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Abstract
In this paper, the IT-speed dating of a German university is considered, where stu-
dents have talks with different companies in order to find a suitable internship. The 
goal is to create a good and fair matching of students and companies for these talks, 
based on student preferences, and to schedule the resulting talks in order to main-
tain the given time horizon and minimize the necessary room changes for the stu-
dents. We solved the problem in two steps. First, we modeled the matching prob-
lem as an extended version of the capacitated transportation problem and solved 
it using a modified stepping stone method. Second, we present two approaches to 
solve the scheduling problem. A Monte Carlo tree search procedure generates time-
constrained schedules with minimal duration, while a genetic algorithm generates 
longer schedules with individual pauses and fewer room changes. The approaches 
led to significantly more talks with valuable content, a shorter duration, and greater 
satisfaction of all participants.

Keywords Matching and scheduling · Modified stepping stone method · Mixed-
integer linear programming · Monte Carlo tree search · Genetic algorithm

1 Introduction

University teaching is characterized by the fact that knowledge is mainly imparted 
on a theoretical basis. It is therefore essential to apply the acquired basic knowl-
edge in real economic situations at an early stage, i.e., during studies. Particularly, 
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students of computer science benefit from a short-term work experience in prac-
tice. For this reason, a 10-week internship is a fixed part of the two IT bachelor’s 
degree programs in Information Systems and Information Management & Technol-
ogy (IMIT) at the University of Hildesheim. In order to help students to find an 
internship company suiting their interests, the “IT-speed dating” was introduced in 
2013. Following the idea of well-known speed dating events to find a (life) partner, 
the then 29 participating students conducted 5-minute one-to-one talks (“dates”) 
with all 15 participating companies according to a round robin procedure. During 
these talks, it was possible to find out whether the students’ qualifications, expecta-
tions, and preferences matched the offers and requirements of the companies. The 
speed dating was followed by a classic application phase, in which the students sent 
a written application to the companies they found suitable. Questioning of the com-
pany representatives showed that positive impressions from the speed dating greatly 
increased the chances of the application being accepted. This approach proved to be 
very successful over the years: On average more than 80% of the students carried 
out an internship in one of the companies.

With increasing numbers of students and companies, the duration of the event 
became longer and longer, with about 3–4 hours to plan. Moreover, feedback sur-
veys from both students and companies revealed that a certain percentage of dates 
were unsuccessful (“empty date”). With these empty dates, it became clear within 
the first 30 seconds that the type of internship offered did not meet the wishes of the 
respective student. For example, a company only offered internships in the field of 
ERP systems, while the student was interested in improving the software develop-
ment skills.

As a consequence for the planning for the IT-speed dating 2020, for which about 
40 students and 40 companies were expected, the organizers decided to stop the 
round robin procedure. A new concept was required that could meet the time limit 
of 3–4 hours. In addition, a minimum talk duration of at least 5 minutes should be 
ensured and the students should be offered a talk with as many companies they are 
interested in as possible. We implemented a procedure that aims to reduce the total 
number of talks by preventing the occurrence of “empty dates” as far as possible. For 
that, students state preferences regarding the participating companies which are used 
in a matching algorithm to determine the final dates. Afterward, an acceptable time 
schedule has to be established to provide the students with an individual, conflict-free 
sequence of dates. Please note that the final decision on which companies students 
apply to and which companies offer internships to which students will still not be 
made by the organizers, but will be left to the participants.

The aim of the paper is to provide an interesting real-life application of a many-
to-many matching problem with the consideration of fairness in the area of univer-
sity education. Moreover, the solution of the matching problem is used as input for 
a scheduling problem in order to determine a concrete timetable for all participants. 
The focus of the paper is on the implemented solution procedures, which are rather 
conventional methods. We show how to incorporate fairness considerations in the 
matching procedure and how to find good solutions for the scheduling problem, 
for which even feasible solutions are hard to find. Section 2 explains the details of 
the new concept and the circumstances at the University of Hildesheim. Section 3 

42   Page 2 of 29 Operations Research Forum (2022) 3: 42



1 3

provides an overview of related work regarding matching and scheduling. Section 4 
describes the first step of our proposed decomposition approach, where the match-
ing problem is used to assign every student to a subset of attending companies. The 
problem is modeled as a transportation problem and solved with a modification of 
the stepping stone method to incorporate fairness. Section 5 describes the second 
step of the approach. Here, a scheduling problem is considered, where a scheme is 
determined which student, when, and in which room meets a company. We propose 
two different heuristic methods, one is a Monte Carlo tree search procedure and one 
is a genetic algorithm. Section  6 compares the results of both heuristics with the 
results of an exact solver for different problem sizes. The corresponding case study 
of the IT-speed dating event 2020 is then described further and the results are dis-
cussed. Finally, conclusions are given in Sect. 7.

2  Concept and Circumstances

In order to offer the students dates with companies that have a good chance of being 
of interest to them, information about companies’ offerings and students’ preferences 
had to be collected in advance. The companies were asked to briefly describe the 
thematic orientation of their internship. The descriptions received were then handed 
out to the registered students. We removed all references to the associated company 
from the descriptions so that the preferences were given purely on the basis of the 
content offered and not on the basis of the company’s reputation. Our aim was to 
bring less known companies that offer interesting tasks into the focus of the stu-
dents. Motivation for that can be found in feedback surveys of former IT-speed dat-
ing events, which showed that more than 90% of the students agreed to the follow-
ing statement: “Some companies I was not interested in beforehand have offered me 
interesting internships.” Based on this feedback, the students were invited to classify 
the descriptions into “ A – very interesting,” “ B – medium interesting,” and “ C – not 
interesting.”

With this information, the task was to compute a matching of students to compa-
nies with the following objectives:

– The matching should be done in such a way that each student meets as many of 
the A-ranked companies as possible and afterward as many B-ranked companies 
as possible.

– Even though the speed dating event is an optional offer to the students to increase 
their chances of a successful internship, fairness regarding the final matchings 
should be considered in order to provide equal opportunities. Students who 
receive just a few talks with companies in their A-category could feel disadvan-
taged when there are other students with significantly more A-talks. To ensure 
objective comparability regarding the quality of the matching among all students, 
we decided to fix the number of companies per category. With that, the match-
ing should be conducted such that each student obtains approximately the same 
number of A - and B-assignments as everyone else, as long as this does not sig-
nificantly deteriorate the overall solution quality. Other approaches based on a 
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ranking list created by each student were also considered but finally disregarded 
because of the increased effort for creating such a ranking compared to the sim-
ple classification.

After the matching, the scheduling of the identified talks has to be performed. In the 
original round robin procedure, there was a fixed sequence of the tables and after 
each talk, every student just moved to the neighboring table to continue with the 
next talk. This allowed minimum transition times between talk rounds thus maxi-
mizing the productive utilization of the total time horizon. This simple method is no 
longer applicable if every student has an individual schedule. In order to still utilize 
as much time as possible for interesting talks, the transitions to the next talk should 
be optimized. Due to its size, the event has to take place in four neighboring seminar 
rooms. Even with prepared overviews of the room layouts, it takes some time to find 
the right company when students have to change rooms. Therefore, the minimization 
of necessary room changes is a major objective in the scheduling algorithm. Other 
potential and additional objectives are discussed in Sect. 5.

Please note that we consider maximizing the quality of the matching as our pri-
mary goal, since the event should bring students and companies together in the best 
possible way. Based on the best possible matching, the best possible schedule should 
then be determined.

3  Related Work

The problem at hand can be divided into a matching problem and a schedul-
ing problem. In the following Sects. 3.1 and 3.2, we present related work to both 
subproblems.

