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Abstract
We extend the equivariance and invariance conditions for construction of optimal
designs to multiple-group mixed models and, hence, derive the support of optimal
designs for first- and second-order models on a symmetric square. Moreover, we
provide a tool for computation of D- and L-efficient exact designs in multiple-group
mixed models by adapting the algorithm of Harman et al. (Appl Stoch Models Bus
Ind, 32:3–17, 2016).We show that this algorithm can be used both for size-constrained
problems and also in settings that require multiple resource constraints on the design,
such as cost constraints or marginal constraints.

Keywords Optimal design · Exact design · Random coefficient regression ·
Equivariance · Invariance · Resource constraints

1 Introduction

The aim of this work is computation of highly efficient experimental designs in
multiple-group random coefficient regression models. Analytical approach for deter-
mining optimal approximate designs for this type of models has been discussed, i.e., in
Fedorov and Jones (2005), Schmelter (2007) and Prus (2022). In Fedorov and Jones
(2005), optimal designs were obtained for specific regression functions. Schmelter
(2007) proposed optimality conditions in the particular case of group-wise identical
designs for commonly used linear and determinant criteria. In Prus (2022), equivalence
theorems for the general form of multiple-group models have been formulated.
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866 M. Prus, L. Filová

For computing optimal designs in mixed-effect models, several solutions are avail-
able. However, most of them focus on computing approximate designs for several
traditional criteria, and we are not aware of any work that considers additional con-
straints besides the size of the design.

Namely, Dumont et al. (2018) created an R package for computing designs in
mixed-effects model that is predominantly focused on nonlinear models that are used
in drug development. However, they only consider the D-optimality criterion without
any additional constraints that may arise in the experiment (such as budget, material
or other types of resources). The software package (Aliev et al. 2012) is aimed at
computing approximate designs, mainly for mixed-effects models arising in pharma-
cokinetic applications. Finally, the software solution of Nyberg et al. (2012) seems
to be the most versatile, as it admits user-defined criteria, including their Bayesian
versions, but the focus is on approximate designs in nonlinear mixed-effect models
and no additional constraints can be included.

In our paper, we propose to use the algorithm of Harman et al. (2016), originally
developed for computing D-efficient exact designs in the linear regression model
with possibly multiple resource constraints, for the general form of multiple-group
models. We also propose analytical solutions based on equi- and invariance properties
of optimal designs for several particular models.

The paper has the following structure: In Sect. 2, we shortly introduce the multiple
group model, the design problem and the optimality conditions that are subsequently
used in Sect. 3 to show the equivariance and invariance properties of D- and L-optimal
designs. In Sect. 4, we show that the problem of computing optimal designs in the
multiple-group mixed model can be reformulated as a problem of computing optimal
designs with respect to a monotonous criterion function with resource constraints
on weights, and, hence, a modification of a recent algorithm for computing resource
constrained designs can be used to obtain efficient exact designs in our model. In
Sects. 5 and 6,we compute the D- and I MSE-optimal designs in bilinear and quadratic
models and show that we can easily solve problems with additional constraints that
cannot be solved analytically.

2 Multiple-group RCRmodel

2.1 Model specification

Inmultiple-group random coefficient regressionmodel the h-th observation of the j-th
observational unit in the i-th group is given by

Yi jh = F(i)(xih)β i j + εi jh, xih ∈ Xi , i = 1, . . . , s, j = 1, . . . , ni ,

h = 1, . . . ,mi , (1)

where ni is the number of observational units in group i ,mi is the number of obser-
vations per unit in group i , observational settings xih come from some experimental
regionXi . In this workwe allow formultivariate (l-variate) response andF(i) denotes a
group-specific (l× p) matrix of known regression functions in group i . In the particular
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Computational aspects of experimental designs... 867

case of univariate response we deal with “classical” regression functions: F(i) = f�(i),
and l = 1. Unit-specific random parameters β i j = (βi j1, . . . , βi j p)

� have unknown
mean β0 and given (p × p) covariance matrix Di , εi jh denote observational errors
with zero mean and non-singular (l× l) covariance matrix�i . All observational errors
and all random parameters are assumed to be uncorrelated.

The covariance matrix of the best linear unbiased estimator for β0 is given by

Cov
(
β̂0

)
=

[
s∑

i=1

ni ((F̃�
i F̃i )

−1 + Di )
−1

]−1

, (2)

where F̃i = (F̃�
(i)(xi1), . . . , F̃

�
(i)(ximi ))

� for F̃(i)(xih) = �
−1/2
i F(i)(xih), h =

1, . . . ,mi , and the symmetric positive definite matrix �
1/2
i with the property �i =

�
1/2
i �

1/2
i .

2.2 Design criteria

The experimental settings xi1, . . . , ximi in formula 1 are not necessarily all distinct.
We define an exact design in group i as

ξi =
(

xi1, . . . , xiki
mi1, . . . ,miki

)
, (3)

where xi1, . . . , xiki are the distinct support points in Xi with the corresponding num-
bers of observations mi1, . . . ,miki ∈ N,

∑ki
k=1 mik = mi .

For analytical purposes we also introduce approximate designs:

ξi =
(

xi1, . . . , xiki
wi1, . . . , wiki

)
,

where wik ≥ 0 denotes the weight of observations at xik , k = 1, . . . ki , and∑ki
k=1 wik = 1.
We will use the following notation for the moment (or information) matrix in group

i :

Mi (ξi ) = mi

ki∑
k=1

wik F̃(i)(xik)
�F̃(i)(xik). (4)

For exact designs we have wik = mik/mi and

Mi (ξi ) = F̃�
i F̃i ,

which follows from formula (4) and the definition of F̃i below formula (2).
Wewill also use the notation ξ for the tuple of all group-designs ξi : ξ = (ξ1, . . . , ξs).
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868 M. Prus, L. Filová

Further we extend the definition of the variance–covariance matrix (2) with respect
to approximate designs:

Covξ =
[

s∑
i=1

ni
(
Mi (ξi )

−1 + Di

)−1
]−1

. (5)

Wegenerally search for the designswhichminimize the variance-covariancematrix.
Instead of the minimization of the matrix itself (which is in general not possible), we
instead minimize suitable functions of this matrix which we call optimality criteria.
We focus on the commonly used linear (L-) and determinant (D-) criteria for the
estimation of the population parameters β0, which are given by

φL(ξ) = tr

⎛
⎝
[

s∑
i=1

ni
(
Mi (ξi )

−1 + Di

)−1
]−1

V

⎞
⎠ , (6)

where V is some non-negative definite (p × p) matrix, and

φD(ξ) = −ln det

(
s∑

i=1

ni
(
Mi (ξi )

−1 + Di

)−1
)

, (7)

respectively (see Prus 2022). (Note that matrix Mi (ξi ) here differs from that in Prus
Prus 2022 by constant mi .)

