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Summary

Liquidity planning and forecasting are essential activities in corporate financial plan-

ning team. Traditionally, empirical models and techniques based on in-house exper-

tise have been used to navigate the numerous challenges of this forecasting activity.

These challenges become more complex when the forecasting activities are extended

to subsidiaries of a large firm. This paper presents a structured approach that utilizes

240 covariates to predict net liquidity, customer receipts, and payments to suppliers

to improve the accuracy and efficiency of liquidity forecasting in subsidiaries and at

the corporate level. The approach is empirically validated on a large corporation

headquartered in Germany, with average annual revenue from 6 to 7 billion Euro

spanning 80 countries. The proposed approach demonstrated superior performance

over existing methods in six out of nine forecasts using the data from 2014 to 2018.

These findings suggest that a firm's classical approach to liquidity forecasting can be

effectively challenged and outperformed by the algorithmic approach.

K E YWORD S

corporate finance planning, forecast, liquidity planning, machine learning algorithms

1 | INTRODUCTION

Firms maintain liquidity to meet the net cash outlays, including unan-

ticipated investment opportunities and expenses. Failure to manage

liquidity properly can lead to a firm delaying payments, selling assets,

forgoing profitable investment opportunities, or financing at unfa-

vourable terms (Emery & Cogger, 1982). Historically, research in

liquidity has been concentrated at financial institutions like central

banks, with extensive literature on empirical and algorithmic

approaches for liquidity forecasting in these institutions (Johnson &

So, 2018; Cornett et al., 2011). In contrast, non-financial corporations,

particularly manufacturing firms, on the other hand, often consider

liquidity as residual figures. Hence, there is a gap in the literature

liquidity forecasting for typical business firms (Wang et al., 2022).

However, this perspective has changed since the financial crisis of

2008 (Adrian et al., 2017). Currently, liquidity calculation and

monitoring are becoming critical in determining investment in strate-

gic projects and are often necessary for a firm's survival, leading to

growth in literature on liquidity management (Bouslimi et al., 2024;

Maurin et al., 2023).

Nevertheless, liquidity forecasting is still very challenging for

large corporations with multiple subsidiaries across various countries

(Teece, 2014). These challenges are further exacerbated when consid-

ering currency-related forecasts, with subsidiaries working in diverse

national and international financial and political regimes (Petropoulos

et al., 2022). Considering these complexities, several large firms still

rely on trained human experts utilizing spreadsheet-based calculations

for predicting liquidity, including the one utilized as a case study in

this paper. While experienced, these human predictors have low

validation capabilities and typically suffer from limited accuracy and
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trustworthiness. Computational approaches can automate this pro-

cess and enhance the quality of forecasts by leveraging emerging arti-

ficial intelligence algorithms (Paul et al., 2023).

In this paper, we propose a novel methodology for automatic

liquidity forecasting. To the best of our knowledge, this approach is

the first of its kind, featuring an input-blind system, which learns to

identify the necessary data from a sea of inputs utilizing machine

learning-based techniques. We also present a case validating our

approach for liquidity forecasting with data from a large global

manufacturing firm headquartered in Germany. We argue that several

critical factors in liquidity management can be understood through a

framework that can help financially distressed firms ensure efficient

investment in the future (Almeida et al., 2014; Hirunyawipada &

Xiong, 2018). Our contribution extends the literature on cash flow

prediction, filling a gap left by recently developed literature on liquid-

ity management, wherein most of them have focused on bankruptcy

prediction rather than cash flow prediction. The structured liquidity

forecast (FC) showcased in this paper would be valuable for both small

and large firms conceptualizing liquidity and provide a platform for

future research in corporate liquidity studies. The practical implica-

tions of our work are multi-fold. First, we demonstrate that a

machine-based liquidity forecasting approach, considering various

indicators can outperform classical forecasting approaches. This pro-

vides substantial business advantages as more accurate liquidity fore-

casts can save money and help in better financial planning as well as

investment decisions. In the case being reported, an improvement of

just 10% in liquidity forecasting for a large firm can lead to a substan-

tial monthly liquidity increase of € 100 million.

Before presenting our new methodology, we review the current

understanding of liquidity forecasting in the next section. Our new

computational methodology is described in Section 3. Typical numeri-

cal predictors identify trends or relationships between the required

information and the collected data inputs (Lepenioti et al., 2020).

However, one must identify and then collect the inputs required for

such prediction before utilizing any computational approach. These

can be challenging even for a single firm operating under one financial

climate, as financial figures contributing to liquidity, while better

understood than past, are still an open area of research. With large

corporations having multiple subsidiaries under multiple financial cli-

mates, data identification and collection scale significantly in difficulty.

Sections 4 and 5 describe the experimental landscape required for val-

idating our new technique in the German manufacturing firm. This

organization employs over a hundred thousand people and generates

income in the range of 6–7 Billion Euros. With seven functional sub-

sidiaries having footprints in more than 80 countries, it provides an

ideal scenario to validate our techniques for complex liquidity fore-

casting. Sections 6 and 7 present the results of applying our technique

to the firm's data. Our study aimed to identify a superior approach for

liquidity planning vis-à-vis their existing methodology and suggest

some areas of future research. Our primary concern is to deliver a

high-level and abstract liquidity forecast, as requested by the corpo-

rate finance team. Finally, the last section outlines direction for

future work.

2 | LITERATURE REVIEW AND
CONCEPTUAL BACKGROUND

We present a comprehensive literature review from multiple angles

relevant to this study. We first analyse the importance of liquidity

management for firms. We then review studies that quantitatively

analyse various aspects of corporate liquidity. There is extensive liter-

ature on corporate planning in financial institutions, including central

banks, where several machine-learning tools have also been applied.

We provide a brief review of these studies to form the foundation of

our paper.

2.1 | Corporate liquidity

Keynes (1937), in his early seminal work, argued that a firm's

liquidity planning is irrelevant if financial markets function well, as we

typically assume. Hence, he fundamentally linked liquidity manage-

ment to financing constraints (Kurowski & Sussman, 2011). Conse-

quently, his and other studies focused the liquidity argument on cash

holdings as firms' only option to manage liquidity. This optimal cash

holding has been calculated as a simple product of the firm's invest-

ment and liquidity shortfall. In addition, the criticality of having cash

for a firm depends on the probability that the firm will face a liquidity

crunch and, therefore, must use the cash to finance investments

(Almeida et al., 2011). Thus, by controlling the level of investment,

optimal cash holding can be increased with the size of the liquidity

shortfall (Box et al., 2016).