3.1  Matching

The matching problem under consideration is characterized by two groups: students 
and companies, and each person of a group may perform talks with many persons 
from the other group. In our case, the number of talks is predefined. Moreover, only 
the group of students (one side) is allowed to express preferences. In general, the 
problem is known as a one-sided many-to-many matching problem.

There are a lot of papers in the literature that consider the one-sided many-to-one 
matching problem. In [1], students with preferences are distributed to high schools 
through a lottery. Each student can go to one school at most and each school can 
only offer a limited number of places. In order to solve the problem, two mecha-
nisms are used: “partitioned random priority” and “partitioned random endow-
ment.” Kesten et al. [2] provide possibilities for efficient lottery design on the basis 
of “random serial dictatorship” (RSD) and “probabilistic serial” (PS). In the RSD 
mechanism, a random sequence of agents is selected and in this sequence they are 
allowed to take an item [3]. In the PS mechanism, a probability is first determined 
on the basis of preferences, which is then used to give each agent a certain item [4]. 
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Kesten et al. [2] use RSD and PS to ensure fairness through stochastic components. 
Furthermore, Duan and Pettie [5] study the many-to-one matching problem from a 
graph-theoretical point of view by searching for maximum and minimum matches in 
bipartite graphs.

In the many-to-many matching problem, each item may be assigned multiple 
times and each agent may receive multiple items. In [6], the problem is consid-
ered by designing a dictatorship mechanism for course assignment in Harvard so 
that students can no longer benefit from giving wrong preferences. Sotomayor [7] 
investigates the existence of stable many-to-many matchings.  Baïou and Balinski 
[8] study the transferability of properties (e.g., fairness, truthfulness) of one-to-one 
and many-to-one problems to many-to-many matching problems. They analyze the 
polygamous variant of the stable marriage problem and define explicitly the number 
of matches per participant. Unlike in our case, however, preferences are considered 
from both sides.

Often, matching mechanisms are examined to determine whether they have cer-
tain characteristics such as fairness, truthfulness (also known as strategy-proofness), 
and Pareto efficiency. Since we seek a fair matching result that cannot be heavily 
influenced by the students through strategic decisions, these features also play a role 
in our application. RSD, for example, is ex-ante fair with respect to equal treatment 
of equals (though agents far down in the random order feel disadvantaged), but it is 
only truthful and ex-post Pareto efficient if there are at most as many items as agents 
[9]. PS is also ex-ante fair, nobody prefers the chances of another over his own (sto-
chastic dominance envy-free) and Pareto efficient, but not truthful either. Zhou [10] 
proved that there is no mechanism for the one-sided one-to-one matching problem, 
which is both symmetrical (equal treatment of equals) and ex-ante Pareto efficient as 
well as truthful. For more detailed studies on truthfulness and incentives in match-
ing mechanisms, see [11].

Fairness can be judged by different criteria. For example, a single individual can 
consider an assignment as fair on the basis of maximin-share, proportional fair-
share, min-max fair-share, envy-freeness, and competitive equilibrium from equal 
incomes [12, 13]. Besides individual fairness criteria, there are also global fairness 
criteria such as the Nash Social Welfare [14]. The Nash Social Welfare can be calcu-
lated from the product of all individual scores (see Eq. (3)). If this is maximized, a 
Pareto efficient solution is automatically created. In addition to criteria that are either 
fulfilled or not fulfilled, there are also key measures that indicate how fair (balanced) 
a certain allocation is. Here, the Jain index [15] is often used, which brings the coef-
ficient of variation (ratio of standard deviation to arithmetic mean) to an easily inter-
pretable scale from 0 to 1. A value of 0 (although impossible) would represent a 
completely unfair, and a value of 1 a completely fair (balanced) allocation. If the 
items to be distributed are divided equally among k% of all participants, while the 
remaining participants receive nothing, the Jain index is k%. Concrete consideration 
of fairness in optimization problems can be found, for example, in [16], where fair-
ness is taken into account when creating timetables for academic courses and both 
the max-min fairness (maximize the currently worst individual score) and the Jain 
index are maximized. In [17], the Jain index is also used to generate an examination 
schedule for students that is as fair as possible.
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Besides the lack of research in the area of one-sided many-to-many matching 
problems with a fixed number of matches per person, a strict preference order is 
generally assumed. We do not have this order of preference, because we only have 
3 different preference values (for classes A , B , and C ). Please note that a random 
transfer of the classes into a strict ranking could lead to undesirable results. For this 
reason, we have developed our own matching approach. We will first present our 
approach and then discuss the actual characteristics. It was particularly important to 
us to achieve a solution that is globally as good as possible, but in which individual 
students are not seriously disadvantaged by chance.

3.2  Scheduling

Related problems to our scheduling task can be found in the area of sports sched-
uling, where match schedules for sports leagues have to be created. Many sports 
scheduling problems have in common that the schedule is based on a round robin-
like matching. In European sports leagues, a double round robin procedure is 
often applied. Some American leagues implement this procedure as well or have 
a combination of multiple smaller round robin match plans possibly extended by 
a few special matches (e.g., the American MLB and NHL). Nemhauser and Trick 
[18], for example, consider the scheduling of a college basketball league. Relevant 
constraints include sequences of home and away matches, combinations of loca-
tion (home/away) and match day (weekend/during the week), stadium availability, 
home match preferences on certain match days, and the avoidance of consecutive 
strong opponents. While the match plan follows some kind of round robin proce-
dure, schedules can be created in a two-step procedure, where first feasible combi-
nations of specific patterns (e.g., sequences of home and away matches) are created 
and afterward each team is matched with one of those patterns. The first step ensures 
feasibility regarding the general restrictions like conflict freedom while the second 
step ensures feasibility and/or improves the objective function regarding individual 
preferences of the teams. Examples for round robin based scheduling problems can 
be found, for example, in [19–24] as well as in [25, 26]. For a general overview of 
sports scheduling, we refer to [27]. In the problem at hand, finding an initial feasible 
solution is harder, since the creation and combination of patterns have to be made 
together with the assignment of the participants, as not each pattern is applicable for 
each participant. This is caused by the fact that each participant has its own subset of 
“opponents” which is not rule-based as it would be in a (multiple) round robin-based 
procedure. Please note that there is a difference between time-constrained and time-
relaxed schedules. While in time-constrained schedules there are exactly as many 
match days as matches per team, in time-relaxed schedules there are more match 
days than matches per team. This leads to additional rest days for some of the teams 
and could result in additional constraints regarding these rest days. An application 
of a time-relaxed scheduling problem with further restrictions can be found in [25].

Another related problem is conference scheduling, where the talks at conferences 
are assigned to time slots and rooms. Usually the talks are grouped into sessions, 
which consist of consecutive talks in the same room. A typical goal is to maximize 
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the attendance at all talks or to maximize the preferences given by the participants 
in advance regarding the talks to be attended. Since the individual sessions are 
partly held in parallel, talks that are jointly preferred by many participants should be 
assigned to the same session. Vangerven et al. [28] present an integer programming 
model for the problem. In subsequent steps, the availability of presenters is taken into 
account and the so-called session-hopping (changing the session, i.e., changing the 
room) is minimized. Other approaches are introduced in [29, 30], and [31]. Confer-
ence scheduling problems differ from our problem in that we have one-to-one conver-
sations, where attendance is mandatory and not the primary optimization goal.

4  Matching Problem

Let S be the set of students and C be the set of companies. Matching is based on 
the assumption that s = |S| students and c = |C| companies meet. Each participant 
(students as well as companies) should conduct exactly m talks; m is a predeter-
mined parameter which depends on the duration of each talk and the time limit for 
the duration of the IT-speed dating event. As a subset of companies should be deter-
mined for each student, we set m smaller than the number of companies involved 
( m < |C| ). The goal in the model formulation and the exact solution method is to 
maximize the sum of all students’ preferences for their m dates taking place (see 
Sect. 4.1). Please note that the preferences are specified based on the three catego-
ries A , B , and C that the students have used for the companies. We explain our strat-
egy for specifying the concrete preference values in the case study section (Sect. 6). 
To generate solutions that are fair with respect to the assignment of students to com-
panies, an adopted version of the solution algorithm is implemented. In Sect.  4.2 
both methods are compared.

