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Abstract
Output uncertainty is a major concern for industries prone to ex-

ogenous, persistent and large fluctuations in output, such as agri-
culture, wind and solar power generation, while technology adoption
aimed at mitigating output uncertainty can improve social welfare.
This paper constructs a competitive market model with random out-
put fluctuations to examine the scale of technology adoption at the
long-term equilibrium and its comparison with the social optimum.
We show that the First Welfare Theorem no longer holds in general,
and depending on the characteristics of the demand function, the scale
of technology adoption in the competitive market may be greater or
less than the socially optimal scale.
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1 Introduction

Uncertainty is an inescapable reality that many industries have to consider
in production activities. Ho (1989) divided production uncertainty into two
categories: (i) environmental uncertainty and (ii) system uncertainty. Envi-
ronmental uncertainty refers to uncertainties caused by factors outside the
production process, such as demand uncertainty and uncertainty caused by
suppliers. System uncertainty is related to uncertainties in the production
process, such as uncertainty in operation yield, quality, and failure of the
production system. This paper considers the latter category of uncertainty.

Specifically, this paper focuses on production activities that depend greatly
on natural conditions such as weather and temperature, including agriculture,
aquaculture, and the rapidly developing solar and wind power generation in
recent years. The output uncertainty of such production activities has the
following characteristics: (1) The uncertainty in output is determined by ex-
ogenous factors rather than the uncertainty in inputs such as raw materials;
(2) The uncertainty in output is persistent rather than caused by accidental
events such as sudden interruptions or inexperience; (3) The fluctuations in
output caused by exogenous factors are large and are among the fundamen-
tal reasons determining the final output. With the intensification of global
warming and the large-scale application of volatile renewable energy, such
output uncertainty issues become increasingly severe.

While output uncertainty may cause huge negative impacts, there does
exist a series of technologies that can reduce output fluctuations. For ex-
ample, agriculture can use technologies such as precision irrigation and in-
telligent fertilization to reduce the impact of natural environmental factors
such as climate and soil on output (Koundouri et al., 2006). In wind and
solar power generation, pumped storage and electrochemical energy storage
are effective ways to mitigate output fluctuations (Schmidt et al., 2017).

However, whether firms in a competitive market have enough incentives to
adopt these technologies is still an open question, since technology adoption
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among firms will affect each other, that is, the efforts of one firm to reduce
output fluctuations will affect the efforts of other firms through the impact
on prices. The First Welfare Theorem no longer holds automatically due to
the firms’ enlarged action space. Whether competitive market equilibrium
can achieve the social optimum is the main research question studied in this
paper.

To answer this question, we construct a competitive market model with
the above production characteristics to examine how the interaction between
firms determines the scale of technology adoption. While market prices are
determined by supply and demand, as in a standard competitive market
model, firms’s efforts to adopt technology are determined in the following
way: each firm’s effort choice depends on price, which depends on the total
effort of the industry; but each firm, whose output is too small compared
with the total output of the industry, ignores the effect its own effort choice
has on price.1 Hence the equilibrium concept we define, though consisting of
more variables than the standard competitive equilibrium, is competitive in
sprit. And we find that the First Welfare Theorem no longer holds in general,
and depending on the characteristics of the consumer demand function, the
scale of technology adoption in the competitive market may be greater or
less than the social optimal scale. Hence governments need to determine the
optimal intervention policy according to the demand characteristics.

We end the introduction with a brief review of the literature. The ex-
istence of uncertainty is well acknowledged in economics, and it has been
integrated into general equilibrium models (e.g., Borch (1962) and Arrow
and Neave (1978)) and partial equilibrium models (e.g., Joskow and Tirole
(2006) and Joskow and Tirole (2007)). It is well-known that when mar-
ket price can be contingent on the realized state, competitive equilibrium
achieves social optimum. However, to our best knowledge, the problem of

1The equilibrium determination of efforts has some flavor of Nash equilibrium in large
games, see Schmeidler (1973) and Khan and Sun (2002).
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mitigating uncertainty in competitive market has rarely been addressed in
the literature of economics.