Emery and Cogger (1982) modelled a firm's liquidity position as a

Wiener process and identified two liquidity measurement methods.

Their first method calculated the likelihood of insolvency using a proba-

bility distribution function of insolvency, utilizing a normal distribution

of cash flow over time with initial liquid reserve. They further extend it

with another metric measuring relative liquidity across firms. Subse-

quent studies have proposed several solvency measures showing liquid-

ity as exceptional cases of Emery's probability distribution function and

relative liquidity metrics (Gryglewicz, 2011; Mukhtarov et al., 2022).

These methods and most derivative works focus on qualitative predic-

tions of the probability of insolvency. However, they provide limited

insights on required quantitative predictions like cash flow figures.

For example, Gray (2008) discussed the challenges in forecasting

the central bank's Balance Sheet. He uses his experience from fore-

casting the autonomous factors for central banks to individual big

firms. He highlighted that if banks hold either too much or too little

liquidity, they will respond in a way that may be detrimental to the

central bank's goals. The same applies to large corporates and their

subsidiary. However, Gray's analysis suffers from the limited quantita-

tive forecast. Marti and co-workers have proposed clustering cash

flow predictions in large firms (Marti et al., 2021) in financial markets

to identify predictable clusters. Letizia and Lillo have also taken a simi-

lar approach, with applications in corporate payment networks and

credit risk rating (Galar et al., 2016; Letizia & Lillo, 2019). However,

these again do not provide individual liquidity forecasts.
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In addition to the limitations, these traditional approaches for

measuring liquidity emphasize a firm's working capital position, using

the current and quick ratios as indicators of short-term solvency

(Ibendahl, 2016). These ratios have been employed in numerous credit

evaluation and failure prediction studies. However, they are seldom

used as significant variables by practitioners in the industry (Prasad

et al., 2019; Walter, 1957). One possible explanation is that such tra-

ditional ratios do not accurately describe the firm's liquidity position.

They are static measures that ignore cash flows. With the optimal

cash holding approach, firms have a target level of cash, which varies

depending on the value of the firm's investments and the likelihood

that the firm will not finance these investments without the retained

cash (Azar et al., 2016).

2.2 | Statistical measures and time series analysis

While corporate liquidity forecasting has not been extensively stud-

ied, attempts have been made to FC various components of liquidity.

Future incoming cash is a significant aspect of liquidity. One way to

estimate it is to utilize data on cash collection from previous periods.

This is regularly undertaken and often referred to as account analysis

(Laik & Mirchandani, 2023). The analysis of this past data can poten-

tially form a reliable basis for collection forecasting (Fortsch

et al., 2022). However, the internal data analysis for one or few

months alone does not provide any insight into external microelec-

tronic or macroeconomic factors. This is further affected by typical

limitations in data collection methodologies, including market condi-

tions, currency fluctuations, commodities pricing, weather patterns,

and geopolitical considerations. Alternatively, statistical techniques

like multiple regression have been proposed to estimate the cash col-

lection and related payment proportions with large data series

(Bahrami et al., 2020; Kim & Kang, 2016; Stone, 1976). However,

these techniques suffer from typical time lags between a credit sale

and cash realization point. In addition, the lagged effect of credit sales

and cash inflows is often distributed over several periods, which fur-

ther restricts the accuracy of these techniques (Acharya et al., 2013).

Nevertheless, these two methods provide a reasonably good estima-

tion of both collectible and uncollectible cash patterns. Hence, they

have been used as simple methods for forecasting liquidity (Elliman,

2006).

These time series analysis techniques have been further

enhanced by statistical measures like the Z score, the degree of rela-

tive liquidity, or the lambda index (Shim, 2009). For example, model

developed by Altman et al. (1977) uses multiple discriminant analyses

to present a relatively good predictor of whether a firm will go bank-

rupt within the next five years. However, it should be evaluated over

several years and hence, is difficult to be used as the sole basis of

liquidity. Another work of Altman proposed the degree of the relative

liquidity model, to evaluate a firm's ability to meet its short-term

obligations (Altman, 1968). This model also uses discriminant analysis

by combining several ratios to derive a percentage figure that

indicates the firm's ability to meet short-term obligations (Cheng &

Hüllermeier, 2009). However, this model does not incorporate the

timing and variances in cash flows, as it assumes them to be uniform

and continuous (Almeida et al., 2004). As a result, while correctly iden-

tifying an improved or deteriorated liquidity position, it cannot sug-

gest exact causes of change. Alternatively, the widely popular, lambda

index model evaluates the firm's ability to generate or obtain cash on

a short-term basis to meet current obligations and therefore predict

solvency (Altman, 1968; Altman et al., 1977). This index gauges a

firm's liquidity. However, forecasted figures on other influencing mac-

roeconomic and microeconomic parameters must be used to calculate

this index, making the final lambda value suspect in several cases.

Simonton (1977) developed alternative analytical procedures for

cross-sectional time series in large sample sizes and relatively small

number of observations per case. Interrupted time series, equivalent

time samples, and multiple time series are treated within a multiple

regression framework. Additional studies like those by Chordia et al.

(2000), Domowitz et al. (2005), and Hasbrouck (2001) suggest that

the components used in liquidity forecasting are typically similar.

Chordia et al. (2000) even find liquidity co-movement across asset

classes and analyse commonality across small and large firms.

It is also worth recalling that most formal studies have focused on

bankruptcy prediction and avoidance rather than cash flow prediction

(Mckee, 2000). Our research aims to develop such a system to assist

decision-makers at the board level in appreciating their firm's liquidity

and its relation to subsidiaries. Such a technique is highly desirable,

though unfortunately, not yet available to most corporations. More

importantly, the past liquidity risk determinants and forecasts were

mainly related to close financial aggregates and indexes from financial

institutions' statements. Hence, it is probable that a financial crisis

originating from a single financial institution could propagate to the

whole economic system, becoming a systemic crisis in due course.

Therefore, we hypothesize that the financial components are not the

only determinants of liquidity. One should also utilize macroeconomic

determinants, which influence the liquidity quantity and quality in the

market. Therefore, we consider multiple macroeconomic factors and

traditional variables for a better liquidity forecast, systematically

including them in a quantitative model. While some of these macro-

economic factors could have been included in some manual forecasts,

it is difficult, if not impossible, to include them all in any spreadsheet-

based analysis. The exact nature of the relationship between liquidity

and each of these individual variables of a firm's financial data and

macroeconomic parameters is difficult, if not impossible, to derive.

