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Abstract
Data has become an indispensable input, throughput, and output for the healthcare industry. In recent years, omics 
technologies such as genomics and proteomics have generated vast amounts of new data at the cellular level includ-
ing molecular, structural, and functional levels. Cellular data holds the potential to innovate therapeutics, vaccines, 
diagnostics, consumer products, or even ancestry services. However, data at the cellular level is generated with rapidly 
evolving omics technologies. These technologies use scientific knowledge from resource-rich environments. This 
raises the question of how new ventures can use cellular-level data from omics technologies to create new products 
and scale their business. We report on a series of interviews and a focus group discussion with entrepreneurs, inves-
tors, and data providers. By conceptualizing omics technologies as external enablers, we show how characteristics of 
cellular-level data negatively affect the combination mechanisms that drive venture creation and growth. We illustrate 
how data characteristics set boundary conditions for innovation and entrepreneurship and highlight how ventures 
seek to mitigate their impact.

Keywords  Digital entrepreneurship · Digital innovation · Omics · Health data · External enabler
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Introduction

Digital transformation has changed professional roles 
(Dougherty & Dunne, 2012), practices (Reckwitz 2002, 
Wessel et al., 2019), and institutions (Burton-Jones et al., 
2020) in health and life sciences, leaving a deep mark on 
the sector over the past decade. Omics technologies, such 
as DNA sequencing, are collecting and analyzing data at 
the micro level with greater precision, speed, and scale, 
providing new insights into human, plant, animal, or micro-
biome life. Much of this data is called omics data, represent-
ing biological processes at the molecular level, including 
genomic (DNA), transcriptomic (RNA), proteomic (pro-
tein) and metabolomic (small molecule) data. Cellular-level 
data such as omics data are considered essential for digital 
innovation (Kulathinal et al., 2020) and have attracted the 
attention of information systems scholars interested in busi-
ness model innovation (e.g., Thiebes et al., 2020), product 
innovation (Pentland et al., 2022), and governance (e.g., 
Jarvenpaa & Markus, 2018; Vassilakopoulou et al., 2019). 
Omics data have grown exponentially (Birney et al., 2017) 
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since the culmination of the Human Genome Project in 2003 
(National Human Genome Research Institute, 2015). Today, 
the tracking of RNA data of the SARS-CoV-2 virus is criti-
cal for vaccine production, diagnostic testing, and pandemic 
response policy. Omics data are also important for producing 
predictive medicine therapies for cancer (Chen & Snyder, 
2013), helping to track and increase crop diversity in agri-
culture (Breed et al. 2019), or informing consumer goods 
companies where and how to improve toothpastes (Adams 
et al., 2020), clothing, creams, or lotions. This is done by 
integrating and analyzing omics data from different sources, 
often using sophisticated algorithms that simulate biological 
functions, cells, or even whole organisms (e.g. Cai et al., 
2018; Karr et al., 2012). Omics data are therefore an impor-
tant input, throughput, and output for digital innovation pro-
cesses in a wide range of health applications.

The important role of data for innovation or entrepreneur-
ship is not new to information systems researchers. However, 
omics data may reveal new boundary conditions for exist-
ing knowledge. In the literature on digital innovation, the 
role of digital technologies for innovation has mainly been 
addressed by focusing on the role of tools and features, e.g., 
reprogrammability (Langlois, 2002; Yoo et al., 2010) and 
replicability (Benkler, 2006; Henfridsson et al., 2014). Data 
is seen as an important element in the production of such 
tools and considered a “homogeneous” representation of our 
physical reality (Yoo et al., 2010). It can easily be used to 
quickly create or modify marketable offerings because it can 
be easily transferred, combined, and reused (Alaimo et al., 
2020). Scholars of digital entrepreneurship build on these 
merits (Nambisan et al., 2017; von Briel et al., 2021) when 
they explain how data enables the creation and growth of 
entrepreneurial ventures (Nambisan, 2017; von Briel et al., 
2018), that is, young and growth-oriented firms (Moreno & 
Casillas, 2007; Siegel et al., 1993). While data is considered 
homogeneous, the creation and growth of ventures is more 
influenced by the specificity and lack of interoperability of 
tools (von Briel et al., 2018). However, data has become 
critical to the value creation of digital ventures (Abbasi 
et al., 2016), especially as more companies produce machine 
learning-based products and services that rely heavily on 
data (Iansiti & Lakhani, 2020; Schulte-Althoff et al., 2020). 
Empirical studies suggest that data has an impact on the 
creation and growth of ventures because it enables ventures 
to adapt more quickly to market changes and ultimately cre-
ate superior customer value (Gregory et al., 2020; Huang 
et al., 2017). These studies largely focus on highly structured 
and standardized transaction data, which is a predefined set 
of dimensions describing transactions between suppliers, 
customers, or users, including their recency, frequency, or 
value (Martens et al., 2016), in domains such as e-commerce 
(Huang et al., 2017), advertising (Aaltonen et al., 2021), 
or dating (Davidson & Vaast, 2010). Transactional data are 

mostly confined to the boundaries of a single company or 
platform, where the data are structured according to the 
standards of a single or few actors who can transfer, com-
bine, and reuse the data with low transaction costs.

However, omics technologies generate data in an environ-
ment that is rich in resources—with expensive equipment, 
well-trained personnel, and highly regulated often personal 
medical information (e.g., from clinical trials). In most 
cases, therefore, omics data are generated by life scientists 
for the purpose of answering scientific hypotheses, i.e., the 
generation of insights into a phenomenon and the sharing 
of these insights with the public. However, because of its 
scientific origins, omics data is focused on specific research 
questions and methods and is often limited to a single and 
very specific use case. As omics technologies continue to 
advance, these data, their associated metadata, and policies 
are constantly evolving. Initiatives, such as the Global Alli-
ance for Genomics and Health (https://​www.​ga4gh.​org/), 
have introduced a first set of standards that still require prove 
of utility in research and clinical application for wide-spread 
use (Page et al., 2023; Rehm et al., 2021). As a result, stand-
ards for the description and categorization of micro-level 
entities are not widely adopted or take a long time to be 
used by the scientific community, leaving omics data in a 
constant state of flux (Powell, 2021). These characteristics 
may remain in contrast to the assumed inherent homogeneity 
of the data and its ability to enable entrepreneurship (von 
Briel et al., 2018). For this reason, we conducted interviews 
with entrepreneurs who produce products and services with 
omics data and invited investors and providers of data infra-
structure to a focus group discussion in order to explore the 
following question: How do characteristics of cellular-level 
data affect the creation and growth of digital ventures?