On the other hand, there are many studies in the literature of operation
that focused on preventing risks caused by external factors such as natural
disasters through supply chain risk management (SCRM) (e.g. Singhal et
al. (2011) and Ritchie and Brindley (2007)) or mitigating uncertainty in the
production process through production planning (e.g., Bertrand and Rutten
(1999), Graves (2011)). For the production activities studied in this paper,
which feature persistent and large output fluctuations, the role of SCRM
and production planning are both limited. Furthermore, the aforementioned
literature has mainly centered on mitigating uncertainty for individual firms,
whereas this paper discusses how the scale of firms’ technology adoption
to reduce uncertainty interact with each other, and whether competitive
markets necessitate policy intervention.

2 Model Setting

On the supply side, the model consists of two industries, one with deter-
ministic output, and the other with stochastic fluctuating outputs as well as
technology that can mitigate fluctuations. And they are referred to as deter-
ministic industry and stochastic industry, respectively. The demand side is
comprised of representative consumers who own capital that can be invested
in the two industries and who consume products from both industries.

We first describe the production of each industry. For the determinis-
tic industry, one unit of capital can produce one unit of product. For the
stochastic industry, the output rate per unit of capital is i ∈ [0, 1], where i

is a uniform random variable whose realization only depends on exogenous
factors like weather or temperature. And we further assume the realization
of output rate is identical for each unit of capital. That is, when the capital
stock of all firms in the stochastic industry is K, the total output level is iK.
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The variable cost of production in each industry is assumed to be zero. Each
industry has a large number of firms, and they are all price takers.

Firms in the stochastic industry can adopt some kind of technology that
reduces output fluctuations.2 Let θ ∈ [0, 1] be the measure of technology
adoption scale. Fixed θ, the output rate per unit of capital becomes j =

(1 − θ)i + θ
2
. Note that j ∈ [ θ

2
, 1 − θ

2
], and E[j] = (1 − θ)E[i] + θ

2
= E[i],

V ar[j] = (1 − θ)2V ar[i]. When θ is larger, the range of j is narrower and
the variance is smaller. Let h(θ) be the amount of capital that is needed
to achieve technology adoption scale θ for each unit of capacity investment,
where h(0) = h′(0) = 0, h′(θ) > 0 for θ > 0, limθ→1 h

′(θ) = ∞, and h′′(θ) > 0.
Consumers own a fix amount of capital K̄. And the utility function for

the representative consumer is U(q, x), where q is the products of the in-
dustry with stochastic output, and x is the products of the industry with
deterministic output. We further assume that the utility function is separa-
ble, that is U(q, x) = S(q) +W (x), where S ′(q) > 0, S ′′(q) < 0, W ′(x) > 0,
W ′′(x) ≤ 0, limq→0 S

′(q) > W ′(K̄) and limx→0 W
′(x) > S ′(K̄). Note that

consumers prefer lower output volatility. That is, S(E[q̃]) > E[S(q̃)], for
any q̃ being a random consumption amount of products from the stochastic
industry.

We will first look at the socially optimal technology adoption scale. Then
we will define and characterize the long-term market equilibrium. Finally, we
will compare the market equilibrium results with the socially optimal results.

3 Social optimum

Let K be the capital investment level and θ be the technology adoption scale
in the stochastic industry. The social optimal problem is the following.

2In general, technology adoption will affect both output volatility and output level.
Here we only consider the impact on volatility. Some technologies can be approximated
as only affecting volatility though, such as power storage technologies.
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max
θ,K

Ej[S(jK)] +W (K̄ − (1 + h(θ)) ·K).

Since i is uniformly distributed in [0, 1] and j = (1−θ)i+ θ
2
, we have that

j is uniformly distributed in [ θ
2
, 1− θ

2
]. And we can hence write the problem

as

max
θ,K

∫ 1− θ
2

θ
2

1

1− θ
S(jK)dj +W (K̄ − (1 + h(θ)) ·K).