Hence, we assume a black-box model wherein we train a system to

learn the best possible relationship between input data and output

liquidity. However, a completely independent learning system is math-

ematically a hard construct. Therefore, such systems need to be pro-

vided with known prior intelligence for faster convergence in training

and better results during operation.

Furthermore, earlier studies have used the concept of clustering

to segregate industry types. We also extend this to liquidity forecast-

ing (Marques & Alves, 2020). Finally, we build on recent advances in

deep learning and intelligent systems to better analyse the available

data and build a robust model that improves future predictions. We
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will first present the quantitative details of our algorithm, followed by

a description of our data collection and prediction strategy.

2.3 | Macroeconomic variables for liquidity
forecasting

The few studies on corporate finance present in literature, primarily

use internal data for liquidity analysis. At the same time, macroeco-

nomic variables have long been recognized for their effectiveness in

forecasting liquidity in financial institutions. For instance, studies by

Bhattacharya and Patnaik (2016) show that inflation, exchange rates,

and interest rates significantly impact liquidity forecasts. Numerous

country-specific studies, including Cheng and Wu (2017), confirm the

importance of macroeconomic variables such as gross domestic prod-

uct growth, inflation, exchange rates, and interest rates in liquidity

prediction.

Additionally, several studies, including Chordia et al. (2000, 2005),

Hasbrouck and Seppi (2001), and Domowitz et al. (2005), provide

strong evidence of commonality in liquidity, suggesting a systematic

component. Extending beyond industry clustering, our approach inte-

grates multiple macroeconomic factors for more robust liquidity fore-

casts. Recognizing that financial crises can be systemic, we argue that

macroeconomic determinants influence market liquidity quantity and

quality, not just financial components. This study, hence, fills a gap by

focusing on cash flow prediction rather than bankruptcy prediction, as

observed in prior research.

2.4 | Machine learning and liquidity in financial
institutions

Recently studies have applied machine-based approaches around

liquidity planning and forecasting (Guerra et al., 2022; Singh et al.,

2022; Du & Lian, 2021). Barongo and Mbelwa (2024) overview the

various machine learning techniques used for liquidity forecasting and

evaluate their performance. Cai et al. (2021) propose a machine

learning-based approach using a combination of clustering and regres-

sion techniques. Wang (2021) used a neural network model to predict

liquidity risk. Similarly, Zhu et al. (2020) proposed a deep learning–

based approach to liquidity risk management that uses a convolutional

neural network (CNN) to FC liquidity risk. Zhao et al. (2023) experi-

mented with solvency ratios using machine learning algorithms such

as decision trees and random forests for Chinese listed companies,

finding that these algorithms outperformed traditional statistical

models in predicting these ratios. Similar results were observed by

Corrêa and Saito (2018) for Brazilian listed companies. Lee et al.

(2020) applied decision trees and random forests to predict the liquid-

ity risk of Taiwanese commercial banks, wherein learning algorithms

outperformed traditional statistical models. Finally, Shafiee and Moha-

mad (2019) challenge the traditional statistical models with an

algorithm-based approach to Malaysian listed companies. However,

most models in these prior studies have focused on bankruptcy pre-

diction rather than cash flow prediction.

2.5 | Limitations of past approaches

The literature reveals several limitations in existing machine learning

based approaches in liquidity. In addition to focussing on bankruptcy

prediction rather than cash flow prediction, they suffer from limited

feature set used to train machine learning models. Liquidity forecast-

ing requires a comprehensive set of features, including macroeco-

nomic, market, and financial data with complex dependencies

between these instruments, which is difficult to capture using tradi-

tional machine learning models relying on linear relationships between

variables. Finally, the lack of historical data also limits the effective-

ness of machine learning models.

3 | ANALYTICAL FC METHODOLOGY

We aim to employ a machine learning–based system for liquidity fore-

casting, as these systems have shown superior performance in data

analysis than pure statistical measures. Several algorithmic techniques

have been suggested for forecasting on historical data (Chen &

Boylan, 2007; Clements & Hendry, 1998; Collopy & Armstrong, 1992;

Hanssens et al., 2003). Inspired by the statistical literature, we initially

utilized several time series algorithms for forecasting. The simplest of

these is a Naïve forecasting method, which uses the cash flow values

from the previous period as the prediction value for the next period. It

has the advantage of being quite simple, requiring no computational

overhead. However, it has little or almost no ability to long-term or

even short-term FC with reasonable accuracy. We then utilized statis-

tical techniques like the auto-regressive integrated moving average

(ARIMA) to represent widely used statistical techniques (Li

et al., 2020).

However, as expected and described in our literature review sec-

tion, these statistical techniques yielded limited success. This necessi-

tated a shift towards a non-analytical black-box type solution. We,

therefore, utilized applied machine learning techniques to train a sys-

tem blindly from input data. Many learning algorithms exist in the lit-

erature with different training efforts and output accuracies. We

present the best-case scenario observed till date with our firm with-

out delving into various algorithms' individual advantages and disad-

vantages. We will report results based on the Cubist algorithm (Kuhn

et al., 2012; Quinlan, 1992) as a representative to build a liquidity

forecasting model.

Cubist machine learning algorithm belongs to the class of rule-

based regression algorithms, combining elements of decision trees

and linear regression (Pratama & Choi, 2017). It builds a series of

regression trees and applies a “cubist modeling” process to derive

rules from these trees. These rules are used to make predictions by

combining linear models based on different combinations of input
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variables. Cubist is particularly effective in handling complex datasets

with interactions and nonlinear relationships. CART (Classification and

Regression Trees) algorithms are also decision tree-based algorithms;

however, they differ in their approach and functionality from Cubist

(Carmona & Sáez, 2016) (please refer to Appendix A for further

details).

Cubist splits the time series data into previous predictors to cre-

ate a tree. This tree has implicit regime identification as each branch is

a rule utilizing intermediate linear models at each tree step. At the ter-

minal node of this tree, a linear regression model is used for predic-

tion, which is then “smoothed” by considering the linear model's

prediction at the previous node. This recursive process reduces the

tree to a set of “if-after-after” rules, each associated with a multivari-

ate linear model. If the set of covariates satisfies the rule's conditions,

the corresponding model is used to calculate the predicted value.