4.1  Model Formulation and Solution Method

The matching problem at hand is modeled and solved as a variant of the capacitated 
transportation problem [32]. Each student has a supply and each company a demand 
of m talks (units). From the experience of the last years, it is known that the num-
ber of interested students usually exceeds the number of participating companies. 
Therefore, the sum of all supplies ( s ⋅ m ) is greater than the sum of all demands 
( c ⋅ m ) and a fictitious company |C| + 1 must be introduced to cover the missing 
demand ( (s − c) ⋅ m ). This makes the fictitious company the only “participant” with 
more than m talks. The (transport) connections ⟨i, j⟩, i ∈ S, j ∈ C, are valued with 
preference values pij , where pij indicates the preference of student i ∈ S for company 
j ∈ C . Values for pij could be chosen, e.g., from the intervals [0, 1] or [0, 100] with 
A-preferences having a higher value than B - or C-preferences. We set the minimum 
capacity to �ij ∶= 0 and the maximum capacity to �ij ∶= 1 for all arcs ⟨i, j⟩ . Con-
nections to the fictitious company |C| + 1 obtain a weight pi,|C|+1 ∶= 0 as well as 
capacities �ij ∶= 0 and �i,|C|+1 = ∞ . Using the decision variables
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we are able to formulate the objective function to be maximized, in which the pref-
erences that need to be fulfilled are included:

Due to the modeling, a feasible solution consists of m ⋅ s student-company-
combinations (matches). However, based on the assumption that s > c holds, only 
m ⋅ c of these matches represent real conversations, while the other combinations 
consist of a student and the fictitious company. A scheduled meeting with the ficti-
tious company can be seen as a break time for the student.

For the problem sizes we consider, the resulting mixed-integer linear program 
can easily be solved optimally with a standard solver like CPLEX. However, the 
current objective function (2) only maximizes the overall preferences across all stu-
dents. A solution with many A-talks for one student and no A-talks for another stu-
dent is as good as a solution with both students having the same amount of A-talks 
as long as the sum of fulfilled A-talks stays the same. Consequently, for a balanced 
and fair solution, it makes sense to also investigate the individual preference fulfill-
ment score zi of each student i ∈ S , which can be calculated according to:

As described above (cf. Sect. 3), there are different ways to measure the fairness 
of an allocation. The often used Jain index becomes larger (and therefore better) 
the more uniform the individual scores are and thus correlates with the variance. 
Hence, to ensure that no student is disadvantaged, a solution should be found, where 
the Jain index of the student scores zi, i ∈ S, is as big as possible or rather the vari-
ance of the scores is as small as possible. For this purpose, one could determine 
all optimal solutions of the problem and search for the most balanced among them. 
In preliminary studies, when applying the method to practical problem instances, 
we found out that the number of optimal solutions is very large. In addition, the 
variances of the solutions with respect to the individual preference scores given in 
(3) were quite similar and not as small as desired. Thus, we have implemented an 
adapted variant of the stepping stone method – an exact procedure with polynomial 
runtime for solving the capacitated transportation problem – in order to actively 
reduce the variance between the student fulfillment scores during optimization of 
the overall objective function (2).

In order to be able to use the stepping stone method [33], a feasible start  
solution must first be generated. We implemented an adapted version of the col-
umn maximum method. Here, the companies are considered in a fixed order and 
in each iteration, one of the students with the highest preference is assigned to 
the current company. Afterward, the number of pending talks of students and 
companies is reduced by one. This procedure has some parallels with the RSD 

(1)xij =

{
1 if student i meets company j

0 otherwise,

(2)Max Z =
∑

i∈S

∑

j∈C

pijxij.

(3)zi =
∑

j∈C

pijxij.

42   Page 8 of 29 Operations Research Forum (2022) 3: 42



1 3

mechanism. If a student is assigned to m companies, the corresponding stu-
dent is deleted and not considered for the next iterations. Similarly, a company 
with already m assigned students is not considered any further. The process is 
repeated until m different students are assigned to each company. Students with 
less than m talks meet the fictitious company in their remaining conversations. 
Once a start solution is generated, the standard stepping stone method would 
search for exchange sequences for assigned conversations that improve the over-
all solution. If it is no longer possible to exchange student-company-matches 
without reducing the overall objective function value of (2), an optimal solution 
is found.

In our modified method, dynamic preference values fi ⋅ pij, i ∈ S, j ∈ C are 
used instead of always the same preference values pij . In each iteration, the 
dynamic fulfillment factor fi is recalculated. The goal of dynamic preferences 
is to avoid below-average and above-average fulfillment scores. Suppose two 
students i1 and i2 meet the companies j1 and j2 , respectively, and both students 
have classified j1 as A and j2 as B . Who meets which company has no influ-
ence on the objective function value in (2), since in both cases one A - and 
one B-wish is fulfilled. However, it makes sense to fulfill the A-wish of the 
student who currently has a lower score (say i1 ) in order to reduce the differ-
ence between the two scores. For this reason, the A-wish of the student with 
the lower score receives a higher dynamic preference value ( fi1 > 1 ) and the A
-wish of the other student receives a lower one ( fi2 < 1 ). In general, let z̄ be the 
average student score and Vz the variance of student scores. Factor fi can then 
be calculated as follows:

where f̃i = 2
𝛿i

Vz

 if 𝛿i > 𝛼 ⋅ Vz and 1 otherwise; with 𝛿i = (zi − z̄)2 . Parameter � is a 
threshold factor, which increases starting from 1 in order to ensure that a stable state 
is reached with increasing run time.

Please note that the dynamic preferences are not transferred to the next itera-
tion. New values for fi are determined in each sequence exchange step. Further-
more, it should be noted that the resulting solutions do not necessarily have the 
optimal objective function value, but are often nearly optimal, as practical stud-
ies have shown. Accordingly, approximately equivalent solutions with signifi-
cantly lower variance are searched for in the direct neighborhood of an optimal 
solution. In order not to be limited to the neighborhood of the initial optimal 
solution, a multi-start procedure with a fixed number of runs using a random 
sequence of students and companies is applied. Each run ends in a stable state 
resulting in a near-optimal solution (regarding the total sum of preference fulfill-
ment). After all runs of the multi-start procedure, the solution with the lowest 
variance is selected. This solution represents a very fair, balanced solution with 
nearly optimal sum of fulfillment scores.

(4)fi =

{
f̃i if zi < z̄
1

f̃i
otherwise,
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4.2  Comparison of the Exact and Modified Method

An analysis of the relationship between the improvement of the variance and the 
decrease of the objective function value was made. On average, the variance of the 
solutions found by the modified method was 75% (73%) lower than the mean (small-
est) variance of optimal solutions (an optimal solution). For all tested instances 
the resulting Jain index was well above 0.99, indicating a very fair distribution. In 
addition, as part of the variance minimization, the Nash Social Welfare was also 
increased compared to an optimal solver solution. Depending on the concrete fulfil-
ment of the students’ A -, B -, and C-wishes, the objective function value of the heu-
ristic was on average between 0.05% and 0.35% worse than in the optimum. Based 
on the evaluation, this corresponds to the fulfilment of a B - instead of an A-wish for 
one in 80 students or the fulfilment of three C-wishes instead of three B-wishes for 
one in 42 students. In our opinion, this reduction in the assignment quality is accept-
able, as it allows for much fairer student-company-matches. It must also be taken 
into account that due to the different number of students and companies ( s > c ), the 
number of talks with real companies per student can vary. This aspect also increases 
the need for a balanced, fair allocation.