Since limq→0 S
′(q) > W ′(K̄) and limx→0 W

′(x) > S ′(K̄), in the optimal
solution, 0 < K < K̄. Since limθ→1 h

′(θ) = ∞, in the optimal solution, θ < 1

. Suppose in the optimal solution, θ > 0. The the optimal solution satisfies
the following first order conditions:

For K,

Ej[S
′(jK) · j] = W ′(K̄ − (1 + h(θ)) ·K)(1 + h(θ)). (1)

For θ,

1

(1− θ)2

∫ 1− θ
2

θ
2

S(jK)dj− 1

2(1− θ)
[S(

θ

2
K)+S((1−θ

2
)K)] = W ′(K̄−(1+h(θ))·K)·h′(θ)·K.

(2)
Equation (1) indicates that the marginal benefits of capital investment in

the two industries are equal. Equation (2) indicates that the marginal benefit
from increasing the scale of technology application θ equals the marginal cost.
Note that the marginal benefit from increasing θ consists of two parts: one
is the loss of consumer utility at the two endpoints of θ

2
and 1 − θ

2
, and the

other is the increase in consumer utility over the entire interval ( θ
2
, 1 − θ

2
),

since the probability density at each position in the interval has increased.
Since S ′′ < 0, we have that

∫ 1− θ
2

θ
2

S(jK)dj

1− θ
>

S( θ
2
K) + S((1− θ

2
)K)

2
∀θ ∈ [0, 1),
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that is, the average value of S(jK) over the entire interval [ θ
2
K, 1 − θ

2
K] is

greater than the average value of S(jK) at the two end points. Therefore,
the marginal benefit from increasing θ is greater than zero for any θ ∈ [0, 1).
Since h′(0) = 0, the optimal scale of technology adoption is indeed greater
than zero.

4 Competitive equilibrium

In this section, we consider the long-term equilibrium of the competitive
market. Like the standard competitive market model, the output of each firm
in each industry is very small relative to the total output of the industry, so it
is a price taker. The market equilibrium prices of products of both industries
are determined by the supply of firms and the demand of consumers. The
market has free entry, so in the long-term equilibrium, the profits of all firms
in both industries are zero.

How do firms in the stochastic industry determine the scale of technology
adoption in the long-term equilibrium? We assume that each firm will de-
termine its own scale of technology adoption according to the market prices,
while the market prices are taken as given. That is, any single firm ignores
the impact of its own choice of technology adoption scale on market prices.
Given that the output of each firm is very small relative to the total mar-
ket output, this assumption is reasonable. And we only consider symmetric
equilibrium, that is, all firms choose the same technology adoption scale θ at
equilibrium. Specifically, θ determines the range of output rate j. The mar-
ket forms different prices pj based on different realizations of the output rate
j. Each firm chooses its technology adoption scale to maximize its expected
profit given the prices.

Note that since the firms’ capital investment in both industries have the
characteristics of constant returns to scale, we only need to consider the
total capital investment level of the whole industries at equilibrium. For
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the deterministic industry, suppose it invests Kd units of capital, then it
produces Kd units of products; since firms earn zero profit, the price of
the products equals the price of the capital, which we denote by pc. In
equilibrium, consumers consume Kd units of products from the deterministic
industry, and the marginal utility, W ′(Kd), equals the price pc.

Consider the stochastic industry. Suppose the capital investment level
of the stochastic industry is K, and the technology adoption scale of each
firm is θ, and the market price of its product is pj when the output rate
is j ∈ [ θ

2
, 1 − θ

2
]. The equilibrium is then characterized by the following

conditions:
(i) At any output rate, firms maximize profits, consumers maximize util-

ities, and market supply equals demand.
Specifically, in each state j, firms maximize profits by supplying all out-

puts, and the total demand of the market equals the total supply, which
equals jK. Consumers maximize utilities by consuming to the extent such
that the marginal utility equals the market price, that is,