Frequently used particular cases of the L-criterion are the c- and A-criterion, which
are of the form (6) with V = cc�, c ∈ R

p, and V = Ip, where Ip is the p× p identity
matrix, respectively. Another frequently used linear criterion is the I MSE-criterion.
For the estimation of the mean parameters β0 in multiple-group model (1) we define
this criterion as follows:

φI MSE (ξ)

=
s∑

i=1

ai tr

(∫

Xi

E

[(
F(i)(x)β̂0 − F(i)(x)β0

) (
F(i)(x)β̂0 − F(i)(x)β0

)�]
νi (dx)

)
,

(8)

where νi is some suitable measure on the experimental region Xi (typically uniform
on Xi ) with νi (Xi ) = 1 and ai is a coefficient related to group i ,

∑s
i=1 ai = 1. The

coefficients a1, . . . , as may depend on the group sizes or, alternatively, equal weight
may be given to each group. I MSE-criterion (8) may be rewritten in form

φI MSE (ξ) = tr

(
Cov

(
β̂0

) s∑
i=1

ai

∫

Xi

F(i)(x)
�F(i)(x) νi (dx)

)
. (9)
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Then we extend it for approximate designs by using the extended variance-
covariance matrix (5) and we obtain the particular linear criterion with V =∑s

i=1 ai
∫
Xi

F(i)(x)�F(i)(x) νi (dx),which simplifies toV = ∫
X1

F(1)(x)�F(1)(x) ν1(dx)
if the regressionmatricesF(i), the experimental regionsXi and theweightingmeasures
νi are the same among all groups: F(i) = F(1), Xi = X1 and νi = ν1 for i = 1, . . . , s.

2.3 Optimality conditions

The optimality conditions for the L- and D-criteria are provided by the following
theorems (see Prus 2022):

Theorem 1 Approximate designs ξ∗ = (ξ∗
1 , . . . , ξ∗

s ) are L-optimal for estimation of
the mean parameters β0 iff

mi tr

⎧
⎨
⎩F̃(i)(xi )

⎡
⎣Mi (ξ

∗
i )−1

(
Mi (ξ

∗
i )−1 + Di

)−1
[ s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1

V

·
[ s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1 (

Mi (ξ
∗
i )−1 + Di

)−1
Mi (ξ

∗
i )−1

⎤
⎦ F̃(i)(xi )

�
⎫⎬
⎭

≤ tr

⎧
⎨
⎩Mi (ξ

∗
i )−1

(
Mi (ξ

∗
i )−1 + Di

)−1
[ s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1

V

·
[ s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1 (

Mi (ξ
∗
i )−1 + Di

)−1

⎫
⎬
⎭ (10)

for xi ∈ Xi , i = 1, . . . , s.
For support points of ξ∗

i equality holds in (10).

Theorem 2 Approximate designs ξ∗ = (ξ∗
1 , . . . , ξ∗

s ) are D-optimal for estimation of
the mean parameters β0 iff

mi tr

⎧⎨
⎩F̃(i)(xi )

⎡
⎣Mi (ξ

∗
i )−1

(
Mi (ξ

∗
i )−1 + Di

)−1
[

s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1

·
(
Mi (ξ

∗
i )−1 + Di

)−1
Mi (ξ

∗
i )−1

]
F̃(i)(xi )

�
}

≤ tr

⎧⎨
⎩Mi (ξ

∗
i )−1

(
Mi (ξ

∗
i )−1 + Di

)−1
[

s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1

·
(
Mi (ξ

∗
i )−1 + Di

)−1
}

(11)

for xi ∈ Xi , i = 1, . . . , s.
For support points of ξ∗

i equality holds in (11).
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870 M. Prus, L. Filová

Example 1 We consider the two-groups model of general form (1) with the regression
functions F(i)(x) = (1, x), x ∈ Xi :

Yi jh = β i j1 + β i j2xih + εi jh, j = 1, . . . , ni , h = 1, . . . ,mi , i = 1, 2, (12)

on the design regions Xi = [0, 1]. The covariance structures of random effects and
observational errors are given byDi = diag(di1, di2) and �i = 1 for both groups. For
this model the left hand sides of the optimality conditions (10) and (11) are parabolas
with positive leading terms. Therefore, D- and L-optimal approximate group-designs
have the form

ξi =
(

0 1
1 − wi1 wi1

)
, (13)

where wi1 denotes the weight of observations in point 1 for the i-th group and may
depend on the choice of the design criterion as well as on model parameters. The
moment matrices are given by

Mi (ξi ) =
(

mi mi1
mi1 mi1

)
, (14)

where mi1 = wi1mi . Optimal designs for random intercept and random slope have
been considered in more detail in Prus (2022).

3 Equi- and invariance considerations for construction of optimal
designs

Equi- and invariance of design criteria play an important role for determining optimal
designs in fixed effects models (see e.g. Heiligers 1992 or Schwabe 1996, ch. 3). Prus
and Schwabe (2016) investigated the related properties of designs, which are optimal
for prediction of individual random parameters in single-group mixed effects models.
Here we extend those results to multiple-group models.