Our qualitative study involved several rounds of inter-
views and a focus group discussion with entrepreneurs using 
omics technologies, investors, and data infrastructure pro-
viders. Some of our conversations were published as a pod-
cast series (Data for Life, https://​www.​podom​atic.​com/​podca​
sts/​dataf​orlife.). In the following study, we outline how the 
specifics of omics data affect entrepreneurship. We concep-
tualize omics data as external enablers for digital ventures 
who combine these digital resources to start and grow a 
business (Davidsson et al., 2020; Davidsson et al., 2017; von 
Briel et al., 2018). Our study sheds new light on how omics 
data are high-dimensional, non-standardized, highly regu-
lated, and have low reproducibility, and derive four prop-
ositions in how these effect the combination mechanism, 
i.e., access and reuse of digital resources. We find that both 
activities are individually affected by data characteristics and 
learn about interrelationships between both. To mitigate the 
negative impact of data characteristics on the combination 
mechanism, ventures require significant investment into 
other resources. We suggest new avenues for research in 

https://www.ga4gh.org/
https://www.podomatic.com/podcasts/dataforlife
https://www.podomatic.com/podcasts/dataforlife
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digital innovation and digital entrepreneurship, as we pro-
pose a contextualized combination mechanism for cellular-
level data. Finally, we discuss how ventures become actors 
engage in making data sustainable through repurposing. We 
believe this research is important, particularly in light of the 
growing number of open data initiatives on cellular data, and 
large-scale regulations to open up health data for secondary 
analysis, such as the European Health Data Spaces.

Background

Data as external enablers for venturing

The homogenization of data, i.e., decoupling content from 
its original form (Yoo et al., 2010), lies at the core of digital 
innovation. Homogeneous data that has been created for one 
purpose can be exchanged, adapted, and eventually applied 
to yet another purpose at low marginal costs (Faulkner & 
Runde, 2019; Kallinikos et al., 2013). In advertising, firms 
combine a variety of data on user behavior to produce 
more personalized advertisements (Aaltonen et al., 2021; 
Alaimo, 2022). In healthcare, combining location and user 
data allows tracking patients and providing advice to car-
egivers (Wessel et al., 2019) and adding electronic health 
records supports clinicians making decisions on treatments 
in chronic diseases (Bardhan et al., 2020) or treatment plan-
ning in hospitals (Hansen & Baroody, 2020; Kohli & Tan, 
2016).

Building on that line of argument, digital entrepreneur-
ship research provides insights into how digital technolo-
gies such as digital data and functions enable entrepreneurial 
actions, i.e., venture creation and growth (von Briel et al., 
2021). Conceptual work in that domain has found that char-
acteristics of a digital technology, particularly their specific-
ity and interoperability of algorithms and functions have an 
impact on the pace with which ventures are formed and how 
quickly they grow (von Briel et al., 2018). First empirical 
work on ventures working with transaction data suggests that 
the ability of a venture to swiftly adapt and release technol-
ogy that utilizes such data has positive impacts on venture 
growth because ventures can use that data to improve their 
offerings (Huang et al., 2017). Digital technologies that help 
ventures utilize data (Davidsson et al., 2020) are considered 
external enablers in the venture creation process (Davidsson 
et al., 2017; von Briel et al., 2018). An external enabler is 
considered a “distinct, external circumstance [… that holds] 
the potential of playing an essential role in eliciting and/or 
enabling a variety of entrepreneurial endeavors” (Davids-
son, 2015). The theory on external enablers explains how 
resource characteristics shape ventures, their offerings, or 
the process of venturing by explaining different mechanisms 
that specify cause-effect relationships. Since decoupling of 

content and form is a key element of digital technologies 
(Yoo et al., 2010), the combination mechanism (von Briel 
et al., 2018) is of particular importance for digital entrepre-
neurship. This mechanism explains the effect of multiple 
digital resources being used together for venturing. It not 
only takes individual characteristics of digital resources 
into account when studying their effects on venturing, but 
also considers interaction effects between these resources 
when successfully combined. Von Briel et al. (2018) lay out 
how the ability of hardware ventures to grow depends on 
specificity and interoperability of portable devices. Condi-
tions that inhibit such free combinations of digital resources, 
such as external regulation (Kimjeon & Davidsson, 2022), 
might therefore impair venture creation. Recently, increas-
ing attention has been paid to the effect of combining digital 
data on venturing, for instance, its effect on venture growth 
(Huang et al., 2017; Schulte-Althoff et al., 2020). Digital 
innovation and digital entrepreneurship research have, how-
ever, predominantly focused on data in consumer-facing 
firms where most data that is being combined is transac-
tion data owned by singular firms or platforms, e.g., con-
sidering financial transactions between providers and users 
(Huang et al., 2017) or investors and borrowers (Gomber 
et al., 2018), potential partners for online dating (Davidson 
& Vaast, 2010), ride sharers and users (Frey et al., 2019), or 
spectators and e-race drivers (Jarvenpaa & Standaert, 2018).

In the following, we lay out how omics data differs from 
other (health) data and what ventures have been created with 
such data. Both will inform our deeper investigation into 
how ventures use that data to create and grow ventures.

Distinct characteristics of omics data for venturing

An increasing amount of health data is being produced 
across cellular, actor, firm, and ecosystem levels (see 
Fig. 1). Traditional health information systems or pro-
viders of wearable devices like Apple or Google’s Fitbit 
collect data of patients and healthy citizens (Gleiss et al., 
2021). At the firm level, healthcare or insurance provid-
ers accumulate claims data from multiple human actors to 
groups in order to evaluate products and services (Bardhan 
et al., 2020). Health data on subordinate levels can there-
fore be aggregated to data on higher levels if that data fol-
lows similar structures (e.g., Kohli & Tan, 2016). Standard 
vocabularies for electronic health records like SNOMED 
or ICD-10-CM provide such structures. Here, new health 
data platforms become intermediaries that enforce stand-
ards and treat health data as transaction data (Fürstenau 
et al., 2021). Clinicians and laboratories who collect elec-
tronic health records might still diverge in how they apply 
data standards (Kohli & Tan, 2016), but platforms play 
a harmonizing role. Constantinides & Barret (2015), for 
instance, lay out how standards and interoperable systems 
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over time allowed transactions of electronic health records 
like CT scans or X-rays which enabled data aggregation on 
firm and eventually ecosystem levels. This was important 
because such data helped inform health policy.

Advances in omics technologies have increased cost-
efficiency of producing data on a cellular level (Manzoni 
et al., 2018), which is why utilizing such data has become 
common practice in health. Omics data, for example, from 
DNA is collected with sequencing technologies that translate 
a biological sample such as saliva or blood into bit strings. 
Omics data contains instructions for functions of living 
organisms like adaptation or natural selection and how they 
develop. Thereby, DNA cannot only explain alteration of 
biological functions but also diseases, like cancer. More-
over, this data can now be produced at scale. Generation 
and processing of genome sequences is now a rapid process 
(Shendure et al., 2017). As a result, the quantity of data has 
exploded since the completion of the human genome project 
in 2003 (e.g., Birney et al., 2017; Lander, 2011). Beyond 
genomics (DNA), numerous other forms of omics data can 
be collected, including transcriptomics (RNA), proteomics 
(proteins), and metabolomics (small molecules). Multiple 
types of omics data can be integrated to provide a more 
comprehensive picture of biological function at varying lev-
els (Hasin et al., 2017). Omics technologies are based on 
biochemical assays that measure molecules of the same type 
from an organism, e.g., bacteria, animal, or human cells. 
Next-generation sequencing technologies, for instance, gen-
erate complete genetic or molecular profiles in high-through-
put. The resolution at which such data can be captured today 
has thereby significantly improved. Some forms of omics 
data are captured at the level of a single cell, rather than rep-
resenting an average of a population of cells (“Method of the 
Year 2013,” 2014). Prior research suggests that omics data is 
highly dimensional, highly regulated, and non-standardized 
which might affect venture creation and growth.

