z1.12

Now consider any candidate solution p and q. Since (i) the objective (9)

of the model-fitting problem is posterior separable and (ii) each posterior q(x |
z1, z2) depends only on z1 but not z2, we can, for each realization of z1, modify

q(z2 | z1) = p(z2 | z1) to be a degenerate distribution that assigns all the

probability to

d(z1) ∈ arg max
z̃2

Eq(x|z1) ln p
(
x̂ | z1, z̃2

)
,

which is the realization of z2 that maximizes the fit of p(x | z1, z2) to the given

posterior q(x | z1). Since this modification weakly improves the objective at

each posterior and is feasible, it constitutes a solution.

The following proof extends this argument to general DAGs.

Proof of Proposition 4. Consider a pair of models p and q that solve the model-

fitting problem. Since P has unconstrained margin, q(z) = p(z). If z−B | zB is

deterministic under q and p, then the proposition holds. Accordingly, assume

that it is not deterministic, in which case q must be consistent with the DAG.

Starting from p and q, we construct an alternative pair of feasible models p′

and q′ such that q′ is simpler than q and that, jointly, achieve at least as high

a value in the model-fitting problem as p and q do. Hence, p′ and q′ constitute

a solution.

We construct p′ and q′ from p and q as follows. For each realization of

zB , we replace the conditional distributions q
(
z−B | zB

)
= p

(
z−B | zB

)
with

degenerate distributions that assign all the probability to z−B equal to the

deterministic value

d
(
zB
)
∈ arg max

z̃−B
Eq(x|zB) ln p

(
x̂ | zB , z̃−B

)
,

while keeping q′
(
zB
)

= p′
(
zB
)

= q
(
zB
)

= p
(
zB
)
,
(
q′(x | z)

)
z

=
(
q(x | z)

)
z
,

and
(
p′(x | z)

)
z

=
(
p(x | z)

)
z

unmodified.

The pair p and q achieves a value in Problem (9):

Eq(z)
[
Eq(x|ẑ) ln p(x̂ | ẑ) + H

(
q(x | ẑ)

)]
=

Eq(zB)

[
Eq(x,z−B |ẑB) ln p

(
x̂ | ẑB , ẑ−B

)
+ H

(
q
(
x | ẑB

))]
,

12The factorization constraint for the chain is q(x, z1, z2) = q(z2 | z1)q(z1 | x)q(x). Simple
algebra establishes equivalence with q(x | z1, z2) = q(x | z1).
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where the equality follows from the fact that the posterior q(x | z) is independent

of all the latent variables from z−B . This value is at most as high as:

Eq(zB)

[
max
z̃−B

Eq(x|ẑB) ln p
(
x̂ | ẑB , z̃−B

)
+ H

(
q
(
x | ẑB

))]
=

Eq′(z)
[
Eq′(x|ẑ) ln p′(x̂ | ẑ) + H

(
q′(x | ẑ)

)]
,

which is the value achieved by p′ and q′.

Additionally, the modified models p′ and q′ are feasible: (i) the generative

model p′ is feasible since P has unconstrained margin. Hence, any p′(z) is

feasible and (p′(x | z))z = (p(x | z))z is feasible. (ii) q′ ∈ Q since it is simpler

than q and q is consistent with the DAG. (iii) The model q′ satisfies the empirical

constraint because

Eq′(z) q
′(x | ẑ) = Eq′(zB) q

′(x | ẑB) = Eq(zB) q
(
x | ẑB

)
= Eq(z) q(x | ẑ) = q0(x).

Thus, p′ and q′ constitute a solution.

Remark 1. We can typically expect simple models, in which variables out-

side the Markov boundary of x are deterministic functions of variables from the

Markov boundary, to be the only solutions to the model-fitting problem. When

all feasible generative models p have conditional distributions p(x | zB , z−B)

that vary with z−B , then arg maxz̃−B Eq(x|zB) ln p(x̂ | zB , z̃−B) is generically

unique, and hence p(z−B | zB) = q(z−B | zB) must be deterministic at the

optimum. In this case, the agent has a preconceived view, at the generative

stage, of how z−B affects x when controlling for zB . However, at the recogni-

tion stage, she restricts attention to simple recognition models that deem z−B

uninformative about x (controlling for zB). This restriction of the recognition

reasoning reduces the complexity of the optimal generative modeling. The agent

at the generative stage effectively restricts herself to a class of likelihood func-

tions p̃(x | zB) = p
(
x | zB , z−B = d(zB)

)
that employ only zB but not z−B as

the explanatory variable of x.

4 Misspecification and Beyond

We first clarify that the agent’s constrained reasoning regarding the data-generating

process and the data are represented by distinct projections on sets of feasible

models. We then discuss how the two frictions interact.
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We contrast two related approximations. In the first one, called the moment

projection, an agent approximates a data-generating distribution q(y) with

p(y) ∈ arg min
p̃∈P̃

KL
(
q(y) ‖ p̃(y)

)
,

where P̃ is the set of the feasible models. This projection characterizes the

asymptotic estimate p to fit a large sample generated from q.

