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1 Preliminaries

1.1 Introduction

In Tullock’s (1980) model of political conflict, contestants compete in efforts

to obtain a reward that cannot be easily allocated otherwise. Suppose there

are two contestants, A and B, with respective valuations of winning given by

VA ≥ VB > 0. When contestants choose efforts xA ≥ 0 and xB ≥ 0, contestant

i’s payoff is given by

ui(xA, xB) =
xR
i

xR
A + xR

B

Vi − xi,

where R ≥ 0 is an exogenous parameter, and the ratio is interpreted as 1
2
if

otherwise undefined. While that model has been the workhorse of contest theory

for several decades (Beviá and Corchón, 2024), the equilibrium analysis remained

incomplete. Specifically, prior work did not address the question whether the

equilibrium for R > 2 is unique. In this paper, we establish the uniqueness of

the mixed equilibrium in the two-player Tullock contest.

1.2 Statement of the main result

Suppose that each contestant i ∈ {A,B} chooses a probability distribution over

the interval [0, Vi].
1 Then, payoffs are bounded, and a mixed-strategy Nash equi-

librium (MSNE) may be defined as usual (Dasgupta and Maskin, 1986). The

main result of the present paper is the following.

Theorem 1. The two-player Tullock contest has a unique MSNE, for any VA ≥

VB > 0 and R > 2.

Proof. See Section 3.

1This assumption is reasonable because bids that exceed the contestant’s valuation are
strictly dominated by the zero bid.
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There is a sense in which Theorem 1 completes the equilibrium analysis of

the two-player case. Indeed, for R ∈ [0, 1 + (VB/VA)
R], it was known that a

unique equilibrium in pure strategies exists (Nti, 1999). Moreover, for R ∈

(1+ (VB/VA)
R, 2], a semi-mixed equilibrium, in which contestant A plays a pure

strategy while contestant B randomizes between a positive and a zero effort, was

known to exist (Wang, 2010). Finally, for R ∈ [0, 2], there are no other MSNE,

i.e., the equilibrium is always unique (Ewerhart, 2017b; Feng and Lu, 2017).

Thus, by covering the remaining case R > 2, Theorem 1 indeed rounds up the

equilibrium analysis of the two-player Tullock contest.

1.3 Summary of the proof

The proof of Theorem 1 makes use of sequence spaces, Cauchy matrices, and

Dirichlet series. Background information on these mathematical tools is pro-

vided in an Appendix. The proof has two steps. First, we rewrite the condition

of complete rent dissipation as an operator equation in the Banach space of abso-

lutely summable sequences. The operator is represented by an infinite symmetric

Cauchy matrix with finite supremum norm. Second, we show that the infinite

Cauchy matrix is positive definite. For this, we rewrite the infinite Cauchy ma-

trix as an integral over a parameterized matrix that decomposes naturally as

the outer product of two identical infinite vectors. This approach reduces the

problem of uniqueness of the mixed equilibrium to the question if the coefficients

of a Dirichlet series are uniquely determined. As the representation is indeed

unique (Hardy and Riesz, 1915), this completes the proof.
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1.4 Overview

The remainder of the paper is structured as follows. Section 2 reviews prior

work. Section 3 presents the proof of Theorem 1. The Appendix provides the

necessary background on the mathematical tools employed in the proof.

2 Prior work on the case R > 2

We are aware of four papers that made progress on the research question ad-

dressed in the present paper.

Assuming homogeneous valuations and R > 2, Baye et al. (1994) proved

existence of a MSNE with complete rent dissipation. Further, working with in-

equalities, they provided an upper bound on the equilibrium payoffs in a discrete

version of the contest where efforts are chosen from an equidistant grid. That

upper bound tends to zero as the grid becomes finer and finer.