Cellular‑level data are in continuous flux leading to high 
dimensionality

Raw omics data is regularly large in storage size (Voelk-
erding et al., 2009). Biological samples such as blood or 
saliva can be accessed through biobanks, oftentimes with 
tight access control (e.g., Jarvenpaa & Markus, 2018). Much 
omics data, however, is made publicly available by scientists 
who publish their data either on private repositories, digi-
tal infrastructures of their institutions, or on public digital 
infrastructures that both hold data and allow its free dis-
tribution (Perez-Riverol et al., 2019). Rapidly advancing 
scientific insights lead to constant change of data structures 
(Lee, 2015), however, and the broad community of scien-
tists involved in sharing and editing omics data (Blotenberg 
et al., 2022) continuously adds dimensions with new meth-
ods or data being collected for ever new purposes. To sustain 
changes of technologies, standards, or procedures activities 
(Jarvenpaa & Essén, 2023), scientists capture the “data prov-
enance” by adding further time-related metadata (Lee et al., 
2017). This, again, produces even more data features. As a 
result, omics data becomes high-dimensional, i.e., contain-
ing a “large number of unique features or signals” (Acosta 
et al. 2022, p. 1773). While much health data has become 
high-dimensional on an individual level with image, audio, 
video, and historic patient data being available, omics data 
adds an exponentially greater number of features as the 
resolution of data increases (Berisha et al., 2021) and prov-
enance keeps track of changes in scientific knowledge and 
technologies.

Cellular‑level data are highly regulated

Similar to other data in healthcare, such as electronic health 
records (Hansen & Baroody, 2020), privacy concerns, 
specific consent statements, and regulation bind data to 

Fig. 1   Four levels of health data
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its original purpose. Omics data holds information about 
humans that never change over the course of a life that can 
hardly be anonymized and even provides information on 
relatives. Thus, while health data is notoriously private and 
highly regulated, omics data exacerbates privacy concerns 
(Bonomi et al., 2020). Regulations around omics data are 
therefore particularly strict. Ventures who seek to reuse 
omics data, i.e., using existing omics data for their origi-
nal or for other purposes, have to navigate a considerable 
amount of legal red tape particularly in a legally fragmented 
space such as Europe where every country interprets data 
sharing practices, such as GDPR (General Data Protection 
Regulation), differently. Data access bureaucracy increases 
costs of data sourcing or can even make it impossible when 
commercial entities become excluded from usage of such 
personal data.

Cellular‑level data are non‑standardized

Omics data carries great potential to be used for other pur-
poses than the ones that they have been originally created 
for. Reusing omics data for other purposes though relies on 
the ability of a data user—regularly a different person than 
the originator—to combine different data types from differ-
ent data sources, e.g., electronic health records, psychomet-
ric data, or usage data, in order to serve these new purposes. 
Coverage of omics data has improved, and many new organ-
isms have been decoded so that there are ample opportuni-
ties to combine omics data in new ways. The typical research 
process from which most data originates, however, has left 
omics data largely fragmented, non-standardized, much of 
it indeterminate and hence error prone (Vassilakopoulou 
et al., 2019). This does not necessarily refer to carelessness 
in the data generation step but often comes down to human 
error, e.g., when adding descriptive metadata or by omitting 
metadata altogether. Scientists produce omics data for sci-
entific purposes (Constantiou & Kallinikos, 2015; Newell & 
Marabelli, 2015)—not for application in industry, let alone 
use by ventures. Omics data is produced to formulate and 
test hypotheses and publish research manuscripts (Bercovitz 

& Feldman, 2008; Dougherty & Dunne, 2012; George et al., 
2005). As a result, such data regularly is only created for 
singular purposes on infrastructures that provide such data 
within the limits of the goals currently funded by a research 
project (Attwood et al., 2015). Initial steps of standardization 
from institutions like the GA4GH have accomplished to set 
some standards, for instance, on data queries, authentication, 
or a data use ontology, but lack widespread use because their 
utility still remains to be evaluated (Rehm et al., 2021) espe-
cially in clinical practice (Page et al., 2023). Like much data 
in the sciences (Razzak et al., 2020), omics data therefore 
regularly remains inconsistent and messy. This stands in the 
way of effective repurposing of health data, which depends 
on unambiguous data structures that can be similarly inter-
preted by originators and users of such data, especially with 
regard to health (Ghosh & Scott, 2011).

Current use of omics data in ventures

Accumulation of omics data has led to an abundance of bio-
logical data that drives new areas of innovation, for example, 
personalized medicine (Carrasco-Ramiro et al., 2017). This 
has been exemplified in the recent COVID-19 pandemic 
where between February 2020 and August 2022 circa 6 
million SARS-CoV-2 DNA sequences from 114 countries 
were made publicly available through the COVID-19 data 
portal alone. This data has been vital for producing new 
diagnostics, treatments, and vaccines throughout the pan-
demic response. To illustrate the potential of omics data for 
venture creation and growth, we lay out what ventures have 
been formed based on omics data before turning to our quali-
tative inquiries. We collected venture data from the start-up 
platform Crunchbase and provide an overview about the 
venture’s domains of product and services.

Between 2017 and 2022, 609 new ventures have been 
formed that utilize omics data. Ventures use omics data 
across various industries, from agriculture and food to bio-
medical studies and healthcare. About 65% of the ventures 
are active within the healthcare domain (see Fig. 2), pro-
ducing therapeutics via drug repurposing, drug discovery, 

Fig. 2   Ventures that use omics 
data sorted by industry (founded 
between 2017 and 2022)
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or new diagnostic applications. China-based Abogen, 
for instance, uses genomic data of humans and viruses to 
develop cancer treatments and mRNA vaccines on the back 
of genomic data. For this, the venture produced and patented 
devices to collect and process biological samples. US firms 
like Immunai, Immunitas, or Vanqua Bio use omic data to 
model immune reactions, especially for cancer treatments. 
Ventures like Aviv Scientific or Minicircle seek to increase 
longevity of humans by assessing age-related declines using 
omics data, regularly as a direct-to-consumer service (see 
also Thiebes et al., 2020). Israeli BetterSeeds, US-based 
Pebble Labs, or Tu Biomics turn to omic data of plants 
and bacteria in soil to increase productivity of agricultural 
plants. Fitness ventures like UK-based Nutri-Genetix or Bra-
zilian Progenes use omic data to suggest personalized diets 
for their clients. Indian Genleap combines omic data with 
psychometric data to provide educational advice. Table 1 
provides an exemplary list of ventures who utilize omics 
data. Together, ventures that use omics data have accumu-
lated investments of about $134.5 billion, the majority of 
which in the USA and China ($115.1b).