Our main goal was to find the best possible global solution. This is supported by 
our approach, as it basically maximizes the sum of all fulfilled preferences. If the 
maximum possible sum is reached, the resulting assignment is automatically Pareto 
efficient. A solution is only not Pareto efficient if some students could swap compa-
nies and thus none is worse off, but at least one is better off. However, this would 
necessarily increase the sum of the fulfilled preferences, which contradicts the 
assumption that the sum is already maximum. In order to achieve an even and fair 
distribution of the student scores, we try to maximize the Jain index without deviat-
ing significantly from the maximum sum (and thus from a Pareto efficient solution). 
The above–mentioned results of our research show that this has been successful. In 
general, our approach is not truthful, as it can theoretically allow students to gain an 
advantage by wrongly stating priorities. Particularly, this is possible if a student pre-
fers a company that is not preferred by the majority of other students. In this case, 
it is not necessary to waste a high priority on this company, because it would be 
assigned to him/her even if the priority is lower. However, we believe that due to the 
small number of preference classes (only A , B , and C ), a strategic devaluation of a 
company by one level is already too risky for the students. Additionally, the students 
receive no reliable information about the preferences of their fellow students before 
submitting their own preferences, thus further reducing the potential advantage.

5  Scheduling Problem

The solution to the matching problem specifies which students will meet which compa-
nies. Based on this assignment, a schedule must now be generated that shows students 
when they will visit a company. In addition, the schedule has to determine which com-
pany will be placed in which of the available rooms. Furthermore, a feasible solution 
to the scheduling problem must ensure that all scheduled meetings take place exactly 
once, that no company or student has more than one talk during a time slot, and that 
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the given room capacities are not exceeded. As mentioned before, the minimization of 
room changes will maximize the utilization of the available time because unnecessary 
walks, searches, and confusion can be reduced. Therefore, the primary objective func-
tion used in the model (see Sect. 5.1) and in the solution methods (see Sects. 5.2 and 
5.3) is the minimization of the total number of room changes. Alternate or additional 
objectives are discussed in Sect. 5.4.

5.1  Notation and Model Formulation

The scheduling problem assigns the predetermined m ⋅ c (real) conversations of stu-
dents and companies to n time slots. Moreover, the companies are placed in the existing 
|R| rooms. The associated model can be formulated as a mixed-integer linear program 
considering the following sets, parameters, and variables (each sorted alphabetically). 
Please note that the decision variables xij, i ∈ S, j ∈ C, of the matching problem are 
input parameters (indicators) to the scheduling problem.

Sets and indices

i ∈ S set of students, S = {1,… , s}

j ∈ C set of companies, C = {1,… , c}

r ∈ R set of rooms, R = {1,… , |R|}
t ∈ T set of time slots, T = {1,… , n}

Parameters

�r capacity of room r
xij indicator, showing if student i

meets company j (value 1) or not (value 0)

Decision variables

Πr
it =

{
1 if student i is at time t in room r

0 otherwise

sijt =

{
1 if student i meets company j at time t

0 otherwise

Θit =

{
1 if student i has to switch rooms between time t and t + 1

0 otherwise

yr
j =

{
1 if company j is assigned to room r

0 otherwise

(5)Min.
∑

i∈S

∑

t∈T⧵{n}

Θit

(6)w.r.t.
∑

j∈C

sijt ≤ 1 ∀ i ∈ S, t ∈ T
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Objective function  (5) minimizes the sum of the room changes for all stu-
dents. Constraints  (6) and (7) ensure that no student or company has more than 
one conversation at a time. Equalities (8) guarantee that all planned conversations 
take place exactly once. Moreover, constraints (9) indicate that each company is 
assigned to exactly one room and constraints (10) satisfy that room capacities are 
maintained. In order to ensure the correct assignment of the students’ variables to 
the rooms, each student must be in exactly one room at all times (11). If a student 
has a talk at time t, the student must be in the same room as the company with 
which the talk is being held at that time (12). Constraints (13) guarantee the cor-
rect counting of the room changes that occur when a student in time slot t + 1 is 
in a different room than in time slot t. Finally, constraints (14) to (17) impose the 
domains of decision variables.

(7)
∑

i∈S

sijt ≤ 1 ∀ j ∈ C, t ∈ T

(8)
∑

t∈T

sijt = xij ∀ i ∈ S, j ∈ C

(9)
∑

r∈R

yr
j
= 1 ∀ j ∈ C

(10)
∑

j∈C

yr
j
≤ �r ∀ r ∈ R

(11)
∑

r∈R

Πr
it
= 1 ∀ i ∈ S, t ∈ T

(12)Πr
it
≥ sijt + yr

j
− 1 ∀ i ∈ S, j ∈ C, r ∈ R, t ∈ T

(13)
Θit ≥ Πr�

it
+

∑

r ∈ R

r ≠ r�

Πr
i,t+1

− 1 ∀ i ∈ S, r ∈ R, t ∈ T ⧵ {n}

(14)Πr
it
∈ {0, 1} ∀ i ∈ S, r ∈ R, t ∈ T

(15)sijt ∈ {0, 1} ∀ i ∈ S, j ∈ C, t ∈ T

(16)Θit ∈ {0, 1} ∀ i ∈ S, t ∈ T ⧵ {n}

(17)yr
j
∈ {0, 1} ∀ j ∈ C, r ∈ R
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In what follows, we present two heuristic approaches in order to solve the underlying 
problem. We will compare both approaches with each other as well as with the usage of 
a standard solver regarding quality and runtime. With the first approach, schedules can 
be generated that require exactly m time slots, so that each company has a conversa-
tion at any time. In the following, we will refer to these schedules as time-constrained 
schedules (see Sect. 3.2). Please note that due to the assumed oversupply of students, 
students will have individual break times if a conversation with the fictitious company 
is scheduled for a time slot. Our second approach generates schedules with n ( n > m ) 
time slots, as does the presented model (5)–(17). In addition to the breaks due to the 
fictitious company, there are now n − m individual break times for all participants, in 
which past conversations may be reflected upon and coming conversations may be pre-
pared. The more time slots can be used, i.e., the longer the underlying time horizon is, 
the fewer room changes are necessary, as the conversations can be better coordinated. 
Please note that at least ⌊m∕maxr∈R �

r⌋ room changes occur in a feasible schedule. In 
the following, we will refer to these schedules as time-relaxed schedules. Due to the 
design of the second approach, it is practically impossible to determine a schedule with 
a duration of n = m time slots.

5.2  Approach for a Time‑Constrained Schedule

The first approach is able to create time-constrained schedules directly and quickly. 
Thereby, the determination of a time-constrained schedule results from the proof of 
its existence. For the sake of simplicity, we divide the previously introduced fictitious 
company |C| + 1 into several fictitious companies c + 1, c + 2,… , s , so that there are 
as many companies as students. The conversations of the fictitious company |C| + 1 are 
distributed among the new fictitious companies in such a way that each fictitious com-
pany has exactly m conversations with different students (each real company also has m 
conversations). The question is whether, for s students and s companies, each assign-
ment to m different talk partners can be made in such a way that for each student there 
is a possible sequence of conversations in which everyone has exactly one conversation 
at any given time.

In order to answer the question and construct a corresponding solution, the prob-
lem is modeled as a bipartite graph analogous to a matching problem, with two sets of 
nodes representing the s students as well as the s real and fictitious companies. For each 
time slot t = 1,… ,m , perfect matchings in the graph-theoretical meaning are sought, 
whereby no two edges may have a common node and exactly one edge of each node is 
included in the matching. The edges identify the student-company-combinations for the 
respective time slot.