These rules initially form paths from top to bottom and are then

pruned and combined for simplification. Figure 1 shows the two-step

process: Step1 establishes a set of rules that divide the data into smal-

ler subsets, and Step 2 applies a regression model to these smaller

subsets to arrive at a prediction. The Cubist algorithm allows multivar-

iate linear models to overlap while not requiring them to be mutually

exclusive (Gleason & Im, 2012). This is useful for liquidity forecasting,

as we do not have prior knowledge of any relationship between these

models. It is worth noting that this is unlike the well-known random

forest model, as predictions are being pruned at each node from other

similar training cases or nearest-neighbour model results (Kuhn

et al., 2012; Quinlan, 1992). In addition, the Cubist algorithm can also

predict values beyond the range covered by the samples compared

with the random forest.

4 | DATA COLLECTION

The previous section briefly outlined the algorithmic foundation for

liquidity prediction. However, any data analysis technique is only as

effective as the quality of data collected and refined. The success of

Cubist or any other machine learning algorithm depends on the data

quality. For liquidity forecasting in large corporations with multiple

subsidiaries, identifying relevant data to collect and categorizing it

appropriately can be challenging even before addressing

computational issues. Therefore, we developed a suitable integrated

framework for our research, which can also be utilized by other corpo-

rations. We will now discuss the data requirements, including defining

and categorizing cash flow clusters, selecting and adding indicator

time series, and data cleansing. We will then analyse this data by our

model and optimize it. Finally, we will benchmark our results with cur-

rent practices in large firms and traditional statistical methods. Please

refer to the Appendix C for the experimental landscape.

4.1 | Cash flow categorization and predictable
cluster identification

As a first step, we needed to define the types of cash flows to be col-

lected as time series. From an algorithmic perspective, it is beneficial

to categorize our data into various clusters (Marti et al., 2021). It is

worth recalling that typical cash flow is segregated by its directions:

inflows and outflows. Customer payments mainly define inflows. We

categorize these into the time-series cluster of “customer receipts.”
The outflow is separated into different clusters of “payments to

suppliers,” “payments to employees,” and “dividend payments” due

to their different patterns. For example, employee payment often

peaks in certain months. In Europe, this is typically in December due

to a bonus payment for Christmas. On the other hand, the shareholder

meeting date defines the dividend payment. Furthermore, as we are

interested in subsidiaries as well as the corporate headquarters, we

also consider data breakdown from the global level by regional and

business area levels. A firm's subsidiaries can differentiate cash flow

behaviour from their parent organization, due to different business

areas or geographical locations. The related economic situation with

the subsidiaries and its divergent customer payment behaviour would

impact the overall customer receipts of the parent organization.

Therefore, we studied different cash flow clusters for each subsidiary,

focussing on net cash flow, customer receipts, and supplier payment

(refer to Appendix B). We excluded traditional components like divi-

dend payments or capital investments from consideration, as these

are driven by manual decisions within the company and, therefore, are

already known (Acharya et al., 2012). By focusing on net cash flow

and its components, including customer receipts and payments to

suppliers, we gain a better understanding of the firm's operational

F IGURE 1 Two steps in Cubist
models.
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liquidity. This categorizes an overall firm over the intermediate level

regions and business area to cash flow clusters. A typical schematic

level representation for such clustering is shown in Figure 2.

4.2 | Data acquisition: Source definition for cash
flows and indicators

After clustering the cash flow, one must define the data source and

characteristics of previously categorized cash flow clusters and the

indicator time series. We will demonstrate this through the activities

undertaken to validate our model in this paper. First, we collected

monthly cash flow data from January 2014 to December 2018. This

means time series for each 48 monthly data points (12 � 4 years).

We then divided these data into three clusters: net cash flow,

customer receipts, and payment to suppliers. These defined cash

flow clusters are our target time-series variables. One can typically

obtain this data from the global enterprise resource planning (ERP)

system within their firm, and we did the same. ERP data is aggre-

gated in several more detailed in- and out-flows cash positions in

these three cash flow clusters. Based on that, we further split cash

flow data into seven subsidiaries to separate regional and business

area–related effects.

One can also cluster the data based on market, business area, and

financial constructs like future, spot, or oligopolistic. However, we

decided not to do so, as it was immaterial for decision-making based

on overall liquidity. Furthermore, very sparse cash flow data was avail-

able at the corporate level, which introduces further complications.

This insufficient data granularity mandated a breakdown to the sub-

sidiaries' level. Furthermore, in the case of some specific subsidiaries,

the business model has also changed in the recent past. Therefore,

data points before such a change were removed and not considered

in the time series. Finally, we derived time series per subsidiary and

cash flow cluster. This shows typical problems at any corporation,

where similar strategy can be used.

Additionally, as described above in our hypothesis, we desire to

use internal and external micro and macroeconomic indicators in

liquidity forecasting (Jordan & Messner, 2020). To identify the indica-

tors having a significant predictive impact on the FC accuracy, we

undertook deliberations with many internal business experts (Kuhn &

Johnson, 2013). We utilized internal figures that have a significant

impact on our cash flow clusters. Hence, we considered the

conversion chain from sales (turnover) to cash flow (customer

receipts), as shown in Figure 3.

Sales and account receivables are “accounting” parameters and

appear in a company's profit and loss statement and the balance sheet

before they become an actual monetary inflow, that is the customer

receipts (Lubinska, 2020). We observed an identical behaviour on the

outflow, i.e., payments to suppliers. Purchases and account payables

are a firm's future payments to suppliers. These internal indicator data

were extracted from an internal OLTP (online transaction processing)

system like ERP system and an OLAP (online analytical processing) like

business warehouse by executing queries and filters.

In addition to these internal factors, several external influencing

indicators are of interest in a large multinational multi-business firm

(Swieringa & Weick, 1987). The optimum external indicators required

for liquidity forecasts are still a matter of research; however, we

hypothesized that the following should affect our liquidity, utilizing

the opinion of many in-house practitioners in the firm. First, exchange

rates influence the time a client buys a product. An increased rate

makes products more expensive for clients belonging to another cur-

rency zone and can postpone the moment they buy products due to

speculations for a lower exchange rate. Therefore, it is reasonable

to assume that it will affect the liquidity FC of any multinational firm.