Alcalde and Dahm (2010) defined an all-pay auction equilibrium of a prob-

abilistic contest as a MSNE in which bids, winning probabilities, and payoffs

coincide in expectation with the respective values of the corresponding all-pay

auction. To a given MSNE in the two-player contest with homogeneous valua-

tions, they associated an all-pay auction equilibrium in the contest with hetero-

geneous valuations.2

Ewerhart (2017a) studied the equilibrium set of probabilistic contests. It

was shown, in particular, that any MSNE of the two-player Tullock contest with

R > 2 is an all-pay auction equilibrium. Therefore, uniqueness of the MSNE in

the special case where VA = VB > 0 implies uniqueness for general valuations

2Their findings also imply that Theorem 1 does not extend to more than two players.
Specifically, suppose that N ≥ 3 contestants compete for a homogeneously valued prize and
R > 2. Then, for any pair of contestants, an all-pay auction equilibrium exists in which these
two contestants are active while all other contestants exert no effort (Alcalde and Dahm, 2010,
proof of Thm. 3.2). Thus, there are multiple equilibria in this case.
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VA ≥ VB > 0. Further, given that a homogeneous prize in the Tullock contest

may always be normalized to unity without loss of generality, this shows that it

suffices to verify the uniqueness claim in Theorem 1 in the special case where

VA = VB = 1 and R > 2.

With a focus on this special case, Ewerhart (2015) further explored the nature

of the MSNE. In the proof of Theorem 1, we will make use of the following result.

Lemma 1 (Ewerhart, 2015). Suppose that VA = VB = 1 and R > 2. Then,

there is a strictly declining sequence of positive bid levels {yk}∞k=1 with limk→∞ yk =

0 that jointly nest the support of any equilibrium strategy. Further, for any

k ∈ {1, 2, . . .}, we have the condition of complete rent dissipation at yk,

yk =
∞∑
l=1

qly
R
k

yRk + yRl
,

where ql denotes the probability attached by the equilibrium strategy to the bid

level yl.

Proof. See Ewerhart (2015).

Thus, under the assumptions of Lemma 1, any equilibrium strategy concentrates

all probability weight on countably many positive bid levels that are contained in

a known set. In particular, any such strategy may be represented by a probability

distribution {qk}∞k=1.

3 Proof of Theorem 1

Consider the infinite symmetric matrix

Y =

{
yRk y

R
l

yRk + yRl

}∞

k,l=1

,
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where the sequence {yk}∞k=1 is defined via Lemma 1. Given that {yk}∞k=1 is strictly

declining, the entries of Y are bounded by

yRk y
R
l

yRk + yRl
≤ yR1

2
.

The following lemma says that, if probability distributions q∗ = {q∗k}∞k=1 and

q∗∗ = {q∗∗k }∞k=1 each represent an equilibrium strategy, then the difference q∗ −

q∗∗ ∈ ℓ1(R) is in the null space of Y .

Lemma 2. Let q∗ = {q∗k}∞k=1 and q∗∗ = {q∗∗k }∞k=1 be probability distributions each

representing an equilibrium. Then, for any k ∈ {1, 2, . . .}, we have

∞∑
l=1

yRk y
R
l

yRk + yRl
(q∗l − q∗∗l ) = 0.

Proof. From Lemma 1, we see that

yk =
∞∑
l=1

q∗l y
R
k

yRk + yRl
.

Hence, exploiting that q∗ is a probability distribution,

1− yk =
∞∑
l=1

q∗l

(
1− yRk

yRk + yRl

)
=

∞∑
l=1

q∗l y
R
l

yRk + yRl
.

Multiplying through with yRk yields

∞∑
l=1

q∗l y
R
k y

R
l

yRk + yRl
= (1− yk) y

R
k .

Subtracting the analogous relationship in with q∗ is replaced by q∗∗ yields the

claim.

We note now that

Y =

{
1

y−R
k + y−R

l

}∞

k,l=1

.
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The following result, which might be of independent interest, therefore completes

the proof of Theorem 1.

Lemma 3. Let C = {1/(λk + λl)}∞k,l=1 be an infinite symmetric Cauchy matrix

with 0 < λ1 < λ2 < . . . and limk→∞ λk = ∞. Then, Cα = 0 implies α = 0, for

any α ∈ ℓ1(R).

Proof. We note that

C =

∫ ∞

0

B(s)ds,

where

B(s) = {exp(−s(λk + λl))}∞k,l=1.

Moreover, B(s) = b(s)b(s)T , with

b(s) = {exp(−sλk)}∞k=1 ∈ ℓ∞(R),

for any s ≥ 0. Take now some α ∈ ℓ1(R). Then,

αTB(s)α =
∞∑

k,l=1

exp(−s(λk + λl))αkαl

=

(
∞∑
k=1

exp(−sλk)αk

)2

=
∣∣b(s)Tα∣∣2 .