We consider a one-to-one transformation g of the experimental regions Xi for all
i = 1, . . . s simultaneously with g(Xi ) = X g

i . We assume the regression matrices
F(i) to be defined on both Xi and X g

i . We also assume the existence of a non-singular
p × p matrix Qg such that

F̃(i)(g(x)) = Qg F̃(i)(x), ∀x ∈ Xi , i = 1, . . . , s, (15)

i.e. all F̃(i) are linearly equivariant with respect to the transformation g (see e.g.
Schwabe 1996, ch. 3).Wedenote by ξ

g
i the following transformation of an approximate

design ξi :

ξ
g
i =

(
g(xi1), . . . , g(xiki )

wi1, . . . , wiki

)
, (16)
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where the weight wik is the same for both ξi and ξ
g
i and only the design points xik are

transformed. Then we obtain the next property of the moment matrices:

Mi (ξ
g
i ) = Qg Mi (ξi )Q�

g , i = 1, . . . , s. (17)

Further we use the notations D = (D1, . . . ,Ds) and X = ×s
i=1Xi for the tuple

of covariance matrices and the Cartesian product of the experimental regions, respec-
tively, in all groups. For the covariance matrix (5) the following relation can be easily
verified:

Covξ g (Dg) = Q−�
g Covξ (D)Q−1

g , (18)

where ξ g = (ξ
g
1 , . . . , ξ

g
s ), Dg = (Dg

1, . . . ,D
g
s ), D

g
i = Q−�

g DiQ−1
g and Q−�

g =
(Q�

g )−1.We use the notationCovξ (D) [instead ofCovξ as in formula (5)] to emphasize
the dependence on the covariance matrices D of random effects.

Then the equivariance of the D- and L-criteria with respect to a transformation g
can be established.

Theorem 3 If the approximate designs ξ∗ are D-optimal for the estimation of β0
on the experimental regions X under the dispersion matrices D, then the induced
approximate designs ξ g are D-optimal for the estimation of β0 on the experimental
regions Xg = ×s

i=1X g
i under the induced dispersion matrices Dg.

Proof From the definition of the D-criterion for the estimation of β0 and formula (18)
we obtain

φD(ξ g,Dg) = −2 ln | det(Qg)| + φD(ξ ,D),

which proves the optimality of ξ g on X
g for ξ optimal on X. �	

Theorem 4 If the approximate designs ξ∗ are L-optimal for the estimation of β0
on the experimental regions X under the dispersion matrices D with respect to the
transformation matrix V, then the induced approximate designs ξ∗g are L-optimal
for the estimation of β0 on the experimental regions X

g under the induced dispersion
matrices Dg with respect to the induced transformation matrix Vg = QgVQ�

g .

Proof Using formulas (6) and (18) it can be easily verified that

φL(ξ g,Dg,Vg) = φL(ξ ,D,V),

which proves the optimality of ξ g on X
g . �	

Corollary 1 The A-criterion for the estimation of β0 is equivariant with respect to a
transformation g if Qg is orthogonal, i.e.:

QgQ�
g = Q�

g Qg = Ip. (19)
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872 M. Prus, L. Filová

To verify the equivariance of the I MSE-criterion we assume, besides the trans-
formed regression matrices F̃(i), the original regression matrices F(i) to be linearly
equivariant with respect to the transformation g:

F(i)(g(x)) = Qg F(i)(x), ∀x ∈ Xi , i = 1, . . . , s. (20)

Then if the measure νi is transformed to its image ν
g
i , we obtain

Vg =
s∑

i=1

ai

∫

X g
i

F(i)(x)
�F(i)(x) ν

g
i (dx) = QgVQ�

g .

Corollary 2 The I MSE-criterion for the estimation of β0 is equivariant with respect
to a transformation g if condition (20) is satisfied.

Example 1 (continued).We consider again the two-groups linear regression model
(12) on Xi = [0, 1] with diagonal covariance structure of random effects. For the
I MSE-criterion we chose the uniform weighting νi = λ[0,1], i = 1, 2, where λ[c1,c2]
denotes the Lebesgue measure on [c1, c2]. Let ξ∗

i be D-, A- or I MSE-optimal group-
designs of form (13) with the optimal weight of observations w∗

i1 (which generally
depends on the choice of the design criterion).

Now we consider the linear transformation g(x) = ax , a > 0, for which we obtain
Qg = diag(1, a). Then the D-, A- or I MSE-optimal group-designs in model (12) on
X g
i = [0, a] for Dg

i = diag(di1, di2/a2) and ν
g
i = 1

aλ[0,a] are given by

ξ∗
i
g =

(
0 a

1 − w∗
i1 w∗

i1

)
. (21)

Same behavior of optimal designs has been established for the prediction of random
effects in single-group model in Prus and Schwabe (2016).

Further we consider a finite group G of transformations g : Xi → Xi of the
experimental regionsXi onto themselves for all i = 1, . . . s simultaneously.We assume
the equivariance condition (15) to be satisfied and the dispersion matrices to be
invariant:Dg

i = Di , for all g ∈ G, i = 1, . . . , s.For the linear criteria we additionally
assume the invariance of the transformation matrices: Vg = V. Then the D- and L-
criteria are invariant with respect to all g ∈ G and the following statement can be
formulated:

Theorem 5 If the approximate designs ξ∗ are D- or L-optimal for the estimation of
β0, then the symmetrized designs ξ̄

∗ = (ξ̄∗
1 , . . . , ξ̄∗

s ) for ξ̄∗
i = 1

#G

∑
g∈G ξ∗

i
g are also

D- or L-optimal for the estimation of β0.

Proof Let the designs ξ∗ be D-optimal for the estimation of β0. Then it follows from
Theorem 3 and the invariance of the dispersion matrices that the induced designs ξ∗g
are also D-optimal, i.e.

φD(ξ g∗
,D) = φD(ξ∗,D), ∀g ∈ G.
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From the convexity of the criterion we obtain

φD(ξ̄
∗
,D) ≤ φD(ξ∗,D),

which implies the D-optimality of the designs ξ̄
∗
.

For the linear criterion the proof is similar. �	
The invariance of the A-criterion is straightforward if condition (19) is satisfied for

all g ∈ G.

Corollary 3 If the approximate designs ξ∗ are A-optimal for the estimation of β0 and
condition (19) is satisfied for all g ∈ G, then the symmetrized designs ξ̄

∗
are also

A-optimal for the estimation of β0.

For the I MSE-criterion we require the invariance of the weighting measures: νgi =
νi , which leads to Vg = V.