In order to understand how the characteristics of omics 
data influence the creation and growth of ventures, we 
conceptualize such data as external enablers. For this, we 
engage in a qualitative interview study that uncovers the 
relevant characteristics of omics data from a digital entre-
preneurship perspective.

Methodology

This manuscript builds upon empirical insights from inter-
views conducted between 2018 and 2019, a focus group dis-
cussion that has been conducted at the EuroScience Open 

Forum 2020 (ESOF), and a series of follow-up interviews 
including a podcast series conducted in 2020 and 2021. We 
present our qualitative material in Table 2. Some interview-
ees preferred to remain anonymous.

We selected informants with experience in entrepre-
neurship with omics data. They engaged in entrepreneurial 
activities themselves or are closely partnering with ventures. 
All interviewees and all participants of the focus group are 
regarded as opinion leaders and have worked in the data-
driven life science sector for many years either on the infra-
structure provider side, in industry at large multinational 
companies or as entrepreneurs, as well as investors of digital 
ventures in the life science domain. Interviews in 2018 and 
2019 were held in person. Focus groups can provide deep 
insights into a topic of interest by laying out dissents and 
consensus between participants (Nili et al., 2017), enabling 
reflections of individual statements at individual and group 
levels. Thereby, focus group data can increase trustworthi-
ness into results of a qualitative inquiry (Stahl et al., 2011). 
Our focus group session was held as a hybrid event with 
face-to-face sessions in Trieste and a virtual session. A 
summary was reiterated with the participants of our focus 
group to assure correct representation of their input at the 
focus group. In order to verify individual interpretations and 
provide us with the chance to get further details on talking 
points from the focus group session, we conducted follow-up 
interviews via video conferences. Those were partly pub-
lished as podcast episodes in 2020 and 2021.

Complementary to our focus group, we interviewed 
founders following investigative interview techniques 
(Langley & Meziani, 2020) throughout which we tracked 
down the role of omics technologies and cellular-level 
data during venture creation. Interview questions (see 
Appendix) were informed by concepts from digital 

Table 1   Exemplary ventures that use omics data across industries

Venture Industry Service or product Omics data

Biostrand ICT Life science data management and analysis platform 
(e.g., for microbiome or single cell analysis, popula-
tion studies, or cohort stratification)

Proteomics, genomics, and other biological high-volume 
data of clients

Healx Healthcare AI platform for repurposing of existing drugs for rare 
diseases

Transcriptomic data is combined with phenotype data, 
compound and drug data, biomedical literature, and 
biochemistry data to produce proprietary datasets with 
partners, clients, and academia

BetterSeeds Agriculture Genome editing of crop seeds via RNA-guided DNA 
endonuclease activity (CRISPR)

Plant genome data, DNA/RNA sequence data of molecu-
lar tools (e.g., plasmids), producing proprietary and 
open omic datasets with partners

Ancestry.com Ancestry Prediction of genetic ethnicity for genealogy services DNA/RNA sequences to produce a proprietary dataset of 
1.4 m customer DNA samples

Abogen Biotech mRNA technology platform for vaccine and drug 
discovery, including devices to collect, preserve, 
and transmit biological samples for sequencing and 
analysis

DNA/RNA sequences to produce a proprietary dataset
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entrepreneurship literature to extend our knowledge on 
this subject (Urquhart et al., 2010), but formulated in ways 
that practitioners from the field would understand without 
extensive up-front explanation. We therefore conducted 
our interviews based on two open questions: (a) How do 
entrepreneurial ventures use omics data when starting their 
venture? (b) How do entrepreneurial ventures use omics 
data as they seek to grow? We produced transcripts of 
the entire qualitative material and engaged in open cod-
ing to collect all important topics for the research ques-
tion at hand. Here, we coded the material on a sentence 
level on whether informants provide arguments on how 
data affected venture creation, including producing ini-
tial market offerings, or growth of the venture. The team 
of authors discussed the topics arising from the material 
in several group discussions. From here, the scaffolding 
of important data characteristics evolved. Throughout 
these discussions,we considered multiple mechanisms to 
explain how (digital) resources could be considered exter-
nal resources for ventures, and we learned that most con-
versations spoke to a combination as the main mechanism 
for venturing. This was a result of our mode of inquiry, 
which focused on the reuse of existing omics data rather 
than the creation of new data by ventures. We attempted to 
mitigate this problem by asking follow-up questions about 
whether interviewees and focus group participants were 
creating and using their own digital resources for ventur-
ing. Subsequently, the lead author engaged in selective 
coding with the entire material to better describe the topics 
and allow for final theorizing in the full group of authors 

again. Table 3 provides an overview on main categories 
informing our propositions with exemplary quotes.

Findings

How cellular‑level data enables venture creation

The digital tools to collect and process cellular‑level data 
apply to many physical objects

At several points during our interviews, it became clear 
that omics data is distinct from other types of health data, 
because the physical objects that it represents come in vari-
ous forms. This produces flexibilities that ventures can lev-
erage, especially if they are initially not fully aware of how 
their later product or service will look like. Sequencing 
techniques help collect data on entire cell samples, singu-
lar cells, or biological functions of molecules within cells, 
like proteins. These techniques are comparable across liv-
ing beings: be it humans, animals, plants, or other samples. 
Founder D, for instance, laid out how their analysis pipelines 
would work well across physical sample types which was 
important because at that point they did not know what the 
dominant type of sample in the future will be: “we can work 
with any tissue- as long as its DNA […]. It does not matter if 
its blood, if its solid tissue, if its circulating DNA, anything, 
same process.”

In addition, a database of omics data can be revisited, if 
data privacy laws, general consent, and intellectual property 

Table 2   Interview material Interviewee and type Material

1 Founder A (clinician consultancy for precision medicine), UK Transcript (60 min, 14 p.)
2 Founder B (genome data platform for rare diseases), UK Transcript (62 min, 16 p.)
3 Founder C (search engine for omics data and text analytics service), UK Transcript (55 min, 18 p.)
4 Founder D (diagnostics for epigenetic data), UK Transcript (45 min, 12 p.)
5 Founder E (plant seed database and analysis platform), Germany Transcript (45 min, 15 p..)
6 Founder F (microbiome data platform), Germany Transcript (60 min, 20 p.)
7 Focus group with

Abel Ureta Vidal (Serial Entrepreneur and Investment Director, CMS 
Ventures, and Sofi Health), UK and France)

Jason Mellad (CEO, Start Codon Accelerator), UK
Jessica Vamathevan (Head of Strategy, European Bioinformatics Insti-

tute), UK
Maria Chatzou Dunford (CEO, Lifebit), UK

Transcript (90 min, 29 p.)