Additionally, the economic environment significantly impacts con-

sumer consumption and production. In favourable economic condi-

tions, higher consumption and production result in higher payments

and employment, which in turn further stimulates higher consump-

tion. Conversely in dire economic situation, consumption and produc-

tion decline, reducing payments and employment. Therefore, the

economic situation directly influences a company's cash inflows and

outflows, particularly for firms selling day-to-day used products. To

capture these effects, we utilized macroeconomic indices reflecting

the current conditions and stock indices predicting future trends. We

also differentiated these indicators between a subsidiaries location or

its consuming industries.

Furthermore, commodities prices, particularly for essential mate-

rials like oil and gas, play a crucial role in a company's purchasing deci-

sion and hence, define the price of produced goods and their

customer demand (Chase, 2013; Chen et al., 2023). However, these

external indicators can vary between subsidiaries' business and geo-

graphical regions. Therefore, different subsidiaries may require other

indicators (Lahmiri, 2020). Fortunately, learning-based algorithmic sys-

tems can manage significant indicators and prioritize those needed for

F IGURE 2 Clustering cash flows by
levels.
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any subsidiary. For example, Table 1 shows the factors utilized for

data analysis of one of the subsidiaries of the firm, with operational

data in Germany.

We also examined boundary conditions like market psychology,

driven by economic fundamentals and commodity prices (like Oil

prices). Although our study focused on an industry heavily influenced

by government interventions, we did not include this aspect due to

the difficulty in quantifying it at this stage. We collected macrofinan-

cial data from Bloomberg and other European financial agencies for

this study. Fortunately, our firm's cash flow and indicator time series

data are structured similarly to the market data, including the date,

type, timestamp, and value. Nevertheless, one may argue that these

data structures could differ from those of other firms. Hence, one

needs to undertake an intermediate step of restructuring the data,

potentially leading to data sparsity that must be accounted for.

For our study, all time-series data were collected at monthly

periods. It still required further data cleaning as we needed to match

the granularity of historical data, indicator databases, and FC horizon.

The indicator time series and the predicted cash flow time series both

spanned at least 48 data points over the same time range. Besides,

the indicator time series can be extended by one year (12 data points)

for most cases. Hence, we cover a range from January 2013 to

December 2018 for the indicator data, but the prediction data range

remains from January 2014 to December 2018. This approach helped

us appreciate lagging indicators. One may recall that a lagging indica-

tor could be any measurable or observable variable that changes its

direction with any change in the target variable. Hence, these lagging

indicators confirm any trends or changes in trends in the time series.

These lags are especially useful in time series analysis because they

tend to correlate the values within a time series with previous copies

of itself. In our research, we have considered a lag of 3 months, as

shown in Figure 4.

The data collection led us to create 12-time series with a lag from

0 to 12 out of one indicator time series. Using this, we even consider

effects up to 12 months in the past and build future data points corre-

lating with the target time series. This mechanism is applied to all our

indicator data.

In conclusion, we have a mix of 12 different internal and external

indicators for the considered example. Finally, the data input is

defined by applying a lag up to 12 per indicator time series,

i.e., 144-time series plus three cash flow cluster time series, resulting

in 147-time series and a minimum total of 7.056 data. It is worth not-

ing that the amount of used indicator time series and the resulting

data point number can vary depending on the subsidiary.

4.3 | Data cleansing and enrichment: Outliers and
seasonality

One may recall that liquidity traces the cash flow, whose different

types vary in their volatility. For example, customer receipts can range

from 1 to 6 months depending on the agreed payment terms. Often,

the payment takes place after (overdue) or before (due to the current

unattractive cash investment conditions) the due date. Such volatility

can sometimes show a strong seasonal pattern or is a one-time effect

influenced by unexpected or unknown factors (Sun & Ding, 2020).

However, any collected real data could also have periodicity due to

external factors and outliers. Hence, before undertaking liquidity fore-

casting, we need to undertake further input data enrichment by con-

sidering seasonality and removing one-time effects of outliers, which

could be due to internal as well as external factors. Furthermore, it is

highly improbable to get all data; hence, missing data is a fact of life in

most data collection exercises, requiring date pre-processing.

In our data collection, we encountered several such data effects.

For example, Figure 5 shows the customer receipts of one subsidiary

of the firm, as collected from one country, in this case, Germany, from

January 2014 till December 2018. One can readily appreciate the sin-

gle strong peak anomaly in this data. However, these peaks need care-

ful consideration to determine whether they are outliers or data

errors. In our case, we discovered that some customers paid for their

purchases at once by the end of 2016 due to an exclusive discount on

the payment terms instead of monthly payments. Therefore, this

would not be a good metric to reflect in typical forecasting activity.

We, therefore, removed this and other similar outlier values, replacing

them with values fitting the general trend of data. Similar outliers

F IGURE 3 Conversion chain from sales to
cash flow.

TABLE 1 Sample Indicator time series used for a subsidiary of the
firm reported in the study, with all data points collected monthly from
its operation in Germany.

Origin Area Indicator

Internal Controlling Turnover, account receivables,

account payables

Internal Procurement Purchase expenses

External Foreign exchange

rates

USD/EUR

External Stock indices per

country

DAX (German stock index)

External Stock indices per

industry

TecDax (stock index for 30 largest

German companies from the

technology sector)

External Commodity prices Oil, gas and naptha

External Macroeconomic

indices per

country

Germany's Consumer Confidence

Index, USA's Industrial Production

Index, German Production Index

(Overall), German Car

Manufacturing Index.
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F IGURE 4 Sample time series lagged
by 3 months.

F IGURE 5 Cash flow time series with anomaly.

F IGURE 6 Cash flow time series with frequent outliers (seasonality).
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were detected in other time series due to factors like extraordinary

payment behaviours and incorrect classifications of underlying cash

flows.

Simultaneously, one often also comes across outliers in small time

windows, which would not necessarily be incorrect when considering

over longer durations. For example, seasonal spikes appear as outliers

over a short period. However, one would see periodicity in their

occurrence over several years, Hence, they need not be considered

outliers but preferably utilized in liquidity forecasting (Chordia

et al., 2005). For example, Figure 6 shows seasonal effects in the data

from one subsidiary, with recurring peaks in May and November,

marked red and yellow. These peaks were therefore not removed

from the analysis.

More importantly, we actively trained our model to compensate

for seasonality, as illustrated in Figure 7 showing decomposed season-

ality of the previous four years of data. The time-series data may also

have multiplicative or additive components. For example, a decreasing

or non-repeating cycle with repeating seasonality components can

follow an increasing trend. Decomposition helps us analyse the data

better and explore different ways to solve the problem.