From the condition of Hall in the context of the marriage theorem, it can be deduced 
that a bipartite graph with two disjunctive node sets S and C with |S| ≥ |C| has a perfect 
matching exactly when the following condition is fulfilled [34]:

In (18), N(H) is the neighborhood of the nodes in H.

(18)∀H ⊆ S ∶ |N(H)| ≥ |H|
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A subset H consisting of h students has h ⋅ m not pairwise disjunctive companies 
in the neighborhood (every node has a degree of m). Each company may appear a 
maximum of m times in a feasible schedule, i.e., there must be at least h different 
companies in the neighborhood of h students. Therefore, the condition (18) is ful-
filled for the student-company-combinations and a perfect matching can be deter-
mined. Once such a perfect matching is found, all contained edges are removed from 
the graph, since we assume that the corresponding conservations have taken place 
at t = 1 . What remains is a bipartite graph in which each node now has a degree of 
m − 1 instead of degree m, thus guaranteeing the existence of another perfect match-
ing. By induction, it can be concluded that all conversations can take place in m 
rounds without violating the condition.

For the generation of a complete schedule, a perfect matching must be identi-
fied in the bipartite graphs of the different time slots. Galil [35] describes several 
possibilities for determining a perfect matching, including the variant of adding a 
super-source and a super-sink and solving a maximum flow problem. To do this, all 
edges (both the existing ones and the newly introduced ones) must have a maximum 
capacity of 1. Then, a maximum flow can be calculated with the algorithm of Ford 
& Fulkerson [36]. The (original) edges used in a flow are the conversations to take 
place in the current time slot. It can be shown that the number of perfect matchings 
in a graph with node degree m is at least (m!). Thus, the number of possible com-
plete, time-constrained schedules is at least ((m!)!).

Since the time slots are planned independently of each other in our time-constrained 
method, it is difficult to optimize the room changes. However, in order to obtain a good 
schedule with regard to room changes, a procedure based on Monte Carlo tree search 
(MCTS, [37, 38]) was implemented. MCTS estimates the “win probability” by simu-
lations for each position (room allocation), in order to identify the best moves at the 
root node and all child nodes. The estimated probability should be close to the “true” 
probability to ensure the moves selected are good moves toward winning the “game.” 
The tree to be considered has m stages, whereas on the kth stage each node represents 
a partial schedule, with the first k slots already scheduled. Child nodes (at the (k + 1) th 
stage) differ from their parent nodes (at the kth stage) in that a further time slot has 
been added and a schedule for t = 1,… , k + 1 student-company-combinations has been 
created. To ensure that the tree contains all possible schedules, parent nodes at stage k 
would have to consider all possibilities for the time slot t = k + 1 . Since k conversations 
per participant have already been determined, m − k more must be regarded, so that 
there are at least (m − k)! possibilities for the time slot t = k + 1 (see above). For each 
possibility, a child node (at stage k + 1 ) would need to be created. In order to reduce the 
computational complexity, only a random subset of b possible child nodes is generated 
(filtered beam search). Figure 1 illustrates the concrete procedure.

In Step 1, an initial allocation of the companies to rooms is made. The aim of 
Step 1 is to accommodate companies that appear together in schedules of many 
students in the same room. This should enable students to meet several companies 
in one room before they have to visit another room. For implementation, a simi-
larity matrix is constructed, where the similarity between two companies indi-
cates how many students both companies visit. Based on this similarity matrix, 
the companies are then divided into |R| clusters, where cluster i has size � i . In 
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each step, the company with the lowest average similarity to all others is deter-
mined and assigned to an empty cluster. Then, the most similar (� i − 1) companies 
are assigned to the same cluster. This procedure is repeated until all companies 
are positioned in clusters. Since different room sizes are available, it is relevant 
in which order the rooms are filled. Therefore, the clustering is performed for all 
possible sequences of rooms. At the end, the allocation with the highest average 
similarity within a cluster is chosen. This allocation remains identical during the 
Step 2 of the MCTS.

In Step 2, the core of the MCTS is executed. This step consists of the following 
sub-steps (cf. Fig 1): 

2.1 In each iteration, upper confidence bounds applied to trees (see [38]) are used 
to determine the currently most promising node, where the expected “win” is 
maximized with respect to a randomly drawn belief. If the most promising node 
has less than b child nodes, then it is selected for expanding. A child node is added 
randomly. This is done by scheduling a subsequent time slot based on the Ford & 
Fulkerson algorithm, which is implemented as a breadth-first search based on the 
Edmonds Karp variant [39, 40]. The trick here is to add the predecessor and suc-
cessor of a node in random order to the queue, resulting in a different maximum 
flow and a different perfect matching (and thus a different child node).

Fig. 1  Monte Carlo tree search-based procedure for creating time-constrained schedules
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2.2 Starting from the newly inserted child node up to a leaf of the tree (or up to the 
“end of the game”), a simulation is performed, adding more time slots randomly 
according to the same scheme until the schedule is complete (i.e., until the sched-
ule contains student-company-combinations for m time slots). The resulting num-
ber of room changes of the complete schedule is transformed to the interval [0, 1] 
using a sigmoid function, whereby fewer room changes lead to values close to 1 
(indicating a “win”). If the simulation results in a better solution (according to 
the objective function “minimization of room changes”) than previously known, 
the solution is stored.

2.3 Finally, a backpropagation is performed and the determined value of the new 
child node is carried back to the root. The backpropagation changes the node 
values, which have an influence on the selection of the most promising node in 
the next iteration.

The whole process is executed for a certain number of iterations or for a certain 
time. Afterward, the most frequently visited node (usually “the best”) is selected 
on the first stage of the current tree,  supposing that time slot k ∈ {1,… ,m} 
was planned. In classic MCTS this “move” would now be played and the oppo-
nent would continue. In our extended MCTS, we consider the student-company- 
combinations specified for t = 1,… , k as fixed and start planning the next time slot 
k + 1 . Therefore, we set the selected first stage node as new root node. Starting 
from the new root node, again an enumeration tree is built, where the number of 
stages is reduced by 1. The entire MCTS is terminated when a node with m planned 
time slots is set as the root. In this case, the root has no child nodes at which the 
approach can be continued. It is important to note that this final schedule does not 
have to be the overall best (according to the objective function) schedule found dur-
ing the search. Whenever the search finishes one stage and a new time slot has to 
be fixed, the MCTS selects the partial solution created until now with the highest 
probability of producing high-quality solutions later in the search. Afterward, the 
search will focus on this part of the solution space. Due to this sampling-based 
greedy technique, it is possible that previous solutions with other schedules per slot 
than the finally fixed ones have better objective values. Therefore, each new best 
solution found is stored and in the end, this overall best solution found is returned 
as the result of Step 2.

Step 3 is used in order to improve the solution obtained with a comprehensive 2- 
and 3-swapping method. First of all, it is checked whether swapping 2 or 3 time slots 
leads to an improvement. This is repeated until no further reduction of the room 
changes is possible. Then, the room allocation is checked for an improvement. The 
procedure is the same as for the exchange of 2 or 3 time slots. If the room swapping 
has led to an improvement, the swapping of time slots is checked again. In case nei-
ther of the two procedures results in an improvement, the current solution is taken as 
the final result.

Please note that the assignment of companies to rooms is made initially in Step 1,  
is kept fixed during Step 2, and is just checked for improvement in Step  3. The 
reason for this is that – according to preliminary experiments – finding a suitable 
schedule during Step 2 seems to have a far greater influence on the number of room 
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changes than the initial distribution of companies to rooms. This might be influ-
enced by the still relatively high number of company visits per student and the dis-
similar voting behavior of the students. Furthermore, the time slots to be fixed by 
the search are selected based on the current room assignment. Changing the room 
assignment during Step 2 would change the quality of the already fixed slots and 
would therefore be in conflict with the main idea of the MCTS.