8 Hans Garritzen (VP Sales and Marketing, Medisapiens), Finland Transcript (91 min, 27 p.)
9 Maria Chatzou Dunford (CEO, Lifebit), UK Transcript (60 min, 20 p.)
10 Abel Ureta Vidal (Serial Entrepreneur and Investment Director, CMS 

Ventures, and Sofi Health), UK and France
Transcript (58 min, 18 p.)

11 Lead Scientist (Dept. Agriculture, Large Biotech company), France Transcript (58 min, 18 p.)
12 Founder G (omic data analysis platform), Netherlands Transcript (58 min, 18 p.)
13 Founder H (cell and gene therapy), Switzerland Transcript (56 min, 18 p.)
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laws allow. This is important for ventures because some part 
of omics data, especially DNA, does not change over time 
and remains useful over longer periods. Founder B pro-
vides genomic data on rare diseases to researchers, effec-
tively providing a transaction platform. For him, compar-
ing static DNA over time with changing other omics data, 
provided ample opportunities for the future: “we can add a 
huge amount of value by making this data more dynamic 
and interoperable. Making it easy to go back to an individual 
that has already been sequenced. That has a huge number of 
different applications whether its researchers here in London 
or across Europe.”

In addition, omics data is partly inherited and is thereby 
comparable between actors, i.e., humans, animals, or plants. 
This allows ancestry services to conduct their services or 
animal breeders to select stock animals. Founder A can 
track disease processes across cancer patients and families. 
Founder E can build a database of seeds that helps them 
simulate cross-breedings to optimize plant growth. For him, 
tools that have been developed on one domain of omics anal-
ysis can now be applied to new domains, like genomic data 
from microbiome living in soil or from wheat plants: “a 
wheat reference model was just published this year [2018] 
and we are working with customers who want to have this. In 
principle, we receive several terabytes of sequence data, then 
assemble them, and in the end what comes out is a refined 
dataset, only a few gigabytes in size.”

Cellular‑level data is essential for initial product and service 
design

Interviewees and participants in the focus group unani-
mously underscored the necessity to frame the value propo-
sitions as science-based in that the solution to any problem 

these ventures are focusing on was derived from and sub-
stantiated by scientific evidence. For instance, when ventures 
suggest that they found a way to detect intestinal cancer ear-
lier, existing omics data has to fit the needs of this venture 
in substantiating their value proposition and product claims. 
Concurrently, founder A clarified that “We're moving away 
from the intuition-based diagnosis and treatment into a much 
more evidence-based, big data-driven of which genetics is 
just one more ingredient.” Performing R&D and produc-
ing data from scratch to confirm an initial business idea or 
hypothesis, however, was perceived as time consuming, 
expensive, and hardly feasible for new ventures. Founders 
were able to avoid costly data collection at the beginning 
of their venture creation by actively using data from public 
sources, or in some cases through publicly funded research 
grants and collaborations with universities that allowed for 
data generation in these oftentimes high-risk projects. Focus 
group participants perceived the diversity of publicly avail-
able omics data important. However, utilizing such data 
heavily depended on a venture’s ability to link such data to 
smaller proprietary datasets, e.g., to group data from differ-
ent studies. Maria, for instance, exemplified how they used 
phenotypic and genetic characteristics to support diagnostics 
on COVID-19.

normally the queries that you run would be like women 
over 40 with COVID-status positive and certain pre 
existing conditions and they have a certain chromo-
some […] all of these genetic information comes […] 
from hundreds of open databases and repositories out 
there, like ClinVar information and PubMed informa-
tion. (Maria Chatzou, Lifebit)

Given the capabilities to access and potentially combine 
hundreds of private and public data repositories, ventures 

Table 3   Categories on how omics data affected informants during venture creation

Data categories informing propositions Example quote

While much cellular-level data is publicly available on open platforms, 
this data is fitted to its original purpose

Genetic data is easy to find on the internet. […] What really is chal-
lenging is tying that information back to individuals, revisiting one 
individual over the period of time or integrating different pieces of 
data on anyone individual. (Founder B)

Cellular-level data that is publicly available can only be used for new 
purposes by experts with knowledge of its original purpose in the 
sciences and knowledge on the new purpose in industry

We had a project that was scientifically really hard […] deploying it, we 
thought was a day, that took three months […] Companies need to be 
aware of their target hardware platform and if it’s a pharma company, 
it’s different for every single company. (Founder C)

Ventures consider cellular-level data from public sources not reliable, 
independent of the purpose they intend to use it for

You can’t rely on anything in the public, scientific data area. The 
formats change with every release, every half year public databases 
change something in their formats. This means that you have to con-
stantly improve your interfaces. (Founder F)

When cellular-level data is applied for new purposes, ventures need to 
be able to apply the data for its original purpose

We never throw anything away, we just give it an ambiguity score of 
one which means it’s highly ambiguous. People normally get rid of 
it, but then the customer gets read of it and we cannot bring it back. 
(Founder C)
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can browse omics data from millions of people, plants, and 
microorganisms. Freely accessible data such as ChEMBL, 
which offers data on “bioactive molecules with drug-like 
properties,” could thereby be used to train machine learn-
ing models that drive drug compound discovery, while 
other public data informs selection and even design of plant 
seeds. Sourcing omics data from these public sources saves 
time and money, and it offers ventures to concentrate their 
resources on product and service development rather than 
data collection. Maria, for instance, created a federated 
machine learning platform with her venture Lifebit that pro-
vides interpretation tools for gaining insights from public 
and proprietary datasets. Abel who exited Eagle Genom-
ics in 2020—a company that generated an AI-augmented 
platform technology to unify, enrich, analyze, discover, and 
share insights from large datasets, especially for omics data 
on the microbiome. Founder E highlighted how they test 
new applications with public data, before sequencing their 
own proprietary data: “We use databases that are publicly 
available or to some short read archives with which we 
make comparisons or test something before we create data 
of this kind ourselves to see if it is possible to achieve similar 
results or expected results.”

Also, Jason who launched Cambridge Epigenetics before 
founding the incubator StartCodon highlighted how they 
used machine learning algorithms on publicly available 
genome and transcriptome data for early detection of can-
cer. Finally, Pfizer/BioNTech’s mRNA-based COVID-19 
vaccine exemplifies the use of open data as they reference a 
publicly available viral sequence in the European Nucleotide 
Archive with the sequence number MN908947.3. Together, 
our informants underscored the importance of public data-
bases for omics data in highly competitive and uncertain 
environments of ventures, especially in human health where 
the creation of data is otherwise very costly.

Boundary conditions for omics data on venturing

Public data is only usable for cutting‑edge scientists 
with industry expertise

Similar to our initial considerations, easy access to omics 
data seems important for its effective reuse by new ventures. 
Other than initially expected though, we were surprised to 
learn how important the process of finding such data was 
for venturing. For entrepreneurs, finding data for a specific 
purpose can be a substantial challenge, because of its high 
dimensionality. While the encoded DNA might only be a 
long bit string, consisting of A (adenine), C (cytosine), G 
(guanine), and T (thymine), its real value lies in combin-
ing these bit strings with other dimensions such as loca-
tion, information on patients, organs, species, health, time, 
or sequencing technology. Our focus group participants 

highlighted that oftentimes they have spent considerable 
time searching for data of interest, because even though that 
data would be potentially accessible, they were note able to 
find it.