In contrast, by Sanov’s theorem, the information projection of a model p(y)

onto the feasible set Q,

q(y) ∈ arg min
q̃∈Q

KL
(
q̃(y) ‖ p(y)

)
,

arises when an agent is given a model p(y) of the data-generating process and

forms a belief about an empirical distribution q(y) of a large sample, conditional

on the event q(y) ∈ Q.

The model-fitting problem combines both projections: the optimal genera-

tive model p is the moment projection of the optimal recognition model q, and

vice versa, q is the information projection of p. The two projections are distinct

due to the asymmetry of the KL-divergence.

The following example builds on an influential framework used to model

coarse reasoning and illustrates how the distinction between the two projections

informs an analyst of an appropriate specification of coarse beliefs.

Example 2 (Analogy-Based Constraint). As in Jehiel (2005), the agent’s con-

ditional distributions f(z | x) must be measurable with respect to a partition

{X1, . . . , XK} of the set X of observable values. Let F be the set of the joint

distributions f such that
(
f(z | x)

)
x

satisfy this measurability restriction. Let

Xk(x) be the set of observable values the agent deems analogous to x.

To contrast misspecified learning and constrained updating, we compare two

agents. The first agent observes both x and z jointly drawn from q0(x, z). Her

asymptotic estimate p(x, z) of this true process is the moment projection of q0

onto F . Routine computation reveals that she forms conditional distributions

p(z | x) equal to the arithmetic mean Eq0(x)

[
q0(z | x̂) | x̂ ∈ Xk(x)

]
of the

Bayesian updates across the values x̃ deemed analogous to x, as assumed in

Jehiel (2005).

The second agent is endowed with a generative model p(x, z), observes a large

sample of the draws of x, and forms updates q(z|x) about conditional frequencies
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in the extended sample as in Section 2.3. For the sake of comparison, assume

that the marginal distribution of the model p(x) coincides with the true process

q0(x) and focus on the updating friction. In this case, the agent’s estimate

of frequencies in the extended sample converges to the information projection

of p(x, z) onto F . Another routine computation shows that this agent forms

updates given by the geometric mean of the Bayesian updates p(z | x̃) across

x̃ deemed analogous to x (up to renormalization). Thus, relative to the first

agent, the coarse belief q(z | x) of this second agent is sensitive to variations of

small probabilities p(z | x̃), x̃ ∈ Xk(x). N

We now compare our model-fitting problem with the standard results on mis-

specified learning. We focus here on the agent’s generative model of the observ-

able variable—the belief process p(x). Accordingly, fixing P, denote the feasible

set of the belief processes as P ′ =
{
p′(x) : p′(x) = p̃(x) for some p̃(x, z) ∈ P

}
.

The next result clarifies that the model-fitting problem nests White’s and

Berk’s standard results on asymptotic misspecified learning. When the updating

constraint is lifted, our optimal belief process p(x) coincides with their standard

prediction (coupled with Bayesian updates).

Proposition 6. If updating is unconstrained, Q = ∆(X,Z), then the optimal

belief process p(x) is the moment projection of q0 onto P ′:

p(x) ∈ arg min
p̃(x)∈P′

KL
(
q0(x) ‖ p̃(x)

)
. (10)

Proof. Using the chain rule, rewrite the objective from (7) as

KL
(
q̃(x, z) ‖ p̃(x, z)

)
= KL

(
q0(x) ‖ p̃(x)

)
+ Eq0(x) KL

(
q̃(z | x̂) ‖ p̃(z | x̂)

)
.

Once the updates are optimized against a given p̃ in the absence of the updating

constraint, q̃(z | x) = p̃(z | x), so that the second term on the right vanishes.

Thus, p̃(x) minimizes the objective from (10).

However, a nontrivial updating constraint indirectly affects the generative

model, leading the agent to no longer select the best fit. We illustrate this in

the following example, where the agent chooses to neglect observable correla-

tion. This choice of a simpler model arises even though it is feasible for the

agent to model the correlation at both the generative and recognition stages, as

correlation neglect facilitates her constrained likelihood evaluation.
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Example 3 (Correlation Neglect). The variables x = (x1, x2) and z = (z1, z2)

are two-dimensional, and the true process q0(x1, x2) exhibits correlation. To

provide a simple example, we restrict the generative and recognition models to

factorize as follows:

p(x1, x2, z1, z2) = p(z1, z2)p(x1 | z1)p(x2 | z2) (11)

q(x1, x2, z1, z2) = q(z1)q(z2)q(x1, x2 | z1, z2). (12)

Both constraints allow for arbitrary correlation between x1 and x2. In particu-

lar, the belief process p(x) is unconstrained, P ′ = ∆(X), and thus P ′ contains

the true process q0(x); hence, the agent is well-specified. Therefore, if the agent

were to select p(x) in the frictionless maximum-likelihood estimation, she would

learn the true process, p(x) = q0(x), in line with Wald (1949).

However, our agent faces friction in the evaluation of likelihood, as expressed

by the updating constraint (12). The next result states that the agent selects

a simpler generative model with less than perfect fit. Given the updating con-

straint, this simpler model, although it differs from the true process, achieves a

higher constrained likelihood.