S ′(jK) = pj ∀j. (3)

(ii) The long-term profits of the firms are zero.
Specifically, the cost of one unit capacity investment plus the correspond-

ing technology adoption cost equals the expected marginal return, that is,

Ej[pj · j] = (1 + h(θ))pc, (4)

where pc = W ′(K̄ − (1 + h(θ))K).
(iii) For each firm, given market prices, the scale θ of technology adoption

maximizes its profit.
Specifically, given pj, where j = (1− θ)i+ θ

2
, and pc, we have that

θ = arg max
θ′∈[0,1]

Ej′ [pj · j′]− pc · h(θ′),
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where j′ = (1− θ′)i+ θ′

2
.

Now we analyze condition (iii). The firm’s objective function can be
written as follows.

max
θ′∈[0,1]

∫ 1− θ′
2

θ′
2

1

1− θ′
pj · j′dj′ − pc · h(θ′).

Note that j = j′−θ′/2
1−θ′

(1 − θ) + θ
2
. Hence when j′ = θ′

2
, j = θ

2
, and when

j′ = 1 − θ′

2
, j = 1 − θ

2
. Suppose the optimal solution is an interior solution,

then the first-order condition is as follows.

1

(1− θ′)2

∫ 1− θ′
2

θ′
2

pj · j′dj′ −
1

2(1− θ′)
[p θ

2

θ′

2
+ p1− θ

2
(1− θ′

2
)] = pc · h′(θ′).

As in the social optimal problem, the marginal revenue of increasing θ′

can be divided into two parts. One part is the loss of revenue at the two
endpoints of θ′

2
and 1 − θ′

2
. The other part is the increase in revenue over

the entire interval ( θ′
2
, 1 − θ′

2
), since the probability density at each point in

the interval has increased.
In equilibrium, θ′ = θ, pj = S ′(jK) and pc = W ′(K̄ − (1 + h(θ))K).

Hence we obtain

1

(1− θ)2

∫ 1− θ
2

θ
2

S ′(jK)·jdj− 1

2(1− θ)
[S ′(

θ

2
K)

θ

2
+S ′((1−θ

2
)K)·(1−θ

2
)] = W ′(K̄−(1+h(θ))K)·h′(θ).

(5)
Above we consider the case where the equilibrium scale of technology

adoption is greater than zero. However, depending on the parameters of the
model, the equilibrium scale of technology adoption may be zero.

Let T (j,K) = S ′(jK) · j. Note that T (j,K) is the revenue firms obtain
for each unit of capital investment, and it is also consumers’ marginal utility
with respect to K. We obtain T ′′

j (j,K) = 2KS ′′(jK) + jK2S ′′′(jK). If
S ′′′(jK) ≤ 0 or S ′′′ > 0 smaller enough, then T ′′(j,K) < 0. And as in the
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social optimum problem, for any θ, the left side of Equation (5) is greater
than zero. Since h′(0) = 0, the technology adoption scale in the competitive
equilibrium is greater than zero.

However, T ′′(j) is not necessarily negative. If S ′′′(·) is very large such that
for any K greater than the socially optimal capital level with no technology
adoption and any θ ∈ [0, 1), T (j,K) has a lower average value over the
interval [ θ

2
, 1 − θ

2
] than at the two endpoints, then the marginal benefit is

negative for any θ ∈ [0, 1). As a result, firms will choose θ = 0 at equilibrium.

5 Comparison between competitive equilib-
rium and social optimum

In this section we compare the competitive equilibrium and the social opti-
mum solution.

Note that Equation (2) can be written as follows.

1

(1− θ)2

∫ 1− θ
2

θ
2

S(jK)

K
dj− 1

2(1− θ)
[
S( θ

2
K)

K
+
S((1− θ

2
)K)

K
] = W ′(K̄−(1+h(θ))K)·h′(θ).