As mentioned in Section 4.2, we extended the pre-selected

indicators by seasonality. As presented in the previous section, the

input data are enriched with decomposed seasonality time series

and cleaned outliers. After cleaning extraordinary outliers, we also

enriched our pre-selected indicators and the input data with decom-

posed seasonality.

5 | DATA ANALYSIS AND VALIDATION

5.1 | Liquidity metric

Before the current research was proposed and undertaken, our firm in

question employed the simple Naïve liquidity FC method. This was

rule-based on historical results and the business experience of expert

personnel employed to undertake this. To compare this traditional

approach with our new method, we needed a mathematical metric.

We selected the mean absolute error (MAE) between the predicted

and measured liquidity as a simple metric for model comparison and a

more subjective average error measure. We understand that this

is not the only qualitative metric, and one can also use

root-mean-squared errors (RMSE). However, unlike RMSE, MAE is

unambiguous (Willmott & Matsuura, 2005) and provides a clear

interpretation of the deviation between a prediction and an actual

value. Moreover, it treats positive and negative errors symmetrically.

It is important to note that firms often do not symmetrically han-

dle positive and negative liquidity errors. For example, overestimating

net cash flow is riskier than underestimating it, as firms prefer to have

excess cash rather than risk bankruptcy (Glaum et al., 2018). There-

fore, one can argue that a metric that emphasizes negative values

more than positive ones could be a better metric to compare. How-

ever, the firm in discussion for this work, assessed positive and nega-

tive errors equally based on the findings from cross-validation. Hence,

our study is restricted to symmetric treatment. It is worth recalling

that the mean absolute error (MAE) is:

MAE¼
Pn

i¼1 yi�xij j
n

where n is the number of data points, yi is the predicted value,

and xi is the actual reported value. To express the MAE as a percent-

age, one can use the mean absolute percentage error (MAPE), which

calculates the relative error. However, it has a highly skewed distribu-

tion, particularly with outliers caused by high prediction error, with

a low observation value (Goodwin & Lawton, 1999). Alternatively, a

median-based metric is also of limited use due to the potential of zero

values in the cash flow time series, which would lead to a divide by

zero error (Goodwin & Lawton, 1999). Considering this, we selected

relative MAE (RMAE) as a better representative measure. This is

calculated as

RMAE¼ MAE
Pn

i¼1
xi

n

The FC accuracy of the prediction can, then, be calculated by

(1 � RMAE).

5.2 | Cross-validation and model comparisons

Before analysing the results of our liquidity forecasting, it is worth

revisiting the traditional human expert–based approach used in our

firm and many other corporations. Such Naïve forecasts typically rely

on recent observation data to predict the future values of potential

liquidity. To improve predictions, a weighted factor approach is often

undertaken. This factor is generally derived from an expert's business

knowledge and experience. As a typical example, while predicting Jan

2019 forecasts, one could use Dec 2018 observation (e.g., 10 M EUR)

and apply a multiplication factor (e.g., 0.7, based on experience) to

predict 7 M EUR.

We analysed the liquidity forecasts from past time-series data as

predicted by the traditional Naïve approach, computational methods

F IGURE 7 Decomposed seasonality in cash flow over 4 years.
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like the statistical ARIMA, and our machine-learning-based black box

system. These evaluations were performed on the target time series

without considering any covariates or further tuning of parameters.

We used the previously described cash flow time series from our firm

consideration. Our firm uses a 6-month rolling FC strategy. This

means that it executes a prediction of six FC steps every month,

depending on the current month. For example, Figure 8 shows known

data points as blue squares. The six FC steps are then predicted for

future month data points. Brown gradations visualize these at the end

of the series.

The various approaches to liquidity FC were evaluated using a

nested cross-validation methodology, as shown in Figure 8. We col-

lected firm performance and liquidity data from January 2014 to

December 2018. We consider the data range from January 2017

to December 2018 for validating the proposed system. We build sep-

arated predictions for those time points per FC step. The training data

in the figure is shown in blue. The next 6 months' data is the valida-

tion data. The training data was increased by a month for every month

of data. This means the start date for all training scenarios was fixed

at January 2014. However, the last available data point in every case

would be different. For example, in the first training scenario, we had

data until December 2016, thereby of 24 months. It was used to

predict liquidity for the next 6 months. We were then able to compare

this data with the actual liquidity recorded.

In the following training scenario, we used the data from January

2014 till January 2017, increasing the input data to 25 months. Then,

we again predicted the next six months. Therefore, the distance

between the predicted FC step and the last available training data is

always equal, even though the length of training data differs in differ-

ent iterations. For example, the iteration highlighted with the red box

in Figure 9 shows the historical data till March 2017 being used for

training. The predictions are now being undertaken for the next six

months, from April 2017. Hence, the evaluation of the three

approaches happens in chronological order. We start with Jan 2017

and predict next 6 months. We then repeat the process 24 times for

every FC step independently till the last data point of Dec 2018 is

reached. Please note here that liquidity forecasts are already under-

taken for 6 months in future. In the first set, we consider the case

when we are in 07.2016. One must predict for 01.2017, i.e., 6 months

in advance, so the FC is done; as soon as we get the data for next

month, i.e., 08.2016, we include that into our input data set. This

allows us to have a rolling FC of the previous month's data set

(actuals) to better our FC for the next 6 months. An aggregated metric

each FC step was calculated based on residuals from these

F IGURE 8 Six forecast steps for
future month based on available and
know data points.

F IGURE 9 Nested cross evaluation.
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24 predicted data points and the related recorded values. Figure 10

shows the results of these predictions, as measured through FC accu-

racy of (1 � RMAE).

One can observe that the machine learning approach of the Cub-

ist algorithm consistently provides the least error among three

methods in all FC steps. On the other hand, the simple naïve approach

never performs as well. One reason for this could be that it cannot

manage seasonality and trend inside the target time series. While sta-

tistical ARIMA works better than Naïve, the Cubist outperforms it in

all cases. With the confidence that Cubist outperforms ARIMA, we

forecasted the firm's actual liquidity and compared it to the human

techniques applied previously.