Proposition 7. When the generative and the recognition models are constrained

by (11) and (12), respectively, then x1 and x2 are independent under the optimal

generative model.

Proof. The set P of the generative models that satisfy (11) has unconstrained

margin. Hence, Proposition 5 applies, and thus p(z1, z2) = q(z1, z2). The

recognition model is restricted by (12) to the independence of z1 and z2. Conse-

quently, z1 and z2 are also independent under the generative model: p(z1, z2) =

q(z1, z2) = q(z1)q(z2) = p(z1)p(z2). Therefore, x1 and x2 are independent under

the generative model due to the factorization constraint in (11).

For illustration, imagine x1 and x2 as measuring a job candidate’s education

and performance on a skill or intelligence test, the kind for which some tech

companies are legendary. The variables z1 and z2 represent a job candidate’s

intelligence and grit. When reasoning about the population of job candidates,

our human resource manager views performance on the skills test as primar-

ily determined by innate intelligence and views educational attainment as pri-

marily influenced by grit, while considering an arbitrary correlation between

intelligence and grit. Thus, her generative modeling is constrained by (11).
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When reasoning about her sample of job candidates, the human resources

manager employs a distinct procedure captured by the constraint (12). Upon

observing a collection of pairs (x1, x2) with empirical distribution q0(x), the

manager arranges these observations into various bins, and then assigns to each

bin a value (z1, z2), such as “high intelligence and ordinary grit,” “average

intelligence and exemplary grit,” and so on. Thus, the manager arranges her

observations into subsets and attributes a cause, in the form of realizations

of the latent variables, to each subset. The manager controls how many and

which observations of x she attributes to each z bin and hence controls the

distributions q(z) and q(x|z), subject to Eq(z) q(x | ẑ) = q0(x). However, the

manager mistakenly restricts her analysis to distributions q(z1, z2) that exhibit

independence. The example shows that this correlation neglect, imposed on the

reasoning about the latent variables at the recognition stage, forces correlation

neglect on the observables at the generative stage. N

5 Connection to Rational Inattention

We now impose additional assumptions on the constraints to allow for the ap-

plication of techniques from the rational inattention literature.

5.1 Posterior Separable Constraints

Here, we consider feasibility sets P and Q that are posterior separable. That is,

we assume that there exist compact sets P̄, Q̄ ⊆ ∆(X) such that a generative

model p(x, z) is feasible if p(x | z) ∈ P̄ for each z in the support of p(z), and

a recognition model q(x, z) is feasible if q(x | z) ∈ Q̄ again for each z in the

support of q(z). The marginal distributions of the latent variable, p(z) and q(z),

are unconstrained.13

Posterior separability of P naturally applies in the context of machine learn-

ing and Bayesian statistics. In the context, an agent seeks to express the true

distribution of the observable variable x, is endowed with a set P̄ of primitive

distributions of x, can construct mixture distributions from the convex hull of

this set, and uses the latent variable z to label these primitive distributions.

13It is immediate that every posterior separable P has unconstrained margin but not vice
versa. An example of P with unconstrained margin that is not posterior separable is the set of
p(x, z), where z = (z1, z2), that comply with the DAG x→ z1 → z2. This constraint requires
the tuple of posteriors p(x | z1, z2) to be independent of z2, which is not separable across z.
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Posterior separability ofQ has a natural interpretation in terms of the agent’s

ability to organize data. As in the microfoundations from Section 2.3, consider

an agent who observes a sample xn = (xi)
n
i=1. To compute the p-likelihood of

the observed sample, the agent considers extended samples (xi, zi)i but has a

limited capacity to conceptualize them. Specifically, an agent constrained by

posterior-separable Q only considers extended samples formed by dividing the

observed sample xn into at most |Z| distinct subsamples, as in our interpretation

of Example 3. Each subsample, labelled by a value z, must have an empirical

distribution from Q̄.

When P and Q are posterior separable, and the latent space is large enough

(|Z| ≥ |X|), the model-fitting problem is equivalent to a rational inattention

problem. To clarify this equivalence, we attach an index a ∈ A to each primitive

distribution so that P̄ = pa(x)a∈A for some compact set A. The agent selects

any distribution p(z) ∈ ∆(Z) of the latent variable and an assignment φ : Z → A

that maps each latent value z to a primitive distribution pφ(z)(x); this induces

the generative model p(x, z) = p(z)pφ(z)(x). Let us now liken ln pa(x) to a utility

function by adopting the suggestive notation u(a, x) = ln pa(x) to reinforce this

analogy. Note from Lemma 1 that the model-fitting problem simplifies to:

max
q̃(z),(q̃(x|z))z,φ̃(z)

Eq̃(z)

[
Eq̃(x|ẑ) u

(
φ̃(ẑ), x̂

)
+ H

(
q̃(x | ẑ)

)]
(13)

s.t. q̃(x | z) ∈ Q̄ (14)

Eq̃(z) q̃(x | ẑ) = q0(x). (15)

This optimization can be formally interpreted as the rational-inattention prob-

lem of an agent who learns about x from a signal z (thus reversing our orig-

inal interpretation of x and z to establish this analogy). The agent selects a

distribution q(z) of posteriors q(x | z) under the Bayes-plausibility constraint

(15), and a choice rule φ : z 7→ a, to maximize the expectation of the pay-

off u(a, x) augmented with posterior entropy.14 In addition to the standard

rational-inattention problem, constraint (14) restricts the posteriors to Q̄.