(6)
By comparing Equation (6) and Equation (5), we can see that in the

social optimal problem, the effect of increasing θ acts on consumers’ average
utility function S(jK)/K, while in the competitive equilibrium, the effect of
increasing θ acts on consumers’ marginal utility function S ′(jK) · j, which is
also firm’s revenue function per unit of capital. Therefore, in general, these
the two solutions are not the same. That is, in a market where the choice
of technology adoption scale is incorporated, the First Welfare Theorem no
longer holds in general.

Let V (j,K) = S(jK)/K − S ′(jK) · j. We first note that only when
V (j,K) is special would the competitive equilibrium be socially optimal.

Proposition 1. The competitive equilibrium is socially optimal if and only
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if Ej[V (j,K∗)] =
V (1− θ∗

2
,K∗)+V ( θ

∗
2
,K∗)

2
.

The condition required for the above proposition is that the average value
of V (j,K∗) over the interval [ θ

∗

2
, 1 − θ∗

2
] is equal to its average value at

the two endpoints. Note that V ′′
j (j,K) = −KS ′′(jK) − jK2S ′′′(jK). If

S ′′(·) = 0, then V ′′
j (j,K) = 0; that is, V (j,K) is a linear function of j. Then

this condition holds. That is, if consumers are risk neutral, the competitive
equilibrium is socially optimal; in fact, the technology to mitigate output
fluctuations would be of no use either for the social planner or for competitive
firms. If S ′′(·) < 0, then V (j,K) is in general not a linear function of j, and
this condition will not hold in general.

If we further assume that W ′′(x) = 0, then we can compare the two
solutions and have the following results. Note that under the condition that
W ′′(x) = 0, we can reduce our model to a partial equilibrium model that
only consists of one industry and a representative consumer. This partial
equilibrium model is wildly used in the literature of electricity market, see
e.g. Turvey (1968) and Joskow and Tirole (2007). The difference between
our model and the classical one is that we consider the technology that could
reduce output fluctuations.

Proposition 2. Suppose W ′′(x) = 0 and h′′(θ) is large enough.
(i) The capacity investment level of the stochastic industry in the com-

petitive equilibrium is greater than or equal to the socially optimal level of
capacity investment.

(ii) If V ′′
j > 0, then the scale of technology adoption in the competitive

equilibrium is greater than the socially optimal scale of technology adoption.
(iii) If V ′′

j < 0, then the scale of technology adoption in the competitive
equilibrium is less than the socially optimal scale of technology adoption.3

3Suppose j = 0, then V ′′
j = −KS′′(0) > 0. Hence for j small enough, we have that

V ′′
j > 0. That is, the condition that V ′′

j < 0 for all j will never hold. However, as shown
by Example 1, if V ′′

j < 0 for a large range of j, then the scale of technology adoption
in the competitive equilibrium will be less than the socially optimal scale of technology
adoption.
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In the proof of the above proposition, we show that when V ′′
j > 0, T ′′

j < 0.
According to the analysis in Section 4, in this case, the scale of technology
adoption in the competitive equilibrium is greater than zero. According to the
above proposition, we know further that the scale of technology adoption in
the competitive equilibrium is greater than the socially optimal scale. When
V ′′
j < 0, the scale of technology adoption in the competitive equilibrium may

be greater than zero or equal to zero, and in both cases it is less than the
socially optimal scale of technology adoption.

We illustrate these results using the following numerical example.

Example 1. Let S(q) = a[b−1− (q+ b)−1] and W (x) = x. Note that S ′(q) =

a(q + b)−2, S ′′(q) = −2a(q + b)−3 < 0, and V ′′
j = 2a(jK + b)−4(b − 2jK).

Hence V ′′
j > 0 if and only if b > 2jK. Let h(θ) = kθ3.

Figure 1 shows changes of the capacity investment level and technology
adoption scale in the stochastic industry, as the parameter k of the tech-
nology adoption cost changes. It can be seen that in all cases, the capacity
investment in the competitive equilibrium is greater than that the socially
optimal investment.