5.3  Approach for a Time‑Relaxed Schedule

Our second approach is based on the idea to interpret the problem as a modification 
of the open shop scheduling problem (OSSP). In the OSSP (see, e.g. [41]), a given 
set of jobs must be processed on each of the existing machines in an arbitrary order. 
The goal is to determine the time at which each job should be processed on each 
machine such that an objective function is minimized, e.g., the makespan. In order 
to apply the problem to our scheduling problem, we associate the students with jobs 
and the companies with machines.

Due to the current problem characteristics, each job (student) can only be per-
formed on a specific machine (can only meet a specific real company). The dura-
tion of each job (student) is one time unit (one time slot) and the capacity of the 
machines (companies) is 1 to ensure that each company has a maximum of one talk 
at a time. The aim is to find a schedule for jobs (students) on machines (at compa-
nies) so that the makespan is equal to the number n of possible time slots, while 
minimizing the number of room changes for the students.

The problem is solved using a genetic algorithm. The choice of the genetic 
algorithm has been inspired by the recent promising results provided by [42]  for 
the OSSP. We adapted their approach to fit our problem characteristics. A genetic 
algorithm provides a stochastic optimization method that attempts to simulate Dar-
win’s theory on natural selection. The method iteratively applies certain operators to 
a population of solutions so that on average each new population (i.e., generation) 
tends to be better than the previous one, according to a predefined fitness criterium. 
The fitness function measures the fitness of an individual to survive in a population. 
The algorithm seeks to maximize the fitness function. The termination criterion is 
usually specified as a fixed number of generations, or an execution time limit. At 
the end, the best solution found is returned. In our variant of the genetic algorithm 
(GA), the representation of an individual is divided into two parts: On the one hand, 
the resulting schedule is considered, and on the other hand, the allocation of rooms 
for the companies is taken into account.

For the schedule, we use a specific numbering in the representation in order to 
be able to quickly understand the respective student-company-matching (cf. [42]). 
The first assigned company of student 1 gets the number 1, the kth company of stu-
dent 1 gets the number k, and the first company of student 2 gets the number m + 1 , 
and so on. Thus, if the number x is given, it refers to the student i = ⌈ x

m
⌉ and the 

(x mod m) th assigned company. All numbers are stored in a one-dimensional array 
with s ⋅ m elements. Every element is assigned a number from the set {1,… , s ⋅ m} , 
which corresponds to the student-company-matching. A permutation of the numbers 
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now represents a different solution. The order of the numbers indicates the order in 
which the student-company-matchings are scheduled in the current timetable (when 
decoding the representation). Each combination is scheduled at the earliest possible 
time, taking into account the students’ preferences regarding companies, each stu-
dent can meet only one company at a given time t and each company can only be 
assigned once at time t. Figure 2 shows an example with s = 3 students and c = 3 
companies, with m = 2 meetings per student. Based on the special numbering from 
1 to s ⋅ m = 6 of student-company-matchings in (a), a schedule representation (chro-
mosome) of a non-optimal solution is given in (b). When decoding the representa-
tion, we obtain the timetable in (c), where the assignments are made at the earliest 
possible times; the length of the resulting time horizon is n = 3.

The room allocation is also represented as a one-dimensional array. The array 
contains all c real companies and as many placeholders as additional “seats” are 
available in the rooms ( 

∑
�r − c ). The decoding of the representation is done very 

easily. The first �1 entries (companies or placeholders) are assigned to room 1, the 
next �2 entries to room 2, and so on. Figure 3 shows the procedure for 3 rooms with 
specific capacities (see (a)) and 7 companies contained in array (b) in random order. 
The resulting allocation is given in (c).

The fitness function value of one whole individual (consisting of schedule and 
room-allocation representation) depends on the phase the GA is currently in. In the 
first phase, the algorithm only searches for a feasible solution. For this purpose, the 
fitness function value is geared exclusively toward minimizing the makespan (i.e., 
the fitness that has to be maximized is equal to the negative makespan). However, 
in order to speed up this procedure even further, the fitness value includes not only 
the current makespan but also the average of the times of the conversations tak-
ing place. The idea behind this is based on the fact that schedules with the same 
makespan may have a different distribution of conversations. Schedules with overall 
earlier conversations then have gaps in later periods. For these solutions, it may be 

(a) (b) (c)

Fig. 2  Example for representation of schedule chromosome and resulting schedule

(a) (b) (c)

Fig. 3  Example for representation of room chromosome and resulting room allocation
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sufficient to reschedule a single late conversation to shorten the makespan. These 
schedules should be preferred, since they have a greater potential for minimizing the 
makespan.

If a solution with a maximum of n time slots could be found, the fulfilment of the 
corresponding maximum makespan becomes a necessary condition for the feasibility 
of the individuals. Then, the second phase of the genetic algorithm begins, in which the 
fitness function value now aims at minimizing the number of necessary room changes.

Genetic operators such as selection, crossover, and mutation are used in order to 
create the next generation. The selection of the individuals is done by a tournament 
selection, whereby � individuals are randomly selected from the population and the 
two best (according to the fitness) are chosen as parents. Furthermore, ordered one-
point and two-point crossovers are applied as crossover operators. In one-point crosso-
ver, a cutting point is determined and the part before the cutting point of the first parent 
is transferred to the child. The missing genes (elements with positions) are transferred 
in the order in which they appear in the second parent. In two-point crossover, two 
cutting points are determined and the middle part of the first parent is passed on to the 
child. Missing genes are transferred to the child according to their occurrence in the 
second parent (cf. Fig. 4). The crossover operators are applied to both the schedule and 
the room-allocation representation, the choice of the operator is random.

The mutation occurs according to two of the four mutation operators presented in 
[42]. In the displacement mutation, two random positions are selected and the corre-
sponding genes are swapped. In shift mutation, two random positions are selected and 
all genes in between are shifted one position to the right, with the last gene inserted at the 
beginning of the genes to be shifted (Fig. 5). The randomly selected mutation operator 
is applied only to the schedule representation, only to the room representation or to both.

Once � children are generated, the next generation consisting of � individuals is 
built. When selecting individuals for the next generation, the individuals are sorted 
by descending fitness values and the best 20% are chosen. The remaining individ-
uals are taken randomly from the current population and identical individuals are 
excluded. The above steps are repeated until a stopping criterion is satisfied.

For the IT-speed dating 2020, we have tested different sizes for n. Already with 
the instance size of m = 22 conversations with s = 42 students and companies each 
(cf. the case study), the described method was not able to generate a schedule with 
less than n = 25 slots in an acceptable time (i.e., less than 10 minutes).

Fig. 4  Example for one- and two-point crossover

Page 19 of 29    42Operations Research Forum (2022) 3: 42



1 3

5.4  Algorithm Discussion

As explained previously, we used the minimization of the total number of room 
changes as the primary objective in the modeling and both algorithms. However, 
additional objectives could be taken into account. While the current version just 
minimizes the total number of room changes, their distribution among the students 
is not considered. Similar to the matching problem, fairness metrics might be inte-
grated to balance the number of necessary room changes for each student. Addition-
ally, the distribution of breaks during the event could be considered as part of the 
objective function. Breaks can occur for two different reasons: First, when a talk 
with a fictitious company is scheduled and second, when the GA is used and the 
number of available time slots is bigger than the number of talks per participant. 
While the total number of free slots and thus the total duration of the breaks per par-
ticipant is specified by the matching algorithm and the given parameters for the GA, 
the distribution of these breaks is determined by the scheduling algorithm. Multiple 
short breaks evenly distributed over the time horizon might be desirable to reflect 
past talks. A few very long and/or unevenly distributed breaks might be evaluated 
negatively by the participants. Therefore, different metrics like the variance describ-
ing the distribution and length of the breaks could be integrated in the evaluation of 
the individual schedules. Here, fairness among participants could be considered as 
well.