We apply the concavification technique from Caplin and Dean (2013) to this

problem, with one additional step that subsumes constraint (14) by assigning

an infinite penalty to infeasible posteriors. Accordingly, let v : ∆(X)→ R be a

14Problem (13) subject to (15) is the ‘posterior formulation’ of the rational-inattention
problem by Caplin and Dean (2013). See Matějka and McKay (2015) for an equivalent for-
mulation.
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Figure 1: Graph of the value function and its concavification. Infeasible poste-
riors are indicated by a dashed curve. The tangency points for a given q0 are ρ
and ρ.

value function defined as follows:

v(ρ) =

maxa∈A Eρ(x) ln pa(x̂) + H
(
ρ
)

if ρ ∈ Q̄,
−∞ otherwise.

We optimize over distributions µ̃ of distributions ρ as follows:

max
µ̃∈∆(∆(X))

Eµ̃(ρ) v(ρ̂) (16)

s.t. Eµ̃(ρ) ρ̂ = q0.

Recall that its solution is given by the concavification of v, as in Aumann and

Maschler (1995) and Kamenica and Gentzkow (2011). Accordingly, let V (ρ) =

sup {ξ : (ρ, ξ) ∈ co(v)} denote the concave closure of v, where co(v) stands for

the convex hull of the graph of v. For a distribution q0(x), the tangency points

of the concavification are the tangency points between the function v(ρ) and the

hyperplane tangent to V (ρ) at q0. The distribution of the tangency points refers

to the weights of the tangency points in their convex combination that equals

q0; see Figure 1. The solution to Problem (16) is given by the distribution of

the tangency points of the concavification of v. By Carathéodory’s theorem, a

solution exists such that its support has a size of at most |X| ≤ |Z|.
A solution to Problem (16) corresponds to a class of solutions to the model-

fitting problem (13–15) that are equivalent up to a permutation of the labels z:

Let µ with support size of at most |Z| solve (16). Arbitrarily assign to each ρ

from the support of µ a distinct label z = ζ(ρ). For the recognition model, let
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q(z) = µ(ζ−1(z)) be the induced distribution of z and let q(x | z) = ζ−1(z) be

the distribution ρ(x) that corresponds to each z. For the generative model, let

p(z) = q(z). We let φ(ρ) ∈ arg maxa∈A Eρ(x) ln pa(x̂) be the optimal assignment.

For each z, let p(x | z) = pφ(q(x|z))(x) be the best fit out of all the primitive

distributions from P̄ to q(x | z). Consequently, we identify a solution to the

model-fitting problem with µ(ρ) that solves the concavification problem (16).

The equivalence of the model-fitting problem (13–15) to the concavification

problem (16) implies notable comparative statics with respect to the true process

q0. The next result states that for certain changes in q0, the agent’s choice of

posteriors p(x | z) and q(x | z) remains rigid, and she adapts only the marginal

distribution of the latent variable.

Proposition 8 (Local Invariance). Let P and Q be posterior separable. Con-

sider a true process q∗0(x) in the convex hull of Q̄, and denote the associated

optimal generative and the recognition posteriors by p∗(x | z) and q∗(x | z).
Then, for all true processes q0(x) in the convex hull of

(
q∗(x | z)

)
z
, a solu-

tion to the model-fitting problem exists such that p(x | z) = p∗(x | z) and

q(x | z) = q∗(x | z).

When z is the agent’s compression of a complex input x—for example, z is

an employer’s noisy impression of a job candidate with observable properties

x—the generative and recognition belief p(x | z) and q(x | z) of the actual input

x, conditional on forming an impression z, do not adjust to the base rate q0(x)

of the properties x, akin to the base rate neglect of Tversky and Kahneman

(1974).

Proof. The local invariance of q(x | z) follows from the analogous local invari-

ance of the tangency points of the concavification of v(ρ). The local invariance

of p(x | z) = φ(q(x | z)) follows from the fact that these are functions of

q(x | z).

A special case arises when the updating constraint (14) is lifted. Then, the

model-fitting problem becomes equivalent to the standard rational-inattention

problem with entropic cost. By Proposition 6, this setting corresponds to the

setting of White or Berk on asymptotic estimation with the set of the hypotheses

p̃(x) being the convex hull of P̄, coupled with Bayesian updating:

Corollary 1. A distribution µ(ρ) solves the model-fitting problem with true

process q0, unconstrained updating and a posterior separable P with primitive
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Figure 2: Illustration for Example 4.

distributions
(
pa(x)

)
a∈A if and only if µ(ρ) is the optimal distribution of posteri-

ors in the rational-inattention problem with the prior q0 and the payoff function

u(a, x) = ln pa(x).