This is because of proprietary file formats that inhibit 
search and because not all metadata covering various dimen-
sions of omics data is also easily provided. Even fundamen-
tal metadata, like time or sequencing technology, are often-
times missing. Genomics data that is stored in proprietary 
data formats like low-dimensional excel spreadsheets also 
inhibit searching, even if they are potentially accessible to 
the general public on an institute’s website.

Thus, searching for omics data as well as interpreting 
such data requires expertise on multiple ends. As founder 
A put it, “The bottleneck is the management processing, 
analyzing and interpretation of the data. […] You need to 
know what to put together, how to put together and then 
understand the limitations of all of the different components 
into that particular prediction.”

Ventures, who work with omics data, therefore hire life 
scientists, regularly with PhDs in biology or chemistry, that 
are accustomed to the biological concepts, relationships 
between those concepts, and knowledge of potential data 
sources. However, these experts do not necessarily possess 
the digital capabilities to process such data themselves, 
which is why they rely on data scientists, e.g., bioinformati-
cians. Product managers know what clients expect and keep 
an eye on a tight regulatory environment.

We a three people who already have relatively deep bio-
logical knowledge, because most of our customers have that 
as well and we need to understand them and then we need to 
translate this thing for bioinformatics, so to speak, what can 
you make out of it. (Founder E).

For young ventures that have limited resources, but rely 
on experts with extensive training, this constitutes an impor-
tant caveat. Ideally, new employees are very familiar with 
public data sources which is why ventures in this domain 
often evolve out of research groups or close to well-situated 
universities. Hans clarified that it was important for Medisa-
piens to be deeply integrated in an university ecosystem in 
Finland, for that matter, because of their “healthy combina-
tion of IT people and bioinformatics background people.” 
These reasons were also emphasized by Maria who valued 
the physical proximity of Lifebit to Cambridge University 
as well as to large infrastructure providers in the Cambridge 
region for hiring. In the podcast, Abel pointed out how Cam-
bridge preliminary provided experts with scientific back-
ground while London provided competent product manag-
ers that were trained and nurtured in industries with highly 
scalable digital technologies, such as FinTech.

Proposition 1: While much cellular-level data is publicly 
available on open platforms, this data is fitted to its original 
purpose.
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Proposition 2: Cellular-level data that is publicly avail-
able can only be used for new purposes by experts with 
knowledge of its original purpose in the sciences and knowl-
edge on the new purpose in industry.

Cellular‑level data in the public is considered not reliable 
enough to become product‑ready

While it became clear throughout the interviews that public 
omics data was important for new ventures, founders were 
also cautious to use public data. Not only

You can’t rely on anything in the public, scientific 
data area [...] every half year public databases change 
something in their formats [...] you have to constantly 
improve your interfaces. (Founder F)

Therefore, even if sufficient omics data is accessible, the 
amount of work that new ventures have to put into integrat-
ing that data goes along with increasing efforts.

You can go to the [public] databases, but to relate what 
the reference databases have, integrate it, and present 
it for your patients that's where the real bottleneck is. 
(Founder A)

These observations were despite efforts in recent years 
to standardize metadata standards, such as the FAIR initia-
tive which aims for making science data findable, accessi-
ble, interoperable, and reusable (Wilkinson et al., 2016). In 
principle, FAIR data allows the creation of tools and ser-
vices that span across broad sets of omics data because it 
would take less time to integrate data from different sources. 
In most cases, however, informants expressed how FAIR 
principles were not yet fully implemented into public data 
infrastructures. As Maria pointed out, it is still hard to find 
relevant omics data in time, and it cannot be successfully 
sourced by a venture. The focus group discussed two major 
reasons for why omics data were not living up to its prom-
ises. Both reasons highlighted misalignments between the 
aims of individual scientists and the entrepreneurs of our 
focus group:

(1) FAIR principles have not yet found its way into daily 
practices of life scientists and other producers of omics data. 
When scientists submit their data, what they want to do is to 
comply with funder’s or a journal’s requirements for pub-
lication. “Battling with that mentality” (Jessica) is difficult 
for platform providers, especially when there are no well-
established standards on what annotations have to be made 
and how these annotations are supposed to be conducted. 
Therefore, it is oftentimes up to the original data provider 
to decide what metadata they ask data producers to provide. 
Knowledge bases require a tremendous amount of manual 
curation, especially because there is a constant stream of 
new incoming data that is difficult to keep on top of. The 

COVID-19 pandemic has highlighted this as a particular 
bottleneck where fast turnaround from generating genomic 
and transcriptomic data on viruses to analysis and reporting 
of results is of essence. Between 2020 and 2022, the total 
amount of raw read sequences in the European Nucleotide 
Archive (ENA) grew by 20% incurring substantial resource 
bottlenecks (e.g., computational bottlenecks, or manual 
labor) which meant data availability trailed by weeks.

(2) Tools that should support adoption of FAIR principles 
are seldomly used outside of academia. Maria pointed out 
that many of these tools are regularly “homemade tools” 
developed by scientists within time-constrained projects for 
purposes limited to these projects without inbuilt sustain-
ability. Instead of investing into existing products for data 
management, scientists develop tools anew with oftentimes 
less experienced developers, i.e., PhD students. As a result, 
the provided tools are not created to be used on case and do 
not sufficiently consider user experience, and further data is 
not well-annotated.

What’s the point in investing like millions on hav-
ing these really expensive databases […] having all 
of these people annotated data and not investing like 
one one twentieth of that money to just getting better 
tools. (Maria)

Beyond the data itself, they also provide or facilitate the 
dissemination of tools or workflows that support the annota-
tion of omics data that are later picked up by entrepreneurial 
ventures. These tools are important for balancing the need 
of adding more metadata while also not putting scientists off 
from uploading their data.

Proposition 3: Ventures consider cellular-level data from 
public sources not reliable, independent of the purpose they 
intend to use it for.

Bringing cellular‑level data to new purposes requires 
reproducibility for its original purpose

Up until this point, we laid out how our participants of the 
focus group and interviewees perceived access to omics data 
an important obstacle for entrepreneurial ventures However, 
finding omics data that could be reused does not suffice for 
ventures. During the focus group conversation, it became 
clear that ventures prevail that are able to assess whether 
particular omics data can be used for new purposes. For 
Abel, “the opportunity [for science data startups] is in this 
ocean of data, good or bad, who is going to be the one that 
knows how to pick the valuable, relevant, reliable data and 
that you can trust.” While larger companies could potentially 
afford sourcing and generating omics data that is not directly 
related to a concrete purpose or use case, new ventures lack 
the resources to do so. They need to focus their human and 
financial resources to work for concrete purposes. Abel 
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pointed out how important it was for his prior venture that 
they use “relevant data at the right time in a way that is 
usable for the people internally for different use cases.” It is 
therefore vital for ventures to quickly assess whether a par-
ticular set of omics data is applicable to a particular purpose. 
Jason explained that entrepreneurs turn to metadata to make 
these assessments. They find out, for instance, how data pro-
ducers controlled for biases or technology were used to pro-
duce raw data, whether quality management systems were 
put in place when experiments were done, and if the data 
was annotated sufficiently. As Founder A pointed out with 
regards to public omics data, “There’s gold dust in there, 
but there’s a lot of noise. We know that if you perform an 
analysis of Mexicans, it’s going to be different from white 
Caucasians.”