Corollary 4 If the approximate designs ξ∗ are I MSE-optimal for the estimation of β0

and condition (20) is satisfied for all g ∈ G, then the symmetrized designs ξ̄
∗
are also

I MSE-optimal for the estimation of β0.

Example 2 We consider the multiple-group model of the form (1) with the regression
functions F(i)(x) = (1, x, x2) on a symmetric design region Xi = [−a, a], a > 0,
i = 1, . . . , s:

Yi jh = β i j1 + β i j2xih + β i j3x
2
ih + εi jh, j = 1, . . . , ni , h = 1, . . . ,mi .

(22)

For thismodel the left hand sides of the optimality conditions (10) and (11) for the L-
and D-criterion, respectively, are polynomial functions of degree four. Consequently,
the corresponding optimal group-designs ξi are supported by not more than three
design points including the two endpoints of the experimental region:

ξ∗
i =

( −a oi a
w∗
i1 1 − w∗

i1 − w∗
i2 w∗

i2

)
, (23)

where oi ∈ (−a, a) may differ for different design criteria or for different groups. We
assume covariance structures of random effects and observational errors to be given
by

Di =
⎛
⎝
di11 0 di13
0 di22 0

di13 0 di33

⎞
⎠ (24)

and �i = 1 for all groups. For the I MSE-criterion we chose the uniform weighting
measure νi = 1

2aλ[−a,a] for all i = 1, . . . , s.
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874 M. Prus, L. Filová

Further we consider the group of transformations G = {g1, g2} with g1(x) =
−x and g2(x) = x . Then we obtain Qg1 = diag(1,−1, 1) and Qg2 is equal to the
identity matrix. Hence, the dispersion matrices Di and the measures νi are invariant
and conditions (19) and (20) are satisfied for both g1 and g2. Then by Theorem 5 and
Corollary 3 group-designs of the general form

ξ̄∗
i =

( −a 0 a
w∗
i1 1 − 2w∗

i1 w∗
i1

)
(25)

are D-, A- and I MSE-optimal for the estimation of the mean parameters β0. The
optimal weights of observations w∗

i1 at points x = a and x = −a generally depend
on the design criterion, the variance parameters, the group sizes, the numbers of
observations and the length of the interval (see Sect. 6 for examples of the designs).

Further we consider some examples of multiple polynomial regression. For models
without random effects optimal designs for multiple polynomial regression have been
discussed, e.g., in Galil and Kiefer (1977) and Heiligers (1992).

Example 3 We consider the multiple-group bi-linear model with the regression func-
tions F(i)(x) = (1, x1, x2) on a design region Xi = [−a, a]2, a > 0, i = 1, . . . , s:

Yi jh = β i j1 + β i j2xih1 + β i j3xih2 + εi jh, j = 1, . . . , ni , h = 1, . . . ,mi . (26)

For thismodel the left hand sides of the optimality conditions (10) and (11) for the L-
and D-criterion, respectively, are convex paraboloids. Therefore, the only admissible
support points for optimal designs are xi1 = (a, a), xi2 = (a,−a), xi3 = (−a, a),
xi4 = (−a,−a):

ξ∗
i =

(
xi1 xi2 xi3 xi4
w∗
i1 w∗

i2 w∗
i3 w∗

i4

)
, (27)

where
∑4

k=1 wik = 1. For the I MSE-criterion we use the product measure νi =
1
2aλ[−a,a] × 1

2aλ[−a,a] for all i = 1, . . . , s.
Further we assume the same covariance structures of random effects and observa-

tional errors as in Example 2 of quadratic regression and we consider the group of
transformations G = {g1, g2} with g1(x) = (−x1, x2)� and g2(x) = (x1, x2)�. We
obtain Qg1 = diag(1,−1, 1) and Qg2 is equal to the 3 × 3 identity matrix. Then the
dispersion matrices Di and the weighting measures νi are invariant and conditions
(19) and (20) are satisfied for both g1 and g2 and, consequently, group-designs of the
general form

ξ̄∗
i =

(
xi1 xi2 xi3 xi4
w∗
i1 w∗

i2 w∗
i1 w∗

i2

)
(28)

withw∗
i2 = 1

2 (1−2w∗
i1) are D-, A- and I MSE-optimal for the estimation of the mean

parameters β0. Only the optimal weights of observations w∗
i1 have to be determined.
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Note that besides the choice of the design criterion these numbers may also depend
on the model parameters (see Sect. 5 for illustrative examples).

For the particular case with diagonal covariance structure of random effects:
di13 = 0, we consider the group of transformationsG = {g1, g2, g3, g4}with g3(x) =
(x1,−x2)� and g4(x) = (−x1,−x2)�, for which we obtain Qg3 = diag(1, 1,−1)
and Qg4 = diag(1,−1,−1). The dispersion matrices Di and the measures νi are
invariant and conditions (19) and (20) are satisfied for all transformation in G. Then
the balanced group-designs

ξ̄i
∗ =

(
xi1 xi2 xi3 xi4
1/4 1/4 1/4 1/4

)
(29)

are D-, A- and I MSE-optimal.

Example 4 We consider the multiple-group bi-quadratic model with the regression
functionsF(i)(x) = (1, x1, x2, x1x2, x21 , x

2
2 ) on a design regionXi = [−a, a]2, a > 0:

Yi jh = β i j1 + β i j2xih1 + β i j3xih2 + β i j4xih1xih2 + β i j5x
2
ih1 + β i j6x

2
ih2 + εi jh (30)

for j = 1, . . . , ni , h = 1, . . . ,mi and i = 1, . . . , s. For this model the left hand
sides of the optimality conditions (10) and (11) are quadric surfaces in (x1, x2), for
which the projections on both x1 = 0 and x2 = 0 are polynomials of degree four.
Then the only admissible support points for L- and D-optimal designs are xi1 = (a, a),
xi2 = (a,−a), xi3 = (−a, a), xi4 = (−a,−a), xi5 = (oi1, a), xi6 = (oi2,−a), xi7 =
(a, oi3), xi8 = (−a, oi4) and xi9 = (oi5, oi6), where oil ∈ (−a, a), l = 1, . . . , 6. For
the I MSE-criterion we use the same weighting measures as in Example 3.