Example 4 (Analogy to Rational Inattention). Corollary 1 allows for the trans-

lation of a rational inattention example from Matyskova and Montes (2023)

to the analysis of the model-fitting problem. Let the observable variable x

take values in X = {1, 2, 3}. The primitive distributions pa(x) are labeled by

a ∈ A = {1, 2, 3} and depicted in Figure 2. The updating is unconstrained.

When the true process lies within the convex hull of the primitive distri-

butions, the agent is well-specified, learns the true process and forms Bayesian

updates: p(x) = q0(x) and p(x, z) = q(x, z); the agent splits q0(x) into posteri-

ors, p(x | z) = q(x | z) equal to the primitive distributions pa(x).

For true processes that assign nearly all probability to a single value of x

(those in neighborhoods of the simplex vertices separated by the dashed lines),

the agent declines to employ latent variables in her modeling and chooses z

independent of x. She selects p(x) to be the “nearest” primitive distribution

pa(x). This corresponds to the rationally inattentive agent with an extreme

prior who chooses the a priori optimal action without learning.

Finally, for the true process q0(x) depicted in Figure 2, the generative and

recognition models employ two latent values, and the generative model is a

mixture of the two nearest primitive distributions. In this case, the impact of

a local change in the true process depends on the direction of the change. If

q0(x) stays within the convex hull of the two recognition posteriors, the optimal
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posteriors are unaffected. However, small changes in q0(x) outside of this convex

hull induce a change in the recognition posteriors, while the generative posteriors

remain rigid. N

5.2 Simple Latent Representation

If the set Q̄ of the feasible posteriors is convex, then the optimal models p and q

exhibit additional simplicity. The number of employed latent values is bounded

by the number of the available primitive distributions, and each latent variable

has its distinct stochastic meaning. These simplicity properties are analogous

to insights from rational inattention, where the support of the optimal signal

is bounded by the number of available actions and the optimal signal structure

takes the form of a simple action recommendation.

Proposition 9 (Simple Latent Representation). If Q̄ is convex, then a solution

to the model-fitting model exists such that q(x | z) 6= q(x | z′) and p(x | z) 6=
p(x | z′) for each distinct pair z, z′ in the support of p(z) = q(z). Additionally,

the size of the support of p(z) = q(z) is at most the number |A| of available

primitive distributions.

The proof is identical to the one that establishes that each action is taken

at a unique posterior in the rational inattention problem.

Proof. Consider a solution µ(ρ) such that there exist multiple posteriors ρ in

its support for which φ(ρ) = a for some a, resulting in the multiple latent

values z = ζ(ρ) with distinct q(x | z) = ρ are associated with the same p(x |
z) = pa(x). For each such a, replace all these posteriors with a single posterior

ρ′ = Eµ(ρ)[ρ̂ | φ(ρ) = a] and with φ(ρ′) = a. The replacement leads to a solution

to (16) because entropy H(ρ) is a concave function, while the term Eρ(x) ln pa(x̂)

is linear in ρ for a fixed a.

When Q̄ is not convex, the simplicity properties from the proposition need

not apply. The number of employed latent values may exceed the number |A|
of primitive distributions. Moreover, the optimal recognition model may ‘hal-

lucinate’, attributing information to differences between latent values that are

meaningless under the generative model. Formally, there may exist distinct

latent values z and z′ such that p(x | z) = p(x | z′) but q(x | z) 6= q(x | z′).
Example 5 (Hallucination). The observable variable x = (x1, x2) takes values

in {0, 1}2. The agent is endowed with two primitive distributions pa(x), a ∈
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{c, n}, where c stands for ‘correlated’ and n for ‘anticorrelated’:

pc =

(
1

2
, 0, 0,

1

2

)
pn =

(
0,

1

2
,

1

2
, 0

)
,

with the tuples specifying probabilities of (x1, x2) = 00, 01, 10, 11. The true

process q0(x1, x2) is uniform over {0, 1}2. The recognition model is constrained

to have conditionally independent posteriors, i.e., q(x1, x2 | z) = q(x1 | z)q(x2 |
z); thus, Q̄ is not convex. The set of latent states is Z = {00, 01, 10, 11}.

The solution µ(ρ) splits the true process q0 into four degenerate posteriors

that assign all probability ρ(x) = 1 to one of the four states x = 00, 01, 10, 11.

The assignment is φ(00) = φ(11) = c, φ(01) = φ(10) = n.15 This corresponds to

the fully revealing recognition model q(x | z) = 1x=z and only partially revealing

generative model with p(x | z) = pc(x) for z = 00, 11 and p(x | z) = pn(x)

for z = 01, 10. Thus, the recognition model deems the distinction between

z = 00, 11 as informative about x, but it is uninformative under the generative

model (and similarly for the distinction between z = 01, 10). N

When the set Q̄ is not convex, then the agent would benefit from randomiza-

tion over the recognition model. If feasible, such randomization transforms Q̄
into its concave closure. Thus, interpreting the posteriors q(x | z) as stochastic

meanings of the latent values z, the agent may gain by randomizing over these

meanings. Randomization over models appears in Spiegler’s work on causal

reasoning, where mixing arises via equilibrium forces; see Spiegler (2020a) for

a review. Our agent may mix in the absence of equilibrium pressures, with

the benefit of mixing arising because the uncertainty of the recognition model,

corresponding to many extended samples, contributes to a good fit. In line with

casual observation, Ambuehl and Thysen (2024) experimentally document pop-

ulation heterogeneity in causal reasoning. It remains to be seen whether this

variety can usefully be modeled as reflecting mixing.