Here, the focus group has shed light on a surprising rela-
tionship between relevance of data for application in new 
purposes and reproducibility of omics data for its original 
purposes. In other words, ventures assess how the original 
context of data production influences its use for the venture’s 
purposes.

Questions on reproducibility are regularly being in the 
sciences when attaining to research quality, not consider-
ing the entrepreneurial context. Maria and Jason, however, 
pointed out that a thorough assessment of data reproducibil-
ity is important for founders of life science ventures. Using 
non-reproducible or even inaccurate omics data to substanti-
ate a product claim puts a company’s business model at high 
risk, because the “initial premise of their whole operation 
was built on a falsehood” (Jason). This is a crucial point for 
ventures that use omics data, because founders and investors 
perceive a necessity that market offerings need to be sub-
stantiated by scientific evidence. This evidence is in some 
cases also vetted by public bodies such as the FDA before 
market entry. Beyond such public institutions, private inves-
tors raise questions on the baseline data of a venture during 
the due diligence process in later funding rounds. Here, ven-
tures can draw legitimacy of their data from highly reputable 
journals or well-known research organizations who provided 
that data. At the same time, however, Maria clarified that 
this is only one step of “ticking all the boxes” when it comes 
to data reproducibility for investors due diligence, which 
does not suffice by itself. Instead, ventures have to establish 
practices to quickly assess reproducibility and in some cases 
even conduct reproduction of data with its original purpose. 
Jason shared his experience as a former founder when he 
experienced “the pain it took after years of not having a 
quality management system in place of implementing it ret-
roactively. It was a nightmare having to go back and say, oh, 
well, we should have been annotating all of these different 
bits of metadata and incorporating that into our analysis.” 
Spending time and resources trying to reproduce data can be 
detrimental for ventures. Maria discussed how her company, 

Lifebit, spent 6 months trying to reproduce data published 
by a reputable research institute. She explained that critical 
experimental detail needed to reproduce data was missing 
from the original publications. It took her team many lines of 
communication with individuals close to the study to gather 
the experimental details required to reproduce data. Maria 
pointed out that this approach is “not scalable” and can be 
hugely detrimental to start-up companies that focus on sur-
viving at the beginning of the venturing process. Within 
his accelerator, Jason therefore, has put an emphasis on 
supporting new ventures by creating a data strategy early 
on. Laboratory journals can provide a good standard where 
every experiment is properly annotated for later use, many of 
those are now available in digitized form rather than hand-
written notes.

When it comes to annotation these days, there’s not 
just the experimental details that you might need to 
submit. They see the details on how the instruments 
that were used, the settings that were on those instru-
ments and then what you did when you were analyz-
ing the data. So when you add all of those different 
components up for someone, you know like Maria, to 
go and actually reproduce how that data was gener-
ated, there are a lot of fields that you could potentially 
capture. (Jessica)

Proposition 4: When cellular-level data is applied for 
new purposes, ventures need to be able to apply the data for 
its original purpose. 

Discussion

Omics technologies can serve as an external enabler for 
entrepreneurial ventures because it enables firms to produce 
health data on a cellular level. This data can be important 
for applications across health industries, including care or 
drug discovery, but also extends to applications in food 
and agriculture or ancestry services. Our interviews and 
focus groups with founders and investors exemplify how 
the characteristics of omics data impact the combination 
mechanism that affords venture creation and growth (e.g., 
Yoo et al., 2010; von Briel et al., 2018). We summarize our 
findings by showing how the characteristics of cellular-level 
data individually impact two activities within the combina-
tion mechanism, access and reuse, while also creating new 
interdependencies of both activities. We thereby situate the 
external enabler framework of Davidsson et al. (2020) in 
the context of ventures that repurpose cellular-level data. 
Finally, we discuss the role of ventures in repurposing cel-
lular-level data, and why we need to rethink the timeframe at 
which cellular-level data becomes unsustainable, i.e., unable 
to serve new purposes.
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First, we contribute to the digital innovation discourse 
in that we derive four propositions for how the combina-
tion mechanisms are affected by the characteristics of cel-
lular-level data. Effortless combination of digital resources 
(Faulkner & Runde, 2019; Kallinikos et al., 2013) has been 
highlighted as a key driver for successful digital innovation. 
Homogeneous data, where content is successfully separated 
from its form (Yoo et al., 2010), is considered well-suited for 
creating new digital products and services (von Briel et al., 
2021) because it reduces specificity and increases interoper-
ability of tools with positive effects on venturing (von Briel 
et al., 2018). In this view, data is considered merely an input 
(Adomavicius & Tuzhilin, 2005) that can be easily accessed 
and then reused. Original purposes with which data was pro-
duced do not determine their applicability to new purposes 
in the same way as it would be for tools (Alaimo, 2022; 
Kallinikos et al., 2013; Yoo et al., 2010). Our empirical 
findings on cellular data highlight four important caveats in 
how lack of standards, tight regulation, a high-dimensional 
nature, and the need to being able to reproduce omics data 
for original purposes affect venturing (see Fig. 3). These 
dimensions substantially differ from typical empirical set-
tings for information systems research on digital entre-
preneurship or digital innovation, which tends to focus on 
actor-level or firm-level data, for instance, on transaction 
platforms (e.g., Aaltonen et al., 2021; Huang et al., 2017). In 
contrast to omics data, such actor-level data are predefined 
and standardized within company boundaries or by powerful 
focal actors in an ecosystem. In these contexts, data produc-
ers and data users are similar so that future purposes (e.g., 
Aaltonen et al., 2021; Jarvenpaa & Standaert, 2018) of data 
can be assessed when data is being produced. This leads to 

lower numbers of unique features, i.e., lower dimensionality 
of data, because data can be specified for this potential future 
purpose. However, data at the cellular level are often frag-
mented and indeterminate (Vassilakopoulou et al., 2019). 
In addition, the handling of cellular data on humans or food 
requires a high sensitivity to local regulations, especially 
with respect to privacy and data security, which extend the 
needs for health data to other levels (see also Bonomi et al., 
2020). Among other things, there are ethical considerations 
that go beyond the actor level, because cellular data is not 
delimited to actors who provide cellular data of themselves 
but also includes personal information on their relatives. Our 
conversations underscore how successful access to cellular-
level data is affected by data characteristics. Given that data 
is fitted to original purposes in the sciences, it requires ven-
tures to have knowledge and the tools to assess how cellular-
level data can be used for new purposes in product or service 
development. Given that our data largely provided insights 
into founders’ perceptions and expectations, further research 
needs to investigate the daily practices of data workers who 
access and reuse cellular-level data.