Case 1. In Figure 1(a), a = 109, b = 4000, I = 50, k ∈ [10000, 15000].
Note that V ′′

j > 0. In this case, the scale of technology adoption in the
competitive equilibrium is greater than the socially optimal adoption scale.
As the cost of technology adoption increases, the optimal and competitive
investment and technology adoption scale decrease, indicating complemen-
tarity between capacity investment and technology adoption.

Case 2. In Figure 1(b), a = 104, b = 4, I = 50, k ∈ [0, 15000]. Hence
when j > 0.2, V ′′

j < 0. In this case, the scale of technology adoption in
the competitive equilibrium is smaller than the socially optimal adoption
scale, but greater than zero. Again as the cost of technology adoption in-
creases, the optimal and competitive investment and technology adoption
scale decrease, indicating complementarity between capacity investment and
technology adoption.
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Case 3. In Figure 1(c), a = 104, b = 0.001, I = 50, k ∈ [0, 15000]. Hence
when j > 0.0001, V ′′

j < 0. In this case, the scale of technology adoption
in the competitive equilibrium equals zero, smaller than the socially opti-
mal adoption scale. The optimal investment increases with the increase of
technology adoption costs, while the optimal scale of technology adoption
decreases with the increase of technology application costs, indicating sub-
stitutability between capacity investment and technology adoption.

Since V ′′
j (j,K) = −KS ′′(jK)− jK2S ′′′(jK) and S ′′ < 0, we have that if

S ′′′(jK) ≤ 0 or S ′′′(jK) > 0 small enough, then V ′′
j > 0. We hence obtain

the following corollary.

Corollary 1. If W ′′(x) = 0, and S ′′′(jK) ≤ 0 or S ′′′(jK) > 0 small enough,
then the scale of technology adoption in the competitive equilibrium is greater
than the socially optimal scale of technology adoption.

Therefore, when the inverse demand function, that is, S ′(q), is concave
or weakly convex, the government should weaken the marginal returns to
technology adoption in the competitive market to correct the tendency of
over-investment in the competitive market. When S ′(q) shows strong con-
vexity, the government needs to increase the marginal returns to technology
adoption in the competitive market to correct the tendency of underinvest-
ment in the competitive market.

Appendix

Let (K∗, θ∗) be the socially optimal solution, and (Ke, θe) be the competitive
equilibrium solution.
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A.1 Proof of Proposition 1

Proof. Suppose (Ke, θe) = (K∗, θ∗). Then the left hand of Equation (6) is
equal to the left hand of Equation (5). That is,

1

1− θ∗
[

∫ 1− θ∗
2

θ∗
2

V (j,K∗)dj

1− θ∗
−

V (1− θ∗

2
, K∗) + V ( θ

∗

2
, K∗)

2
] = 0.

Hence Ej[V (j,K∗)] =
V (1− θ∗

2
,K∗)+V ( θ

∗
2
,K∗)

2
.

Suppose the condition holds. Then (K∗, θ∗) satisfy Equation (3), Equa-
tion (4), and Equation (5). That is, (K∗, θ∗) is the same as the competitive
equilibrium solution.

A.2 Proof of Proposition 2

Proof. Without loss of generality, assume that W ′(x) = 1 for any x. We first
prove (i). We consider the following two cases.

Case 1: θe = 0.
Since θe is the optimal choice of firms, Ei[S

′(iKe) · i] > Ej[S
′(jKe) · j]−

h(θ∗), where j = i(1 − θ∗) + θ∗

2
. Suppose for the sake of contradiction that

K∗ ≥ Ke. Since T ′
K(j,K) = S ′′(jK) · j2 < 0, we have that Ej[T (j,K

e)] >

Ej[T (j,K
∗)], that is, Ej[S

′(jKe) · j]− h(θ∗) > Ej[S
′(jK∗) · j]− h(θ∗). Since

Ej[S
′(jK∗)·j]−h(θ∗) = 1 (this is Equation (1)), we have that Ej[S

′(jKe)·j]−
h(θ∗) > 1. However, Ei[S

′(iKe) · i] = 1 (this is Equation (4)). Contradiction!
Hence K∗ < Ke.