15To see this, note that any posterior that does not eliminate all uncertainty over x ∈
{00, 11} vs x ∈ {01, 10} achieves value −∞. Given that posteriors are restricted to conditional
independence, fully informative posteriors are necessary to eliminate this uncertainty.
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6 Literature

Our framework rests on two frictions: the agent struggles to evaluate fits of the

candidate models and to update her beliefs about latent variables.16 In ma-

chine learning and Bayesian statistics, these frictions stem from computational

limitations. Cinelli et al. (2021, p. 113) note the likelihood is the obvious stan-

dard by which to evaluate a model, but “[its] computation may not be possible,

at least in a viable amount of time.” Relatedly, Kingma and Welling (2013,

p. 1) motivate the model-fitting problem (7) as an approximation to maximum-

likelihood estimation that circumvents intractable marginalization. Similarly,

according to Blei et al. (2017), “[o]ne of the core problems of modern statistics

is to approximate difficult-to-compute probability densities.”

Traditionally, intractable updating was addressed using Monte Carlo meth-

ods (Hastings (1970), Gelfand and Smith (1990)). The variational inference

method, presented here in Problem (2), is a recent alternative.17 The objec-

tive in (2) is commonly motivated as a computationally feasible lower bound

on the “evidence,” i.e., the likelihood of the data. This approach encompasses

Bayesian updating and evaluation of the model’s likelihood as special cases,18

but it also accommodates departures from Bayesian updating induced by the

updating constraint. Strzalecki (2024) represents behavioral updating rules us-

ing the variational inference problem and its variants.

The model-fitting problem (7) is commonly referred to as the variational

autoencoder.19 It has become one of the leading approaches for generative mod-

eling, a method that approximates the true distribution generating the training

dataset and produces new data resembling the training data by sampling from

this approximate distribution. Aridor et al. (2020) discuss the neuroscience in-

terpretation of the variational autoencoder. This approach is an instance of

an information geometry problem, which involves minimizing the divergence

between two distributions from distinct sets. The variational autoencoder prob-

lem is solved by an iterative optimization procedure, for which Csiszár (1984)

16These difficulties do not arise from sampling error. Following the asymptotic statistics
literature (e.g., Van der Vaart (2000)), we assume that the agent has an arbitrarily rich sample.
In the parlance of econometrics, we study identification rather than estimation (cf., Lewbel
(2019, Section 3)).

17See Jordan et al. (1999) for a seminal reference and Blei et al. (2017) and Wainwright
et al. (2008) for surveys.

18Jordan et al. (1999) note the connection to likelihood evaluation, attributing the obser-
vation to Neal and Hinton (1998).

19Cinelli et al. (2021, Chapter 5) provide an introduction to variational autoencoders. Do-
ersch (2016) emphasizes they provide a computationally feasible approach to hard problems.
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provides convergence results.

In economics, estimation and updating frictions may represent conceptual

rather than computational limitations. For example, it is standard practice

to restrict statistical models with parametric assumptions 20 or by assuming

independence among some observables, whether deliberately (nonparametric

estimation must specify which variables to include and exclude) or inadvertently

(see Enke and Zimmermann (2019) for experimental evidence of correlation

neglect). These constraints are inevitable—imposing no structure results in a

perfect explanation of each possible configuration of observable data, precluding

useful inference. The problem persists even for arbitrarily large samples, as

the dimensionality of the observations is generally arbitrarily large. Wolpert

and Macready (1997) argue that learning algorithms inevitably pose a tradeoff,

performing well in some situations only at the cost of sacrificing performance

in others, and hence invariably involve frictions. Gilboa and Samuelson (2012)

identify circumstances under which evaluating models can be fruitless without

imposing some constraints on the evaluation.

The manifestation of the estimation friction, explored in a growing eco-

nomic literature on misspecified learning, is that the set of considered statisti-

cal models may exclude the true process. Esponda and Pouzo (2016) propose

an equilibrium concept where beliefs about opponents’ behavior are learned

within a misspecified model. Their consideration of behavior endogenizes the

data-generating process, which remains exogenous in our framework. Fuden-

berg et al. (2021) and Heidhues et al. (2021) study the outcomes of individual

learning under misspecification, whereas Bohren (2016) and Bohren and Hauser

(2021) examine social learning with misspecified models. For a useful point of

entry, see Frick et al. (2023) and the references therein.

We impose the second friction on belief updating. A large literature orig-

inating from Tversky and Kahneman (1974) and Tversky et al. (1982) doc-

uments that belief updating, instead of following Bayes’ rule, is often guided

by heuristics and biases. See Benjamin (2019) for a recent and comprehen-

sive survey. Departures from Bayes’ rule can be economically relevant. For

example, Ambuehl and Thysen (2024) experimentally investigate how flaws in

causal reasoning influence decisions, and Andre et al. (2023) demonstrate that

subjects’ subjective causal models affect their inflation expectations. Bhandari

20As James et al. (2023, p. 69) comment, “[linear regression] has been around for a long
time and is the topic of innumerable textbooks. . . [it] is still a useful and widely used statistical
learning method.”