Second, and much to our surprise, we learned about the 
important role of reproducibility of omics data in the con-
text of entrepreneurial ventures. This is important because 
it affects the combination mechanism as reuse and access 
become dually interdependent activities. Replicability, i.e., 
fitness of data to be applied to its original purpose, is of 
expectable importance for assessing the fit of data in the sci-
ences. For this reason, tracking data provenance (Lee et al., 
2017) has been proposed as an important activity to mitigate 
problems with changes in technology, standards, or proce-
dures (Jarvenpaa & Essén, 2023) in the sciences. During our 

Fig. 3   Combination mecha-
nism enabling venturing with 
cellular-level data
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interviews, however, we learned how ventures also needed to 
assess replicability when trying to reuse cellular-level data 
for new purposes. This is why, we theorize that repurposing 
affords the need to access more cellular-level data because 
replicability needs to be tested and changes to data sources 
might need to be made more often when data is considered 
unfit for reuse. Focus group participants highlighted how 
they evaluate how the original data collection influences 
their reuse for new purposes. In a knowledge base that offers 
aggregated data, ventures rely on the accuracy of data, for 
instance, that a biomarker for a particular disease is valid, 
e.g., a signal in the genetic code of a virus or a human cell. 
If a venture sources cellular data from an archive, it needs 
to be able to link said data with other cellular data. Ventures 
thereby rely on data producers to provide correct metadata, 
such as sequencing information. Here, ventures need to be 
aware of underlying biases in cellular data, e.g., such as 
sourcing biases in large genome initiatives (Freeman et al., 
2020), that can be hard to assess because of the high-dimen-
sional character of cellular data. Only when ventures engage 
in producing data practices such as dimensional reduction 
to high-dimensional, they are able to assess their value for 
repurposing. Ventures assume that if data cannot be applied 
reliably for their original purpose, they would also not be 
applicable to other purposes. This is especially important for 
healthcare ventures, whose claims are scrutinized not only 
by customers and investors, but also by government agencies 
for the scientific basis of their claims of no harm to patients.

Third, our conversations revealed that sourcing omics 
data from publicly available infrastructures in the life sci-
ences has an important impact on venture creation in the 
health domain as sciences produce new knowledge about 
cellular-level mechanisms and novel technologies to create 
and manipulate data. As laid out in Table 3, omics data are 
considered (a) fit-for-purpose and (b) not reliable. Found-
ers oftentimes associate these data characteristics with their 
origin in the sciences, which largely complements existing 
conceptual remarks on innovation with data (Ghosh & Scott, 
2011; Razzak et al., 2020). We thereby learned that the rela-
tionship between access to omics data and its successful 
use in a product during venture creation is mediated by a 
venture’s ability to engage in activities of repurposing; i.e., 
ventures use data that was originally created for purposes 
within basic science for new purposes related to developing 
a product or service. Thus, the question on whether data 
can be used for future—at the time of creation unknown—
problems (e.g., Alaimo, 2022; Yoo et al., 2010) has to be 
resolved by the digital venture. Depending on whether a 
venture succeeds in combining omics data and digital tools 
for a new product or service affects its ability to enter and 
sustain in the market. This is an important finding because it 
underscores the need for new ventures to assess the original 
purpose for which the data was created, the impact on the 

data’s characteristics, and the need for a venture to develop 
means to modify the data for a new purpose. The addi-
tional investment associated with such activities contrasts 
with the assumption that providing public cell-level data, 
for instance, through open data initiatives to large public 
organizations, affords the creation of ventures. Instead, we 
learn that the problem of whether omics data can be brought 
to new purposes is currently resolved by organizations with 
notoriously small funding–entrepreneurial ventures. While 
ventures might not need to invest into creating primary data, 
they need to setup processes and tools to amend secondary 
data to their purpose. It would be up to future research, to 
assess whether and to what extent these additional invest-
ments outweigh the utility of producing primary data tuned 
to a specific service or product. In the case of omics data, 
the nature of the investment-heavy technology, its scientific 
context, and the highly regulated, often clinical environment 
seem to make the use of secondary data at the cellular level 
the main option for new ventures.

Finally, our observation that ventures who work with cel-
lular-level data spend considerable resources on repurposing 
data introduces a new actor into the discourse on sustainabil-
ity of data. This seems an important observation, because it 
questions the time spans at which data becomes unusable for 
repurposing and it asks who is involved in making data sus-
tainable. Extant research remarks that data becomes unus-
able and therefore unsustainable in a “distant future – that 
is, time across technological and human generations” (Jar-
venpaa & Essén, 2023). We have learned in our study that 
ventures are solving problems of unsustainable data at the 
cellular level, collected only months or sometimes years ago. 
Although the life sciences have been studying mechanisms 
at the cellular level for more than a century—the first Nobel 
Prize in genetics was awarded to Albrecht Kossel (1910)—
the life sciences are still making great strides in this area. 
Most omics technologies are only up to two decades old. 
Massive parallel sequencing, for example, has only been 
available to the public since 2005. Even within the same 
technological and human generations, omics data seemingly 
becomes hard to use for new purposes (Blotenberg et al., 
2022). Ventures operate on a much different time scale then 
large public data providers, because of their need to quickly 
create marketable offerings and grow. This underscores a 
temporal mismatch between actors and a data sustainability 
process that so far has been considered to span over long 
times. Further empirical research could shed light on how 
quickly data becomes unsustainable at the cellular level and 
what practices companies use to reuse data.

To the best of our knowledge, vetting the potential of data 
being reused for different purposes as well as the practices in 
how this is being accomplished (e.g., Alaimo, 2022) is new 
to the digital entrepreneurship discourse. Vetting this poten-
tial might be particularly important for ventures in heavily 
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regulated environments such as healthcare, because we know 
that fluid regulations might have a detrimental effect on the 
performance of the combination mechanism (Kimjeon & 
Davidsson, 2022). At the same time, this finding might also 
generalize to other ventures that heavily rely on omics data. 
We would therefore urge further research to study the direct 
effects of these characteristics on the development of mar-
keting offerings during venture creation and growth.

This study on venturing and cellular data is not with-
out limitations. Our result might be affected by the inherent 
focus on omics technologies producing cellular data, par-
ticularly on genomics and proteomics. While we covered a 
broad range of different applications in our sampling, other 
technologies like mass spectrometry might have differing 
effects on venturing because they might produce varied data 
characteristics. We further lay out how the rapid develop-
ment of omics technologies affects venturing. It should be 
noted that many technologies have undergone periods of 
rapid change, initially and before revolving around a domi-
nant design. We cannot rule out that the effects of cellular 
data on venturing will change over time. By conducting 
our interviews over extended periods of time, we tried to 
mitigate short-term effects of technology development and 
standardization attempts.
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