Further we assume the following simple covariance structure of the random effects
and the observational errors: Di = diag(di1, . . . di6) and �i = 1, i = 1, . . . s. Then
we consider the same group of transformations G as in the previous example and
we obtain Qg1 = diag(1,−1, 1,−1, 1, 1), Qg2 is equal to the 6 × 6 identity matrix,
Qg3 = diag(1, 1,−1,−1, 1, 1) and Qg4 = diag(1,−1,−1, 1, 1, 1). Then conditions
(19) and (20) are satisfied and dispersion matricesDi and the measures νi are invariant
for all gi ∈ G. Therefore, D-, A- and I MSE-optimal designs have the general form

ξ̄∗
i =

(
xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9
w∗
i1 w∗

i1 w∗
i1 w∗

i1 w∗
i2 w∗

i2 w∗
i3 w∗

i3 w∗
i4

)
, (31)

wherew∗
i4 = 1−4w∗

i1−2w∗
i2−2w∗

i3 and all oil = 0, i. e. xi5 = (0, a), xi6 = (0,−a),
xi7 = (a, 0), xi8 = (−a, 0) and xi9 = (0, 0). The weights of observations w∗

i2, w
∗
i3

and w∗
i4 depend on the choice of the design criterion and on the model parameters and

have to be optimized.
Then we additionally assume the conditions di2 = di3 and di5 = di6 to be satisfied

and consider the extended group of transformations G1 = G ∪ {g5} with g5(x) =
(x2, x1)�, for which we obtain Qg5 = block-diag(1,P, 1,P), where P is the (2 × 2)
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permutation matrix:

P =
(
0 1
1 0

)
.

The dispersion matrices Di and the measures νi are also invariant with respect to
g5 and conditions (19) and (20) are satisfied. Then the general form (31) of optimal
designs simplifies to

ξ∗
i =

(
xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9
w∗
i1 w∗

i1 w∗
i1 w∗

i1 w∗
i2 w∗

i2 w∗
i2 w∗

i2 1 − 4(w∗
i1 + w∗

i2)

)
. (32)

Note that similar behavior has been established for optimal designs for Kiefer’s
�p-criteria in fixed effects models (see Galil and Kiefer 1977). However, designs
obtained in that work depend on the choice of the design criterion only. In the model
under investigation optimal designs may also depend on the variance parameters, the
group sizes and the numbers of observations per observational unit.

4 Computing themultiple-groupmixedmodels designs

In this Section, we will show how to compute efficient exact designs for model
(1). To this end, let’s discretize each (possibly continuous) experimental region Xi ,
i = 1, . . . , s, into ki points xi1, . . . , xiki and denote the corresponding numbers of
measurements in these points by mi1, . . . ,miki ∈ N0, as is customary in optimal
design algorithms. Similarly to the notation adopted in Sect. 2, we define the ki -
dimensional vectors mi = (mi1, . . . ,miki ) and the

∑s
i=1 ki = u-dimensional vector

m = (m1, . . . ,ms).
Now, consider the optimization problem presented in Harman et al. (2016):

minm �(m)

subject to Am ≤ b.

Here, we minimize the function � on the set of permissible designs determined by
the linear inequalityAm ≤ b, whereA ∈ R

k×u and b ∈ R
k are such that the elements

ofA are nonnegative and the elements of b are positive. These kinds of constraints are
called resource constraints, i.e., we can view each measurement as consuming some
amount of each of the k resources, limit on which are given by the vector b.

The method described in Harman et al. (2016) is related to the Detmax procedure,
employing a tabu search principle. The algorithm is based on excursions in the set of
all feasible designs. More precisely, from a design ξ we can either make a forward
step to one of its upper neighbours or a backward step to one of its lower neighbours.
These excursions are directed by the attribute of each design (which can be, e.g.,
its criterion value), a tabu list of the attributes of already visited designs and a local
heuristic evaluation of the design that roughly estimates how promising a design is as
a part of an excursion leading to an efficient design.
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Note that although the algorithm is primarily developed for D-optimality in the
standard linear regression model, it can be easily adapted for different criteria that are
monotonous on the set of all approximate designs, which enables us to compute D-
and L-efficient exact designs in model (1).

To show this, we rewrite the covariance matrix (5) in the following form:

Covξ =
[(

1�
s ⊗ Ip

) (
M−1

ξ + D
)−1 (

1s ⊗ Ip
)]−1

, (33)

whereMξ = diag
(
M̃1(ξ1), . . . , M̃s(ξs)

)
is the block-diagonal matrix with the blocks

M̃i (ξi ) = ni Mi (ξi ) and D = diag(D̃1, . . . , D̃s) is the block-diagonal matrix with the
blocks D̃i = 1

ni
Di , 1s is the vector of length s with all entries equal to 1 and ”⊗”

denotes the Kronecker product.
Then the L- and D-criteria defined by (6) and (7) can be written as the function of

the design vector w in the following way:

φL(ξ) = tr

([(
1�
s ⊗ Ip

) (
M−1

ξ + D
)−1 (

1s ⊗ Ip
)]−1

V

)
(34)

and

φD(ξ) = −ln det

[(
1�
s ⊗ Ip

) (
M−1

ξ + D
)−1 (

1s ⊗ Ip
)]

. (35)

Note that both criteria (34) and (35) are monotonically decreasing with respect to
Mξ .

Further, model (1) can be viewed as a one-group model on X = ×s
i=1Xi with

marginal constraints (see, e.g., Cook and Thibodeau 1980) that constrict the number
of observations in each group to

∑ki
h=1mih = mi . This can be formulated in the form

of resource constraints by putting A = diag(1�
k1

, . . . ,1�
ks

) and b = (m1, . . . ,ms)
�.

Hence, the optimization problem to solve is

minm φ(m)

subject to diag(1�
k1

, . . . ,1�
ks

)m ≤ b,
(36)

where by φ we denote either of the optimality criteria in (34) or (35).
Note that the algorithm used here is heuristic, i.e., it does not guarantee that the

resulting design is optimal, although it is demonstrated in Harman et al. (2016) that it
is usually highly efficient. Therefore, in the following sections, wewill call the designs
obtained by the algorithm as efficient exact designs.