The integration of the proposed aspects into the objective function for the algo-
rithms is rather straightforward. The main challenge now is to decide on the most 
suitable way of dealing with multiple objectives. The simplest way is a weighting 
of the different aspects, where the choice of the weights plays a decisive role. A 
lexicographic ordering can be implemented in the same way. Also, a Pareto front 
may be created by storing dominant solutions, but there would be a final selection 
criterion needed to choose among the Pareto optimal solutions. An integration 
into the mathematical formulation of the problem, however, is more complicated, 
since most of the desired behaviors would usually be modeled with non-linear 
functions.

A possible area of future research may be a more problem-specific modifica-
tion of the MCTS and the GA. In the MCTS, candidates for new slots are created 
randomly, both at the current stage and during the simulation. The implemented 
Edmonds Karp algorithm could be enhanced by a problem-specific heuristic 
to increase the likelihood of good slots. This would decrease the exploration, 

Fig. 5  Example for displacement and shift mutation
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but increase the exploitation. In the GA, we already implemented a two-phase 
approach with changing objective functions in order to accelerate the creation 
of feasible solutions. Additional improvements are possible by guiding the GA 
toward promising solutions through the use of special crossover and mutation 
operators. By integrating problem-specific knowledge, the random selection of 
crossover and mutation points could be replaced by a heuristic selection of prom-
ising points in order to keep beneficial parts and destroy bad parts of a solution 
(see, e.g., [43]).

6  Case Study and Algorithm Comparison

The speed dating 2020 of the University of Hildesheim took place in January with 
c = 34 companies. The interested students received six weeks in advance a list with 
the short descriptions (max. 1000 characters) of the internships offered by the com-
panies (e.g., in the field of ERP systems, software development or marketing). It 
was specified that each student has to select 6 A -, 16 B -, and 12 C-companies. As a 
compromise between fulfilling as many wishes as possible, maintaining an appropri-
ate length of conversations, and adhering to the maximum time horizon of 4 hours, 
22 rounds of talks, each lasting 5 minutes, were initially planned. From a group of 
60 interested students, s = 42 participants were selected according to the progress of 
their studies. The most popular company received an A-wish from 22 participants, 
so that with m = 22 talks, all A-wishes can usually be satisfied.

In what follows, we first describe the evaluation of the algorithms. Afterward, 
we present details regarding the realization for the IT-speed dating event 2020 as 
well as the feedback received from the participants. Please note that the presented 
algorithms were not supposed to directly improve the quality of the event compared 
to the last years but were necessary to implement the concept change. Therefore, 
we are just able to evaluate the quality of the new concept compared to the round 
robin procedure and the quality of the algorithm results compared to the specified 
constraints.

6.1  Algorithm Evaluation and Comparison

A performance analysis was conducted to evaluate the algorithms. All experiments 
were performed on a Dell OptiPlex 5050 with Intel Core i7-6700 3.4 GHz proces-
sor and 64 GB RAM. In order not to rely on the only real data set, the experiments 
were (exclusively) performed with numerous synthetic data sets. These were gener-
ated by assuming that there are different classes of companies whose offerings are 
similar to each other and differ greatly across classes. In addition, different classes 
of students were constructed, who had special preferences regarding the classes of 
companies. In combination with an individual random preference for each company, 
a preference of each student in each class could be generated for each company in 
each class. Subsequently, m of the companies were randomly chosen, with the selec-
tion probability being proportional to the individual preference of the student. The 

Page 21 of 29    42Operations Research Forum (2022) 3: 42



1 3

selected companies were sorted by preference in descending order. The first com-
panies were assigned to class A , the other selected ones to class B , and the unse-
lected ones to class C . A comparison with the real data set showed that this approach 
reflected the voting behavior very well.

First, the matching algorithm with 20 iterations of the multi-start procedure 
was executed. The minimization of the variance has been configured such that it is 
followed until a stable state is reached. Thus, each iteration lasted about 5 seconds. 
As intended, the simulated students showed a very heterogeneous voting behavior. 
In total, each company was preferred by 11 to 35 students ( A - or B-wish). With 
this condition, all A-wishes could be fulfilled. In addition to the A-wishes, an 
average of 55% of the B-wishes (between 6 and 12 out of 16) received attention.

After the matching, the scheduling and room allocation were carried out. 
For the event, |R| = 4 rooms with capacities � i ∈ {7,… , 10}, i = 1,… , 4 , tables 
(one per company) were available. In addition to the Monte Carlo tree search 
(approach for a time-constrained schedule) and the genetic algorithm (approach 
for a time-relaxed schedule), a solver solution was used for the cases of n = 22 
and n = 27 time slots. Thereby, the mixed-integer linear model (5)–(17) was 
solved with CPLEX 12.10 (using GAMS) applying an optimality gap of 1%, and 
a time limit of 24 hours. The schedule approaches have been implemented in Java 8.

The parameters for the GA were chosen based on previous studies. For example, 
in the Tournament Selection, we randomly select � = 5 individuals from the popula-
tion. The two best ones then form the parent individuals. Once � = 25 children are 
generated, the next generation of � = 25 individuals is created. Please note that the 
best parameter combination may depend on the current instance size. An essential 
factor in the parameterization of the MCTS approach is the branching factor b, which 
influences how many different perfect matchings have to be considered per time 
slot. Due to the importance of the factor b, we have carried out some experiments, 
too. Figure 6 shows the solution quality of the MCTS (measured by the mean room 
changes) for different numbers of b. In our tests, we performed the MCTS 20 times 
for 30,000 iterations (run time ca. 10 minutes) for each of the considered suitable 
b-values. The different results for the b-values can be seen in the box plot, b = 400 
produces the best results, and is therefore used in the further process. Note that an 
increase of the branching factor does not necessarily lead to better results, despite 
the assumed construction of a larger tree. Before a deeper node can be examined, the 
parent node must be fully expanded, i.e., b − 1 “siblings” of the current node have to 
be considered. As we left the number of iterations and thus the number of nodes to 
generate constant, the branching factor b represents a trade-off between breadth-first 
and depth-first search. Because of the countless possible combinations over m levels 
of the tree, a very good solution can be constructed from b = 400 child nodes.

Figure 7 visualizes the results of the heuristic approaches (as well as the solver solu-
tion with GAMS) considering different run time limits in the range of 200–900 sec-
onds. The genetic algorithm was executed with different numbers n ∈ {25,… , 32} of 
time slots. As described above, the consideration of less than 25 time slots in the given 
computation time resulted in no adequate solution. MCTS creates a time-constrained 
schedule and always considers the number of n = m = 22 time slots. The objective 
function values shown are mean values based on 20 runs each.
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As expected, the number of average room changes decreases with the run time 
taken by the heuristic approaches. In addition, when looking at the GA, it becomes 
clear that an increasing number n of possible time slots causes lower numbers of 
average room changes. At n = 25 , solutions with a mean of 10 room changes are 
generated, whereas at n = 32 , solutions with a mean of only 5 room changes are 
possible. The MCTS is able to generate solutions with an average of 8 room changes 
for n = m = 22 time slots. The quality of the results of the MCTS approach is thus 
roughly comparable to the GA for 27 slots.