6 | ANALYSIS OF MACHINE LEARNING–
BASED LIQUIDITY FORECAST

We now undertake further analysis of our machine learning approach

to liquidity forecasting and the data used for training. It is important

to note that we propose a learning-based system, which requires care-

ful optimization to achieve effective results within a reasonable time-

frame and with finite computing power. This section details how the

cubist algorithm was optimized for liquidity forecasting. This optimiza-

tion was not tailored to the firm or data collection type making it

applicable to other firms as well. Figure 11 shows a snippet (without

any claim to completeness) of the input data used for training, model

evaluation, and prediction. Each column refers to a different time

series, interpreted as features by the cubist algorithm. The input data

contains lagged indicator data like Industrial Production Index–Lag

0, 1, 2, 3, and 4, where each number represents lag by that many

months. It is further extended by features like seasonality and its lags,

applied after decomposing the target time series. Each row in this

table represents data with single observations for every time series.

This example refers to a prediction for January 2019, with a forecast

step of one, which has been marked in orange. This hence uses the

training data from January 2014 till December 2018. Every time

series, with no future data points for our prediction month, is not con-

sidered. For example, the grey marked column labelled “Industrial Pro-
duction Index–Lag 0” is ignored, as the time series used for training

ends in December 2018 and does not provide any observation for

predicting subsequent months. All other indicators time series contrib-

ute to potential prediction for January 2019 and therefore are used as

features.

After providing the input data set, we again applied the nested

cross-validation approach with machine learning to evaluate the best-

performing features and parameters of the Cubist algorithm, like

“ensemble classifier with schema called committees,” which were fur-

ther optimized. The process is illustrated in Figure 12. It starts with a

target time series and several indicator time series. In the second step,

indicators are lagged and enriched, broadening their feature range.

Finally, we reduced the number of features to those predicting results

with the lowest metric values, after evaluation and feature elimina-

tion. This process is repeated for every forecast step independently.

At the end of each forecast step, the set of lagged indicator time

series and parameters with the lowest metric value is used to predict

a future data point of our target time series. The results are discussed

in Section 7.

6.1 | Forecast optimization

Machine learning algorithms, particularly Cubist, can be optimized for

a range of desirable outcomes, such as forecast accuracy and forecast

stability. Forecast stability is affected by variance in the model param-

eters between different planning periods. Fixing these parameters

would help in stabilizing a forecast between periods. On the other

hand, the forecast accuracy can be influenced by calculating the esti-

mates in different ways and aggregating the results. For example,

Figure 13 shows one such technique where the required forecast is

calculated directly and indirectly by forecasting lower levels. Ideally,

this approach must be applied to each node, such as at the level of

the net cash flow per subsidiary. Each planning period should then be

individually re-evaluated. This rule adapts to feature selection and

hyperparameter tuning too. These two can then be averaged together

to increase the forecast accuracy.

It is also worth noting that sales and customer receipts have

lagged correlations due to several factors like applicable payment

terms, typically observed in large firms (Namazi et al., 2016). Hence,

F IGURE 10 Liquidity forecast model
evaluation: Naïve vs. Arima vs. Cubist.
*FC = forecast.
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F IGURE 11 Sample input data
from our firm in question.

F IGURE 12 Sample procedure for
indicator selection.
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one can often observe recurring behaviour due to seasonality, even in

customer receipts or payment to suppliers, like those seen in sales. To

account for the seasonality in payment to suppliers, we aggregate the

sum of receipts and payments as a net cash flow forecast component.

It enabled us either to predict the net cash flow directly or indi-

rectly through separate predictions of receipts and payments, with

subsequent aggregation. A similar approach can be applied to a direct

forecast for the entire group or an indirect forecast through every

subsidiary individually, followed by aggregation. We decided to fore-

cast for every subsidiary and for every cluster separately to validate

both the direct and indirect net cash flow approaches. However, we

do not predict the entire group's forecast directly due to different

business areas and regional effects that would be lost in such
F IGURE 13 Variants of hierarchical forecast optimization.

F IGURE 14 Performance of net cash flow (direct approach) — human based–machine based.

F IGURE 15 Performance of customer receipt forecasts (at subsidiary level).
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forecasts. Subsidiary-level forecasts provide more control and

understanding of various effects, further explored in Appendix D.

7 | FURTHER RESULTS

In our Cubist-based liquidity forecast approach, we used financial

ratios (such as current ratio, quick ratio, and cash ratio), cash balances,

accounts receivable, and accounts payable. We also considered

parameters such as sales data over time (identify patterns and trends

in firms' trading activity, which can inform liquidity forecasts), trading

volume (i.e., the total number of contracts that the firm had during a

given time frame), expenses; market volatility; sentiment analysis and

macroeconomics indicators gathered from external sources such as

economic reports and industry reports. Table 1 in Section 4.2 shows

the sample indicator time series used in the study. Liquidity forecasts

were conducted using the acquired data and suggested mathematical

metrics. From the data collected and described in Section 4, the target

time-series data from 2014 to 2016 and indicator time-series data

from 2013 to 2016 was used for training. The last 2 years (2017–18)

data was used for cross-validation. The training data had enough data

points to detect any seasonal pattern. Cross-validation of the results

consisted of 24 points, iterated so that the following period's training

set is extended.

Figure 14 compares the performance of the human-expert-based

Naïve prediction and machine learning–based models of the net cash

flow forecast of one of the subsidiaries. Similar findings were also

undertaken in other subsidiaries. In our comparative analysis with data

from the last 24 months, each FC (forecast) step denotes a month's

forecast of the 6 months rolling period. It can be observed that the

machine-based forecast outperformed aggregated forecast over six

individual forecast steps. However, for a one step (month) FC, classical

human-expert forecast performs as well as the machine forecast, if

not slightly better. With longer forecasting steps, the learning system

outperformed the conventional approach, demonstrating a balancing

approach due to averaging positive and negative deviations and

reducing total error compared to individual errors from forecast steps.

The aggregated forecast accuracy of approximately 91% surpasses

the classical performance by about 9%. Similar behaviour was also

observed in the forecast performance comparison in the customer

receipts and supplier payments, shown in Figures 15 and 16. One can

also observe that the machine-based approach leads to maximum

improvement when comparing net cash flow. Further reduction in

RMAE was often obtained by direct or average approach on the single

subsidiary level.

8 | CONCLUSION AND FUTURE WORK

The aggregated forecast encompassing all forecast steps shows a sig-

nificant improvement in accuracy compared to the classical forecast.