Case 2: θe > 0.
Let

F (K, θ) := Ej[S
′(jK) · j]− (1 + h(θ)),
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and

G(K, θ) :=
1

(1− θ)2

∫ 1− θ
2

θ
2

S(jK)

K
dj− 1

2(1− θ)
[
S( θ

2
K)

K
+
S((1− θ

2
)K)

K
]−h′(θ),

H(K, θ) :=
1

(1− θ)2

∫ 1− θ
2

θ
2

S ′(jK)·jdj− 1

2(1− θ)
[S ′(

θ

2
K)·θ

2
+S ′((1−θ

2
)K)·(1−θ

2
)]−h′(θ).

Note that h′′(θ) is assumed to be large enough such that G′
θ < 0 and

H ′
θ < 0; in addition,

F ′
K(K, θ) = Ej[S

′′(jK) · j2] < 0,

and
F ′
θ(K, θ) = H(K, θ).

According to the first order conditions of the social optimal problem, we
have that F (K∗, θ∗) = 0 (this is Equation (1)), and G(K∗, θ∗) = 0 (this is
Equation (2)).

According to the conditions of competitive equilibrium, we have that
F (Ke, θe) = 0 (this is Equation (4)) and H(Ke, θe) = 0 (this is Equation
(5)).

Since F ′
θ(K

e, θe) = H(Ke, θe) = 0 and F ′′
θ (K

e, θe) = H ′
θ(K, θ) < 0, we

have that 0 = F (Ke, θe) = maxθ∈[0,1] F (Ke, θ). Hence F (Ke, θ∗) ≤ 0. Since
F ′
K < 0 and F (K∗, θ∗) = 0, we have that K∗ ≤ Ke.

We now prove (ii).
Since V ′′

j = −KS ′′(jK)− jK2S ′′′(jK) > 0, we have that jK2S ′′′(jK) <

−KS ′′(jK) < −2KS ′′(jK). Hence T ′′
j (j,K) = 2KS ′′(jK) + jK2S ′′′(jK) <

0. According to the analysis in Section 4, θe > 0.
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Since

G′
K(K, θ) =

1

(1− θ)2

∫ 1− θ
2

θ
2

∂ S(jK)
K

∂K
dj − 1

2(1− θ)
[
∂

S( θ
2
K)

K

∂K
·+

∂
S((1− θ

2
)K)

K

∂K
],

we have that if ∂
S(jK)

K

∂K
is concave in j, then G′

K(K, θ) ≥ 0. That is, if
∂3 S(jK)

K

∂K∂2j
≤ 0, G′

K(K, θ) ≥ 0.

Note that ∂3 S(jK)
K

∂K∂2j
= S ′′′(jK)jK+S ′′(jK) = −V ′′

j

K
. Since V ′′

j > 0, we have

that ∂3 S(jK)
K

∂K∂2j
< 0 and G′

K(K, θ) > 0.
Note that

G(K, θ)−H(K, θ) =
1

1− θ
[

∫ 1− θ
2

θ
2

V (j,K)dj

1− θ
−

V (1− θ
2
, K) + V ( θ

2
, K)

2
].

Since V ′′
j > 0, G(K, θ) < H(K, θ).

Suppose for the sake of contradiction that θ∗ ≥ θe. We then have

0 = G(K∗, θ∗) ≤ G(Ke, θ∗) < H(Ke, θ∗) ≤ H(Ke, θe) = 0 .

Note that the first inequality holds because G′
K > 0 and K∗ ≤ Ke, and the

second inequality holds because G(K, θ) < H(K, θ), and the third inequality
holds because H ′

θ(K, θ) < 0 and according to (i), θ∗ ≥ θe. Contradiction!
Hence θ∗ < θe.
Now we prove (iii). If θe > 0 , then we can prove (iii) using similar

arguments as in the proof for (ii). If θe = 0,then θ∗ > 0 = θe.
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