Fig. 6  Solution quality depend-
ing on the branching factor b 

Fig. 7  Solution quality depending on the selected approach and maximum run time. The left part shows 
the quality of the MCTS for 22 slots (squares). The right part shows the quality of the GA for 25 to 32 
slots (circles). For comparison, the quality of CPLEX for 22 and the finally selected 27 slots is added 
(triangles)
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To investigate the influence of the instance size on the quality and runtime of 
both heuristics and the exact solver, we additionally performed experiments with 
larger data sets. For this purpose, we assumed that – for practical reasons – again 
only 22 conversations in 22 (MCTS) or 27 (GA) time slots should take place. The 
number of participating companies was set to 40, 56, and 80. The number of stu-
dents was either the same or 12.5% larger to express a slight student surplus. The 
companies were divided equally among the available rooms, with each room provid-
ing space for exactly 8 companies.

All generated instances were solved with both heuristics (different run times up 
to 1 h) and CPLEX (24 h). Analogous to the previous experiments (cf. Fig. 7), the 
variants with 22 as well as with 27 time slots were also solved with GAMS and 
CPLEX. Figure  8 shows the results for all 6 instance sizes, whereby the average 
results of 10 runs each are given for the two heuristics. For the reason of compa-
rability between the different instance sizes, the number of room changes is given 
as the proportion of those of a random solution. Therefore, a value of 0.6 means 
that in this solution only 60% of the room changes are necessary as in a random 
solution. With increasing runtime of the heuristic procedures, the number of room 
changes decreases. CPLEX could not generate a time-constrained schedule (22 time 
slots) for any instance size, therefore the CPLEX-results are only showed for 27 time 
slots. For the instances with 40 and 56 companies (but not 80 companies) CPLEX-
solutions for 27 time slots were found, which are entered as constant lines in Fig. 8.

It can be observed that already with 40 companies and 40 students (the number 
of participants assumed in advance) the solutions of the genetic algorithm are bet-
ter than those of the exact solver (with a time limit of 24 hours). Larger instances 
could not be solved with CPLEX and the applied solver configurations. For small 
instances, the number of necessary room changes was reduced by approximately 

Fig. 8  Comparison of MCTS, GA, and CPLEX for different instance sizes
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30% (time-constrained with MCTS) or 45% (time-relaxed with GA) within one hour 
solution time. For the largest instances with 80 companies and 80 or 90 students, 
reductions of about 20% could still be achieved within one hour. Please note that 
the performance of the MCTS can be rated as better here, as the results are quite 
similar and a time-constrained schedule typically requires more room changes. The 
results show that both scheduling algorithms can reduce the number of necessary 
room changes significantly and therefore provide high-quality schedules.

6.2  Realization and Feedback

For the realization of the IT-speed dating in 2020, m = 22 talks were distributed 
over n = 27 time slots (solution of the GA). This procedure guaranteed an appropri-
ate balance between individual break times and few room changes. In addition to 
generating a solution for the IT-speed dating, overview and statistics files were cre-
ated to assess the quality of the solution identified. By means of simple input masks, 
parameters such as the concrete A,B, C-weighting or the weighting of the objec-
tive function components can be adjusted if necessary. We tested different variants 
of the transfer from A,B, C to the preference values p and found that the matching 
approach was largely insensitive to the changes if A was rated over B and B over C . 
In order to ensure that as many students as possible receive their A-wishes, we rated 
A with 100 as particularly important. B-wishes were rated with 2, C-wishes with 
1, thus ensuring that the fulfillment of one A-wish is much more important than 
numerous B-wishes and that C-wishes are better than the fictitious company.

In the end, all 6 A-wishes and between 9 and 14 B-wishes (average 11.6) were 
fulfilled for all 42 participating students, which had between 20 and 22 real talks 
(average 21.9). The Jain index of the final solution with the described A,B, C

-weighting was over 99.9%. Since all participants received their A-wishes and the 
student scores showed only small deviations due to the high A-weighting, the Jain 
index was also calculated with a weighting of (pA, pB, pC) = (3, 2, 1) . Even in this 
case, the Jain index with a value of more than 99.8% indicated that the solution is 
very fair. Based on these results, our matching algorithm can also be rated as very 
helpful in the presented scenario. The main goal of fulfilling all A-wishes and as 
many B-wishes as possible is met, as we fulfilled 100% of the A-wishes and 72.5% 
of the B-wishes. Additionally, the raw data, as well as the calculated fairness meas-
ures, indicate a given fairness well within our expectations.

At the end of the event, both students and companies were asked for feedback on 
the organizational scheme implemented. A total of 24 companies took already part 
in year 2019 and therefore could compare with the round robin procedure. The vast 
majority of companies (86%) was in favor of not returning to round robin. Addition-
ally, of the 24 companies, 20 noticed a remarkable (11) or slight (9) reduction of 
“empty dates.”

Both students and companies were asked to rate the talks following the A,B, C

-scheme used before. The results are shown in Table 1. In about 25% of the talks 
evaluated by both sides, both parties found the other to be a good match. On aver-
age, each student met five companies, where both sides were confident about an 
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internship. It happened just with one of the 42 participating students that no suit-
able match was found. Only in every third conversation one of the parties rated the 
other as not suitable. Furthermore, 51% of the conversations were rated identically 
by both sides ( A-A , B-B or C-C ), only 9% had the combination A-C or C-A . This 
shows that both sides have evaluated the fit quite similarly.

Overall, the main goal of the new concept is met. While maintaining a maximum 
duration of 4 hours, we brought together a large number of students and companies to 
exchange offers and expectations for upcoming internships. Nearly every student was 
able to find at least one suitable match (on average even five) for the following appli-
cation phase. The excluded talks – compared to the previous round robin procedure 
– were at least disproportionately often “empty dates,” as the vast majority of the com-
panies noticed a reduction of their ratio. Additionally, most of the companies preferred 
the new concept over the round robin procedure. The students’ feedback also indicated 
satisfaction with the new concept. However, it must be mentioned here that no student 
experienced both concepts, as multiple participation is not allowed.

7  Conclusion

In this paper, we presented a new methodology for IT-speed dating at the University of 
Hildesheim. Instead of the procedure that each student meets every company, the talks 
taking place are determined on the basis of previously given preferences by the students. 
Therefore, the companies provide an anonymous short description of their internships 
and the students divide them into classes A , B , and C according to their preferences.

A matching algorithm assigns each participant (student as well as company) to 
exactly m conversation partners. The matching problem was formulated as a classi-
cal capacitated transportation problem and was solved by using a start and improve-
ment procedure. By modifying the improvement procedure, the variance in the ful-
fillment of student wishes could be reduced in order not to put anyone in a better or 
worse position.

Two approaches were developed for the creation of a time schedule and a room 
allocation. The first method is based on the Monte Carlo tree search. The second 
method is a genetic algorithm that solves the problem as an open shop problem. 
While the first one is able to generate time-constrained schedules due to the use of 
some special problem characteristics, the genetic algorithm is more flexible and can 
also be used for slightly different conditions, such as different lengths of talks or dif-
ferent numbers of talks per participant.

Table 1  A,B, C-ratings by 
companies and students after the 
speed dating

Companies

A B C Sum

Students A 202 108 42 352
B 108 110 65 283
C 30 50 101 181
Sum 340 268 208 816
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With the help of the GA solution, a large number of talks between interested partic-
ipants could be made possible despite the increasing number of participants. The share 
of talks in which both parties were not interested was only around 12%. According to 
the companies surveyed, this represents a significant reduction compared to previous 
years. The survey of all participants also revealed that the majority were satisfied with 
the new concept and the specified number of talks (about 2/3 of the possible).

The solution methods considered in the paper can be applied not only for the 
planning of the IT-speed dating event at the University of Hildesheim. Similar dat-
ing formats can also be planned in this way, e.g., a job speed dating or a hobby 
speed dating. In these cases, there are (as in our situation) two groups of people: job 
seekers/companies or hobby seekers/hobby people who want to meet in m conver-
sations. The seekers usually have preferences for the partners, which, for example, 
may be categorized in the categories A , B , and C.
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