Further, we will demonstrate that it is of great practical use that the matrixA and the
vector b can be modified so that they incorporate additional linear resource constraints
on the weights, such as the limit on the number of measurements in particular points
or cost constraints (see Sect. 6 for an example of such constraints), simply by adding
suitable rows to the matrix A and elements to the vector b.
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Fig. 1 The dependence of the number of observations in the point (1, 1) on the parameter d in the exact D-
efficient designs in bilinear model (26) on [−1, 1]2 with total numbers of observations in the groups given
by m = (10, 20, 40) (left) and m = (20, 20, 20) (right). The three lines denote the number of observations
in the point (1, 1) normalized by mi for the first (full line), second (dashed line) and third (dotted line)
group

5 Bi-linear regression

Let’s consider the model of bi-linear regression (26) with three groups,Xi = [−1, 1]2,
�i = 1, n = (1, 1, 1) and

Di =
⎛
⎝
1 0 d
0 1 0
d 0 1

⎞
⎠ , i = 1, 2, 3.

As the analytical results in Example 3 show, the approximate optimal designs are
supported on the four vertices of the square [−1, 1]2 and the number of observations
is identical in the points (1, 1), (−1, 1) and in the points (−1,−1), (1,−1). This
phenomenon was confirmed also for the exact D-efficient designs by our algorithm.

In this example, we will numerically illustrate the dependence of efficient designs
on the parameter d in the matrices Di , i = 1, 2, 3. To this end, let’s consider that
in all three groups, the parameter d is the same. Figure1 shows how the numbers of
observation in the point (1, 1) change with d varying from -1 to 1 for two different
settings: m = (10, 20, 40) (left) and m = (20, 20, 20) (right). We can see that in both
cases, the number of observations in (1, 1) decreases with increasing d.

Now, suppose that

Di =
⎛
⎝
1 0 di
0 1 0
di 0 1

⎞
⎠ , i = 1, 2, 3, (37)

where di ∈ {−0.5, 0, 0.5} are not necessarily the same between groups. In Table 1 we
show the behavior of the numbers of observation for several selected d1, d2, d3 in the
case m = (20, 20, 20).
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Table 1 Exact D-efficient designs in bilinear model (26) on [−1, 1]2 with total numbers of observations
in the groups given by m = (20, 20, 20) with di ∈ {−0.5, 0, 0.5}
(d1, d2, d3) (−1, −1) (1, 1) (−1,−1) (1, 1) (−1, −1) (1, 1)

(0, 0, 0) 5 5 5 5 5 5

(0, 0, 0.5) 4 6 4 6 7 3

(0, 0.5, 0.5) 4 6 7 3 7 3

(0.5, 0.5, 0.5) 6 4 6 4 6 4

(0, 0, −0.5) 6 4 6 4 3 7

(0, 0.5,−0.5) 5 5 7 3 3 7

(−0.5, 0.5,−0.5) 3 7 8 2 3 7

6 Quadratic regression on a symmetric interval

Consider the two-groupsmodel of the form (1) with the regression functionsF(i)(x) =
(1, x, x2)�, x ∈ Xi , and the design region Xi = [−1, 1], i = 1, 2:

Yi jh = β i j1 + β i j2xih + β i j3x
2
ih + εi jh, j = 1, . . . , ni , h = 1, . . . ,mi . (38)

The covariance structures of random effects and observational errors are given by
Di = diag(di1, di2, di3) and �i = 1 for both groups.

The corresponding approximate optimal group-designs ξi are supported by three
design points −1, 0, 1 (see Sect. 3):

ξ∗
i =

( −1 0 1
w∗
i1 1 − 2w∗

i1 w∗
i1

)
. (39)

This result was heuristically confirmed to hold also for the exact designs: we dis-
cretized the design region into q points−1 = x1 < x2 < · · · < xq = 1 and confirmed
that for all cases considered below, the support points are indeed −1, 0 and 1.

The exact D- and I MSE-efficient designs for this case and several particular m =
(m1,m2) are given in Table 2 in the Appendix.

We can see that for the criterion of D-optimality and the values of the diagonal
of the matrix Di equal to either (1, 1, 1) or (1, 1, 0), half of the measurements is in
the point 0 and the remaining half is distributed equally among the points −1 and
1. For (d1, d2, d3) equal either to (0, 1, 1) or (1, 0, 0), the measurements are heavily
concentrated in the support point 0, but the designs are still nonsingular. The case
(1, 0, 1) shows opposite phenomenon with the measurements being concentrated in
the points−1 and 1. For the remaining cases, the pattern is not so clear and the weights
depend more on m, sometimes even resulting in singular designs.

For the I MSE criterion, we get results identical to D-optimality if the diagonal
of Di is (1, 1, 1). For the rest of the cases, the situation is more varied and we refer
reader to Table 2 for details.

From practical point of view, it may not be desirable to only have three support
points for each group. Therefore, additional constraints on the design were suggested,
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where it is prescribed that, for each group, maximum one half of the measurements
can be taken at −1, 0 or 1. Formally, these constraints can be written in the form
A(1)w ≤ b(1) (see Sect. 4 for details), where

A(1) =
(
cq 0�

q
0�
q cq

)
∈ R

2×2q , b(1) =
(
m1/2
m2/2

)
, (40)

where cq = (1, 0, . . . , 0, 1, 0, . . . , 0, 1) ∈ R
q with 1 on the positions corresponding

to the points −1, 0, 1. The D- and I MSE-efficient designs for the discretization
Xi = {−1,−0.8, . . . , 0.8, 1} of the interval [−1, 1] with the step 0.2 (i.e. q = 11) are
given in Tables 3 and 4. Note that for both criteria, the tendency is to distribute the
measurements as close as possible to the original support points −1, 0 and 1.