34



et al. (2022) document deviations of macroeconomic expectations from rational

expectations and show that incorporating such deviations improves a standard

macroeconomic model.

Misspecification and updating frictions have been studied separately in eco-

nomics, leading to to what Bohren and Hauser (2023) refer to as the misspecified

and non-Bayesian approaches. Bohren and Hauser investigate when these two

approaches are equivalent. They compare an agent’s forecast of her own pos-

teriors to the true distribution of posteriors. Our agent, in general, cannot

be represented by a misspecified model. Interpreting the generative model as

the agent’s forecast of posteriors and the recognition model as the distribution

of posteriors, our agent fails Bohren’s and Hansen’s “No ‘unexpected’ beliefs”

condition, since her recognition updates may be inconsistent with her genera-

tive model. Aina et al. (2023) report an experiment where posteriors elicited

before signal observation differ from posteriors formed after observing the sig-

nal. These might be interpreted as empirical counterparts of the generative and

recognition models.

The idea that the agent tailors her statistical model to accommodate her own

frictions in subsequent updating is relatively novel in economics. Exercises in

estimation typically make no mention of subsequent updating. Conversely, the

typical model of updating in economics endows the agent with an exogenously

given and fixed prior, to which the agent applies Bayes’ rule in response to new

information (e.g., Baley and Veldkamp (2023)). In contrast, work in the forma-

tive period of Bayesian decision theory readily recognized that belief formation

and updating are interconnected. Luce and Raiffa (1957, p. 302) argue that an-

ticipated updating plays a role in shaping the agent’s prior, which arises out of

a process of “jockeying—making snap judgments, checking on their consistency,

modifying them, again checking on consistency, etc.” Interestingly, practical

variational autoencoder algorithms also involve alternating optimizations of the

generative and recognition models. Savage and de Finetti appear to have simi-

lar motivations for thinking about probability (though proceeding in a different

direction). Savage (1972, p. 57) writes that “. . . the role of the mathematical

theory of probability is to enable the person using it to detect inconsistencies in

his own real or envisaged behavior. It is also understood that, having detected

such an inconsistency, he will remove it.” de Finetti (1937, p. 60; translation

in Kyburg and Smokler (1964)) writes that “The practical object of these rules

[of probability] is to reduce an evaluation, scarcely accessible directly, to others

by means of which the determination is rendered easier and more precise.”
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Our work connects to the decision theory literature at a number of points.

Our approach is most similar in spirit to that of Spiegler (2016, 2020a,b). We

share with Spiegler a focus on procedurally motivated concepts, an interest in

frictions, and an attempt to draw economic implications.

There is a growing body of work on non-Bayesian updating, with Epstein

(2006) presenting its early axiomatization. Ortoleva (2012) models an agent

who follows Bayes’ rule unless confronted with a sufficiently unlikely event, at

which point she switches to a new, likelihood-maximizing prior. Schwartzstein

and Sunderam (2021) and Aina (2021) study behavioral agents who select sta-

tistical models using maximum-likelihood estimation. Jakobsen (2021) presents

a model of coarse updating, where the agent partitions the simplex, assigns a

representative belief to each cell in the partition, and then approximates the

true Bayesian posterior with the representative belief of the respective cell. The

collection of representative posteriors in this model is analogous to our set Q.

Dominiak et al. (2021) present a model of “conservative updating”, which

shares many features with our model.21 Their agent chooses her posterior to

minimize the distance to the prior, subject to consistecy with received informa-

tion. If the “distance” is the Kullback-Leibler divergence, then this procedure

coincides with Bayesian updating for standard types of information. Their work

differs from ours by examining general distance measures, while we incorporate

the generative model into the analysis, leading to the model-fitting problem (7).

Several papers have brought ideas from machine learning into economics.

Zhao et al. (2020) axiomatize a generalization of expected utility maximization

implemented by a neural network. Aridor et al. (2024) apply the variational

autoencoder in a game-theoretic setting as a model of the human decision-

making process. Caplin et al. (2023) ask whether a machine learning algorithm

can be represented as a rational inattention optimization. In Samuelson and

Steiner (2024), we observe that a class of exponential growth processes can be

represented by the variational autoencoder, and exploit this connection to study

the impact of wealth redistribution on economic growth.

21See Dominiak et al. (2023), Kovach (2021), and Zhao (2022) for related models. In
Dominiak et al. (2023), the information learned by the agent corresponds to an event rather
than the “general information” allowed by Dominiak et al. (2021). The updating rule in
Kovach (2021) is generalized in Dominiak et al. (2021). Zhao (2022) focuses on extending the
spirit of Bayesian updating to accommodate more general information.
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7 Summary

We highlight several results that have emerged from the analysis. First, we find

it reassuring that classic models of reasoning emerge as special cases within the

framework. An agent free from updating constraints behaves as described in the

misspecified learning literature, whereas an agent who is also correctly specified

behaves as a perfect Bayesian.