Noting that

b(s)Tα =
∞∑
k=1

αk exp(−sλk) ≤ ∥α∥1 exp(−sλ1)

holds for any s ≥ 0, Lebesgue’s dominated convergence theorem implies∫ ∞

0

∣∣b(s)Tα∣∣2 ds = αTCα.

Hence, if Cα = 0, then the Dirichlet series
∞∑
k=1

αk exp(−sλk) vanishes almost

everywhere on the positive real axis. By Lemma A.1 in the Appendix, this shows

that the coefficients αk all vanish. Hence, α = 0, which proves the lemma.
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A Appendix: Mathematical tools

This section provides background on the mathematical tools used in the proof

of Theorem 1. Specifically, we discuss sequence spaces (Subsection A.1), Cauchy

matrices (Subsection A.2), and Dirichlet series (Subsection A.3).

A.1 Sequence spaces

Let ℓ1(R) = {x = (x1, x2, . . .) : ∥x∥1 < ∞} denote the Banach space of absolutely

summable sequences, where ∥x∥1 =
∑∞

k=1 |xk|. Further, let ℓ∞(R) = {x =

(x1, x2, . . .) : ∥x∥∞ < ∞} denote the Banach space of bounded sequences, where

∥x∥∞ = supk∈{1,2,...} |xk|. Then, the product xT b ≡ bTx ≡
∑∞

k=1 xkbk ∈ R

converges absolutely for any x ∈ ℓ1(R) and b ∈ ℓ∞(R) (Aliprantis and Border,

1994, Ch. 16).

Let M∞(R) denote the space of infinite matrices A = {ak,l}∞k,l=1 (Cooke,

1950) with finite supremum norm, i.e., matrices for which supk,l |ak,l| < ∞. Then,

for any A ∈ M∞(R) and x ∈ ℓ1(R), we may define Ax ∈ ℓ∞(R) component-

wise via (Ax)k =
∑∞

l=1 ak,lxl ∈ R. In particular, for any x, x̂ ∈ ℓ1(R), we have

xTAx̂ ≡ (Ax)T x̂ = xT (Ax̂) =
∑∞

k,l=1 ak,lxkx̂l ∈ R. The null space of A ∈ M∞(R)

is the set of x ∈ ℓ1(R) such that Ax = 0.

An infinite matrix A = {ak,l}∞k,l=1 is called symmetric if ak,l = al,k for all

k, l ∈ {1, 2, . . .}. An example is the outer product bbT = {bkbl}∞k,l=1 ∈ M∞(R),

where b ∈ ℓ∞(R). We say that a symmetric infinite matrix A ∈ M∞(R) is

positive semi-definite if xTAx ≥ 0 holds for all x ∈ ℓ1(R). If, in addition,

xTAx = 0 implies x = 0, then we say that A is positive definite .
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A.2 Cauchy matrices

Given positive parameters c1, . . . , cn, for some finite n ≥ 1, the matrix

Cn =

{
1

ck + cl

}n

k,l=1

is called a symmetric Cauchy matrix. If the parameters c1, . . . , cn are, in addition,

pairwise distinct, then Cn is positive definite (Fiedler, 2010, Thm. A).

Infinite Cauchy matrices may be defined by letting n = ∞. As noted by

Schur (1911, p. 18), infinite Cauchy matrices with pairwise different entries are

positive semi-definite. Lemma 3 in the body of the paper provides conditions

under which such matrices are positive definite.

A.3 Dirichlet series

An infinite series of the form

f(s) =
∞∑
k=1

αk exp(−sλk), (A.1)

for a sequence of coefficients {αk}∞k=1 and a frequency λ = {λk}∞k=1, where

limk→∞ λk = ∞, is called a (general) Dirichlet series. In the special case where

λk = k, the series in (A.1) reduces to a power series in the variable z = exp(−s).

Our interest, however, lies in the case of a general frequency.

Lemma A.1 (Hardy and Riesz, 1915). Suppose that the series in (A.1) is

convergent for s = 0, and that for some δ > 0, we have f(s) = 0 for infinitely

many s ≥ δ. Then αk = 0 for all k ∈ {1, 2, . . .}.

Proof. See Hardy and Riesz (1915, Thm. 6).
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