Another type of constraint that is often used in practical situations, is the cost
constraint: this is natural, for example, in clinical trials, where taking a measurement
at a point x consumes a certain number of time, personal or material resources and the
total cost of the experiment is limited. In our case, let the measurement at the point
x cost |x | + 0.1 units, and, for group j , let the maximum admissible cost be m j/4.
This leads to adding the constraints A(2)w ≤ b(2) with the following A(2), b(2) to the
problem (36):

A(2) =
(
uq + 0.11�

q 0
0 uq + 0.11�

q

)
∈ R

2×2q , b(2) = 1

4

(
m1
m2

)
, (41)

where uq = (1, 0.8, . . . , 0.8, 1).
Again, we computed D- and I MSE-efficient designs with respect to this constraint

for the discretizationXi = {−1,−0.8, . . . , 0.8, 1}. Now, the designs are supported on
−1, 0 and 1, but, compared to the unconstrained designs, much more measurements
are made at the point 0, which is ’cheap’: the results are summarized in Table 5.

Finally, it is also feasible and possible to consider both types of constraints together,
resulting in A(3)w ≤ b(3) with

A(3) =
(
A(1)

A(2)

)
∈ R

4×4q , b(3) =
(
b(1)

b(2)

)
. (42)

The resulting D- and I MSE-efficient designs for this constraint are given in Tables
6 and 7.

Note that in some cases, the additional constraints on the designs were saturated
for a number of measurements that is lower than the maximum attainable number
of measurements given by (m1,m2)

�. This is demonstrated in a more detailed way
in Fig. 2, where we again consider the D-efficient design with (m1,m2) = (20, 40)
and the cost constraints (41), but now the cost b(2) can vary between 0 and mi for
the i-th group. All the designs are supported in the points −1, 0 and 1 and the figure
shows that when the maximum allowed cost is too low, the total maximum number of
measurements is (sometimes significantly) lower than the corresponding mi .
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Fig. 2 The numbers of measurements in the point 0 (full line), −1 (dashed line) and 1 (dot-dashed line) for
the second group in the D-efficient design in model (38) with (m1,m2) = (20, 40) and constraints of the
type (41) with the maximum cost b(2) in the second group varying between 0 and 40

7 Discussion

In the paper, we have considered equi- and invariance properties of approximate opti-
mal designs in multiple-group mixed models. We have used these properties to fix the
support points and, consequently, to reduce the number of unknown variables in first-
and second-order models on a symmetric square. As we currently have no universal
computational tool for approximate designs, these results can be used to determine
optimal designs analytically in a few isolated and easy cases, as shown in the examples
in Sect. 3.

However, from practical point of view, it is more important to be able to compute
efficient exact designs, possibly even with some additional constraints given by the
experimental conditions. We have shown a modified version of the algorithm of Har-
man et al. (2016) is a useful tool for such computations, even in the cases where there
are several nontrivial constraints on the design.

In themodels considered here, covariancematrix of random effects is assumed to be
known. A natural question that arises while reading this work is how to perform in the
situation where no prior knowledge about variances and covariances is available. In
this case an estimation can be used. However, the quality of obtained designs depends
on the accuracy of the estimation. For some particular structures of the covariance
matrix it may happen that optimal designs turn out to be independent on the variance
parameters (consider, for example, compound symmetry structure in Prus and Piepho
2021).

Acknowledgements This researchwas partially supported byGrant SCHW531/16 of theGermanResearch
Foundation (DFG) and byGrant Number 1/0341/19 and 1/0362/22 from the Slovak Scientific Grant Agency
(VEGA). A part of the research has been performed as the second author was visiting Comenius University
ofBratislava in framework of the postdoc program (PKZ91672803) ofGermanAcademicExchange Service
(DAAD). The authors are grateful to Radoslav Harman for fruitful discussions. Discussions with Rainer
Schwabe on design criteria in multiple group-models were also very helpful.

Funding Open Access funding enabled and organized by Projekt DEAL.

123



882 M. Prus, L. Filová

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Computational aspects of experimental designs... 883

Appendix

See Tables 2, 3, 4, 5, 6 and 7.

Table 2 Exact D- and I MSE-efficient designs in quadratic model on the interval [−1, 1] with respect to
the numbers of observations mi for Di = diag(d1, d2, d3), i = 1, 2

criterion D IMSE

(d1, d2, d3) m1 m2 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1

(1, 1, 1) 20 80 5 10 5 20 40 20 5 10 5 20 40 20

50 50 12 25 13 13 25 12 13 25 12 12 25 13

80 20 20 40 20 5 10 5 20 10 20 5 10 5

40 160 10 20 10 40 80 40 10 20 10 40 80 40

100 100 25 50 25 25 50 25 25 50 25 25 50 25

160 40 40 80 40 10 20 10 40 80 40 10 20 10

(1, 1, 0) 20 80 5 10 5 20 40 20 9 2 9 15 49 16

50 50 12 25 13 13 25 12 13 25 12 12 25 13

80 20 20 40 20 5 10 5 15 49 16 9 2 9

40 160 10 20 10 40 80 40 19 2 19 31 98 31

100 100 25 50 25 25 50 25 25 50 25 25 50 25

160 40 40 80 40 10 20 10 31 98 31 19 2 19

(0, 1, 1) 20 80 2 16 2 1 78 1 10 0 10 13 54 13

50 50 1 48 1 1 48 1 12 26 12 13 24 13

80 20 1 78 1 2 16 2 13 54 13 10 0 10

40 160 2 36 2 1 158 1 20 0 20 27 106 27

100 100 1 98 1 1 98 1 25 50 25 25 50 25

160 40 1 158 1 2 36 2 27 106 27 20 0 20

(1, 0, 1) 20 80 8 4 8 40 1 39 4 12 4 25 30 25

50 50 25 1 24 24 1 25 13 25 12 12 25 13

80 20 39 1 40 8 4 8 25 30 25 4 12 4

40 160 18 4 18 80 1 79 8 25 7 49 61 50

100 100 50 1 49 49 1 50 25 50 25 25 50 25

160 40 80 1 79 18 4 18 49 61 50 8 25 7

(1, 0, 0) 20 80 2 16 2 1 78 1 1 19 0 26 28 26

50 50 1 48 1 1 48 1 13 25 12 12 25 13

80 20 1 78 1 2 16 2 26 28 26 1 19 0

40 160 2 36 2 1 158 1 1 38 1 53 54 53

100 100 1 98 1 1 98 1 25 50 25 25 50 25

160 40 1 158 1 2 36 2 53 54 53 1 38 1
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Table 2 continued