Second, even when beleaguered by frictions, the agent exhibits some familiar

properties. For example, under appropriate conditions, the agent’s optimally

chosen beliefs exhibit rational expectations, despite the misspecification and

updating frictions.

Third, we have found that ideas from economics and machine learning can

be usefully combined. The constrained updating problem, motivated as a com-

putational device in Bayesian statistics, can be interpreted as estimating the

sample frequencies. The updating constraints, motivated in terms of tractabil-

ity in the variational inference literature, can be interpreted in terms of the

heuristics and biases common in behavioral economics. When the agent’s con-

straints are posterior separable, the model-fitting problem becomes isomorphic

to a rational inattention problem. This allows us to bring techniques such as

concavification to bear on the model-fitting problem. We expect these types of

synergies to be useful in applications.

Our most intriguing finding is that an agent constrained by estimation and

updating frictions exhibits a preference for simple models. We have identified

conditions under which an agent adopts a simplified view of the world, taking

the relationships between latent variables to be deterministic for all but those

most directly related to the observable variables. If the constraints are posterior

separable, the agent restricts her model to a small number of latent variables. A

preference for simple models is often motivated by an effort to avoid overfitting.

Here, in contrast, simplicity arises from an effort to enhance the ability to

evaluate goodness-of-fit.

Finally, we observe that behavioral properties, such as correlation neglect

and a variant of base rate neglect, can emerge as implications of the analysis.

Correlation neglect can arise under constraints that accommodate arbitrary

correlation (Example 3), and base rate neglect can appear even though the

agent could make use of prior information (Proposition 8) because the agent’s

search for mutually consistent recognition and generative models favors such

models.
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A Proofs

Proof of Proposition 2. We prove that

1

n
ln `n (q̃)→ Eq̃(x,z) ln p(x, z) + H

(
q̃(x, z)

)
−H

(
q̃(x)

)
.

The limit is the objective in the constrained-updating problem (2) up to the

term −H
(
q̃(x)

)
, which is beyond the agent’s control due to the empirical con-

straint q̃(x) = q0(x). Since 1
n ln `n (q̃) is a monotone transformation of the

objective `n (q̃) from the estimation problem (6), the proposition follows from

the Maximum theorem.

To prove the limit, observe that

Nn(q̃) =
∏

x∈supp(q̃(x))

N ′q̃(x)n

(
q̃(z | x)

)
,

where N ′m
(
π(z)

)
is the number of the sequences (z1, . . . , zm) of the length m

with the empirical distribution π(z). This is because to compute the number

Nn(q̃) of the sequences (xi, zi)
n
i=1 with distribution q̃(x, z) that coincide with

(xi)
n
i=1 on the margin, we can, for each value x, consider a subsequence (ik)k

of length q̃(x)n such that xik = x for all k and the empirical distribution of zik
is q̃(z | x). Then, N ′q̃(x)n

(
q̃(z | x)

)
is the number of distinct permutations for

each such subsequence.

Theorem 11.1.3 in Cover and Thomas (1999) provides the following bounds:

1

(m+ 1)|Z|
exp

[
m×H

(
π(z)

)]
≤ N ′m

(
π(z)

)
≤ exp

[
m×H

(
π(z)

)]
. (17)

Substituting these bounds for each x with m = q̃(x)n into (5) gives bounds

Eq̃(x,z) ln p(x̂, ẑ) +
∑
x

q̃(x) H
(
q̃(z | x)

)
− |Z|

∑
x

ln (q̃(x)n+ 1)

n

≤ 1

n
ln `n (q̃) ≤

Eq̃(x,z) ln p(x̂, ẑ) +
∑
x

q̃(x) H
(
q̃(z | x)

)
.

Since ln(q̃(x)n+1)
n is nonnegative and at most ln(n+1)

n , both the lower and upper
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bounds converge to

Eq̃(x,z) ln p(x̂, ẑ)+
∑
x

q̃(x) H
(
q̃(z | x)

)
= Eq̃(x,z) ln p(x̂, ẑ)+H

(
q̃(x, z)

)
−H

(
q̃(x)

)
,

where we applied the chain rule for entropy in the last step.

Proof of Lemma 1. The negative of the objective function of the model-fitting

problem satisfies

−KL
(
p̃(x, z) ‖ q̃(x, z)

)
= −KL

(
q̃(z) ‖ p̃(z)

)
−
∑
z

q̃(z) KL
(
q̃(x | z) ‖ p̃(x | z)

)
= −KL

(
q̃(z) ‖ p̃(z)

)
+
∑
z

q̃(z) Eq̃(x|z)
[

ln p̃(x̂ | z)− ln q̃(x̂ | z)
]

= −KL
(
q̃(z) ‖ p̃(z)

)
+
∑
z

q̃(z)
(
Eq̃(x|z) ln p̃(x̂ | z) + H

(
q̃(x | z)

))
.

The result follows because the first term on the right vanishes once p̃(z) is

optimized to p(z) = q̃(z).
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