While the classical method benefits from the unique insights of the

cash flow planner for short-term forecasts, it falls short in long-term

accuracy compared to machine learning systems. Our algorithm dem-

onstrates a notable 9% improvement over human experts. Although

this may seem modest, a 10% improvement in planning quality can

lead to a substantial monthly liquidity increase of 100 million Euros

and annual savings of 100 thousand Euros for the firm. The structured

forecast outlined here, focusing on recurring cash flow clusters and

minimizing human influence, offers valuable insights for firms of all

sizes. This methodology enhances automation and accuracy in liquid-

ity forecasting. Given the similarities in corporate liquidity factors

among manufacturing-based multinational firms, this approach, while

applied to one firm, suggests broader applicability. Furthermore, the

validation across seven subsidiaries implies relevance to multiple inde-

pendent firms, effectively equating to validation in at least seven

F IGURE 16 Performance of supplier payment forecasts (at subsidiary level) — human based–machine based.
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different firms. Additional considerations for end-users and planners

during liquidity planning are detailed in Appendix D.

Our study considered 240 covariates to predict net liquidity, cus-

tomer receipts, and payments to suppliers to improve the accuracy

and efficiency of liquidity forecasting at both subsidiaries and corpo-

rate level. For future work, the described methodology can be applied

to additional cash flow time series and clusters, which have other

characteristics, such as employee salaries, interest expenses, and

taxes. Alternative forecasting methods, including emerging machine

learning algorithms, should also be considered. Additionally, the

availability of indicators can be extended and verified for continued

relevance. Finally, making it challenging to identify the specific

variables and factors driving the predictions. This lack of transparency

can hinder understanding and acceptance. Therefore, future research

should investigate explainable components in these approaches

(Singh & Kar, 2022). Enhancing interpretability would help users

understand how the model arrives at its predictions, thus increasing

its acceptability and effectiveness in decision-making.
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APPENDIX A: COMPARING CUBIST WITH CART A

In our approach, we have considered the comparison based on our

specific liquidity needs, focusing on modeling techniques and how

they handle variables, and the interaction during the handling of

variables.

A.1 | Modeling technique

CART employs a binary recursive partitioning algorithm to construct

decision trees. It recursively splits the dataset based on a selected

attribute and threshold, optimizing for the purity (homogeneity) of the

resulting subsets. On the other hand, Cubist utilizes a combination of

decision trees and linear models. It first builds a series of regression

trees using the CART algorithm and then applies a “cubist modeling”
model to generate rules and linear models from these trees.

A.2 | Rule-based modeling

An essential distinction between Cubist and CART is the incorpora-

tion of rule-based modeling in Cubist. After creating the regression

trees, Cubist applies a rule induction process to derive rules from the

trees. These rules are based on the tree structure and the linear

models associated with the terminal nodes. As a result, the rules offer

a more interpretable representation of the relationships between

input and target variables.

A.3 | Handling of continuous variables

CART handles continuous variables by selecting an appropriate

threshold to split the data. Cubist, however, handles continuous vari-

ables differently. It uses “constructing a centre” to convert continuous

variables into discrete variables by creating intervals or ranges. This

allows Cubist to treat continuous variables as ordinal categorical vari-

ables during tree-building.

A.4 | Handling interactions

Cubist is specifically designed to handle interactions between

variables, capturing both additive and multiplicative interactions by

considering combinations of variables in the linear models

associated with the rules. This enables Cubists to model complex

relationships and interactions between variables more effectively

than CART, which focuses on recursive splits based on individual

variables.

Cubist extends CART's capabilities by incorporating rule-based

modeling, handling continuous variables differently, and capturing

interactions between variables. These differences make Cubist a

robust algorithm for regression tasks, especially when dealing with

complex datasets with nonlinear relationships and interactions.

APPENDIX B: KEY DEFINITIONS B

B.1 | Net cashflow

Net cash flow in financial liquidity planning refers to the

difference between cash inflows and outflows over a specific period

and is a crucial measure in liquidity planning, helping assess the

availability of cash to meet short-term obligations and fund daily

operations.

B.2 | Customer receipts

Customer receipts refer to the cash inflows received from customers

or clients for the products or services provided by a business. It repre-

sents the payments the business receives from its sales or accounts

receivable. It directly contributes to the cash available for meeting

financial obligations and funding ongoing operations. We have

considered the customer receipts features of timing of receipts, cash

conversion cycle, dependency on cash flow forecasting, and cash

conversion cycle.

B.3 | Supplier payments

Supplier payments refer to the cash payments a business makes to its

suppliers or vendors for goods or services. It represents the outflow

of cash from the business to settle its outstanding payables or trade

debts. In our study, we have considered the payment terms and

prioritization, discounts, and rebates.
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APPENDIX C: EXPERIMENTAL SYSTEM LANDSCAPE C

ETL, extract, transform, and load.

APPENDIX D: VITAL CONSIDERATION BY END-USER OR PLANNER DURING LIQUIDITY PLANNING D

Key consideration by end-user or planner during liquidity planning may include:

• How to use a forecast?

The effectiveness of a forecast hinges on its practical utility for cash flow planners. Therefore, forecasts should be easily visualized and inter-

pretable, seamlessly integrated into the planning process to facilitate informed decision-making.

• How will the current planning process be influenced?

Cash flow planners may not plan those cash flow clusters predicted using machine-based algorithms. Hence, they can focus on a stepwise

approach to not-yet machine-based forecasted clusters and some human-made decisions. For example, it could require a monthly view of the

latest actuals from cash flow clusters of the machine-based planning for data cleansing or reporting of effects.

• How could the current process be further digitalized?

Introducing machine-based liquidity planning offers significant opportunity for digitalization. By integrating machine-based forecasts with man-

ually planned cash comprehensive view of the firm's liquidity can be presented, promoting transparency and collaboration among cash flow

managers across subsidiaries.

• Cost–benefit analysis of switching to a machine learning model.

While machine learning projects inherently involve some level of experimentation, they offer the potential for reduced human effort and cost

savings in the long run. By improving planning quality and avoiding unnecessary borrowing or missed investment opportunities, machine-based

forecasting can yield positive monetary effects.

• Can this result at one firm to show that machine-based approach outperformed the classical approach be generalized?

The effectiveness of a machine-based approach compared to classical techniques may vary depending on the characteristics of the firms and

the timeseries of data collected and being analysed. Factors such as volatility, seasonal patterns, and data availability can influence the perfor-

mance of these models, impacting their generalizability.

• Which firm characteristics make ML models unsuitable for liquidity planning?

Machine learning models may not be suitable for a firm with minimal monetary impacts due to low liquidity numbers or a small amount of

forecasted time series. The same holds for firms with a moderate forecast accuracy improvement due to weak and continuous liquidity, e.g., 1

Mio (± 1%) every month.
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