criterion D IMSE

(d1, d2, d3) m1 m2 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1

(0, 1, 0) 20 80 10 0 10 19 42 19 10 0 10 16 48 16

50 50 12 26 12 13 24 13 25 12 13 13 25 12

80 20 19 42 19 10 0 10 16 48 16 10 0 10

40 160 18 4 18 38 84 38 20 0 20 32 96 32

100 100 25 50 25 25 50 25 25 50 25 25 50 25

160 40 38 84 38 18 4 18 32 96 32 20 0 20

(0, 0, 1) 20 80 9 2 9 19 42 19 10 0 10 17 46 17

50 50 12 26 12 13 24 13 12 26 12 13 24 13

80 20 19 42 19 9 2 9 17 46 17 10 0 10

40 160 18 4 18 38 84 38 20 0 20 35 91 34

100 100 25 50 25 25 50 25 25 50 25 25 50 25

160 40 38 84 38 18 4 18 34 91 35 20 0 20

Table 3 Exact D-efficient designs in quadratic model on the interval [−1, 1] with constraints given by 40
and numbers of observations mi for Di given by 37 with di = 0.5, i = 1, 2

m1 m2 − 1 − 0.2 0 0.2 1 − 1 − 0.2 0 0.2 1

20 40 4 5 2 5 4 8 10 4 10 8

40 20 8 10 4 10 8 4 5 2 5 4

25 100 5 7 2 6 5 21 26 9 24 20

100 25 21 27 9 23 20 5 6 2 7 5

Table 4 Exact I MSE-efficient designs in quadratic model on the interval [−1, 1] with constraints given
by (40) and numbers of observations mi for Di given by (37) with di = 0.5, i = 1, 2

m1 m2 − 1 − 0.2 0 0.2 1 − 1 − 0.2 0 0.2 1

20 40 5 5 0 5 5 9 10 1 10 10

40 20 9 10 1 10 10 5 5 0 5 5

25 100 6 6 0 7 6 23 26 3 24 24

100 25 24 25 3 25 23 6 6 0 7 6
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Table 5 Exact D- (left) and I MSE-efficient (right) designs in quadratic model on the interval [−1, 1] with
constraints given by (41) and numbers of observations mi for Di given by (37) with di = 0.5, i = 1, 2

(m1,m2) − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1

(20,40) 2 17 1 3 34 3 2 6 2 4 23 3

(40,20) 3 34 3 2 17 1 4 23 3 2 6 2

(25,100) 3 14 3 8 74 8 3 14 3 9 52 9

(100,25) 8 74 8 3 14 3 8 63 9 3 14 3

Table 6 Exact D-efficient
designs in quadratic model on
the interval [−1, 1] with
constraints given by (42) and
numbers of observations mi for
Di given by (37) with di = 0.5,
i = 1, 2

(m1,m2) −1 −0.2 0 0.2 1 −1 −0.2 0 0.2 1

(20,40) 2 3 7 0 1 3 3 14 3 3

(40,20) 3 0 13 3 4 2 0 6 0 2

(25,100) 3 5 7 1 2 8 7 34 6 8

(100,25) 8 7 34 6 8 2 4 8 5 2

Table 7 Exact I MSE-efficient designs in quadratic model on the interval [−1, 1] with constraints given
by (42) and numbers of observations mi for Di given by (37) with di = 0.5, i = 1, 2

(m1,m2) −1 −0.2 0 0.2 1 −1 −0.2 0 0.2 1

(20,40) 2 0 6 0 2 4 0 12 3 3

(40,20) 4 0 12 0 4 2 0 6 0 2

(25,100) 3 1 7 2 3 8 2 38 0 12

(100,25) 9 1 35 0 11 3 2 7 1 3

References

Aliev A, Fedorov V, Leonov S, McHugh B, Magee M (2012) Pkstamp library for constructing optimal
population designs for pk/pd studies. Commun Stat Simul Comput 41(6):717–729

Cook RD, Thibodeau L (1980) Marginally restricted D-optimal designs. J Am Stat Assoc 75(370):366–371
Dumont C, Lestini G, Nagard HL, Mentré F, Comets E, Nguyen TT (2018) PFIM 4.0, an extended R

program for design evaluation and optimization in nonlinear mixed-effect models. Comput Methods
Programs Biomed 156:217–229

Fedorov V, Jones B (2005) The design of multicentre trials. Stat Methods Med Res 14:205–248
Galil Z, Kiefer J (1977) Comparison of designs for quadratic regression on cubes. J Stat Plan Inference

1:121–132
Harman R, Bachratá A, Filová L (2016) Construction of efficient experimental designs under multiple

resource constraints. Appl Stoch Models Bus Ind 32:3–17
Heiligers B (1992)Admissible experimental designs inmultiple polynomial regression. J Stat Plan Inference

31:219–233
Nyberg J, Ueckert S, Strömberg EA, Hennig S, Karlsson MO, Hooker AC (2012) Poped: an extended,

parallelized, nonlinear mixed effects models optimal design tool. Comput Methods Programs Biomed
108(2):789–805

Prus M (2022) Equivalence theorems for multiple-design problems with application in mixed models. J
Stat Plan Inference 217:153–164

Prus M, Piepho H-P (2021) Optimizing the allocation of trials to sub-regions in multi-environment crop
variety testing. J Agric Biol Environ Stat 26:267–288

123



886 M. Prus, L. Filová

Prus M, Schwabe R (2016) Optimal designs for the prediction of individual parameters in hierarchical
models. J R Stat Soc B 78:175–191

Schmelter T (2007) Considerations on group-wise identical designs for linear mixed models. J Stat Plan
Inference 137:4003–4010

Schwabe R (1996) Optimum designs for multi-factor models. Springer, New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Computational aspects of experimental designs in multiple-group mixed models
	Abstract
	1 Introduction
	2 Multiple-group RCR model
	2.1 Model specification
	2.2 Design criteria
	2.3 Optimality conditions

	3 Equi- and invariance considerations for construction of optimal designs
	4 Computing the multiple-group mixed models designs
	5 Bi-linear regression
	6 Quadratic regression on a symmetric interval
	7 Discussion
	Acknowledgements
	Appendix
	References




